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Localized energy estimates have become a fundamental tool when
studying wave equations in the presence of asymptotically flat
background geometry. Trapped rays necessitate a loss when com-
pared to the estimate on Minkowski space. A loss of regularity is
a common way to incorporate such. When trapping is sufficiently
weak, a logarithmic loss of regularity suffices. Here, by studying
a warped product manifold introduced by Christianson and Wun-
sch, we encounter the first explicit example of a situation where
an estimate with an algebraic loss of regularity exists and this
loss is sharp. Due to the global-in-time nature of the estimate for
the wave equation, the situation is more complicated than for the
Schrödinger equation. An initial estimate with sub-optimal loss is
first obtained, where extra care is required due to the low frequency
contributions. An improved estimate is then established using en-
ergy functionals that are inspired by WKB analysis. Finally, it is
shown that the loss cannot be improved by any power by saturating
the estimate with a quasimode.
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1. Introduction

When studying wave equations on asymptotically flat backgrounds, (inte-
grated) local energy estimates have become a fundamental tool. In fact, in a
number of scenarios, it has been shown that these local energy estimates im-
ply other known measures of dispersion, such as pointwise decay estimates
[28], [19] and Strichartz estimates [18]. When there are null geodesics that
remain in a compact set for all times, trapping is said to occur, and trapping
is a known obstruction to local energy estimates [24], [25]. So any estimates
in the presence of trapping must have a loss when compared to those esti-
mates available on Minkowski space. This loss is often realized as a loss of
regularity. In many situations where the trapping is sufficiently hyperbolic
(unstable), an estimate with a minimal loss (say, a logarithmic loss of regu-
larity) can be recovered. See, e.g., [3], [5], [9], [12, 13], [15], [23], [29], [32]. On
the other hand, in presence of elliptic (stable) trapped rays, nearly every-
thing, say everything but a logarithmic amount of decay, is lost [2]. Explicit
examples where an algebraic loss of regularity is necessary and sufficient to
prove integrated local energy estimates have not previously appeared.

A similar story exists for the Schrödinger equation, where the analog
of the local energy estimate is the local smoothing estimate [10], [26], [31].
There, as the speed of propagation for the Schrödinger equation is propor-
tional to the frequency, the estimate gives a 1/2-degree of smoothing. When
trapped rays exist, it is known that the full 1/2-degree of smoothing cannot
be recovered [11]. And as above, until recently, examples where the trapping
caused a minimal loss and examples where the trapping disallowed all but a
minimal amount of the smoothing were known, but nothing explicitly had
been established in between.

In [8], the authors considered the Schrödinger equation in the presence
of degenerate trapping on a product manifold or a surface of revolution.
In this example, when 2m denotes the degeneracy of the trapping, they
succeeded in showing that a loss of m−1

2(m+1) derivatives when compared to
the estimate on Euclidean space was necessary and sufficient. This provided
the first example of local smoothing with a sharp algebraic loss. Subsequent
studies include [7], [4], [6] which address, respectively, the loss caused by
inflection points in the generating function, the case of infinitely degenerate
trapping, and Strichartz estimates with degenerate trapping.

Here we consider the wave equation on the same geometric background.
The local smoothing estimate is interesting even locally in time, and in fact,
[8] proved such for times in the unit interval. For the wave equation, however,
local in time estimates follow trivially from uniform energy bounds. Thus
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Localized energy for wave equations 993

for the wave equation only global in time estimates are considered, and this
brings some new low frequency analysis into play.

We shall now describe the geometric setting. We consider the manifold
R× R× S2 equipped with the Lorentzian metric

ds2 = −dt2 + dx2 + a(x)2 dσ2S2 .

The generating function of this surface of revolution is given by a(x) =
(x2m + 1)1/2m. This constructs a two ended surface, which is asymptotically
Minkowski in both x-directions. Due to the critical point of a(x) at x = 0,
a surface of trapped null geodesics is formed. The case of m = 1 is the
nondegenerate case, which is the well-studied case of hyperbolic trapping
mentioned above, and is a simplified model for the trapping that occurs on,
e.g., Schwarzschild spaces. The analysis of [15] can be directly mimicked to
provide the local energy estimates with minimal loss. It is the degenerate
cases m ≥ 2 that interest us here.

In this geometric setup and in these coordinates, we note that

(1.1) 2gu = −∂2t u+ a(x)−2∂x

[
a(x)2∂xu

]
+

1

a(x)2
6∆S2u

where 6∆S2 denotes the Laplacian on S2. Using the product structure of the
metric, we will separate space and time in the volume form and indicate
dV = a(x)2 dx dσS2 . We will use dV dt when the volume form of the full
space-time is desired.

As this metric is static, there is a natural coercive energy, which is con-
served when 2gu = 0:

E[u](t) =

∫
(∂tu)2 + (∂xu)2 +

1

a(x)2
|6∇0u|2 dV =

∫
|∂u|2 dV.

Here we are using ∂u = (∂tu, ∂xu, 6∇0u), where 6∇0 denotes derivatives tan-
gential to S2, so that |∂u|2 = |∂u|2g = (∂tu)2 + (∂xu)2 + 1

a(x)2 |6∇0u|2. The con-
servation of energy can be proved by multiplying 2gu by ∂tu and integrating
by parts. The same method, more generally, yields:

(1.2) E[u](t) . E[u](0) +

∣∣∣∣∫ t

0

∫
2gu∂tu dV dt

∣∣∣∣ .
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We now describe the spaces that shall be used to measure the local
energy:

‖u‖LE = sup
j≥0

2−j/2‖u‖L2L2([0,T ]×{〈x〉≈2j}), ‖u‖LE1 = ‖(∂u, 〈x〉−1u)‖LE .

Here 〈 · 〉 =
√

1 + | · |2. Forcing terms will be frequently measured in the cor-
responding dual norm:

‖F‖LE∗ =
∑
j≥0

2j/2‖F‖L2L2([0,T ]×{〈x〉≈2j}).

Here L2L2 indicates the full space-time L2 norm (where to mimic what is
commonly seen on Minkowski space, the first L2 is in t and the second L2 is
over the spatial variables (x, θ, φ)). The norms in t will be taken over [0, T ],
but all constants will be independent of T , which yields the desired global
estimates. We shall use notations such as LER to indicate the LE norm
restricted to a single dyadic annulus with 2j ≈ R and LE>R to indicate the
LE norm with the restriction that 2j > R.

On (1 + 3)-dimensional Minkowski space, the uniform energy bound and
the (integrated) local energy estimate read as

‖∂u‖L∞L2 + ‖u‖LE1 . ‖∂u(0, · )‖L2 + ‖2u‖L1L2+LE∗ .

Such estimates originated in the works [20–22] and can be proved by pairing
2u with C∂tu+ r

r+2j ∂ru+ 1
r+2j u, integrating over a space-time slab, inte-

grating by parts, and using a Hardy inequality. See, e.g., [27], [16]. And in
fact, these estimates hold on any stationary, Lorentzian, asymptotically flat
spaces provided that there are no trapped rays and there are no eigenvalues
nor resonances on the real line or in the lower half of the complex plane.
See [17], which can also be referred to for a more complete history of such
estimates.

As was done in preceding works such as [8], [15], our first goal is to
develop an estimate that provides the local energy estimate away from the
trapped set. The loss here will be manifest through a coefficient that van-
ishes where there is trapping. In [8], this follows from a relatively standard
integration by parts argument. But as we must now consider global-in-time
estimates, some new low frequency contributions must be considered. How-
ever, using a refinement of the exterior estimate of [17], which is inspired by
that of [14], we shall obtain:
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Theorem 1.1. 1 On the geometry described above, if, for each t, u(t, x)
vanishes for sufficiently large |x|, we have

sup
t
E[u](t)1/2 + ‖∂xu‖LE +

∥∥∥∥ |x|m〈x〉m∂tu
∥∥∥∥
LE

(1.3)

+

∥∥∥∥ |x|m〈x〉m 1

a(x)
|6∇0u|

∥∥∥∥
LE

+ ‖〈x〉−1u‖LE

. E[u](0)1/2 + ‖2gu‖L1L2+(|x|/〈x〉)mLE∗

and, upon setting Dω = −i
√

1
a2 6∆S2,

sup
t
E[u](t)1/2 + ‖∂xu‖LE +

∥∥∥∥ |x|m〈x〉m∂tu
∥∥∥∥
LE

(1.4)

+

∥∥∥∥ |x|m〈x〉m 1

a(x)
|6∇0u|

∥∥∥∥
LE

+ ‖〈x〉−1u‖LE

. E[u](0)1/2 + ‖〈Dω〉
m−1

2(m+1)2gu‖1/2LE∗‖〈Dω〉−
m−1

2(m+1)∂u‖1/2LE

+ ‖2gu‖LE∗ .

