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G-valued Galois deformation rings

when ` 6= p

Jeremy Booher and Stefan Patrikis

For a smooth group scheme G over an extension of Zp such that
the generic fiber of G is reductive, we study the generic fiber of
the Galois deformation ring for a G-valued mod p representation
of the absolute Galois group of a finite extension of Q` with ` 6= p.
In particular, we show it admits a regular dense open locus, and
that it is equidimensional of dimension dimG.

1. Introduction

Many of the deepest arithmetic properties of modular forms (or more gen-
erally algebraic automorphic representations) are encoded in the congru-
ences between eigenforms of different level or weight. These congruences
can be interpreted as congruences between the corresponding modular Ga-
lois representations, and this perspective, in combination with the devel-
opment of modularity lifting and potential automorphy theorems, has dra-
matically advanced our understanding of such congruences. The most suc-
cessful approach to producing congruences is based on a method of Khare-
Wintenberger [10] that in appropriate settings produces lifts of prescribed
inertial type for a potentially modular mod p representation ρ; when ρ is
in fact modular, the method combines with modularity lifting theorems to
produce congruences between modular forms.

The present paper is a contribution to the local aspect of this story
for Galois representations valued in general reductive groups. Namely, the
method of [10] depends in part on having an adequate understanding of the
structure of the generic fibers of local Galois deformation rings, and we focus
our attention here. Let ` and p be distinct primes, K be a finite extension of
Q`, and E be a finite extension of Qp, with ring of integers OE and residue
field k. Consider a smooth group scheme G over OE with reductive generic
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974 J. Booher and S. Patrikis

fiber,1 let ΓK = Gal(K/K), and consider a continuous representation

ρ : ΓK → G(k).

The functor of lifts of ρ to artin local OE-algebras with residue field k is pro-
represented by a complete local noetherian OE-algebra R�

ρ . This ring may
be quite singular; the object of this paper is achieve some control over its
generic fiber R�

ρ [1
p ]. The main result is the following. First we recall that to

each homomorphism τ : IK → G(E) that factors through a finite quotient,
we can associate a quotient (R�

ρ [1
p ])τ of R�

ρ [1
p ] (“with inertial type τ”) which

is a union of irreducible components of R�
ρ [1

p ].

Theorem 1. For any ρ : ΓK → G(k) and τ as above, (R�
ρ [1

p ])τ admits a reg-
ular, dense open subscheme, and it is equidimensional of dimension dim(G).

We will now give some of the history behind this result. Theorem 1
generalizes a result of Gee [7] in which the group G is taken to be GLn.
His result in turn is the adaptation to the ` 6= p case of a corresponding
result of Kisin [11] that studies the generic fibers of potentially semi-stable
deformation rings (in the case ` = p); Kisin introduced many new ideas on
which all subsequent work in this subject has been based. Later, Gee’s results
were reproved and slightly strengthened in [5] and [2], and in [3] Bellovin
proved a version of Kisin’s ` = p result for general G.

Remark 2. The results of [11, Theorem 3.3.4], and later papers like [7,
Theorem 2.1.6] that adapt its arguments, state there is a locus in the generic
fiber that is formally smooth over Qp, instead of stating it is regular. As
discussed in Remark 16, regularity does not imply formal smoothness in this
setting, and so these results are incorrect as stated. However, this distinction
is irrelevant for the applications to computing the dimension of the generic
fiber, as all that is needed is regularity.

While we were preparing this paper, Bellovin and Gee posted a preprint
that treats both the cases ` = p and ` 6= p for general groups G [4] . In
addition to treating the more difficult case ` = p, their work gives a more
refined version of our Theorem 1 (finding a dense set of “very smooth”
points), motivated by the refinement of [7] established and applied in [2].

1In particular, G and its generic fiber need not be connected. As the definition of
a reductive group scheme typically includes a connectedness hypothesis, we avoid
that language.
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G-valued Galois deformation rings when ` 6= p 975

Moreover, they extensively pursue global applications to lifting results of
Khare-Wintenberger type, including applications to generalizations of the
Serre weight conjecture: see the theorems in the introduction of [4].

Because the work in [4] is so comprehensive, and because of the timing
of our two papers, we have not attempted to push our method to achieve
the most refined results; nor have we included any global applications, al-
though they are the motivation behind Theorem 1. Our proof of Theorem 1
is different from that of the corresponding result in Bellovin-Gee, and when
specialized to G = GLn, it is different from the arguments of [7], [5], and [2],
so we hope it may still be of independent interest. In the remainder of this
introduction, we will briefly describe the approach to Theorem 1.

