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Non-vanishing theorem for lc pairs

admitting a Calabi–Yau pair

Kenta Hashizume

We prove the non-vanishing conjecture for lc pairs (X,∆) when X
is of Calabi–Yau type.

1. Introduction

Throughout this paper we will work over the complex number field. In this
paper we deal with varieties of Calabi–Yau type.

Definition 1.1. Let X be a normal projective variety. Then, X is of
Calabi–Yau type if there is an R-divisor C ≥ 0 such that (X,C) is lc and
KX + C ≡ 0.

We also recall statement of the non-vanishing conjecture, which is one
of the most important open problems in the birational geometry.

Conjecture 1.2 (Non-vanishing). Let (X,∆) be a projective lc pair such
that KX + ∆ is pseudo-effective. Then, there exists an R-divisor E ≥ 0 such
that KX + ∆ ∼R E.

It is known by Birkar [2] that Conjecture 1.2 implies the existence of log
minimal models.

In this paper, we study the non-vanishing conjecture for lc pairs whose
underlying variety is of Calabi–Yau type. The following theorem is the main
result of this paper.

Theorem 1.3. Let X be a normal projective variety. Suppose that X is of
Calabi–Yau type.

Then, for any lc pair (X,∆), Conjecture 1.2 holds.

We briefly introduce known results on Conjecture 1.2. Currently, Con-
jecture 1.2 is proved for lc pairs of dimension ≤ 3, but Conjecture 1.2 is
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only partially solved in higher dimensions. For example, Conjecture 1.2 for
lc pairs (X,∆) of dimX ≥ 4 is known when

• (X,∆) is klt and ∆ is big ([4]),

• (X,∆) is klt and X is rationally connected ([10]), or

• KX ≡ 0 ([9], [5], [14], see also [1] and [18]).

Moreover, the arguments in [10] and [6] show that Conjecture 1.2 holds for
any lc pair (X,∆) such that dimX = 4 and X is uniruled, though it is not
written explicitly in their papers. Lazić and Peternell proved Conjecture
1.2 for terminal 4-folds under the assumption that χ(X,OX) 6= 0 and KX

has a singular metric with algebraic singularities and semipositive curvature
current ([17, Theorem B]).

We note that the case KX ≡ 0 mentioned above is a special case of
Theorem 1.3. Indeed, when KX ≡ 0 in Theorem 1.3, the statement follows
from [5, Corollary 3.3] or the abundance theorem for numerically trivial
lc pairs, which is proved by Gongyo [9] (see also [14]). From a viewpoint
of Conjecture 1.2, Theorem 1.3 can be regarded as a generalization of the
result of [9].

The contents of this paper are as follows: In Section 2, we collect some
notations, definitions and two important theorems. In Section 3, we prove
Theorem 1.3.

2. Preliminaries

In this section, we collect notations, definitions and two important theorems.

Singularities of pairs. A pair (X,∆) consists of a normal variety X and
a boundary R-divisor ∆, that is, an R-divisor whose coefficients belong to
[0, 1], on X such that KX + ∆ is R-Cartier.

Let (X,∆) be a pair. For any prime divisor D over X, a(D,X,∆) denotes
the discrepancy of D with respect to (X,∆). In this paper, we use the
definitions of Kawamata log terminal (klt, for short) pair, log canonical (lc,
for short) pair and divisorially log terminal (dlt, for short) pair as in [16]
or [4].

Next, we define log birational models, log minimal models and Mori fiber
spaces. Our definition of log minimal models and Mori fiber spaces are non-
standard because it is different from the traditional one (see, for example,
[16]) and also slightly different from [3, Definition 2.1 and Definition 2.2].
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Definition 2.1 (Log birational model). Let π : X → Z be a projective
morphism from a normal variety to a variety and let (X,∆) be an lc pair.
Let π′ : X ′ → Z be a projective morphism from a normal variety to Z and
let φ : X 99K X ′ be a birational map over Z. Let E be the reduced φ−1-
exceptional divisor on X ′, that is, E =

∑
Ej where Ej are φ−1-exceptional

prime divisors on X ′. Then, the pair (X ′,∆′ = φ∗∆ + E) is called a log
birational model of (X,∆) over Z.