We note that when m = 1 this is the direct analog of [15, Theorem 1.2].
See also [1] where the case of m = 1 was considered. Theorem 1.1 is already
essential as it provides lossless local energy estimates away from the trapping
at x = 0 and everywhere for ∂xu and for 〈x〉−1u. Moreover, in the sequel,
this estimate will allow us to localize our analysis to a small neighborhood
of the trapping.

We then seek to improve the corresponding loss. One option would be
to use the resolvent bounds that were developed in [8]. As an alternative,
we shall adapt the techniques of [15], which are based on energy functionals
that are inspired by WKB theory. We hope that this alternate method may
provide more flexibility when considering more general cases of degenerate
trapping. As a brief motivation, see [30], which adapted the methods of [15]
to the setting of Kerr backgrounds with sufficiently small angular momenta.
Using these methods, we prove

1For a normed space X = {x : ‖x‖X <∞}, we have aX = {ax : ‖x‖X <∞} =
{y : ‖a−1y‖X <∞}. And thus, we denote ‖y‖aX = ‖a−1y‖X . Moreover, if X and
Y are normed spaces, we recall that ‖f‖X+Y = inff=f1+f2(‖f1‖X + ‖f2‖Y ).
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Theorem 1.2. Let m ≥ 2. On the geometry described above, suppose 2gu =
0. Then we have

(1.5) ‖u‖2LE1 . E[〈Dω〉
m−1

2(m+1)u](0).

For clarity of exposition, we have only stated this for the homogeneous

case. A forcing term, which is measured in 〈Dω〉−
m−1

m+1LE∗ may be included.
This is done, e.g., in [15] for the nondegenerate case, and the argument here
would be similar.

Our last task is to show that this estimate is sharp in the sense that
the estimate fails to hold if the loss is decreased by any power. Here we will
rely on the quasimode that was constructed in [8]. Saturating the estimate
for the wave equation is a bit different than saturating the local-in-time
estimate for the Schrödinger equation. Rather than saturating the amount
of smoothing available, here we must saturate the integrability. The spectral
parameter that arises here is squared due to the wave equation being second
order in time. By choosing the correct root, the solution that is constructed
from the quasimode has appropriate growth to do exactly this. We, in fact,
prove:

Theorem 1.3. There exist compactly supported functions ψ0 and ψ1 and
a T > 0 so that the solution ψ to

2gψ = 0, (ψ, ∂tψ)|t=0 = (ψ0, ψ1)

satisfies ∫ T

0
‖β(|x|)a(x)−1|6∇0ψ|‖2L2 dt & E[〈Dω〉

m−1

2(m+1)ψ](0),

where β is a smooth cutoff function that is identically 1 on (−∞, 1/2) and
vanishes on (1,∞).

The article is organized as follows. In the next section, we shall prove
Theorem 1.1. To do so, the analysis is broken into a low frequency regime
and a range of frequencies that is bounded away from zero. The next section
is devoted to refining the analysis to prove the sharp estimate as stated in
Theorem 1.2. The arguments here are adaptations of those developed in [15].
Finally, in the last section, we prove Theorem 1.3, which shows that the loss
of regularity cannot be improved by any power.
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2. A lossy estimate — Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1. Some of this section is inspired
by [17], but as we are examining an explicit metric that is stationary and
has a product structure, the methods can be significantly simplified.

Throughout this article, we fix β(ρ) to be a smooth, monotone cutoff
that is 1 for ρ < 1/2 and 0 for ρ > 1. To prove Theorem 1.1, we shall analyze
u<τ = β(Dt/τ)u and u>τ = (1− β(Dt/τ))u separately. The parameter 0 <
τ � 1 will be chosen later. In particular, we shall establish the following
estimate that handles any frequency range that is bounded away from 0.

Proposition 2.1. For any τ > 0, we have

‖∂xu>τ‖2LE +

∥∥∥∥ |x|m〈x〉m∂tu>τ
∥∥∥∥2
LE

(2.1)

+

∥∥∥∥ |x|m〈x〉m 1

a(x)
|6∇0u>τ |

∥∥∥∥2
LE

+ ‖〈x〉−1u>τ‖2LE

. E[u](0) + ‖2gu‖L1L2+(|x|/〈x〉)mLE∗‖(∂u, a(x)−1u)‖L∞L2∩(〈x〉/|x|)mLE

and

‖∂xu>τ‖2LE +

∥∥∥∥ |x|m〈x〉m∂tu>τ
∥∥∥∥2
LE

(2.2)

+

∥∥∥∥ |x|m〈x〉m 1

a(x)
|6∇0u>τ |

∥∥∥∥2
LE

+ ‖〈x〉−1u>τ‖2LE

. E[u](0) + ‖〈Dω〉
m−1

2(m+1)2gu‖LE∗‖〈Dω〉−
m−1

2(m+1)∂u‖LE + ‖2gu‖2LE∗ .

It is here that the effects of trapping are observed, as is evidenced by
the coefficients that vanish at the location of the trapping.

The above will be combined with the following estimate for sufficiently
small frequencies.

Proposition 2.2. For any τ > 0 sufficiently small, we have

(2.3) ‖u<τ‖2LE1 . E[u](0) + ‖2gu‖2L1L2+LE∗ .

The vanishing at the trapping is irrelevant here as trapping is a high
frequency phenomenon.

As the metric is stationary, it is trivial to commute the frequency cutoff
with 2g. Upon combining (1.2), (2.1), and (2.3), Theorem 1.1 results.
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All of the results in this section come from a multiplier method and an
associated integration by parts. At this point, we will record the following
abstract calculation that shall be used many times in the sequel. Suppose
w, g ∈ C2, f ∈ C1, and for each t, w(t, x) vanishes for large enough |x|. Then

−
∫ T

0

∫
2gw

{
f(x)∂xw + g(x)w

}
dV dt(2.4)

=

∫
∂tw

(
f(x)∂xw + g(x)w

)
dV
∣∣∣T
0

+

∫ T

0

∫ (
f ′(x) + g(x)− 1

2

{
a(x)−2∂x(a(x)2f(x))

})
(∂xw)2 dV dt

+

∫ T

0

∫ (
f(x)

a′(x)

a(x)
+ g(x)− 1

2

{
a(x)−2∂x(a(x)2f(x))

})
× 1

a(x)2
|6∇0w|2 dV dt

+

∫ T

0

∫ (
−g(x) +

1

2

{
a(x)−2∂x(a(x)2f(x))

})
(∂tw)2 dV dt

− 1

2

∫ T

0

∫ (
a(x)−2∂x[a(x)2∂xg]

)
w2 dV dt.

2.1. Exterior estimates

We first establish an estimate away from x = 0, which is where the trapping
occurs. This estimate shows that the local energy estimates necessarily hold
near the infinite ends with a lower order error term that is supported on a
compact region. An estimate analogous to this was first established in [14]
for the Schrödinger equation and in [17] for more general wave equations.
Here the warped product structure simplifies the choice of multiplier, but
some care must be taken to accommodate having two ends.

Though our proof does not significantly differ from [17], we have provided
a sharper statement that allows for a difference in the radius outside of which
you hope to estimate your solution and the radius at which you are cutting
away and permitting an error term. This difference in radii provides a degree
of smallness that allows us to simplify the low frequency analysis.
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Proposition 2.3. For any parameters R and R1 satisfying (1/2)R ≥ R1 ≥
2, we have the following:

‖u‖2LE1
|x|>R

. E[u](0) +

∫ T

0

∫
|2gu|

(
|∂u|+ 1

a(x)
|u|
)
dV dt(2.5)

+R−1R−11 ‖u‖
2
LE|x|≈R1

.