Common to all of the results related to Theorem 1 is the translation
of problems about Galois representations to problems about Weil-Deligne
representations. In [7], [4], and our Theorem 1, the main (` 6= p) result is
reduced using ideas of [11] to a corresponding “unobstructedness” result in
an appropriate moduli space of Weil-Deligne representations; the reduction
in [11] is not obvious, but it carries over essentially formally to the settings
of these subsequent papers. What is new in our paper is the proof of this
unobstructedness result, Theorem 7, which occupies §3. In brief, there is a
moduli space X → SpecE (see §2) of Weil-Deligne representations, and for
any object DA ∈ X(A) an explicit complex C•(DA) whose cohomology con-
trols the deformation theory of DA. Taking DA = DΦ,N,τ to be the universal
object, our problem is to show that the cohomology measuring obstructions,
H2(DΦ,N,τ ), a coherent sheaf on X, vanishes away from a dense open sub-
scheme of X. The strategy initiated by Kisin shows this by studying an
analogous moduli space Y that parametrizes only a monodromy operator
and an inertial type, together with the forgetful map X → Y ; the essential
and non-formal content of Theorem 1 is the fact that every irreducible com-
ponent of every non-empty fiber of this map contains an unobstructed point.
In the papers [11], [7], [3], and [4], this is achieved essentially by construct-
ing one particular unobstructed point in each component. In contrast, our
argument takes any point in such a fiber and connects it by a chain of Gm’s
and Ga’s to an unobstructed point. It relies on a series of applications of
the Jacobson-Morozov theorem. This analysis is complicated by two factors.
Unlike the GLn situation, the centralizer of the nilpotent monodromy op-
erator may have multiple components, leading to additional components in
the fibers. Furthermore, the adjoint action of the image of Frobenius twists
the inertial type (see condition (3) after Definition 3), while the analogous
condition in the ` = p case is that the inertial type is preserved. The latter



i
i

“2-Booher” — 2019/10/15 — 0:53 — page 976 — #4 i
i

i
i

i
i
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condition defines a subgroup, while the former does not, complicating the
argument.

2. G-Weil-Deligne representations and deformation theory

Let ` and p be distinct primes. Let K be an `-adic field, with residue field
of order q = `f , and let WK be the Weil group of K. Let ‖ · ‖ : WK →
WK/IK ' qZ denote the homomorphism which sends any geometric Frobe-
nius to q−1. Throughout this paper, we will fix a geometric Frobenius φ ∈
WK . Next consider a finite extension E of Qp with ring of integers OE and
residue field k, and let G over OE be a smooth group scheme with reduc-
tive generic fiber; for the purposes of the next two sections, we only use
the generic fiber, whereas in §4 we need a smooth group scheme over OE in
order to study the deformation theory of ρ.

Definition 3. For an E-algebra A, a G-Weil-Deligne representation over
A is a trivial G-bundle DA, a homomorphism r : WK → AutG(DA) whose
restriction to IK factors through a finite quotient, and an N ∈ Lie AutG(DA)
such that Ad r(g)N = ‖g‖N .

More concretely, if the inertial action factors through a fixed finite ex-
tension L/K, a G-Weil-Deligne representation over A is given by a trivial
G-bundle DA equipped with a homomorphism τ : IL/K → AutG(DA), an
element N ∈ Lie AutG(DA), and an invertible Φ ∈ AutG(DA) that satisfy:

1) Ad(τ(g))N = N for any g ∈ IL/K .

2) Ad(Φ)N = q−1N .

3) Ad(Φ)τ(γ) = τ(φγφ−1) for all γ ∈ IL/K .

We take Φ = r(φ) and τ = r|IK : recall that φ is the fixed geometric Frobenius
in WK .

Remark 4. When A is a field, note that condition (2) implies that N
is nilpotent. In particular, for each finite dimensional G-module, N acts
nilpotently on that module since (2) forces the eigenvalues to be zero.

Let WDG denote the category whose objects are pairs consisting of
an E-algebra A and a G-Weil-Deligne representation (DA, r,N) over A;
a morphism (A,DA, r,N)→ (A′, DA′ , r

′, N ′) is an E-algebra map A→ A′

and an isomorphism DA ⊗A A′
∼−→ DA′ of G-bundles intertwining the ac-

tions of (r,N) and (r′, N ′). We may regard WDG as a category cofibered in
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groupoids over the category of E-algebras. We define WDG,L as the analo-
gous category in which the IK-action factors through the fixed finite quotient
IL/K .

Remark 5. We can identify AutG(DA) with G by picking a trivializing
section, obtaining a homomorphism r : WK → G(A). This is analogous to
the way a free A-module of rank d with action of a group Γ can be identified
with a homomorphism Γ→ GLd(A) after a choice of basis.

We wish to study deformation theory in WDG,L. Let

adDA := Lie AutGDA;

the adjoint action gives an action of IL/K and of Φ on adDA. Consider the
anti-commutative diagram

(adDA)IL/K
1−Ad Φ

//

adN
��

(adDA)IL/K

adN
��

(adDA)IL/K
qAd Φ−1

// (adDA)IL/K .

Let C•(DA) denote the total complex (indexed so as to be in degrees 0, 1,
and 2) associated to this double complex, and let H i(DA) denote the ith
cohomology. Note that the construction of H2(DA) commutes with arbitrary
base change.