Definition 2.2 (Log minimal model and Mori fiber space). Nota-
tions as in Definition 2.1, a log birational model (X ′,∆′) of (X,∆) over Z
is a weak log canonical model (weak lc model, for short) if

• KX′ + ∆′ is nef over Z, and

• for any prime divisor D on X which is exceptional over X ′, we have

a(D,X,∆) ≤ a(D,X ′,∆′).

A weak lc model (X ′,∆′) of (X,∆) over Z is a log minimal model if

• (X ′,∆′) is Q-factorial, and

• the above inequality on discrepancies is strict.

A log minimal model (X ′,∆′) of (X,∆) over Z is called a good minimal
model if KX′ + ∆′ is semi-ample over Z.

On the other hand, a log birational model (X ′,∆′) of (X,∆) over Z
is called a Mori fiber space if X ′ is Q-factorial and there is a contraction
X ′ →W over Z with dimW < dimX ′ such that

• the relative Picard number ρ(X ′/W ) is one and −(KX′ + ∆′) is ample
over W , and

• for any prime divisor D over X, we have

a(D,X,∆) ≤ a(D,X ′,∆′)

and strict inequality holds if D is a divisor on X and exceptional
over X ′.

As we mentioned before, our definition of log minimal model and Mori
fiber space is slightly different from that of [3]. The difference is that we do
not assume those models to be dlt. But this difference is not important. More
specifically, for any lc pair, the existence of log minimal models (resp. Mori
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fiber spaces) as in Definition 2.2 is equivalent to the existence of log minimal
models (resp. Mori fiber spaces) which are dlt. Indeed, if an lc pair (X,∆) has
a log minimal model (X ′,∆′) (resp. a Mori fiber space) as in Definition 2.2,
we can construct a log minimal model (resp. a Mori fiber space) of (X,∆)
which is dlt (see [12, Remark 2.4]). In our definition, any weak lc model
(X ′,∆′) of a Q-factorial lc pair (X,∆) constructed with the (KX + ∆)-
MMP is a log minimal model of (X,∆) even though (X ′,∆′) may not be
dlt.

Next, we define log smooth models.

Definition 2.3 (Log smooth model). Let (X,∆) be an lc pair and let
f : Y → X be a log resolution of (X,Supp∆). Let Γ be a boundary R-divisor
on Y such that Γ is a simple normal crossing divisor. Then, the pair (Y,Γ)
is a log smooth model of (X,∆) if we can write

KY + Γ = f∗(KX + ∆) + F

with an effective f -exceptional divisor F such that every f -exceptional prime
divisor E satisfying a(E,X,∆) > −1 is a component of F and Γ− xΓy.

By definition, Supp Γ = Supp f−1∗ ∆ ∪ Ex (f) and the image of any lc
center of (Y,Γ) on X is an lc center of (X,∆). Any f -exceptional prime
divisor E is a component of F if and only if a(E,X,∆) > −1.

Finally, we recall two important theorems. We freely use these theorems
without any mention.

Theorem 2.4 (Dlt blow-up, [15, Theorem 3.1], [7, Theorem 10.4]).
Let X be a normal quasi-projective variety of dimension n and let ∆ be an
R-divisor such that (X,∆) is lc. Then, there exists a projective birational
morphism f : Y → X from a normal quasi-projective variety Y such that

(i) Y is Q-factorial, and

(ii) if we set

Γ = f−1∗ ∆ +
∑

E:f -exceptional

E,

then the pair (Y,Γ) is dlt and KY + Γ = f∗(KX + ∆).