Proof. We shall use (2.4) with

f(x) = (1− β(|x|/R1))h(x), h(x) =
x

|x|+ ρ
, ρ ≥ R,

g(x) =
1

2
a(x)−2h(x)∂x

[
(1− β(|x|/R1))a(x)2

]
.

We can then compute

h′(x) =
ρ

(|x|+ ρ)2
, h′′(x) = − 2ρ sgn(x)

(|x|+ ρ)3
.

We examine the coefficients of each term in the right side of (2.4). To
start, using that β is a monotonically decreasing function, we have

f ′(x) + g(x)− 1

2

{
a(x)−2∂x(a(x)2f(x))

}
(2.6)

=
1

2
(1− β(|x|/R1))h

′(x)−R−11 β′(|x|/R1)sgn(x)h(x)

≥ 1

2
(1− β(|x|/R1))

ρ

(|x|+ ρ)2
.

And moreover, the right side is ≈ 1/ρ on |x| ≈ ρ.
For the angular derivatives, we have

f(x)
a′(x)

a(x)
+ g(x)− 1

2

{
a(x)−2∂x(a(x)2f(x))

}
(2.7)

= (1− β(|x|/R1))

(
a′(x)

a(x)
h(x)− 1

2
h′(x)

)
.

We record that a′(x)
a(x) h(x)− 1

2h
′(x) ≥ 1

2
|x|

(|x|+ρ)2 on the support of 1−β(|x|/R1).

And this coefficient is also ≈ 1/ρ on |x| ≈ ρ.
For the time derivatives, we simply get

(2.8) − g(x) +
1

2

{
a(x)−2∂x(a(x)2f(x))

}
=

1

2
(1− β(|x|/R1))h

′(x),

which is everywhere non-negative and ≈ 1/ρ on |x| ≈ ρ.
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It remains to examine the lower order term. We compute

− 1

4

{
a(x)−2∂x

[
a(x)2∂x

(
h(x)a(x)−2∂x(a(x)2)

)]}
(2.9)

= −1

2

x2m−1

1 + x2m
h′′(x) +

2m− 1

(1 + x2m)2
x2m−2

(
h(x)

x
− h′(x)

)
+

2m− 1

(1 + x2m)3
x2m−3m(x2m − 1)h(x).

Here we observe that − x2m−1

1+x2mh′′(x) is everywhere non-negative and is &
ρ−3 when |x| ≈ ρ. Moreover, we have that h(x)/x ≥ h′(x), which gives that
the second term in the right side of (2.9) is nonnegative. And finally, the
last term of (2.9) is easily seen to be non-negative on the support of (1−
β(|x|/R1)). We now account for the error term that results when derivatives
land on the cutoff. Here we see that∣∣∣∣∣−1

2
a(x)−2∂x[a(x)2∂xg(x)](2.10)

+
1

4
(1− β(|x|/R1))

{
a(x)−2∂x

[
a(x)2∂x

(
h(x)a(x)−2∂x(a(x)2)

)]}∣∣∣∣∣
. ρ−1R−21 1|x|≈R1

.

Using each of these analyses in (2.4), we have established

−
∫ T

0

∫
2gu

{
f(x)∂xu+ g(x)u

}
dV dt−

∫
∂tu
(
f(x)∂xu+ g(x)u

)
dV
∣∣∣T
0

& ρ−1
∫ T

0

∫
|x|≈ρ

|∂u|2 dV dt+ ρ−3
∫ T

0

∫
|x|≈ρ

u2 dV dt

− ρ−1R−21

∫ T

0

∫
|x|≈R1

u2 dV dt.

By the Schwarz inequality, we may bound, independently of ρ,∫
f(x)∂tu∂xu dV . E[u](t),

to which we can, in turn, apply (1.2). The term

1

2

∫
a(x)−2h(x)∂x((1− β(|x|/R1))a(x)2)u∂tu dV
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is handled similarly when combined with the following variant of a Hardy
inequality:

(2.11)

∫
a(x)−2u2 dV .

∫
(∂xu)2 dV.

To apply such, notice that

a(x)−2h(x)∂x(β(|x|)a(x)2) . a(x)−1.

To prove (2.11), we integrate by parts to see

∫
a(x)−2u2 dV = −2

∫
xu∂xu dx dσ .

∫ ∣∣∣∣ x

a(x)

∣∣∣∣ ∣∣∣∣ u

a(x)

∣∣∣∣ |∂xu| dV
.

(∫
a(x)−2u2 dV

)1/2(∫
(∂xu)2 dV

)1/2

.

Applying these bounds to the time boundary terms and combining with
(1.2), we have

sup
t∈[0,T ]

E[u](t) + ρ−1
∫ T

0

∫
|x|≈ρ

|∂u|2 dV dt+ ρ−3
∫ T

0

∫
|x|≈ρ

u2 dV dt

. E[u](0) +

∫ T

0

∫
|2gu|

(
|∂u|+ |u|

a(x)

)
dV dt+ ρ−1R−11 ‖u‖

2
LER1

.

Taking the supremum over ρ ≥ R yields (2.5). �

2.2. High frequency estimate (Proposition 2.1)

In this section, we prove a local energy estimate for any range of time-
frequencies that is bounded away from 0. To begin, we establish the estimate
on a large ball, which will be supplemented with (2.5).
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Lemma 2.4. For any R > 0 sufficiently large, we have

1

R

∥∥∥(1 + x2m)−1/2∂xu
∥∥∥2
L2L2

|x|<R/2

(2.12)

+
1

R4m+1

∥∥∥|x|m(1 + x2m)−1/2a(x)−1|6∇0u|
∥∥∥2
L2L2

|x|<R/2

+
1

R

∥∥∥|x|m(1 + x2m)−1/2∂tu
∥∥∥2
L2L2

|x|<R/2

+
1

R4m+1

∥∥〈x〉−1u∥∥2
L2L2

|x|<R/2

. E[u](0) +

∫ T

0

∫
|x|<R

|2gu|
(
|∂u|+ |〈x〉−1u|

)
dV dt+ ‖u‖2LE1

|x|≈R
.

Proof. We apply (2.4) with all of the w = β(|x|/R)u, f(x) = x
Ra(x/R2) , and

g(x) = 1
2f
′(x) + δ

R4m

a′(x)
a(x) f(x), and we shall now examine the coefficients of

the last four terms in the right side of (2.4). Here δ > 0 is a small parameter
that will be fixed later.

For the coefficient of (∂xw)2, noting that a′(x)
a(x) f(x) ≥ 0, we have

f ′(x) + g(x)− 1

2

{
a(x)−2∂x(a(x)2f(x))

}
≥ f ′(x)− a′(x)

a(x)
f(x)

=
1

R

1−
(
x
R

)4m
(1 + x2m)

(
1 + x2m

R4m

)1+ 1

2m

.

In particular, this is nonnegative on the support of β(|x|/R), and∫ T

0

∫ (
f ′(x) + g(x)− 1

2

{
a(x)−2∂x(a(x)2f(x))

})
(∂xw)2 dV dt(2.13)

&
1

R

∥∥∥(1 + x2m)−1/2∂xu
∥∥∥2
L2L2

|x|<R/2

since β(|x|/R) ≡ 1 on |x| < R/2. Here and throughout this proof, all implicit
constants are independent of R.

For the angular derivatives, we have

f(x)
a′(x)

a(x)
+ g(x)− 1

2

{
a(x)−2∂x(a(x)2f(x))

}
=

δ

R4m

a′(x)

a(x)
f(x)

=
δ

R4m+1

x2m

1 + x2m

(
1 +

( x

R2

)2m)− 1

2m

.
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And hence, ∫ T

0

∫ (
f(x)

a′(x)

a(x)
+ g(x)− 1

2

{
a(x)−2∂x(a(x)2f(x))

})
(2.14)

× 1

a(x)2
|6∇0w|2 dV dt

&
δ

R4m+1

∥∥∥|x|m(1 + x2m)−1/2a(x)−1|6∇0u|
∥∥∥2
L2L2

|x|<R/2

.