Let A be an Artin local E-algebra with maximal ideal mA, and let I ⊂
A be an ideal with ImA = 0. Let DA/I ∈WDG,L(A/I), and define D =
DA/I ⊗A/I A/mA. Two liftings DA and D′A are equivalent if there exists a
map DA → D′A of G-torsors compatible with the Weil-Deligne structure that
reduces to the identity modulo I.

Proposition 6. If H2(D) = 0, then a lift DA ∈WDG,L(A) of DA/I exists.
The set of equivalence classes of liftings of DA/I to A is a (possibly empty)

torsor under H1(D)⊗A/mA
I.

Proof. The proof is essentially the same as that of [3, Proposition 3.2] and
[7, Lemma 2.1.1]. �
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We let X denote the functor on the category of E-algebras which asso-
ciates to an E-algebra A the set of possible triples

(Φ, N, τ) ∈ G(A)× gA × RepA(IL/K)

that satisfy (1)–(3) of §2. This is represented by a finite type locally closed
subscheme of the space of all possible triples obtained by imposing the condi-
tions. Likewise, we consider a functor Y consisting of pairs (N, τ) satisfying
condition (1). We also have XN,τ , Xτ , and Yτ , where the subscripts denote
a fixed choice of that variable. There are natural (forgetful) maps between
these spaces. Any object of X defines a G-Weil-Deligne representation by
viewing G as a trivial G-torsor.

We write DΦ,N,τ for the universal triple on X = SpecR, and define the
sheaf H on X as the cokernel of

(1) qAd Φ− 1⊕ adN : g
IL/K

R ⊕ g
IL/K

R → g
IL/K

R

It is a coherent sheaf on X, and by semi-continuity the locus where it van-
ishes is open. For a closed point x with residue field A corresponding to
a G-Weil-Deligne representation DA, we see that Hx ' H2(DA). We say a
point x is unobstructed if Hx = 0.

The main technical result we will prove is the following:

Theorem 7. The unobstructed points are dense in X.

The argument is inspired by the proofs of [11, Lemma 3.1.5], [7, Lemma
2.1.3], and [3, Proposition 5.2]. We will show that the unobstructed points
are dense in the fiber XN,τ of X → Y over any fixed τ and N . As being
unobstructed is an open condition, it suffices to find a single unobstructed
point in each irreducible component of the fiber. The proofs in these papers
(and the proof of [4, Theorem 2.3.6]) proceed by writing down a point in each
component, either by hand or by using the theory of associated cocharacters,
and then directly verifying that the point is unobstructed. In contrast, we
start with an arbitrary point and connect it by a succession of Ga’s and
Gm’s to an unobstructed point. We will carry this out in the next section.

3. Moduli spaces for G-Weil-Deligne representations

Let e be a nilpotent element in LieGE . The proof of Theorem 7 repeatedly
uses cocharacters that interact well with N .
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Definition 8. For a subgroup H ⊂ GE with e ∈ LieH, a cocharacter λ :
Gm → H is adapted to e provided that Adλ(t)e = t2e.

As we are in characteristic zero, the nilpotent e can be extended to an
sl2-triple by the Jacobson-Morozov theorem. If we exponentiate the triple
and restrict to the diagonal Gm, we obtain a cocharacter adapted to e. This
process also provide examples of the associated cocharacters used in [3].
Note that a general cocharacter adapted to N is not necessarily associated
to N .

Let H be a reductive subgroup of GE , and set h = LieH. Consider a
semi-simple g ∈ G(E) such that Ad g(h) = h, and a non-zero nilpotent e ∈ h
such that Ad(g)e = αe for some non-zero α ∈ E. We will find a cocharacter
adapted to N that interacts well with g.

Lemma 9. There exists a cocharacter λ : Gm → H◦ adapted to e such that
for all t

Adλ(t) Ad g = Ad gAdλ(t).

Proof. We learned this argument from [8, Lemma 2.1]. Consider the adjoint
action of g on the Lie algebra h. We will construct the desired cocharacter
by constructing an sl2-triple compatible with the eigenspace decomposition

h =
⊕
µ

h(µ),

where h(µ) is the eigenspace for Ad g with eigenvalue µ. (As g is semi-simple,
we do not need generalized eigenspaces.) The Jacobson-Morozov theorem
gives an sl2-triple (e, h0, f0) in h. Note that e ∈ h(α). For any hµ ∈ g(µ),

Ad(g)[hµ, e] = [Ad(g)hµ,Ad(g)e] = µα[hµ, e],

so [hµ, e] is an element of h(µα). Now decompose h0 = h+ h′ with h ∈ h(1)
and h′ ∈

⊕
µ6=1 h(µ). Using that 2e = [h0, e] = [h, e] + [h′, e] ∈ h(α) and con-

sidering eigenspaces, we conclude that 2e = [h, e]. In particular, h(1) 6= 0.
Likewise, we decompose f0 = f + f ′ with f ∈ h(α−1) and f ′ ∈

