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Largest projections for random walks and

shortest curves in random mapping tori

Alessandro Sisto and Samuel J. Taylor

We show that the largest subsurface projection distance between a
marking and its image under the nth step of a random walk grows
logarithmically in n, with probability approaching 1 as n→∞.
Our setup is general and also applies to (relatively) hyperbolic
groups and to Out(Fn).

We then use this result to prove Rivin’s conjecture that for a ran-
dom walk (wn) on the mapping class group, the shortest geodesic
in the hyperbolic mapping torus Mwn has length on the order of
1/ log2(n).

1. Introduction

In [14], Maher proved that a random walk generated by a nonelementary
measure on the mapping class group Mod(S) has positive drift with respect
to the action Mod(S) y C(S) on the curve complex C(S) of an orientable
surface S. Informally, this means that for a fixed curve α ∈ C(S), the dis-
placement dC(S)(α,wnα) between α and its image under the nth step of
the random walk (wn) grows linearly in n with probability approaching 1
as n→∞. Generalizations were made to actions of countable groups on
hyperbolic spaces by Calegari–Maher [8] and Maher–Tiozzo [17], see also
[19].

In this note, we give finer information about the behavior of random
walks on mapping class groups, by studying largest subsurface projections.
Subsurface projections are very useful for example in view of the distance
formula [18] for mapping class groups, as well as their connections with
the geometry of hyperbolic 3–manifolds, see e.g. [22] and Section 7 below.
We show that the largest distance between subsurface projection of 1 and
wn grows logarithmically in n with probability approaching 1 as n→∞.
Since curve complex distance is “stalled” while progress is being made in a
subsurface, this complements Maher’s result.
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In fact, our methods apply to several other examples, which we list in
the theorem below.

Theorem 1.1. Consider one of the following setups:

• Let G be hyperbolic group, Q an infinite index quasiconvex subgroup,
and fix a finite generating set S for G which contains a generating set
for Q. Let {C(Y )}Y ∈S be the set of induced subgraphs of left cosets of
Q in the Cayley graph CayS(G). For Y ∈ S, let πY : G→ C(Y ) denote
a closest point projection in CayS(G).

• Let G be the mapping class group of a closed connected oriented surface
of genus at least 2, and let {C(Y )}Y ∈S be the set of curve complexes
of either all proper subsurfaces or all proper subsurfaces of a given
topological type. For Y ∈ S, let πY : G→ C(Y ) denote the subsurface
projection, i.e. we let πY (g) be the subsurface projection to Y of gλ for
a fixed marking λ [18].

• Let G denote Out(Fn), n ≥ 3, and let {C(Y )}Y ∈S be the set of free
factor complexes of either all proper free factors of Fn or all proper
free factors of a given rank ≥ 2. For Y ∈ S, let πY : G→ C(Y ) denote
the subfactor projection, i.e. πY (g) is the subfactor projection to the
factor complex of Y of gλ for a fixed marked graph λ [5, 31].

• Let G be hyperbolic relative to its proper subgroups H1, . . . ,Hn, each
containing an undistorted element1. Fix a finite generating set S for G
which contains generating sets for each Hi, and let {C(Y )}Y ∈S be the
set of induced subgraphs of left cosets of H1 in CayS(G). For Y ∈ S,
let πY : G→ C(Y ) denote a closest point projection in CayS(G).

Let µ be a symmetric measure whose support is finite and generates G,
and let (wn) denote the random walk driven by µ. Then there exists C so
that

P
(

sup
Z∈S

dC(Z)(πZ(1), πZ(wn)) ∈ [C−1 log n,C log n]

)
→ 1,

as n tends to infinity.

1We call an g undistorted if n 7→ gn is a quasi-isometric embedding. One can
weaken the assumption to Hi being infinite, but that requires adjustments to the
proof, and we opted to keep the proof as simple and as uniform as possible.



i
i

“14-Taylor” — 2019/6/6 — 23:23 — page 295 — #3 i
i

i
i

i
i

Largest projections and shortest curves 295

We will treat all cases simultaneously by using common features of the
mentioned setups. We explain those conditions in Section 2, where we also
state the theorem that covers all cases (Theorem 2.3).

In fact, we remark that Theorem 2.3 covers even more cases. For exam-
ple, it can be applied in the contexts of hyperplanes in cube complexes, of
hierarchically hyperbolic spaces [3, 4], and of hyperbolically embedded sub-
groups [9]. Also, there is no need for the support of the measure to generate
G, as long as it generates a “large enough” semigroup of G (in the mapping
class group case, it suffices that the semigroup contains a pseudo-Anosov
and an infinite order reducible element). In the interest of brevity, we have
chosen Theorem 1.1 as stated.

Application to random fibered 3–manifolds

Let S be a closed connected orientable surface of genus at least 2 and Mod(S)
its mapping class group. For each f ∈ Mod(S), we denote the corresponding
mapping torus M(f). This is the 3–manifold constructed by starting with
S × [0, 1] and glueing S × {1} to S × {0} via a homeomorphism in the class
of f . Thurston’s celebrated hyperbolization theorem for fibered 3–manifolds
states that M(f) has a (unique by Mostow Rigidity) hyperbolic structure if
and only if f is pseudo-Anosov [25, 33].

The property of being pseudo-Anosov, and hence of determining a hyper-
bolic mapping torus, is typical. In fact, Rivin [26] and Maher [14] proved that
for an appropriate random walk (wn) on Mod(S) the probability that wn is
pseudo-Anosov goes to 1 as n→∞. Hence, it make sense to address ques-
tions about the typical geometry of these random hyperbolic 3-manifolds.
For example, in [27, Conjecture 5.10], Rivin conjectures:

Conjecture 1.2 (Rivin). The injectivity radius of a random mapping
torus of a surface S decays as 1/ log2(n).

Rivin also proves his conjecture in the case where S is a punctured torus.
In the case of punctured surfaces, injectivity radius should be interpreted as
1/2 · sys(M), where sys(M) is the systole of the hyperbolic manifold M , i.e.
the length of the shortest geodesic in M .

In Section 7 we prove Rivin’s conjecture by establishing:

Theorem 1.3. Let µ be a symmetric measure whose support is finite and
generates Mod(S), and let (wn) denote the random walk driven by µ. Then
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there exists C > 0 so that

P
(

C−1

log2(n)
≤ sys(M(wn)) ≤ C

log2(n)

)
→ 1,

as n→∞.