And for the time derivatives, it follows that

−g(x) +
1

2

{
a(x)−2∂x(a(x)2f(x))

}
=

(
1− δ

R4m

)
a′(x)

a(x)
f(x)

and ∫ T

0

∫ (
−g(x) +

1

2

{
a(x)−2∂x(a(x)2f(x))

})
(∂tw)2 dV dt(2.15)

&
1

R

∥∥∥|x|m(1 + x2m)−1/2∂tu
∥∥∥2
L2L2

|x|<R/2

.

It remains to examine the lower order term, whose coefficient is

−1

2
a(x)−2∂x(a(x)2∂xg).

We first compute

− 1

4
a(x)−2∂x(a(x)2∂xf

′(x))

=
(2m+ 1)

(
x
R2

)2m[
x2m − 1− 2

(
x
R2

)2m
+ 2m(1 + x2m)

(
1−

(
x
R2

)2m)]
4Rx2(1 + x2m)

(
1 +

(
x
R2

)2m)3+ 1

2m

,

which can be observed to be nonnegative on |x| < R for any R sufficiently
large. Moreover

− 1

4

∫ T

0

∫ (
a(x)−2∂x[a(x)2∂xf

′(x)]
)
w2 dV dt

&
1

R4m+1

∥∥∥|x|m−1(1 + x2m)−1/2β(|x|/R)u
∥∥∥2
L2L2

.
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On the other hand,

− 1

2R4m
a(x)−2∂x

[
a(x)2∂x

(
a′(x)

a(x)
f(x)

)]
=

1

2

x2m−2

R4m+1(1 + x2m)

1(
1 +

(
x
R2

)2m)2+ 1

2m

{
4m2 x2m − 1

(x2m + 1)2

(
1+
( x

R2

)2m)2
−
( x

R2

)2m 1

x2m + 1

(
1− x2m + 2

( x

R2

)2m)

+
2m
[
1+(x4m+5)

(
x
R2

)2m
+3
(
x
R2

)4m
+x2m

(
−1+2

(
x
R2

)2m
+
(
x
R2

)4m)]
(1 + x2m)2

}
.

On the support of β(|x|/R) for R sufficiently large, it follows that

∣∣∣∣− δ

2R4m
a(x)−2∂x

[
a(x)2∂x

(
a′(x)

a(x)
f(x)

)]∣∣∣∣
. δ

|x|2m−2

R4m+1(1 + x2m)
for |x| < R.

Thus, if δ > 0 is chosen sufficiently small, it follows that

− 1

2

∫ T

0

∫ (
a(x)−2∂x[a(x)2∂xg]

)
w2 dV dt(2.16)

&
1

R4m+1

∥∥∥|x|m−1(1 + x2m)−1/2u
∥∥∥2
L2L2

|x|<R/2

.

We next provide a simple argument to show that the vanishing of the
coefficient at the origin in (2.16) can be removed. Indeed, integration by
parts gives

∫
β(|x|)u2a(x)2 dx = −

∫
β′(|x|)|x|u2a2(x) dx

− 2

∫
β(|x|)xu∂xua2(x) dx

− 2

∫
β(|x|)xa

′(x)

a(x)
u2 a(x)2 dx.
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Applying the Schwarz inequality to the second term and bootstrapping
yields ∫

β(|x|)u2 dV .
∫
|β′(|x|)||x|u2 dV +

∫
β(|x|)x2(∂xu)2 dV(2.17)

+

∫
β(|x|) x2m

(1 + x2m)
u2 dV.

Upon inclusion of a factor of R−4m−1, each of the terms on the right side
can be controlled by the right sides of (2.13) and (2.16).

Using (2.13), (2.15), (2.14), (2.16), and (2.17) in (2.4) gives

−
∫ T

0

∫
2gw

{
f(x)∂xw + g(x)w

}
dV dt(2.18)

−
∫
∂tw

(
f(x)∂xw + g(x)w

)
dV
∣∣∣T
0

&
1

R

∥∥∥(1 + x2m)−1/2∂xu
∥∥∥2
L2L2

|x|<R/2

+
1

R

∥∥∥|x|m(1 + x2m)−1/2∂tu
∥∥∥2
L2L2

|x|<R/2

+
δ

R4m+1

∥∥∥|x|m(1 + x2m)−1/2a(x)−1|6∇0u|
∥∥∥2
L2L2

|x|<R/2

+
1

R4m+1

∥∥∥〈x〉−1β(|x|/R)u
∥∥∥2
L2L2

.

Noting that f(x) is bounded (independent of R) and |g(x)| . 1/R on
the support of β(|x|/R), we can apply the Schwarz inequality and (2.11) to
bound each of the time-boundary terms by the energy at that time. Thus,
(1.2) gives

1

R

∥∥∥(1 + x2m)−1/2∂xu
∥∥∥2
L2L2

|x|<R/2

(2.19)

+
δ

R4m+1

∥∥∥|x|m(1 + x2m)−1/2a(x)−1|6∇0u|
∥∥∥2
L2L2

|x|<R/2

+
1

R

∥∥∥|x|m(1+x2m)−1/2∂tu
∥∥∥2
L2L2

|x|<R/2

+
1

R4m+1

∥∥∥〈x〉−1β(|x|/R)u
∥∥∥2
L2L2

. E[u](0) +

∫ T

0

∫
|2gw|

(
|∂tw|+ |∂xw|+ |〈x〉−1w|

)
dV dt.
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We finally examine the nonhomogeneous term and notice

(2.20)

∫ T

0

∫
|[2g, β(|x|/R)]u|

(
|∂w|+ |〈x〉−1w|

)
dV dt . ‖u‖2LE1

R
,

which completes the proof. �

We may now establish our main high frequency estimate.

Proof of Proposition 2.1. We sum (2.12) (with R replaced by 2R) and (2.5)
(with R1 = R/2) multiplied by a large constant to see that

1

R

∥∥∥(1 + x2m)−1/2∂xu>τ

∥∥∥2
L2L2

|x|<R

(2.21)

+
1

R

∥∥∥|x|m(1 + x2m)−1/2∂tu>τ

∥∥∥2
L2L2

|x|<R

+
1

R4m+1

∥∥∥|x|m(1 + x2m)−1/2a(x)−1|6∇0u>τ |
∥∥∥2
L2L2

|x|<R

+
1

R4m+1

∥∥∥〈x〉−1β(|x|/2R)u>τ

∥∥∥2
L2L2

+ ‖u>τ‖2LE1
|x|>R

. E[u](0) +

∫ T

0

∫
|2gu|

(
|∂u|+ |〈x〉−1u|

)
dV dt

+R−2‖u>τ‖2LE|x|≈R .

By multiplying (2.5) by a large enough constant, the ‖u‖2LE1
|x|≈R

error term

from (2.12) may be bootstrapped. Since

R−2‖u>τ‖2LE|x|≈R . τ
−2R−3‖∂tu>τ‖2L2L2

|x|≈R
,

we see that the error term may be bootstrapped provided that R is cho-
sen sufficiently large (depending on τ). And from what results, the desired
estimate follows immediately. �

2.3. Low frequency estimate (Proposition 2.2)

Here we establish a local energy estimate for sufficiently low time-frequencies.
We will again use (2.5), but we modify the interior estimate that we couple
with it.
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Lemma 2.5. For any R > 0, we have

‖〈x〉−1/2∂xu‖2L2L2
|x|<R/2

+ ‖〈x〉−1/2a(x)−1 6∇0u‖2L2L2
|x|<R/2

(2.22)

+ ‖〈x〉−1/2∂tu‖2L2L2
|x|<R/2

+ ‖〈x〉−m−
3

2u‖2L2L2
|x|<R/2

. E[u](0) +

∫ T

0

∫
|2gu|

(
|∂tu|+

1

a(x)
|u|
)
dV dt

+ ‖〈x〉−1/2∂tu‖2L2L2
|x|<R

+ ‖u‖2LE1
|x|≈R

.