⊕
µ 6=α−1 h(µ)

and keep track of eigenspaces in the relation h0 = [e, f0] = [e, f ] + [e, f ′] to
conclude that h = [e, f ]. Likewise we see that [h, f ] = −2f , so (e, h, f) is an-
other sl2-triple; to obtain the cocharacter adapted to e, we exponentiate and
restrict to the diagonal Gm. Then we see that Ad gAdλ(t) = Adλ(t) Ad g
as h ∈ h(1). �

We now proceed with the proof of Theorem 7.
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Proof. Fix τ : IL/K → G(E). It suffices to show every non-empty fiber XN,τ

of the forgetful map Xτ → Yτ contains a dense open subset on which H
vanishes. As this is an open condition, it suffices to find a single closed point
x in each irreducible component of XN,τ for which Hx = 0.

Consider the fiber XN,τ over a fixed N ∈ (LieG)(E′) for some finite
extension E′/E; assume it is non-empty, so that we have additionally a Φ ∈
G(E) such that the relations (1)–(3) of §2 hold for Φ, N, τ ; in this particular
fiber we are only allowed to vary Φ. To find an unobstructed point in the
fiber, we may work over E, and to simplify notation, we change notation
and let G (and similarly N) be defined over E. Fix a square root of q in E.
By Remark 4, N is nilpotent.

We break into cases depending on whether N = 0. In both cases, the
strategy is to connect Φ by Ga’s and Gm’s to an unobstructed point. A basic
but important observation is that the fiber XN,τ is a ZG(N) ∩ ZG(τ)-torsor.
As the fiber is a torsor under ZG(N) ∩ ZG(τ), the irreducible components
are the same as connected components. Furthermore, for homomorphisms
λ : Gm → ZG(N) ∩ ZG(τ) or ψ : Ga → ZG(N) ∩ ZG(τ), Φλ(t) and Φψ(s)
are in the same component of the fiber as Φ.

Case 1: When N = 0, to be unobstructed means that qAd Φ− 1 is
invertible on gIL/K . Given Φ ∈ X0,τ (E) such that qAd Φ− 1 is not invertible,
we will find a Φ′ in the same component as Φ such that the generalized
eigenspace of Ad Φ′ with eigenvalue q−1 has smaller dimension. By induction,
this produces an unobstructed point.

By hypothesis, there is an N ′ ∈ gIL/K such that qAd(Φ)N ′ = N ′. Note
that N ′ is nilpotent as it is conjugate to q−1N ′ and so acts nilpotently on
every finite-dimensional G-module by consideration of eigenvalues.

Lemma 10. There exists Φs in the same component of the fiber X0,τ as Φ
such that Φs is semi-simple. There is a cocharacter λ : Gm → ZG(τ) adapted
to N ′ such that

Ad Φs Adλ(t) = Adλ(t) Ad Φs.

Proof. Consider the Jordan decomposition Φ = ΦsΦu where Φs ∈ G(E) is
semi-simple and Φu∈G(E) is unipotent. The relation Ad Φ(τ(γ))=τ(φγφ−1)
for γ ∈ IL/K implies that there is an integer n such that Φn ∈ ZG(τ)(E).
As Φs and Φu commute, we see that Φn = Φn

sΦn
u. This is also the Jordan

decomposition for Φn in ZG(τ). Since Jordan decomposition is compatible
with inclusions of groups, we see Φn

u ∈ ZG(τ)(E). As Φn
u is unipotent, we

may write it as Φn
u = exp(nY ) for a nilpotent Y ∈ LieZG(τ) (for any unipo-

tent group U in characteristic zero, there is an isomorphism of schemes
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exp: Lie(U)→ U induced by embedding Lie(U) into some Lie algebra of
strictly upper-triangular nilpotent matrices, and then applying the usual
power series of the exponential; if U is commutative, exp is moreover an iso-
morphism of group schemes). This shows that Φu = exp(Y ) lies in ZG(τ).
As the fiber is a ZG(τ)-torsor, we see that Φs exp(tY ) lies in the fiber for
every t, and hence that Φ and Φs are in the same component.

The second statement is Lemma 9 applied to ZG(τ) ⊂ G; note that
ZG(τ) is reductive by repeatedly applying the fact that for a reductive group
H and a semisimple element h ∈ H, ZH(h) is reductive [9, Theorem 2.2]. �

We will conclude the proof of Case 1 by showing that for a generic choice
of t, the dimension of the q−1-eigenspace of Ad(Φsλ(t)) on gIL/K is less than
the dimension of the q−1-eigenspace of Ad Φs. This will suffice, as Φ, Φs,
and Φsλ(t) all lie in the same component of X0,τ , and the q−1-generalized
eigenspace for Ad Φ has the same dimension as the q−1-eigenspace for Ad Φs.