Outline

In Section 2 we introduce the general setup that covers all the cases of
Theorem 1.1. In Section 3 we prove a result useful to establish both the
lower and the upper bound on projections, namely that it is exponentially
unlikely that the projection of the random walk to Z moves a large distance.
The proof is based on ideas from [29, 30], but we simplify the arguments
from those papers. In Section 4 we prove the lower bound on projections.
Besides our application to short curves on random mapping tori, this is the
main and most original contribution of this paper. The proof is based on the
second moment method, and to the best of our knowledge this is the first
time that the method is applied in a similar context. In Section 5 we prove
the upper bound on projections, using ideas from [1] and [30] (in which the
upper bound is proved in the case of mapping class groups). In Section 6 we
verify that the examples in Theorem 1.1 fit into the general framework.

Finally, in Section 7 we review the connection between subsurface pro-
jections and lengths of curves in hyperbolic mapping tori. When then use
this to prove Theorem 1.3 verifying Rivin’s conjecture.
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2. Statement of the main theorem

We now describe the common features of the projections in the various
setups of Theorem 1.1.

Definition 2.1. A projection system (S, Y0, {πZ}Z∈S ,t) on a finitely gen-
erated group G endowed with the word metric dG is a quadruple consisting
of the following objects.

1) A set S together with an action of G of S with one orbit, and a specified
element Y0 ∈ S.

2) For each Z ∈ S, a metric space C(Z) and an L–Lipschitz map πZ :
(G, dG)→ C(Z). We set dZ(x, y) = dC(Z)(πZ(x), πZ(y)).

3) We have dgZ(gx, gy) = dZ(x, y) for each g, x, y ∈ G and Z ∈ S.

4) An equivariant symmetric relation t on S. We require that there exists
B > 0 so that whenever Y0 t gY0, we have min{dY0

(g, h), dgY0
(1, h)} <

B for every h ∈ G.

5) There exists an integer s so that for each pairwise distinct Y1, . . . , Ys ∈
S there exist i, j so that Yi t Yj .

Item 4 above is probably most important, and in the context of mapping
class groups, where C(Z) is the curve complex of a subsurface, it is called the
Behrstock inequality [2]. See Figure 1. The reader may consult Section 6.1 to
see how this notion of a projection system fits into the well-known context
of subsurface projections for mapping class groups.

It might be worth noting that there is no (Gromov-)hyperbolic space
involved, even though we will make use of hyperbolic spaces to check a
condition from Definition 2.2 below.

We now give the hypotheses that we will need on the measure. Notice
that we did not require the stabilizer of Y0 to act on C(Y0), which is the
reason why item 2 below might look strange at first.

Definition 2.2. Fix a projection system (S, Y0, {πZ}Z∈S ,t) on the group
G. We call a finitely supported measure µ semi-admissible if the random
walk (wn) driven by µ satisfies the following.

1) There are h1, h2 ∈ G in the support of µ such that for every Z ∈ S
either h1Y0 t Z or h2Y0 t Z.
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Figure 1. An illustration of the Behrstock inequality (similar to Figure 6 of
[2]). Here, Y0 t gY0 and the shaded region indicates the allowable projection
of h ∈ G to C(Y0)× C(gY0).

2) There are x1, x2 ∈ G in the support of µ such that dY0
(x1h, x2h) ≥ 2B

for each h ∈ G and for B as in Definition 2.1.4.

3) There exists C0 ≥ 1 so that P
(
wn ∈ Stab(Y0), dY0

(1, wn) ≥ n/C0

)
is

positive for each n ≥ 1, where Stab(Y0) denotes the stabilizer of Y0 in
G.

4) There exists C0 ≥ 1 so that P(wnY0 6t Y0) ≤ C0e
−n/C0 for each n ≥ 1.

We call a measure µ admissible if both µ and the reflected measure µ̂(g) =
µ(g−1) are semi-admissible.

We remark that in our applications, we show that a convolution power
of some initial measure is admissible. (See Section 6.) The main theorem of
the paper is the following.

Theorem 2.3. Let G be a group and let (S, Y0, {πZ}Z∈S ,t) be a projection
system on G. Let (wn) be a random walk driven by an admissible measure.
Then there exists C ≥ 1 so that

P
(

sup
Z∈S

dZ(1, wn) ∈ [C−1 log n,C log n]

)
goes to 1 as n goes to ∞.
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The upper bound and lower bound on random projections are proved
separately in Theorem 4.3 and Theorem 5.2 respectively, which together give
Theorem 2.3.

3. Exponential decay of projection distance

In this section we fix the projection system (S, Y0, {πZ}Z∈S ,t) on the finitely
generated group G endowed with the word metric dG. Also, we let µ be a
semi-admissible measure generating the random walk (wn).

The following lemma tells us, thinking of g as an intermediate step of the
random walk, that there is a definite probability that the projection onto Z
of the random walk does not change from some point on.

Lemma 3.1. There exist ε, C > 0 so that for any n the following holds.
For any g ∈ G and Z ∈ S, we have P(dZ(g, gwn) ≥ C) ≤ 1− ε.

The proof exploits a “replacement” trick, where we start with wn having
dZ(g, gwn) ≥ C and (thinking of wn as a random path) replace its initial
subpath of length 2 to lower the dZ .

Proof. We first note that it suffice to prove the lemma for Z = Y0. This is
because Z = zY0 for some z ∈ G and

dZ(g, gwn) = dzY0
(g, gwn) = dY0

(z−1g, z−1gwn).

Fix h1, h2 as in Definition 2.2.1, and x1, x2 as in Definition 2.2.2. If n = 1,
the statement of the lemma holds if we choose C > L suph∈supp(µ) dG(1, h),
where L is the Lipschitz constant of πY0

. For n ≥ 2 we have

P(dY0
(g, gwn) ≥ C) =

∑
h∈G

P(dY0
(g, gw2h) ≥ C)P(w−1

2 wn = h).

Fix any h ∈ G. There exists i so that g−1Y0 t hiY0 and hence Y0 t ghiY0.
Also, since dghiY0

(ghix1h, ghix2h) ≥ 2B, there exists j so that

dghiY0
(1, ghixjh) ≥ B.

Hence dY0
(ghi, ghixjh) < B by Definition 2.1.4, so that dY0

(g, ghixjh) <
B + LdG(1, hi). This proves

P(dY0
(g, gw2h) ≥ C) ≤ 1− ε if C > B + Lmax{dG(1, h1), dG(1, h2)},
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where we set ε = mini,j{µ(hi)µ(xj)} > 0. To finish up,

P(dY0
(g, gwn) ≥ C) ≤ (1− ε)

∑
h∈G

P(w−1
2 wn = h) = 1− ε.

�

The following key proposition says that it is (exponentially) unlikely
that a random walk projects far away on Z. To prove the lower bound on
the largest random projection we just need the case R = 0, i.e. we do not
need the conditional probability.

Proposition 3.2. There exists M ≥ 1 so that for each Z ∈ S, each positive
integer n and each t, R ≥ 0 we have

P
(
dZ(1, wn) ≥ t+R | dZ(1, wn) ≥ R

)
≤Me−t/M .