Proof. Here we apply (2.4) with f ≡ 0 and g(x) = 1/a(x). This gives

∫ T

0

∫
1

a(x)

[
(∂xw)2 +

1

a(x)2
|6∇0w|2

]
dV dt(2.23)

+
2m− 1

2

∫ T

0

∫
x2m−2

(1 + x2m)2
1

a(x)
w2 dV dt

= −
∫

1

a(x)
w∂tw dV |T0 −

∫ T

0

∫
1

a(x)
w2gw dV dt

+

∫ T

0

∫
1

a(x)
(∂tw)2 dV dt.

We may again apply (2.17) to eliminate the vanishing in the coefficient of
the third term in the left side. Also applying the Schwarz inequality, (2.11),
and (1.2), we obtain

∫ T

0

∫
1

a(x)

[
(∂xw)2 +

1

a(x)2
|6∇0w|2

]
dV dt

+

∫ T

0

∫
〈x〉−2m−2 1

a(x)
w2 dV dt

. E[w](0) +

∫ T

0

∫
|2gw|

(
|∂tw|+

1

a(x)
|w|
)
dV dt

+

∫ T

0

∫
1

a(x)
(∂tw)2 dV dt.

The proof concludes by letting w = β(|x|/R)u and using (2.20). �

We now combine the preceding, (2.22), with the exterior estimate (2.5)
in order to establish a local energy estimate for sufficiently small frequencies.
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Proof of Proposition 2.2. We supplement (2.22) (applied to u<τ ) with (1.2)
and (2.5) with R1 = 2. This gives

‖∂u<τ‖2L∞L2 + ‖〈x〉−1/2∂u<τ‖2L2L2
|x|<R

+ ‖〈x〉−m−
3

2u<τ‖2L2L2
|x|<R

+ ‖u<τ‖2LE1
|x|>R

. E[u](0) + ‖2gu‖L1L2+LE∗‖(∂u<τ , a(x)−1u<τ )‖L∞L2∩LE

+ ‖〈x〉−1/2∂tu<τ‖2L2L2
|x|<2R

+R−1‖u<τ‖2LE|x|≈1
.

Here we have also applied the Schwarz inequality to the inhomogeneous
term. By choosing R sufficiently large, we may bootstrap the last term in
the right side. The remaining error term can then be absorbed provided that
τ is sufficiently small (depending on R). �

3. An improved estimate — Proof of Theorem 1.2

In order to prove Theorem 1.2, we define P = −∂2t + ∂2x + a(x)−2 6∇0 · 6∇0

and shall prove:

Proposition 3.1. Suppose that v(t, · ) is supported in {|x| < 1}, that
v(t, x) ≡ 0 for t ≤ 0, and Pv = g where g(t, · ) is supported in {|x| < 1} and
g(t, x) ≡ 0 for t ≤ 0. Then, for δ > 0,

(3.1) ‖∂xv‖LE + ‖v‖
〈Dω〉

m−1
2(m+1)LE1

. ‖g‖
〈Dω〉

− m−1
2(m+1)LE∗+(|x|/〈x〉)(m−1+δ)/2LE∗

.

We will first show that this suffices to prove Theorem 1.2. To begin, we
shall argue that if v(t, · ) is supported in {|x| < ε} with ε > 0 sufficiently
small then we may replace P by 2g in the above proposition. Indeed, if

2gv = g, then Pv = g − 2a
′(x)
a(x) ∂xv. Then (3.1) gives

‖∂xv‖LE + ‖v‖
〈Dω〉

m−1
2(m+1)LE1

. ‖g‖
〈Dω〉

− m−1
2(m+1)LE∗+(|x|/〈x〉)

m−1+δ
2 LE∗

+ ‖|x|
3m−1−δ

2 ∂xv‖LE∗ .

Due to the restricted support of v, this last term is ε
3m−1−δ

2 O(‖∂xv‖LE) and
may be bootstrapped provided ε is small enough.

We next argue that the L1L2 norm may be added in the right side. This
follows trivially from (1.3) for the ∂x components. Suppose that φ solves
2gφ = f backwards in time and that φ(t, x), f(t, x) ≡ 0 for t ≥ T . Then by
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(1.4) and (3.1), it follows that

‖∂φ‖L∞L2 + ‖(|x|/〈x〉)m∂φ‖LE . ‖〈Dω〉
m−1

2(m+1) f‖LE∗ .

Hence,

〈∂tv, f〉 = −〈2gv, ∂tφ〉 = −〈g, ∂tφ〉

≤ ‖g‖L1L2‖∂tφ‖L∞L2 . ‖g‖L1L2‖〈Dω〉
m−1

2(m+1) f‖LE∗ ,

and thus by duality,

(3.2) ‖〈Dω〉−
m−1

2(m+1)∂tv‖LE . ‖g‖L1L2 .

Applying (2.23) with w = 〈Dω〉−
m−1

2(m+1) v, (1.2), and (2.11), we have

‖〈Dω〉−
m−1

2(m+1) |6∇0v|‖2LE . ‖2gv‖L1L2‖〈Dω〉−
m−1

m+1 v‖L∞L2(3.3)

+ ‖〈Dω〉−
m−1

2(m+1)∂tv‖2LE .

As (2.11) and (1.2) permit us to bound

‖〈Dω〉−
m−1

m+1 v‖L∞L2 . ‖a(x)−1u‖L∞L2 . ‖g‖L1L2 ,

(3.2) and (3.3) give

(3.4) ‖〈Dω〉−
m−1

2(m+1) |6∇0v|‖LE . ‖g‖L1L2 .

We have therefore sharpened (3.1) to say that if 2gv = g1 + g2 where

g1 ∈ (|x|/〈x〉)
m−1+δ

2 LE∗, g2 ∈ L1L2 and if v(t, x), g1(t, x), g2(t, x) vanish iden-
tically for t ≤ 0 and if each is supported where |x| < ε, then

‖∂xv‖LE + ‖〈Dω〉−
m−1

2(m+1)∂v‖LE(3.5)

. inf
g=g1+g2

(
‖(〈x〉/|x|)

m−1+δ

2 g1‖LE∗ + ‖g2‖L1L2

)
.

We now proceed to make a few reductions in order to use (3.5) to prove
Theorem 1.2. First, it suffices to replace u by v = (1− β(t))β(|x|/ε)u as
‖(1− β(|x|/ε))u‖LE1 is trivially controlled by the left side of (1.3), which
provides a better bound, and, using a Hardy inequality, ‖β(t)β(|x|/ε)u‖2LE1.
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sup0≤t≤1E[u](t), which is appropriately bounded using (1.2). We now ob-
serve that v satisfies

2gv = 2ε−1 sgn(x)β′(|x|/ε)(1− β(t))∂xu

+ 2ε−1sgn(x)
a′(x)

a(x)
β′(|x|/ε)(1− β(t))u

+ ε−2β′′(|x|/ε)(1− β(t))u+ 2β(|x|/ε)β′(t)∂tu+ β(|x|/ε)β′′(t)u.

Then (3.5) gives that

‖〈Dω〉−
m−1

2(m+1)∂(1− β(t))β(|x|)u‖LE .ε ‖∂xu‖LE + ‖〈x〉−1u‖LE
+ sup

1/2≤t≤1
E[u](t)1/2

and subsequent applications of (1.2) and (1.3) complete the proof of Theo-
rem 1.2.

3.1. WKB Analysis

It now suffices to establish Proposition 3.1. The method that we shall employ
is inspired by [15]. We shall develop energy functionals that are based in
WKB analysis in order to achieve (3.1).

We begin with Pv = g. Upon taking the Fourier transform in t and
expanding into spherical harmonics, it suffices to examine

(3.6) ∂2xφλ,τ + Vλ,τ (x)φλ,τ = gλ,τ where Vλ,τ = τ2 − λ2

a(x)2
.

Here τ is the Fourier dual variable to t, and λ2 runs over the eigenvalues
of −6∆S2 . And to prove (3.1), if gλ,τ = g1,λ,τ + g2,λ,τ with g1,λ,τ ∈ L2

x and

g2,λ,τ ∈ (|x|/〈x〉)
m−1+δ

2 L2
x, it will suffice to show

〈λ〉−
m−1

2(m+1) (|τ |+ λ)‖φλ,τ‖L2
x

+ ‖∂xφλ,τ‖L2
x

(3.7)

. 〈λ〉
m−1

2(m+1) ‖g1,λ,τ‖L2
x

+

∥∥∥∥∥
(
〈x〉
|x|

)m−1+δ

2

g2,λ,τ

∥∥∥∥∥
L2
x

.