We decompose

gIL/K =
⊕
µ

gIL/K (µ)

where gIL/K (µ) is the µ-eigenspace of Ad Φs. Now Adλ(t) preserves gIL/K (µ)
as Ad Φs and Adλ(t) commute. On the finitely-many non-zero gIL/K (µ) with
µ 6= q−1, the condition that Ad Φsλ(t) not have q−1 as an eigenvalue is simply
the condition that Adλ(t) not have q−1µ−1 as an eigenvalue. This is a non-
empty, open condition (consider t = 1). Furthermore, we compute that

Ad(Φsλ(t))N ′ = q−1t2N ′.

So if t 6= ±1, we see that the eigenvalue for N ′ is not q−1. Thus for a generic
choice of t, Ad(Φsλ(t)) has a smaller q−1-eigenspace than Ad(Φs), and we
conclude by induction.

Case 2: The case N 6= 0 follows the same strategy, but is more involved.
We will first find a semi-simple point in a given component of the fiber,
and then modify it using cocharacters valued in ZG(N) ∩ ZG(τ) so it is
unobstructed. A key technique is passing between points in the fiber and
points of ZG(N): for any cocharacter λ adapted to N and Φ in the fiber, we
see Φλ(q1/2) ∈ ZG(N) as

Ad(Φλ(q1/2))N = q−1(q1/2)2N = N

Lemma 11. In each non-empty component of the fiber XN,τ of Xτ → Yτ
above N , there exists a semi-simple point Φ. There is a cocharacter λ :
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Gm → ZG(τ)◦ adapted to N such that for all t

Ad Φ Adλ(t) = Adλ(t) Ad Φ.

Proof. Let Φ′ be a point in the desired component of the fiber. Let λ′ :
Gm → ZG(τ) be any cocharacter adapted to N . It is easy to check that
Ψ := Φ′λ′(q1/2) ∈ ZG(N)(E) satisfies Ad(Ψ)τ(γ) = τ(φγφ−1) for γ ∈ IL/K .

As before, some power Ψn is in ZG(N) ∩ ZG(τ)(E).
Consider the Jordan decomposition Ψ = ΨuΨs in ZG(N) with Ψu and Ψs

commuting unipotent and semi-simple elements. As Ψn = Ψn
uΨn

s is a Jordan
decomposition for Ψn and Jordan decomposition is compatible with inclu-
sions of groups, we see that Ψn

u ∈ ZG(N) ∩ ZG(τ)(E). As Ψu is unipotent,
it follows that Ψu ∈ ZG(N) ∩ ZG(τ)(E). This shows that

Ad(Ψsλ
′(q−1/2))N = q−1N and Ad(Ψsλ

′(q−1/2))τ(γ) = τ(φγφ−1)

for γ ∈ IL/K . Note that Φ′ andΨsλ
′(q−1/2) = Φ′λ′(q1/2)Ψ−1

u λ′(q−1/2) lie in
the same component of the fiber.

The above used an arbitrary cocharacter adapted to N . Using Lemma 9,
now pick a cocharacter λ : Gm → ZG(τ) adapted to N whose adjoint action
commutes with that of Ψs. Define Φ = Ψsλ(q−1/2). As before, we check that
Φ is in XN,τ (E). Furthermore, note that Φ and Ψsλ

′(q−1/2) lie in the same
component of the fiber, as the family

Φt := Ψsλ(q−1/2t)λ′(t−1)

interpolates between them. Finally, Φ is semi-simple as the adjoint actions
of Ψs and λ(q−1/2) commute and are semi-simple, and it is clear that the
adjoint actions of Φ and λ(t) commute. �

Recall that a point (Φ′, N) is unobstructed if

qAd Φ′ − 1⊕ adN : gIL/K ⊕ gIL/K → gIL/K

is surjective. If Φ′ is semi-simple, then so is qAd Φ′ − 1. Hence gIL/K is a
direct sum of the kernel and the image of qAd Φ′ − 1. In this case, (Φ′, N) is
unobstructed provided that ker(qAd Φ′ − 1) ⊂ Im(adN). We now continue
with the Φ and λ produced by Lemma 11.
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We decompose

gIL/K =
∑
n∈Z

gn

where gn is the space where Adλ(t) acts by tn. For n ≤ 0, we define gl.w.n :=
ker(ad(N)|−n+1

gn
) and g′n = Im(ad(N)|gn−2

), and decompose

gn = g′n ⊕ gl.w.n .

Here gl.w.n are the lowest weight vectors of the sl2-triple containing N that
was used to define λ. Note adN gives an isomorphism between gn−2 and g′n.

Lemma 12. For any n ≤ 0, we have Ad Φ(gl.w.n ) = gl.w.n and Ad Φ(g′n) =
g′n.

Proof. First note that Ad(Φ) preserves gn since Ad(Φ) and Ad(λ(t)) com-
mute. For v ∈ gl.w.n , we compute that

(adN)−n+1 (Ad(Φ)v) = q−n+1 Ad Φ
(
(adN)−n+1v

)
= 0.