The idea of proof is to show that the probability that the projection to
Z is much further away than s ≥ 0 plus some constant is a bounded multiple
of the probability that it is about s. This is because, in view of Lemma 3.1,
once an intermediate step of the random walk projects further than s, there
is a definite probability that the projection does not change.

Proof. First of all, let us rephrase the statement. Let fZ,n(s) = P(dZ(1, wn) ≥
s). We have to find M , not depending on Z, n, so that

fZ,n(t+R) ≤ fZ,n(R)Me−t/M

for each t, R ≥ 0. For the proof, fix Z, n and set f(s) = fZ,n(s).
We now fix some constants. Let ε, C > 0 be as in Lemma 3.1; in partic-

ular

P(dZ(g, gwm) ≥ C) ≤ 1− ε
ε

P(dZ(g, gwm) < C)

for each g ∈ G and m ≥ 0, since P(dZ(g, gwm) < C) ≥ ε. We increase C to
ensure that LdG(1, g) ≤ C for each g ∈ supp(µ), where L is the Lipschitz
constant of πZ . In particular, any given step of the random walk moves the
projection by at most C.

For g ∈ G and m an integer, denote by Eg,m the event where wn−m = g
and n−m = min{j : dZ(1, wj) ≥ s+ C}. Then
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f(s+ 3C) ≤
∑

dZ(1,g)∈[s+C,s+2C]
m≤n

P(dZ(1, gwm) ≥ s+ 3C)P(Eg,m)

≤
∑

P(dZ(g, gwm) ≥ C)P(Eg,m)

≤ 1− ε
ε

∑
P(dZ(g, gwm) < C)P(Eg,m)

≤ 1− ε
ε

(f(s)− f(s+ 3C)) ,

where we used f(s)− f(s+ 3C) = P
(
dZ(1, wn) ∈ [s, s+ 3C)

)
.

Hence, f(s+ 3C) ≤ (1− ε)f(s), and in turn we get f(R+ 3Ci) ≤ (1−
ε)if(R) for each integer i ≥ 0. This implies the required exponential decay
of f . �

4. Lower bound on projections via the second moment
method

4.1. Heuristic discussion

In this section we prove that there exists a projection of at least logarithmic
size with high probability. The reason why one expects a logarithmic size
projection is that, roughly speaking, a random word of length n contains
all subwords of length ε log n, and in particular it will contain a subword
that creates a logarithmic size projection. The remaining parts of the word
should not affect this projection too much in view of Proposition 3.2. This
heuristic alone, however, only gives that the expected number of logarithmic
size projections diverges, but it does not say anything about the probability
that one exists.

The actual proof relies on the second moment method, i.e. the estimate
that for a random variable X ≥ 0 with finite variance and E(X) > 0, we
have

P(X > 0) ≥ E(X)2

E(X2)
.

The second moment method is especially suited for dealing with random
variables X that can be written as

∑n
i=1 Yi, where “most pairs” Yi, Yj are

“mostly uncorrelated”, meaning that E(YiYj) is approximately E(Yi)E(Yj).
In this case the numerator

∑
i,j E(Yi)E(Yj) is approximately equal to the

denominator
∑

i,j E(YiYj), implying that P(X > 0) is close to 1.
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4.2. The proof

We use the notation of Theorem 2.3 as well as Definitions 2.1 and 2.2. In
this section we prove that there exists ε0 > 0 so that

P
(

sup
Z∈S

dZ(1, wn) ≥ ε0 log n

)
→ 1, (∗)

as n tends to ∞.
Let c be the minimal probability of an element in supp(µ). Then for

each k and each g ∈ G we have that P(wk = g) is either 0 or at least ck.
We fix a positive ε1 <

1
log(1/c) from now until the end of the section and set

k(n) = bε1 log nc. To simplify the notation, we fix n and set k = k(n), and
stipulate that all constants appearing below do not depend on n.

In view of the discussion above and Definition 2.2.3, there exists ε2 ∈
(0, 1) so that for every sufficiently large n we can choose xn ∈ G with the
properties that

1) pn := P(wk = xn) ≥ nε1 log(c),

2) xnY0 = Y0, and

3) dY (1, xn) ≥ ε2 log(n).

For i ≤ n− k, let Wi be the indicator function of the event w−1
i wi+k =

xn. Also, let Li be the indicator function for the event that dY0
(w−1

i , 1) ≤
ε2 log(n)/3 and let Ri be the indicator function for the event that

dY0
(1, w−1

i+kwn) ≤ ε2 log(n)/3.

Set Yi = LiWiRi and note that if Yi = 1, then

dwiY0
(1, wn) ≥ dwiY0

(wi, wixn)− dwiY0
(1, wi)− dwixnY0

(wixn, wn)

≥ dY0
(1, xn)− dY0

(w−1
i , 1)− dY0

(1, w−1
i+kwn)

≥ ε2 log(n)− 2
ε2
3

log(n)

=
ε2
3

log(n). (∗∗)

Hence, what we want to show is that with high probability there exists
i with Yi = 1.

Lemma 4.1. E(Yi) = pn(1−O(n−ε3)) for each i, where ε3 > 0.
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Proof. Since Yi = LiWiRi and Li,Wi, Ri are independent, it suffices to show
that P(Li = 0) and P(Ri = 0) decay polynomially as n→∞. Indeed, by
Proposition 3.2,

P
(
dY0

(w−1
i , 1) >

ε2
3

log(n)
)
≤Me−

ε2
3M

log(n)

≤Mn−
ε2
3M .

as required. The case for P(Ri = 0) is similar. �

The following proposition is the key one to apply the second moment
method.

Proposition 4.2. E(YiYj) = p2
n(1−O(n−ε4)) whenever |i− j| ≥ log n,

where ε4 > 0.

The idea of proof is the following. We have to prove that if in two
specified spots along the random path we see the word xn, then it is very
likely that Yi = Yj = 1, i.e. that certain projections are not too big. In order
to show this, we consider the 3 remaining subpaths of the random path.
See Figure 2. Such paths and their inverses give small projection to Y by
Proposition 3.2. But then it is easy to control all projections we are interested
in using the Behrstock inequality.

Proof. Fix i ≤ j − log n. Let A1 = {Wi = 1}, A2 = {Wj = 1}, and A3 be the
event that either Y0 6t w−1

i+kwjY0 or one of the following distances is larger
than ε2

3 log(n)−B:

1) dY0
(1, w−1

i ),

2) dY0
(1, w−1

i+kwj),

3) dY0
(1, w−1

j wi+k),

4) dY0
(1, w−1

j+kwn).

Notice that A1, A2, A3 are independent. We claim that WiWj1Ac3 ≤ YiYj ≤
WiWj . Once we establish the claim, we have that p2

n(1− P(A3)) ≤ E(YiYj) ≤
p2
n. Since the probability of each of the 5 events making up A3 decays poly-

nomial in n, the first by the admissibility condition Definition 2.2.4 and the
last four by Proposition 3.2, this will complete the proof of the proposition.