For ease of notation, we shall drop the subscripts in the sequel. The analysis
will be broken into four cases depending on the relationship between τ and λ.
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In the first three cases, we will prove the stronger estimate

(3.8) ‖∂xφ‖L2 + (|τ |+ λ)‖φ‖L2 . ‖g‖L2 .

Case I: (λ, τ . 1) Define the positive definite energy functional E[φ](x) =
(∂xφ)2 + φ2. Then, since |Vλ,τ | . 1 here,

∂xE[φ](x) = 2∂xφ(∂2xφ+ φ) . g2 + E[φ](x).

By Gronwall’s inequality and the fact that φ is compactly supported, it
follows that

(∂xφ)2 + φ2 . ‖g‖2L2 ,

from which the desired result is immediate upon integrating.
Case II: (λ� τ) Here we similarly define E[φ](x) = (∂xφ)2 + Vλ,τ (x)φ2.
Then,

∂xE[φ] . |g∂xφ|+ φ2|∂xVλ,τ (x)|.

Since |∂xVλ,τ (x)| . Vλ,τ (x), this gives

∂xE[φ](x) . E[φ](x) + g2.

The desired estimate then follows, as above, from Gronwall’s inequality and
integrating both sides of what results.
Case III: (τ � λ) Here, due to the different sign of Vλ,τ in this regime, we
instead consider the boundary value problem{

∂2xφ+ Vλ,τφ = g,

φ(−1) = φ(1) = 0.

Multiplying both sides of the equation by −φ and integrating, we find∫ 1

−1
(∂xφ)2 dx−

∫ 1

−1
Vλ,τφ

2 dx = −
∫ 1

−1
gφ dx.

In this case, Vλ,τ ≈ −λ2 on the support of φ, and the desired result follows
from the Schwarz inequality.
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Case IV: (τ ≈ λ� 1) Here we write

V (x) = λ2
(

1− 1

(x2m + 1)1/m
+ ε

)
= λ2(b(x) + ε),

where |ε| . 1. And we shall further subdivide this analysis based on the
relationship between λ and ε: ε ≥ −Cλ−2m/(1+m) and ε ≤ −Cλ−2m/(1+m)

where C > 0 is a sufficiently large constant.
Case A: (ε ≥ −Cλ−2m/(1+m)) Here we shall show

λ‖(λ−2m/(1+m) + |b(x) + ε|)1/4φ‖L∞x(3.9)

+ ‖(λ−2m/(1+m) + |b(x) + ε|)−1/4∂xφ‖L∞x
. ‖(λ−2m/(1+m) + |b(x) + ε|)−1/4g‖L1

x
.

And due to the following lemma, this will imply (3.7) in this case.

Lemma 3.2. For m > 1 and ε > −Cλ−2m/(1+m), where C > 0, we have

(3.10) ‖(λ−2m/(1+m) + |b(x) + ε|)−1/4‖L2({|x|≤1}) . λ
(m−1)/2(m+1)

and for any δ > 0

‖(λ−2m/(1+m) + |b(x) + ε|)−1/4|x|
m−1+δ

2 ‖L2({|x|≤1}) = O(1).

Proof. We shall begin by examining the case that b(x) ≤ 2Cλ−2m/(1+m).
From this, we have |x| . λ−1/(1+m) and∫

{x : b(x)≤2Cλ−2m/(1+m)}

1

(λ−2m/(1+m) + |b(x) + ε|)−1/2
dx

.
∫
|x|.λ−1/(1+m)

λm/(1+m)dx

≈ λ(m−1)/(m+1),

which gives the first estimate. Similarly,∫
{x : b(x)≤2Cλ−2m/(1+m)}

|x|m−1+δ

(λ−2m/(1+m) + |b(x) + ε|)−1/2
dx

.
∫
|x|.λ−1/(1+m)

λ
1−δ
m+1 dx = O(1).
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We next consider when b(x) ≥ 2Cλ−2m/(1+m). In this setting, we have
that |b(x) + ε| ≥ |b(x)|/2 and that |x| & λ−1/(1+m). Then we have∫

{x : b(x)≥2Cλ−2m/(1+m)}

1

(λ−2m/(1+m) + |b(x) + ε|)−1/2
dx

.
∫ 1

cλ−1/(1+m)

b(x)−1/2 dx.

Note that

b(x)−1/2 =
(x2m + 1)1/2m

((x2m + 1)1/m − 1)1/2
.

Moreover, we have

(3.11) (x2m + 1)1/m − 1 =

∫ |x|
0

2y2m−1

(y2m + 1)1−
1

m

dy &
∫ |x|
0

y2m−1 dy ≈ |x|2m.

We also note for later purposes that the quantity on the left is O(|x|2m) on
the support of φ. In particular, on |x| ≤ 1, b(x)−1/2 . |x|−m. This gives that

‖(λ−2m/(1+m) + |b(x) + ε|)−1/4‖2L2({x : b(x)≥2Cλ−2m/(1+m)})

.
∫ 1

cλ−1/(1+m)

|x|−m dx . λ
m−1

m+1

as desired for the first estimate, and

‖(λ−2m/(1+m) + |b(x) + ε|)−1/4|x|
m−1+δ

2 ‖2L2({x : b(x)≥2Cλ−2m/(1+m)})

.
∫ 1

cλ−1/(1+m)

|x|−1+δ dx = O(1).

�

We now proceed to proving (3.9).

Proof of (3.9). Here we consider two subcases.
Case i: (b(x) ≥ 2Cλ−2m/(1+m)) We define

E[φ] = λ2(b(x) + ε)1/2φ2 + (b(x) + ε)−1/2(∂xφ)2

+
1

2
b′(x)(b(x) + ε)−3/2φ∂xφ.
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Since ε ≥ −Cλ−2m/(1+m), it follows that 1� λ2(b(x) + ε)(m+1)/m. Since
(3.11) shows that |b′(x)|2 . b(x)(2m−1)/m, on |x| ≤ 1, we have

1

2
(b′(x))2(b(x) + ε)−5/2 ≤ λ2(b(x) + ε)1/2

provided C is sufficiently large. Thus, by observing that

1

2
b′(x)(b(x) + ε)−3/2φ∂xφ ≥ −

1

4
(b(x) + ε)−1/2(∂xφ)2

− 1

4
(b′(x))2(b(x) + ε)−5/2φ2,

it follows that E[φ] is positive.
We can compute

dE

dx
=

(
1

2
b′′(x)(b(x) + ε)−3/2 − 3

4
(b′(x))2(b(x) + ε)−5/2

)
φ∂xφ(3.12)

+

(
2(b(x) + ε)−1/2∂xφ+

1

2
b′(x)(b(x) + ε)−3/2φ

)
g.

From this and that b′(x)(b(x) + ε)−3/2λ−1 = O(1) on |x| ≤ 1, which is a
consequence of (3.11), it follows that

dE

dx
. λ−1b′′(x)(b(x) + ε)−3/2E + λ−1(b′(x))2(b(x) + ε)−5/2E(3.13)

+ (b(x) + ε)−1/4gE1/2.

Using (3.11), we observe that

λ−1b′′(x)(b(x) + ε)−3/2 + λ−1(b′(x))2(b(x) + ε)−5/2

. (b(x) + ε)−1/2−1/mλ−1

. (b(x) + ε)−1/2λ−(m−1)/(m+1).

So,

dE1/2

dx
. λ−(m−1)/(m+1)(b(x) + ε)−1/2E1/2 + (b(x) + ε)−1/4g.

Upon integrating (if x > 0, we apply the negative of the integral from 1 to x,
and if x < 0, we integrate from −1 to x) and applying Gronwall’s inequality,
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since

λ−(m−1)/(m+1)

∫
(b(x) + ε)−1/2 dx = O(1)

by (3.10), it follows that

E1/2 .
∫

(b(x) + ε)−1/4g dx.