Since Φ acts invertibly (Ad Φ−1 is an inverse), this gives the first equality. For
the second, consider v ∈ g′n. Writing v = adN(v′) for v′ ∈ gn−2, we compute
that

Ad Φ(v) = [Ad Φ(N),Ad Φ(v′)] = q−1 adN(Ad Φ(v′)).

Thus Ad Φ(v) ∈ adN(gn−2) = g′n. Since Φ acts invertibly, we are done. �

Note that all gn with n > 0 lie in the image of adN , as do g′n for n ≤ 0.
To check that ker(qAd Φ′ − 1) ⊂ Im(adN), by the Lemma it suffices to show
that Ad Φ′ does not have eigenvalue q−1 on any of the gl.w.n . We will modify
Φ so this holds.

Consider the element Ψs = Φλ(q1/2). There are two cases to consider,
depending on whether Ad(Ψs) has infinite or finite order. First suppose it
has finite order, say m, so that Ad(Φ)m = Ad(λ(q1/2))−m. Consider any
eigenvector v ∈ gl.w.n (for some n ≤ 0) of Ad(Φ), with eigenvalue α. Then

αmv = Ad(Φ)m(v) = Ad(λ(q−m/2))v = q−mn/2v,

and we clearly cannot have α = q−1 for n ≤ 0.
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Next consider the case where Ad(Ψs) has infinite order. The group

Z = {g ∈ ZG(N) ∩ ZG(τ) : Ad(g) and Ad(Φ) commute}

contains a non-trivial power of the semi-simple, infinite order, element Ψs

(since Ad Φmτ(γ) = τ(γ) when conjugation by φm is trivial on IK). Some
power Ψm

s , with m > 0, is then contained in a non-trivial torus of Z, and
we let λ′′ be any co-character of (this torus of) Z whose image contains Ψm

s :
certainly in any torus every element is in the image of some co-character.
We consider the adjoint action of Φt := Φλ′′(t) and claim that for a generic
choice of t, the point Φt will be an unobstructed point of the fiber of Xτ → Yτ
over N .

As the fiber is a ZG(N) ∩ ZG(τ)-torsor, Φt lies in the desired fiber. Since
Ad Φ and Adλ′′(t) commute, they have common eigenvectors. Let v be an
eigenvector of Ad Φ in one of the gl.w.n .

• In the case that Adλ′′(t)v 6= v for some t, it is a non-empty open
condition for Ad Φt(v) 6= q−1v.

• If Adλ′′(t)v = v for all t, then as Ψs is in the image of λ′′ we see that

v = Ad Ψs(v) = Ad Φλ(q1/2)(v) = qn/2 Ad Φ(v).

In particular, Ad Φ(v) 6= q−1v as n/2 ≤ 0, and hence Ad Φt(v) 6= q−1v
for all t.

Combining these conditions for each eigenvector in some gl.w.n , for a generic
choice of t we see Ad Φt does not have eigenvalue q−1 on any of the gl.w.n . In
that case Φt is an unobstructed point of the XN,τ , completing the case that
N 6= 0. �

4. Analysis of local Galois deformation rings

As before, let ` and p be distinct primes. Let K be an `-adic field. In this
section we will apply the local monodromy theorem, so we fix a compatible
collection of p-power roots of unity in K, yielding as usual a surjection tp :
ItK � Zp(1) from the tame inertia group of K. Let E be a finite extension of
Qp with ring of integers OE and residue field k of size q = `f . Let COE

denote
the category of complete local noetherian OE-algebras with residue field k.
Let G be a smooth group scheme over OE such that GE is reductive. Fix a
continuous homomorphism ρ : Gal(K/K)→ G(k). Consider the morphism
D�
ρ → Dρ of (categories cofibered in) groupoids over COE

, where D�
ρ (R) is
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the category (set) of lifts of ρ to G(R), and Dρ(R) is the category whose
objects are lifts of ρ, and where a morphism between lifts ρ and ρ′ is an
element g ∈ Ĝ(R) such that gρg−1 = ρ′. We are interested in the generic
fiber R�

ρ [1
p ] of the universal lifting ring R�

ρ (representing D�
ρ ); when the

corresponding deformation functor for ρ is also representable, we obtain
analogous results for Rρ[

1
p ]. We will analyze R�

ρ [1
p ] by means of G-Weil-

Deligne representations.
Let A◦ be a complete local noetherian OE-algebra that has no p-torsion,

with generic fiberA = A◦[1
p ], and with a continuous homomorphism ρ : ΓK →

G(A◦). We can associate a G-Weil-Deligne representation DA to ρ using the
following construction (compare [6, Proposition 4.1.6]).

For each finite dimensional E-linear representation M of G, we obtain
a representation of ΓK on MA◦ . Let m be the maximal ideal of A◦. Let
e be the m-adic valuation of p, and fix an integer j such that j > e

p−1 .