To prove the claim, we show that A1 ∩A2 ∩Ac3 ⊂ {Yi = 1} ∩ {Yj = 1},
i.e. that if

• w−1
i wi+k = xn, w−1

j wj+k = xn,
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Figure 2. The line represents the random path under consideration, with
the thicker segments being the occurrences of xn. The arrows suggest the
paths that have small enough projection onto Y0 in the event Ac3 (which is
often).

• Y0 t w
−1
i+kwjY0, and

• all distances in (1)− (4) listed above are at most ε2
3 log(n)−B

then for l equal to i or j, dY0
(w−1

l , 1) ≤ ε2
3 log(n) and dY0

(1, w−1
l+kwn) ≤

ε2
3 log(n). We show this for l = i since the other case is similar.

First, note that by assumption wi+k = wixn and wj+k = wjxn. Hence,

dY0
(1, w−1

i+kwn) = dwiY0
(wixn, wn)

≤ dwiY0
(wixn, wj) + dwiY0

(wj , wn)

≤ ε2
3

log(n)−B + dwiY0
(wj , wn),

and so it suffices to show that dwiY0
(wj , wn) ≤ B. If not, then since wixnY0 =

wiY0 t wjY0, we must have that dwjY0
(wixn, wn) ≤ B. On the other hand,

by the triangle inequality,

dwjY0
(wixn, wn) ≥ dwjY0

(wj , wjxn)− dwjY0
(wixn, wj)− dwjxnY0

(wjxn, wn)

= dY0
(1, xn)− dY0

(1, w−1
i+kwj)− dY0

(1, w−1
j+kwn)

≥ ε2 log n− 2
ε2
3

log n+ 2B,

a contradiction. �

We are ready to prove the lower bound (∗).

Theorem 4.3. Let (S, Y, {πZ}Z∈S ,t) be a projection system on the finitely
generated group G and let µ be a an admissible measure generating the ran-
dom walk (wn). Then there exists ε0 > 0 so that

P
(

sup
Z∈S

dZ(1, wn) ≥ ε0 log(n)

)
→ 1,
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as n→∞.

Proof. Let Yi be as above and set X = Xn =
∑n−k

i=1 Yi. We show that P(X >
0) approaches 1 as n→∞, which suffices in view of the estimate (∗∗).

Since E(YiYj) ≤ E(Yi) ≤ pn(1−O(n−ε3)) by Lemma 4.1, Proposition 4.2
implies that

∑
i,j

E(YiYj) =
∑

|i−j|<logn

E(YiYj) +
∑

|i−j|≥logn

E(YiYj)

≤ 3n log(n)pn(1−O(n−ε3)) + n2p2
n(1−O(n−ε4))

≤ n2p2
n(1− o(1)),

where we used that n log(n)pn/n
2p2
n = log(n)/npn tends to 0. This holds

since npn ≥ n1+ε1 log(c), which grows polynomially since ε1 <
1

log(1/c) .

By the second moment method (and Lemma 4.1), we have

P(X > 0) ≥ E(X)2

E(X2)
=

∑
i,j E(Yi)E(Yj)∑
i,j E(YiYj)

≥ (n− k)2p2
n(1− o(1))

n2p2
n(1− o(1))

= 1− o(1),

as required. �

5. Upper bound on projections via distance formula
lower bound

We start with a proposition that provides a distance-formula-type lower
bound on the distance in G between two elements.

This will be useful for us because in order to show that with high prob-
ability there is a logarithmic upper bound on supZ dZ(1, wn) the idea is the
following. For each given Z we have the required upper bound in view of
Proposition 3.2, and in view of the following proposition we only need to
check a controlled number of Z.

Proposition 5.1. Let (S, Y0, {πZ}Z∈S ,t) be a projection system on the
finitely generated group G endowed with the word metric dG. Then there are
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K,C ≥ 0 so that for all h ∈ G we have∑
Z∈S
{{dZ(1, h)}}K ≤ C · dG(1, h),

where {{x}}K = x if x ≥ K and 0 otherwise.

In the setting of the mapping class groups, the metric spaces C(Z) are
curve complexes of subsurfaces and Proposition 5.1 follows from the Masur–
Minsky distance formulas [18]. However, the proof we give does not rely on
the Masur–Minsky hierarchy machinery and applied to our general notion of
a projection system. Our proof is a generalization of the argument appearing
in [1].

Proof. We use the notation and constants in Definitions 2.1.
Let K = 5B + 3L and fix a geodesic 1 = h0, h1, . . . , hN = h in G. Let

Ω be the set of Z ∈ S with dZ(1, h) ≥ K. For each Z ∈ Ω choose iZ , tZ ∈
{0, . . . , N} as follows: iZ is the largest index k with dZ(h0, hk) ≤ 2B + L
and tZ is the smallest index k greater than iZ with dZ(hk, hN ) ≤ 2B + L.
Write IZ = [iZ , tZ ] ⊂ {0, 1, . . . , N} and note that this subinterval is well-
defined. Further since the projection of adjacent vertices in the geodesic
have dZ less than or equal to L, dZ(h0, hk), dZ(hk, hN ) ≥ 2B for all k ∈ IZ
and dZ(hiZ , htZ ) ≥ B + L.

Claim. If aY0, bY0 ∈ Ω and aY0 t bY0 then IaY0
∩ IbY0

= ∅.

Proof. Toward a contradiction, take k ∈ IaY0
∩ IbY0

. Since aY0 t bY0 we have
either daY0

(b, h0) < B or dbY0
(a, h0) < B. Assume the former; the latter case

is proven by exchanging the occurrences of a and b in the proof. By the
triangle inequality,

daY0
(b, hk) ≥ daY0

(h0, hk)− daY0
(b, h0)

≥ 2B −B = B.

So, since aY0 t bY0, we have dbY0
(a, hk) < B and

dbY0
(a, hN ) ≥ dbY0

(hk, hN )− dbY0
(a, hk)

≥ 2B −B = B.

and we conclude, again since aY0 t bY0, that daY0
(b, hN ) ≤ B. This, together

with our initial assumption, implies

daY0
(h0, hN ) ≤ daY0

(h0, b) + daY0
(b, hN ) ≤ 2B < K
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contradicting that aY0 ∈ Ω. �

Returning to the proof of the proposition, we have the intervals {IZ :
Z ∈ Ω} of {0, 1, . . . , N}. By the claim above and our assumption on the
number of pair-wise t-incomparable elements of S, each k ∈ {0, 1, . . . , N} is
contained in at most s intervals. Hence,∑

Z∈Ω

|tZ − iZ | ≤ s · dG(1, h).