This estimate implies (3.9).
Case ii: (b(x) ≤ 2Cλ−2m/(1+m)) Defining

E[φ] = λ(m+2)/(m+1)φ2 + λm/(m+1)(∂xφ)2,

it follows that

dE

dx
= 2λ(m+2)/(m+1)φ∂xφ+ 2λm/(m+1)∂xφ(g − λ2(b+ ε)φ)

. λ1/(m+1)E + λm/2(m+1)|g|E1/2.

Dividing through by E1/2, integrating, and applying Gronwall’s inequality,
where (3.10) shows that the integral in the resulting exponential is O(1), we
have

E1/2 . ‖λm/2(m+1)g‖L1 ,

which gives (3.9) in this range. �

Case B: (ε ≤ −Cλ−2m/(1+m)) In this remaining case, we will show

λ‖(λ−2/3|ε|(2m−1)/3m + |b(x) + ε|)1/4φ‖L∞x(3.14)

+ ‖(λ−2/3|ε|(2m−1)/3m + |b(x) + ε|)−1/4∂xφ‖L∞x
. ‖(λ−2/3|ε|(2m−1)/3m + |b(x) + ε|)−1/4g‖L1

x
,

which, as above, will imply (3.7) when combined with the lemma:

Lemma 3.3. For m > 1 and ε ≤ −Cλ−2m/(1+m), where C > 0, we have

(3.15) ‖((λ−2/3|ε|(2m−1)/3m + |b(x) + ε|)−1/4‖L2({|x|≤1}) . λ
(m−1)/2(m+1)

and for any δ > 0

(3.16) ‖((λ−2/3|ε|(2m−1)/3m + |b(x) + ε|)−1/4|x|
m−1+δ

2 ‖L2({|x|≤1}) = O(1).
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Proof. Here, as we will below, we consider three separate cases. For conve-
nience, we will abbreviate α = Cλ−2/3|ε|

2m−1

3m .
Case i: (b+ ε ≥ Cλ−2/3|ε|(2m−1)/3m) Using that ε < 0 here, we have

b′(x) & (b(x))
2m−1

2m & (b(x) + ε)
2m−1

2m . Thus,∫
b+ε≥α

dx

(b(x) + ε)1/2
.
∫
b+ε≥α
x>0

b′(x)

(b(x) + ε)
1

2
+ 2m−1

2m

dx

. (α)−
m−1

2m . λ(m−1)/(m+1),

which establishes (3.15). For (3.16), we similarly argue

∫
b+ε≥α

|x|m−1+δ

(b(x) + ε)1/2
dx .

∫
b+ε≥α
x>0

(b′)
m−1+δ

2m−1

(b(x) + ε)1/2
dx

.
∫
b+ε≥α
x>0

b′(x)

(b(x) + ε)1−
δ

2m

dx . |ε|δ/2m.

Case ii: (|b+ ε| ≤ Cλ−2/3|ε|(2m−1)/3m) We note that |b+ ε| ≤ α if and
only if[

1

[1− (|ε| − α)]m
− 1

]1/2m
≤ |x| ≤

[
1

[1− (|ε|+ α)]m
− 1

]1/2m
.

The length of this interval satisfies:[
1

[1− (|ε|+ α)]m
− 1

]1/2m
−
[

1

[1− (|ε| − α)]m
− 1

]1/2m
(3.17)

=
1

2m

∫ 1

[1−(|ε|+α)]m
−1

1

[1−(|ε|−α)]m
−1

x−1+
1

2m dx

. |ε|−1+
1

2m

(
1

[1− (|ε|+ α)]m
− 1

[1− (|ε| − α)]m

)
. |ε|−1+

1

2mα ≈ λ−
2

3 |ε|−
2m−1

6m .

Then∫
|b+ε|≤α

λ1/3|ε|−(2m−1)/6m dx . λ−1/3|ε|−(2m−1)/3m . λ(m−1)/(m+1),

which establishes (3.15).
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Similarly, for (3.16), we have∫
|b+ε|≤α

λ1/3|ε|−(2m−1)/6m|x|m−1+δ dx

. λ1/3|ε|−
2m−1

6m

{[
1

[1− (|ε|+ α)]m
− 1

]m+δ

2m

−
[

1

[1− (|ε| − α)]m
− 1

]m+δ

2m

}
. λ1/3|ε|−(5m−1)/6m|ε|δ/2mα
≈ λ−1/3|ε|−(m+1)/6m|ε|δ/2m . |ε|δ/2m.

Case iii: (b+ ε ≤ −Cλ−2/3|ε|(2m−1)/3m) In this region, we have |ε| >
Cλ−2m/1+m, |b+ ε| ≥ Cλ−2/3|ε|

2m−1

3m , and |x| . |ε|1/2m. Thus, since m ≥ 2,∫
|b(x)+ε|≥Cλ−2/3|ε|

2m−1
3m

dx

|b(x) + ε|1/2
. λ1/3|ε|−

2m−1

6m |ε|1/2m . λ
m−1

m+1 ,

which gives (3.15). For (3.16), by factoring the denominator, we observe∫
b(x)+ε≤−α

|x|m−1+δ

|b(x) + ε|1/2
dx

.
1

|ε|1/4

∫
b(x)+ε≤−α

|x|m−1+δ

(|ε|1/2 − (b(x))1/2)1/2
dx

.
1

|ε|1/4

∫
b(x)+ε≤−α

b′(x)

b(x)1/2(|ε|1/2 − (b(x))1/2)1/2
dx = O(1).

�

Proof of (3.14). We will split the proof into three cases. For the first case,
we argue in a fashion similar to that of Case i of (3.9). And in the second
case, the argument mirrors that of Case ii of (3.9). In the remaining case, the
sign of the potential term b(x) + ε changes, and we use arguments common
to elliptic equations.

Case i: (b+ ε ≥ 2Cλ−2/3|ε|(2m−1)/3m) Here, as in Case A(i), we have
|b′(x)|2 . b(x)(2m−1)/m. Then we see that

|b′(x)|2 . |b(x) + ε|(2m−1)/m + |ε|(2m−1)/m

≤ |b(x) + ε|3
(
|b(x) + ε|−(m+1)/m + |ε|(2m−1)/m|b(x) + ε|−3

)
.

Thus, in this case, we have

(3.18) |b′(x)|2 . λ2|b(x) + ε|3.
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If we define,

E[φ] = λ2(b(x) + ε)1/2φ2 + (b(x) + ε)−1/2(∂xφ)2

+
1

2
b′(x)(b(x) + ε)−3/2φ∂xφ,

it follows from (3.18) that E[φ] is positive provided C is sufficiently large.
We then compute

dE

dx
. λ−1b′′(x)(b(x) + ε)−3/2E + λ−1(b′(x))2(b(x) + ε)−5/2E

+ (b(x) + ε)−1/4gE1/2,

and an application of Gronwall’s inequality will yield (3.14) provided that
we can show

λ−1
∫
b(x)+ε≥2Cλ−2/3|ε|(2m−1)/3m

(
b′′(x)(b(x) + ε)−

3

2 + (b′(x))2(b(x) + ε)−
5

2

)
dx

(3.19)

= O(1).

By symmetry, it suffices to demonstrate this where x > 0.
We first note that

(b′(x))2(b(x) + ε)−5/2 . b′(x)(b(x) + ε)−(3m+1)/2m

+ |ε|
2m−1

2m b′(x)(b(x) + ε)−5/2.

Thus using the change of variables u = b(x) + ε, we can evaluate

λ−1
∫
b(x)+ε≥2Cλ−2/3|ε|(2m−1)/3m

(b′(x))2(b(x) + ε)−5/2 dx

. λ−1(λ−2/3|ε|
2m−1

3m )−
m+1

2m + λ−1|ε|
2m−1

2m (λ−2/3|ε|
2m−1

3m )−3/2 = O(1).