Since ρ is continuous and MA◦/m
jMA◦ is discrete in the m-adic topology,

there is a compact open normal subgroup HM ⊂ IK that acts trivially on
MA◦/m

jMA◦ . Doing so for a faithful representation, we may find a common
H that works for every choice of M and pick an element α ∈ H. Note the
kernel of the reduction map Aut(MA◦/mi)→ Aut(MA◦/mj ) is a p-group for
i > j, so the action of H factors through the chosen tp : ItK → Zp(1).

Now consider the natural representation ρM : ΓK → Aut(MA) over A.
The denominators in the power series for log exist in A (since p is in-
verted), and the power series for log(ρM (g)) for g ∈ H converges in the
m-adic topology on End(MA) since ρM (g) ≡ Id (mod mj). Furthermore, we
see that exp(log(ρM (g))) exists and equals ρM (g) for g ∈ H since the power
series for the exponential converges. (The m-adic valuation of log(ρM (g)) is
greater than e

p−1 and the valuation of n! is at most e·n
p−1 .)

We set NM = 1
tp(α) log(ρM (α)) and define rM : WK → Aut(MA) by

rM (φnσ) = ρM (φnσ) exp(−tp(σ)NM )

where φ is Frobenius and σ ∈ IK . Note that exp(−tp(σ)N) exists since it
can be rewritten as exp(log(ρM (α−tp(σ)))) and α−tp(σ) ∈ H. We see that rM
is trivial on H. Furthermore, for g = φnσ ∈WK we compute that

Ad(rM (g))NM =
1

tp(α)
log(ρM (gαg−1)) =

1

tp(α)
log(ρM (φnσασ−1φ−n))

since exp(NM ) commutes with NM . Now ρM (σασ−1) = ρM (α) as ρM factors
through the abelian Zp(1). Furthermore, conjugation by φ is multiplication
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by q−1 on Zp(1). This shows that

Ad(rM (g))NM = ‖g‖NM .

A similar calculation shows that rM is a homomorphism.
The data of rM and NM for every finite dimensional E-linear represen-

tation M of G gives us a homomorphism r : WK → G(A) that is trivial on
H and an N ∈ (LieG)(A) by a Tannakian argument as in [3, Appendix A].
In particular, [3, A.2.4] discusses how to deal with N , while Section A.2.6
discusses how to deal with the representation of a group. Furthermore, we
have that

Ad r(g)N = ‖g‖N,

as we have checked it on each representation M . In other words, we have a
G-Weil-Deligne representation over A (with the G-bundle canonically trivi-
alized).

Remark 13. Suppose G = GLn, E′ is a finite extension of the field E, and
x is an E′-valued point of A. Specializing DA at x gives the Weil-Deligne
representation associated to ρx using the standard construction.

For the remainder of this section, fix a finite extension L/K and an
homomorphism τ : IL/K → G(E) that arises as the restriction to IK of a

G-Weil-Deligne representation. We call a G(E)-conjugacy class of such τ an
inertial type. For any artin local E-algebra B, with residue field some finite
extension E′ of E, we say a continuous homomorphism ρ : ΓK → G(B) is
type τ if the associated G-Weil-Deligne representation (r,N) has inertial
restriction with reduction

IL/K
r−→ G(B)→ G(E′)

being G(E)-conjugate to τ . This condition is equivalent to τ : IL/K → G(B)

being G(B ⊗E′ E)-conjugate to τ : this follows from standard deformation
theory and the fact that H i(IL/K , ad(ρ)) = 0 for i = 1, 2. (We extend the
definition of type to the case where B is any finite E-algebra by imposing
the above condition on each local factor of this artin ring.)

For any complete local noetherian OE-algebra A◦, with generic fiber
A = A◦[1

p ], and equipped with a continuous homomorphism ρ : ΓK → G(A◦),
there is a quotient A� Aτ , equal to a union of irreducible components of

SpecA, such that for any finite E-algebra B, an E-algebra map A
f−→ B fac-

tors through Aτ if and only if f ◦ ρ has inertial type τ (see the proof of [1,
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Proposition 3.0.12]). In particular, we can form the quotient (R�
ρ [1

p ])τ . We
remark here that with a slight addition to the argument of [1, Proposition
3.0.12], we could equally well carry out the preceding discussion (and sub-
sequent analysis) with inertial types defined to be G0(E)-conjugacy classes
rather than G(E)-conjugacy classes; we omit the details, but note that this
would yield a slightly more refined result.

Our main result is the following:

Theorem 14. Spec(R�
ρ [1

p ])τ admits a regular, dense open subscheme, and
it is equidimensional of dimension dim(G).