Finally, using the Lipschitz condition on the projections,

dZ(1, h) ≤ dZ(hiZ , htZ ) + 4B + 2L

≤ L|tZ − iZ |+ 4B + 2L.

Since, we have dZ(1, h) ≥ 5B + 3L for each Z ∈ Ω, we get 1
5L · dZ(1, h) ≤

|tZ − iZ | and so putting this with the inequality above∑
Z∈Ω

dZ(1, h) ≤ 5sL · dG(1, h)

as required. �

Theorem 5.2. Let (S, Y0, {πZ}Z∈S ,t) be a projection system on the finitely
generated group G and let µ be a semi-admissible measure generating the
random walk (wn). Then there exists A ≥ 1 so that

P(∃Z ∈ S : dZ(1, wn) ≥ A log n)

tends to 0 as n tends to ∞.

Proof. Let C,K be as in Proposition 5.1, let M be as in Proposition 3.2,
and set l = suph∈supp(µ) dG(1, h). Then we notice that

∑
Z∈S P(dZ(1, wn) ≥

K) ≤ Cl · n for each n ≥ 0. In fact P(dZ(1, wn) ≥ K) is the expected value
of the indicator function of the event AZ = {dZ(1, wn) ≥ K}, so that the
aforementioned sum equals the expected value of the random variable |{Z ∈
S : dZ(1, wn) ≥ K}|. By Proposition 5.1 we have |{Z ∈ S : dZ(1, g) ≥ K}| ≤
CdG(1, g) for each g ∈ G, hence the estimate follows.
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Choose any A > M . For n large enough that A log n ≥ K we have

P
(
∃Z ∈ S : dZ(1, wn) ≥ A log n

)
≤
∑
Z∈S

P
(
dZ(1, wn) ≥ A log n | dZ(1, wn) ≥ K

)
P(dZ(1, wn) ≥ K)

≤Me−(A logn−K)/M
∑

P
(
dZ(1, wn) ≥ K

)
≤ (MCleK/M )n1−A/M ,

where the second inequality follows from Proposition 3.2. Since this quantity
tends to 0 by our choice of A, the proof is complete. �

6. Proof of Theorem 1.1

Here we show how Theorem 1.1 follows from Theorem 2.3. We give full de-
tails in the case of mapping class groups; the other cases follow a very similar
outline and we provide slightly fewer details and the needed references.

6.1. Mapping class groups and subsurface projections

In this subsection, we assume that the reader has some familiarity with sub-
surface projections, as defined by Masur–Minsky in [18]. Set G = Mod(S).
Since there are only finitely many G–orbits of (isotopy classes of) essential
subsurfaces, we can deal with each orbit separately. For any proper essential
subsurface Y0 of S, let S = {gY0 : g ∈ G}, and for Z ∈ S, let πZ denote the
subsurface projection to the curve complex C(Z) of Z. If we complete ∂Y0 to
a marking λ (a collection of curves cutting S into disks and once-punctured
disks), then we define πZ : G→ C(Z) by πZ(g) = πZ(gλ). With this defini-
tion, πZ is L–Lipschitz for some L > 1 ([18, Lemma 2.5]). This verifies the
first 3 conditions in the definition of a projection system (Definition 2.1).

Subsurfaces Y and Z overlap if, up to isotopy, they are neither disjoint
nor nested. In this case, we write Y t Z. Note that by construction, if Y and
Z overlap, then dZ(λ, Y ) ≤ L. Here, πZ(Y ) is by definition the projection of
the boundary of Y to C(Z). The usual Behrstock inequality [2] states that
there exists D ≥ 0 such that for any marking η and overlapping subsurfaces
Y and Z, min{dY (∂Z, η), dZ(∂Y, η)} ≤ D. Hence, setting B = D + L verifies
the fourth condition of Definition 2.1. To show that subsurface projections
give a projection system for the mapping class group, it remains to show
the there is a bound on the size of a collection of pairwise nonoverlapping
subsurfaces of S. This fact is easily verified since such subsurfaces can be
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realized simultaneously as either disjoint or nested on S (see the proof of
Theorem 6.10 in [18]).

Let µ be a symmetric probability measure on Mod(S) whose support is
finite and generates Mod(S). We show that there is a k such that µ = µ∗k is
admissible. Here, µ∗k is the k-fold convolution power of µ, which by definition
is

µ∗k(g) =
∑

x1...xk=g

µ(x1) · · ·µ(xk).

From this, Theorem 1.1 for G = Mod(S) follows immediately from Theo-
rem 2.3 (and the fact that the projections are L–Lipschitz). Let Y0 and λ be
as above and fix f ∈ Mod(S) which acts as a pseudo-Anosov on Y0 such that
f2 has translation length at least 2B in C(Y0). Further, fix a pseudo-Anosov
g ∈ Mod(S) whose translation length on C(S) is at least 3L+ 1. Choose k
so that, up to replacing f and g with appropriate powers, f and g are in the
support of µ = µ∗k. Note we also have that f−1, g−1 ∈ supp(µ).

Now the first condition of Definition 2.2 hold for h1 = g−1, h2 = g since
if both gY0 and g−1Y0 fail to overlap some surface Z and γ is a boundary
component of Y0, then

dS(γ, g2γ) = dS(g−1γ, gγ) ≤ dS(g−1γ, ∂Z) + dS(∂Z, gγ) ≤ 3L,

contradicting our choice of g. The second condition of Definition 2.2 is satis-
fied for x1 = f, x2 = f−1, while the third condition holds since the support
of µ∗n contains fn. The final condition of Definition 2.2 is easily deduced
from the fact that, by [15, Theorem 1.2], the random walk makes linear
progress with exponential decay in C(S).

6.2. Quasiconvex subgroups

Consider the setup of an infinite index quasiconvex subgroup H of a hy-
perbolic group G, with S the family of its cosets. The first 3 properties in
Definition 2.1 are easy. The relation t is having bounded projection onto
each other, so that the fourth item follows from basic hyperbolic geometry.
The final item follows from finiteness of width [12].

As in the case of mapping class groups, the proof of admissibility uses a
hyperbolic space, X, that we now define. We let S be any finite generating
set of G, and consider the Cayley graph X of G with respect to the infinite
generating set S ∪H.

We could not find a reference for the following statement, despite it
being implicit in several papers. Recall that an action on a hyperbolic space
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is non-elementary if there exist two loxodromic elements with no common
limit point at infinity.

Lemma 6.1. X is hyperbolic and the action of G on X is non-elementary.