For the other term in (3.19), we argue similarly. Here,

b′′(x) . b′(x)|x|−1 . b′(x)(b(x) + ε)−1/2m

where the last step follows as ε < 0 in this case. Hence

λ−1b′′(x)(b(x) + ε)−3/2 . λ−1b′(x)(b(x) + ε)−(3m+1)/2m,

and the integral of the right side was evaluated in the previous step, which
completes the proof of (3.19).



i
i

“3-Metcalfe” — 2019/10/20 — 23:41 — page 1019 — #29 i
i

i
i

i
i

Localized energy for wave equations 1019

Case ii: (|b+ ε| ≤ Cλ−2/3|ε|(2m−1)/3m). We define

E[φ] = λ2λ−
1

3 |ε|
2m−1

6m φ2 + λ
1

3 |ε|−
2m−1

6m (∂xφ)2

and compute

dE

dx
= 2λ2

(
λ−

1

3 |ε|
2m−1

6m − λ
1

3 |ε|−
2m−1

6m (b(x) + ε)
)
φ∂xφ+ 2λ

1

3 |ε|−
2m−1

6m ∂xφg.

Thus,

(3.20)
d

dx
E1/2 . λ

2

3 |ε|
2m−1

6m E1/2 + λ1/6|ε|−
2m−1

12m g.

An application of Gronwall’s inequality to (3.20) yields (3.14) in the given
range when combined with (3.17).

Case iii: (b+ ε ≤ −Cλ−2/3|ε|(2m−1)/3m) We define x± so that [x−, x+] =
{x : b+ ε ≤ −α}. We then multiply the equation (3.6) by−λφ and integrate
over [x−, x+] to obtain∫ x+

x−

λ(∂xφ)2 + λ3|b(x) + ε|φ2 dx =

∫ x+

x−

−λφg dx+ λφ∂xφ
∣∣∣x+

x−
.

But by the previous case, we have

(3.21)
∣∣∣λφ∂xφ∣∣∣x+

x−

∣∣∣ . ‖(λ−2/3|ε|(2m−1)/3m + |b(x) + ε|)−1/4g‖2L1
x
.

Thus, we have shown∫ x+

x−

λ(∂xφ)2 + λ3|b(x) + ε|φ2 dx(3.22)

. λ‖(λ−2/3|ε|(2m−1)/3m + |b(x) + ε|)1/4φ‖L∞
× ‖(λ−2/3|ε|(2m−1)/3m + |b(x) + ε|)−1/4g‖L1

x

+ ‖(λ−2/3|ε|(2m−1)/3m + |b(x) + ε|)−1/4g‖2L1
x
.

By the Fundamental Theorem of Calculus and (3.21), we have

λ2(λ−2/3|ε|(2m−1)/3m + |b(x) + ε|)1/2φ2(x)

. ‖(λ−2/3|ε|(2m−1)/3m + |b(x) + ε|)−1/4g‖2L1
x

+

∫ x+

x−

λ2(λ−2/3|ε|(2m−1)/3m + |b(x) + ε|)−1/2|b′(x)|φ2

+ 2λ2(λ−2/3|ε|(2m−1)/3m + |b(x) + ε|)1/2|φ∂xφ| dx.
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Using (3.18), it follows that this is

. ‖(λ−2/3|ε|(2m−1)/3m + |b(x) + ε|)−1/4g‖2L1
x

+

∫ x+

x−

λ3|b(x) + ε|φ2 + λ(∂xφ)2 dx.

And thus, combined with (3.22), this completes the proof of (3.14). �

4. Sharpness via quasimodes — Proof of Theorem 1.3

The notation here is much simpler if we work with complex valued solutions
to the wave equation. Upon constructing a complex valued solution that
saturates the estimate, it immediately follows that either the real part or
the imaginary part of the constructed solution is a real valued solution that
also saturates the estimate. Moreover, we shall work within the φ = π/2
plane, which is a restriction that is preserved by our equation.

The proof is based on the following quasimode that was constructed in
[8].

Lemma 4.1 ([8]). Given λ� 1 and α, γ ∈ R, there exists a function ũ ∈
C3(R) so that supp ũ ⊆ [−2λ−

1

m+1 , 2λ−
1

m+1 ], ‖ũ‖2L2 ≈ λ
m−1

m+1 , and

−λ−2∂2xũ =

(
E +

x2m

m

)
ũ−R,

where E = (α+ iγ)λ−
2m

m+1 and ‖R‖L2 ≤ Cλ−
2m

m+1 ‖ũ‖L2.

We shall let ψ solve{
2gψ = 0,

ψ(0, x, θ, φ) = eiλθa(x)−1ũ(x), ∂tψ(0, x, θ, φ) = iτeiλθa(x)−1ũ(x).

It will suffice to prove∫ T

0
‖β(|x|)a(x)−1|6∇0ψ|‖2L2 dt & ‖〈Dω〉

m−1

2(m+1)a(x)−1|6∇0ψ0|‖2L2(4.1)

+ ‖〈Dω〉
m−1

2(m+1)ψ1‖2L2 ,

as integration by parts and Lemma 4.1 give that

‖〈Dω〉
m−1

2(m+1)∂xψ0‖L2 . ‖〈Dω〉
m−1

2(m+1)a(x)−1|6∇0ψ0|‖L2 .
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To show that ψ satisfies (4.1), we construct the approximate solution

v = eiτteiλθa(x)−1ũ(x).

Here τ satisfies τ2 = λ2(1 + E) with =τ < 0. We compute that

2gv = a(x)−1eiτteiλθ
[(
λ2 − λ2x

2m

m
− λ2a(x)−2 − a′′(x)

a(x)

)
ũ+ λ2R

]
with (v, ∂tv)|t=0 = (ψ, ∂tψ)|t=0. On the support of ũ, we have a(x)−2 =

1− x2m

m +O(λ−
4m

m+1 ) and λ−2a′′(x)/a(x) = O(λ−
4m

m+1 ). Thus, 2gv = R̃ where

R̃ = λ2a(x)−1eiτteiλθ(R+O(λ−
4m

m+1 )ũ), and in particular

(4.2) ‖R̃‖L2 . e|=τ |tλ
2

m+1 ‖ũ‖L2 .

For T = ελ
m−1

m+1 where ε > 0 will be chosen later but is independent of λ,
we compute

‖∂θv‖2L2L2 =

∫ T

0
‖eiτt∂θψ(0, · )‖2L2 dt

=

∫ T

0
e2|=τ |t‖∂θψ(0, · )‖2L2 dt = T ·B(2T )‖∂θψ(0, · )‖2L2

where B(T ) = eT |=τ|−1
T |=τ | . Hence

(4.3) ‖∂θv‖2L2L2 = εB(2T )λ
m−1

m+1 ‖∂θψ(0, · )‖2L2 .

We now estimate the error w(t, x, θ) = ψ(t, x, θ)− v(t, x, θ), which solves

2gw = R̃, (w, ∂tw)|t=0 = (0, 0).

Thus, by (1.2),

‖(a(x))−1∂θw‖L∞L2 ≤
∫ T

0
‖R̃‖L2 ds

.
∫ T

0
e|=τ |tλ−

m−1

m+1 ‖∂θψ(0, · )‖L2 ds

= T ·B(T )λ−
m−1

m+1 ‖∂θψ(0, · )‖L2 .
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And hence

‖(a(x))−1∂θw‖L2L2 . B(T )T 3/2λ−
m−1

m+1 ‖∂θψ(0, · )‖L2(4.4)

= ε3/2B(T )λ
m−1

2(m+1) ‖∂θψ(0, · )‖L2 .

Using (4.3), (4.4), and that v is supported on [−1/2, 1/2] if λ is suffi-
ciently large, it follows

‖β(|x|)∂θψ‖2L2L2 ≥
1

2
‖β(|x|)∂θv‖2L2L2 − ‖β(|x|)∂θw‖2L2L2

≥ 1

2
‖∂θv‖2L2L2 − ‖a(x)−1∂θw‖2L2L2

≥ ε
(

1

2
B(2T )− C2ε2(B(T ))2

)
λ
m−1

m+1 ‖∂θψ(0, · )‖2L2 .

If we choose ε = 1
2C , we can compute

1

2
B(2T )− C2ε2(B(T ))2 =

1

2

∞∑
k=2

(k − 2)2k−2 + 1

(k − 1)!
(|=τ |T )k−2 ≥ 1

2
,

which completes the proof.
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