Proof. Let A = (R�
ρ [1

p ])τ , and let A◦ be the scheme-theoretic closure of A

in R�
ρ . The universal lift of ρ induces a continuous homomorphism ΓK →

G(A◦), and so (note that A◦ is p-torsion free) we obtain a G-Weil-Deligne
representation over A by the construction preceding Remark 13. Denote it
by DA ∈WDG,L(A). For any closed point x of SpecA, write mx for the
maximal ideal at x, Ax for the completion of A at mx, Ex for the residue
field, ρx for the associated homomorphism ΓK → G(Ex), and Dx for the
associated object of WDG,L(Ex). The argument of [11, Proposition 3.3.1]
implies that the associated morphism (of groupoids over E-algebras)

SpecAx →WDG

is formally smooth; the hypothesis of [11, Proposition 3.3.1] is just the as-
sertion that D�

ρ → Dρ is formally smooth, which is clear since G is smooth.
Then the argument of [11, Proposition 3.1.6] shows that if Ux denotes the
complement of the support of H2(DAx

) in SpecAx, then Ux is formally
smooth and open dense in SpecAx: here is where we crucially invoke our
main result, Theorem 7.

Now let U denote the complement of the support of H2(DA). As Ux is
the base change of U to Ax, the density of Ux in Ax for all x implies that U is
dense in A. Furthermore, for any closed point x ∈ U , we know that Ux = Ax
is formally smooth, hence regular. Since A is noetherian, this implies that
the localization of A at any such x is regular, and hence that U is regular.

Now let x be any closed point of U ⊂ SpecA. We know the comple-
tion Ax is a regular local ring, and we will be done once we compute the
Ex-dimension of its tangent space HomEx

(mx/m
2
x, Ex). By a standard de-

formation theory argument (see [12, Proposition 2.3.5]), Ax pro-represents
the functor of lifts of ρx to artin local Ex-algebras with residue field Ex, and
this tangent space is then isomorphic to the space of continuous 1-cocycles
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Z1(ΓK , ad(ρx)), and therefore has dimension

dimAx = dimEx
H1(ΓK , ad(ρx)) + dim(G)− dimEx

(ad(ρx)ΓK ).

Now note that from the construction of G-Weil-Deligne representations
from Galois representations, we obviously have that H0(Dx) = (ad(ρx))ΓK .
Moreover, the group H1(ΓK , ad(ρx)) classifies Ex[ε]-deformations of ρx, and
(by Proposition 6), H1(Dx) classifies equivalence classes of lifts of Dx to
WDG,L(Ex[ε]). Since Dx arises from the Galois representation ρx, it is a
bounded G-Weil-Deligne representation (i.e., in any finite-dimensional rep-
resentation of G, the eigenvalues of Φ are p-adic units). This implies that for
any lift of Dx to WDG,L(Ex[ε]), the usual formula associating a Galois rep-
resentation to a G-Weil-Deligne representation applies to yield a continuous
lift of ρx to G(Ex[ε]). Conversely, such a lift can by the usual argument of the
monodromy theorem be converted into a lift of Dx. These two procedures
are inverses, identifying equivalence classes of Ex[ε]-deformations, and they
therefore identify the Ex-vector spaces H1(Dx) and H1(ΓK , ad(ρx)). Now
combining the local Euler-characteristic formula and the fact that the Euler
characteristic of the complex C•(Dx) obviously vanishes, we see that

dimAx = dim(G) + dimEx
(H2(Dx)) = dim(G),

since H2(Dx) = 0 for x ∈ U . �

Remark 15. We note as a consequence of the proof that for all x ∈ U , the
Galois cohomology group H2(ΓK , ad(ρx)) in fact vanishes.

Remark 16. The results of [11, Theorem 3.3.4], and later papers like [7,
Theorem 2.1.6] that adapt its arguments, state that U is formally smooth
over Qp, not just regular. This distinction is irrelevant for the applications to
computing the dimension of the generic fiber, as all that is used is regularity,
but regularity does not imply formal smoothness in this setting. For example,
consider A = Zp[[t]][

1
p ]. As Zp[[t]] is regular, so is its localization A. However,

A is not formally smooth over Qp in the discrete topology. We thank Bhargav
Bhatt for suggesting the following argument.

Let B = Zp[t][
1
p ]. The natural map B → A is regular: it is flat because

Zp[[t]] is flat over Zp[t], and the fibers are points and hence geometrically
regular. Then the Jacobi-Zariski exact sequence for the maps Qp → B → A
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gives

0→ A⊗B ΩB/Qp
→ ΩA/Qp

→ ΩA/B → 0.

Now A⊗B ΩB/Qp
is a free A-module with basis dt. The above sequence is

split by the element of HomA(ΩA/Qp
, A⊗BΩB/Qp

)=DerQp
(A,A⊗BΩB/Qp

)
given by sending f(t) ∈ A to f ′(t)dt. If A were formally smooth over Qp in
the discrete topology, ΩA/Qp

would be projective over A. Together with the
splitting, this would imply that ΩA/B embeds into a free A-module. Now
ΩA/Qp

is also non-zero, as a localization is ΩQp((t))/Qp(t) whose dimension
over Qp(t) is the transcendence degree of the non-algebraic extension Qp((t))
of Qp(t). But ΩA/B is also t-divisible since B/t→ A/t is an isomorphism,
so it cannot embed into a free A-module. This contradiction shows that A
cannot be formally smooth over Qp in the discrete topology.
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