Proof. By [11, Theorem 6.4], X is hyperbolic. In fact, by [13, Proposition 2.6]
quasigeodesics in G map to unparameterized quasigeodesics in X. In par-
ticular, if g is any element of G, then the action of g on X is either elliptic
or loxodromic. The combination of [20, Theorem 1-(b)] (which provides an
element x ∈ G not conjugate into H) and [20, Theorem 2] (for K = 〈x〉)
prove that there exists an element of G, that we denote g, that cannot act
elliptically, and hence it acts loxodromically. Similarly, we can apply the
same reasoning to find an element g′ that acts loxodromically on the Cayley
graph of G with respect to S ∪H ∪ 〈g〉, and in particular it will also act
loxodromically on X. It is easy to see that g and g′ cannot have a common
limit point at infinity. �

A convolution power of µ will have support containing an infinite order
element of the quasiconvex subgroup, as well as an element with large trans-
lation distance on X, easily implying the first three items of Definition 2.2.

We can now apply the linear progress result in [17] to get that the random
walk we are considering makes linear progress with exponential decay in X,
easily implying the final condition of Definition 2.2 (since if two cosets are
far away in X then they are, in particular, far away in G and hence they
have bounded projection onto each other).

6.3. Peripheral subgroups

Consider the setup of a peripheral subgroup with an undistorted element of
a relatively hyperbolic group, with S the family of its cosets. The relation t
in this case is just being distinct, and the needed properties of projections
follow from, e.g., [28].

The last item once again uses a hyperbolic space. In this case, the hyper-
bolic space X is a coned-off graph: If S is a finite generating set for G, then
X is the Cayley graph with respect to the generating set S ∪H1 ∪ · · · ∪Hn.
The hyperbolicity of X is part of the definition of relative hyperbolicity from
[10], and the action is non-elementary due to results in [23]. More precisely,
[23, Lemma 4.5] gives a loxodromic element g for the action. Moreover, g is
contained in an elementary subgroup E(g) that can be added to the list of
peripheral subgroups [23, Corollary 1.7], so that one can find a loxodromic
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element g′ with respect to the new list of peripherals. Similarly to the hyper-
bolic group case, it is easy to see that g, g′ are the required pair of loxodromic
elements.

Admissibility now follows similarly to the other cases, using a sufficiently
large power of the undistorted element of H (any undistorted element of a
group H has powers with arbitrarily large translation distance on the Cayley
graph of H).

6.4. Out(Fn) and subfactor projections

Subfactor projections were introduced by Bestvina–Feighn in [5] and refined
in [31]. We refer to these references for definitions and details.

For a rank ≥ 2 free factor Y0 of Fn, let πY0
denote the subfactor pro-

jection to C(Y0), the free factor graph of Y0. Set G = Out(Fn) and let S =
{gY0 : g ∈ G}. Finally, let λ be a Fn–marked graph, i.e. a graph with a fixed
isomorphism Fn → π1(λ), containing a subgraph λY0

with π1(λY0
) = Y0.

For any Z ∈ S, define πZ : G→ C(Z) by πZ(g) = πZ(gλ). Here, gλ de-
notes the image of λ under g ∈ G with respect to the natural left action
of G on the set of marked graphs. Free factors X and Z of Fn are said to
be disjoint if, up to conjugation, Fn = W ∗X ∗ Z for some (possibly trivial)
free factor W . The factors X and Z overlap, written X t Z, if they are
neither disjoint nor nested. By [31, Theorem 1.1], when free factors X and
Z overlap, there is a well-defined coarse projection πZ(X) ⊂ C(Z) and that
the natural version of the Behrstock inequality holds (see also [5, Propo-
sition 4.18]). This, together with the fact that dZ(Y0, λ) is bounded for all
Z ∈ S with Y0 t Z, implies the fourth condition of Definition 2.1. Finally,
condition (5) follows, for example, from [5, Lemma 4.14]. Hence, subfactor
projections form a projection system.

From this, it follows just as in the situation of Mod(S) that if µ is
a symmetric probability measure on Out(Fn) whose support is finite and
generates Out(Fn), then µ = µ∗k is admissible for some k ≥ 1. The only
needed modifications are that one chooses g to be fully irreducible with
large translation length on the free factor complex of Fn, chooses f to fix
Y0 and have large translation length on C(Y0), and applies the general linear
progress result of [17, Theorem 1.2].

7. Shortest curves in random mapping tori

Let S be a closed connected orientable surface of genus at least 2. Hereafter,
we assume that the reader is familiar with the subsurface projection ma-
chinery of [18] and refer them to the terminology established in Section 6.1.
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Throughout this section, we fix a symmetric measure µ whose support is
finite and generates Mod(S), and let (wn) denote the random walk driven
by µ. In this setting, we have that for almost every sample path (wn), wn is
pseudo-Anosov for sufficiently large n ≥ 0 [15]. We will use this fact freely
without further comment.

For a pseudo-Anosov f ∈ Mod(S), let λ+(f) and λ−(f) denote its stable
and unstable laminations. For a subsurface Y of S, define

dY (f) = dY (λ+(f), λ−(f)),

to be the distance in the curve graph of Y between the projections of the
stable and unstable laminations of f . Note that by invariance of the lami-
nations, df iY (f) = dY (f) for all i ∈ Z. See [18, 21] for details. When Y is
an annulus about the curve α, we use the notation dα rather than dY . For a
curve α in S, let Yα be the (nonannular) subsurfaces with α as a boundary
component. Finally, in the following proposition we will need to make use
of the bounded geodesic image theorem of [18]. This states that there is a
constant M > 0 such that if γ is a geodesic in the curve graph C(S) that
does not meet the 1–neighborhood of ∂X for some subsurface X of S, then
the diameter of the projection of γ to C(X) is at most M .

When writing expressions such as
∑

Z⊂X , for X a subsurface, we mean
that we are summing over all isotopy classes of (essential) subsurfaces of X.
Recall that the notation {{x}}L denotes x if x ≥ L and 0 otherwise. Using
Theorem 1.1 for mapping class groups, we can prove the following:

Proposition 7.1. For the random walk (wn) on Mod(S) as above, there
are K2, C2 ≥ 1 such that

1) P
(
supX(S

∑
Z⊂X{{dZ(wn)}}K2

≤ C2 · log(n)
)
→ 1, as n→∞.

2) P
(
∃ a curve αn in S : dαn(wn) ≥ C−1

2 · log(n) and supX∈Yαn dX(wn) ≤

K2

)
→ 1, as n→∞.

Proof. The main idea of the argument is that the quantities dY (wn) are
typically closely related to the distances dY (1, wn), as studied in the first
part of the paper. Hence, we first prove the corresponding statements for
dY (1, wn), and then we will translate them into statements about dY (wn).
Just as in Section 6.1, it suffices to assume that the measure µ is admissible.

Item 1 for the dY (1, wn) is [30, Lemma 5.12].
Item 2 for the dY (1, wn) is a slight variation of Theorem 4.3, and can

be shown by modifying the proof as follows. We fix Y to be an annular
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subsurface with core curve α. For any subsurface Z ⊂ S (including the case
Z = S), πZ(g) ⊂ C(Z) is the subsurface projection of gλ, where λ is a fixed
marking chosen to contain α. As in Section 6.1, we have diam(πZ(g)) ≤ L
for all Z ⊆ S. Recall that the first step we took in Section 4 is to choose
some xn ∈ G = Mod(S) whose most important property is that dY (1, xn) ≥
ε2 log(n). In this case, we want 3 large projections instead of 1, and 2 of
them will serve as “buffer” for the “middle” one. We now fix once and
for all g ∈ Mod(S) so that dC(S)(x, gx) ≥ 10 for all x ∈ C(S) (in particular
g±1Y ′ t Y for Y ′ = Y or Y ′ disjoint from Y ), and choose xn = sngtngun so
that

1) pn := P(wk = xn) ≥ nε1 log c,

2) sn, tn, un are powers of Dehn twists around α,

3) dY (1, sn), dY (1, tn), dY (1, un) ≥ ε2 log n, for some fixed ε2 > 0.

We then define Wi, Li, Ri, Yi as in Subsection 4.2. Similarly to the claim
below Figure 2, one can show that if Yi = 1 and n is sufficiently large, then
dZ(1, wn) is log–large whenever Z is one of the annuli wiY,w

′
iY = wisngY ,

or wisngtngY , and that, moreover, all projection distances to subsurfaces
X contained in the complement of w′iY are uniformly bounded. In fact, we
are in the situation where wn can be written as a product of group ele-
ments g1g2 . . . g7 (where g1 = wi, g2 = sn, g3 = g, g4 = tn, g5 = g, g6 = un)
so that for k odd we have that gkY t Y and gk has controlled projection
on Y , while for k even we have that gk is a large power of a Dehn twist
supported of Y . Just as before, in this situation the projections created by
the even gk “persist.” Similarly, if X is contained in the complement of
w′iY = g1g2g3Y , then, first of all, X t g1Y and X t g1 . . . g5Y because of
our hypothesis on g. Then, by the triangle inequality,

dX(1, wn) ≤ dX(1, g1) + dX(g1, g1 . . . g5) + dX(g1 . . . g5, wn) + 2L,

where the middle term is at most dX′(g
−1, g) + 2L, for X ′ a subsurface

contained in the complement of Y . Indeed, since X is disjoint from g1g2g3Y ,
X ′ = (g1g2g3)−1X is disjoint from Y . Hence,

dX(g1, g1 . . . g5) = dX′(g
−1
3 g−1

2 , g4g5) = dX′(g
−1, g),

where we have used that g2 and g4 are twists about α and that α ⊂ λ, so
that diam(πX′(λ) ∪ πX′(g−1

2 λ)) ≤ 2L and πX′(g4g5) = g4πX′(g5) = πX′(g5).
Since this middle term is uniformly bounded, we just need to bound the
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other two terms. We will focus on the first term, as the last term is han-
dled similarly. Now if dX(1, g1) is larger than B + L (where B is from the
Behrstock inequality stated in Section 6.1) then dX(1, g1∂Y ) is larger than
B and so dg1Y (1, ∂X) ≤ B. But ∂X and w′i∂Y are disjoint and so the Lip-
schitz property of subsurface projections implies that dg1Y (1, w′i) ≤ B + L,
contradicting that the log–large projection to g1Y persists.

With our current setup, Lemma 4.1 holds as stated, for the same reason
that Wi, Li, Ri are independent, and Proposition 4.2 also holds with a similar
proof based on alternating small and large projections as above. These are
all the needed ingredients to conclude the proof that, given a large n, with
high probability there exists i with Yi = 1, as we did for Theorem 4.3.

We now translate the statement for the dY (1, wn) into a statement for
the dY (wn). We being by showing that, with probability going to 1, for any
proper subsurface X of S, we have dX(wn) ≤ 3 supi dwinX(1, wn) + 2M + 2L,
were M is the constant from the bounded geodesic image theorem. This in
particular will prove item 1.

We regard wn as a product of two shorter random walks un, vn, of length
approximately n/2 each. As explained in, e.g., [16, Lemma 23], the following
is a consequence of results in [14] and [19]. With probability going to 1 as n
goes to infinity,

• wn acts hyperbolically on C(S) with (quasi-)axis An,

• writing

γ = [πS(1), πS(wn)], γ′ = [πS(1), πS(un)],

and γ′′ = un · [πS(1), πS(vn)],

the axis An has Hausdorff distance O(log n) from both⋃
wkn · γ and

⋃
wkn · (γ′ ∪ γ′′),

where with a slight abuse of notation we regarded the various πS(·) as
vertices of C(S),

• and each of γ, γ′, and γ′′ have length at least ε′n for some uniform
ε′ > 0.

Going forward, we will assume that wn has this form.
Now if dX(wn) ≥ 2M , then the bounded geodesic image theorem implies

that ∂X lies within a uniformly bounded distance from the axis An. Hence,
there is an i ∈ Z such that the boundary of Xi = winX has bounded distance
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from γ, and we see that

dX(wn) = dXi(wn)

≤ dXi(λ−(wn), w−1
n ) + dXi(w

−1
n , w2

n) + dXi(w
2
n, λ

+(wn)) + 2L

≤M + 3 sup
i
dXi(1, wn) +M + 2L,

where the last inequality follows from the triangle inequality and another
applications of the bounded geodesic image theorem. In a bit more de-
tail, with our setup, the geodesics from w−1

n to λ−(wn) and from w2
n to

λ+(wn) have C(S)–distance from ∂Xi growing linearly in n since the length
of γ is greater than ε′n and dC(S)(w

i
n, An) = O(log(n)) for i ∈ Z. Hence, the

bounded geodesic image theorem implies that, with probability going to 1,
their images in C(Xi) have diameter at most M .

Let us now prove item 2. Using what we have already shown applied to
the random walk un, with probability going to 1 as n goes to infinity, there
is a curve α on S such that for some 1 ≤ i < n and ε,K > 0:

• the axis of wn has the form described above,

• for h ∈ {ui, uisng, uisngtng}, each projection dhα(1, un) is greater than
ε log(n) and dX(1, un) ≤ K for all X disjoint from uisng · α, and

• for h ∈ {ui, uisng, uisngtng}, each projection dhα(v−1
n , 1) and

dhα(un, wn) is bounded by ε/10 log(n).

The third item holds because of an application of Proposition 3.2 and a
simple conditioning argument. We explain the bound on the term dhα(un, wn)
and leave the other to the reader. Let

Yn = {f ∈ Mod(S) : ∃Y = Y (f) annulus with dY (1, f) ≥ ε log n}.

The probability that the third item holds is at least∑
f∈Yn

P(dY (f)(un, wn) ≤ ε/10 log(n))P(un = f)

=
∑
f∈Yn

P(df−1Y (f)(1, vn) ≤ ε/10 log(n))P(un = f)

The terms P(df−1Y (f)(1, vn) ≤ ε/10 log n) are arbitrarily close to 1 as n goes
to ∞ by Proposition 3.2, and

∑
f∈Yn P(un = f) = P(un ∈ Yn) goes to 1 by

the version of item 2 that we proved above (if ε is sufficiently small).
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We are now ready to conclude: by the second and third bullet points
and the triangle inequality, for any n large enough we have

dhα(v−1
n , wn) ≥ 8ε/10 log(n)− 2L,

for each h ∈ {ui, uisng, uisngtng} with probability going to 1, as n→∞.
Just as in our previous application of the bounded geodesic image theo-
rem, since γ′′ has length at least ε′n, each of hα (for h as above) is at
bounded distance from γ′, and the distances from both v−1

n and wn to
the axis An is O(log(n)), we get that dhα(wn) ≥ 8ε/10 log(n)− 2L− 2M .
Now exactly as in the first part of the proof, the 3 large projections to hα
for h ∈ {ui, uisng, uisngtng} guarantee that dX(wn) is uniformly bounded
whenever X is a subsurface of S disjoint from uisng · α. This completes the
proof. �

Informally, Proposition 7.1 controls the size of subsurface distances along
the axis of the random pseudo-Anosov wn. These distances in turn control
the lengths of curves in the hyperbolic manifold M(wn).

Length estimates

Following Minsky [21], we set

ωα(f) = dα(f) + i ·

(
1 +

∑
Y ∈Yα

{{dY (f)}}K3

)
,

for some constant K3 ≥ 0 as determined in [21]. By [21, Section 9.5], we may
suppose that K3 ≥ K2 for K2 as in Proposition 7.1.

For a pseudo-Anosov f ∈ Mod(S), the complex length of α in the hy-
perbolic mapping torus M(f) is

λα(f) = `α(f) + i · θα(f),

where `α(f) is the usual hyperbolic length of α in M(f) and θα(f) ∈ (−π, π]
is the rotational part of α. Recall that we are interested in smallest `α(wn)
along the random walk (wn).

We regard ωα(f) and 2πi/λα(f) as points in the upper-half plane model
of the hyperbolic plane H. The following theorem is part of the Brock–
Canary–Minsky proof of Thurston’s Ending Lamination Conjecture [7]:
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Theorem 7.2 (Length Bound Theorem [7]). There are D, ε ≥ 0, de-
pending only of S, such that for any pseudo-Anosov f ∈ Mod(S) and any
curve α in S with `α(f) ≤ ε:

dH

(
ωα(f),

2πi

λα(f)

)
≤ D.

Moreover, if |ωα| ≥M , for M ≥ 0 depending only on S, then `α(f) ≤ ε.

Corollary 7.3. With notation as above and the hypotheses of Theorem 7.2,
there is a D1 ≥ 0 such that

D−1
1 ·

2π Sα(f)

d2
α(f) + S2

α(f)
≤ `α(f) ≤ D1 ·

2π Sα(f)

d2
α(f) + S2

α(f)
,(1)

where Sα(f) = 1 +
∑

Y ∈Yα{{dY (f)}}K3
.

Proof. Using Theorem 7.2 together with the H isometry z → −1/z, we have

dH

(
−1

ωα(f)
,
i · λα(f)

2π

)
≤ D.

However, if dH(z1, z2) ≤ D, then | log(=z1=z2 )| ≤ D. Since =(−1/ωα(f)) =

Sα/(d
2
α(f) + S2

α(f)) and =(i · λα(f)/2π) = `α(f)/2π, setting D1 = eD com-
pletes the proof. �

Proof of Theorem 1.3

We break the proof into 3 steps:
Step 1: There is a constant C3 > 0, depending only on S, such that

with probability going to 1, there is a curve αn in S with `αn(wn) ≤ C3

log2(n)
.

To see this, note that by item (2) of Proposition 7.1, with probability
approaching 1, there is a curve αn such that dαn(wn) ≥ C−1

2 · log(n) and
supY ∈Yαn dY (wn) ≤ K2. By Corollary 7.3,

`αn(wn) ≤ D1 ·
2π

d2
α + 1

≤ D1 ·
2π

C−1
2 · log2(n) + 1

,(2)

where we have used that K3 ≥ K2. This completes Step 1.

Step 2: There is a constant C4 > 0, depending only on S, such that
with probability going to 1, `α(wn) ≥ C4

log2(n)
for any curve α in S.
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By item (1) of Proposition 7.1, for all subsurface Y of S,

sup
Y(S

∑
Z⊂Y
{{dZ(wn)}}K2

≤ C2 · log(n)

with probability going to 1. Hence, with probability going to 1,

`α(wn) ≥ D−1
1 ·

2π Sα(wn)

d2
α(wn) + S2

α(wn)

≥ C−2
2 D−1

1 ·
2π

log2(n)
.

This finishes Step 2.

Step 3: With probability going to 1, sys(M(wn)) is realized by a geodesic
gn that is isotopic to a curve βn in the fiber S.

By Step 1, we know that, with probability approaching 1, sys(M(wn))→
0. Hence, it suffices to show that any sufficiently short geodesic in a hyper-
bolic fibered 3-manifold M with fiber S is isotopic to a curve in S. This
is an easy consequence of [6, Lemma 2.1], but an older argument that uses
well-known results in the theory of Kleinian groups was already known to
experts. We now sketch the argument.

First, any primitive geodesic g which is sufficiently short (depending
only on S) must be homotopic into S. Otherwise, g meets the image of any
map f : S →M homotopic to the fiber. (In fact, g has nonzero algebraic
intersection number with S.) In particular, g meets the image of a pleated
surface f : S →M (see [32, 33]). As in [21, Section 3.22], for any ε1 ≥ 0 there
is an ε2 < ε1 such that

f(S[ε1,∞)) ⊂M[ε2,∞),

where N[ε,∞) is the ε-thick part of N , i.e. where the injectivity radius is
greater than 2ε. Fix ε1 less than the 3-dimensional Margulis constant. (See
[32]). If g has length less than ε2, then by the thick-thin decomposition of
S, there is a closed curve γ on S with length less than ε1 whose image in M
meets g. The Margulis Lemma [32, Chapter 5.10.1] implies that g and γ (at
their intersection point) generate a virtually cyclic subgroup π1(M). This,
however, contradicts that γ and g cannot be homotopic up to powers.

Now since g is homotopic into S, it lifts to the cover M̃ corresponding to
S. Since M̃ ∼= S × R, a theorem of Otal [24] implies that if g is sufficiently
short, then it is isotopic to a curve β in S. This completes the proof of Step
3 and of the theorem. �
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