In the proof of Theorem 1.3, we use a special kind of dlt blow-up (see
[12, Corollary 2.11]).
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Theorem 2.5 ([3, Theorem 4.1]). Let (X,∆) be a Q-factorial lc pair
such that (X, 0) is klt, and let π : X → Z be a projective morphism of nor-
mal quasi-projective varieties. If there exists a log minimal model of (X,∆)
over Z, then any (KX + ∆)-MMP over Z with scaling of an ample divisor
terminates.

3. Proof of Theorem 1.3

In this section, we prove Theorem 1.3.

Lemma 3.1. Let (X,B) be a projective lc pair and let π : (X,B)→ Z be a
contraction to a normal projective variety Z such that we have KX +B ∼R
π∗D for some D on Z. Then, we can construct the following diagram

(X,B) //

π

��

(X0, B0)

π0

��
Z Z0

h
oo

such that

(1) the morphisms π0 and h are contractions and h is birational,

(2) (X0, B0) is a log birational model of (X,B) and it is a projective Q-
factorial lc pair such that (X0, 0) is klt,

(3) KX0
+B0 ∼R π

∗
0h
∗D,

(4) B0 = B′0 +B′′0 with B′0 ≥ 0 and B′′0 ≥ 0 such that B′′0 ∼R, Z0
0 and any

lc center of (X0, B
′
0) dominates Z0, and

(5) Z0 is a projective Q-factorial variety such that (Z0, 0) is klt.

Proof. The idea of the proof can be found in [12, Proof of Lemma 4.3]. We
prove Lemma 3.1 in two steps.

Step 1. In this step we construct a diagram

(X,B)

π

��

// (X,B)

π
��

Z Z
h

oo
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such that (X,B), π and h satisfy (1), (2), (3) and (4) of the lemma.
First, take a dlt blow-up (W,Ψ)→ (X,B) as in [12, Corollary 2.11].

We can decompose Ψ = Ψ′ + Ψ′′ with Ψ′ ≥ 0 and Ψ′′ ≥ 0 such that Ψ′′ is
vertical over Z and any lc center of (W,Ψ′) dominates Z. Moreover, we
have KW + Ψ′ + Ψ′′ ∼R, Z 0. Since (W,Ψ′) is Q-factorial and dlt, by [13,
Theorem 1.1], we can run the (KW + Ψ′)-MMP over Z with scaling and

get a good minimal model (W,Ψ′) 99K (X,B
′
) over Z. Let B and B

′′
be

the birational transform of Ψ and Ψ′′ on X, respectively. Then, we have
B = B

′
+B

′′
. Let π : X → Z be the contraction over Z induced by KX +B

′
,

and let h : Z → Z be the induced morphism.
We check that the pair (X,B = B

′
+B

′′
) and the morphisms π : X → Z

and h : Z → Z satisfy the conditions (1), (2), (3) and (4) of the lemma. By
construction, π and h satisfy condition (1). We also haveKX +B ∼R π

∗h
∗
D,

which is condition (3). Moreover, since (X,B) is lc and since KX +B and
KX +B are both R-linearly equivalent to the pullback of D, we see that

(X,B) is lc. Since (W, 0) is Q-factorial klt and (W,Ψ′) 99K (X,B
′
) is a se-

quence of steps of the (KW + Ψ′)-MMP, (X, 0) is Q-factorial klt. Therefore,

(X,B) satisfies condition (2). Because we have KX +B
′
+B

′′ ∼R, Z 0 and

KX +B
′ ∼R, Z 0, we obtain B

′′ ∼R, Z 0. Finally, we check that any lc cen-

ter of (X,B
′
) dominates Z. Pick any prime divisor P over X such that

a(P,X,B
′
) = −1. Then a(P,W,Ψ′) = −1, and thus P dominates Z. Since

h : Z → Z is birational, we see that P dominates Z. Therefore, any lc center
of (X,B

′
) dominates Z. In this way, we see that the pair (X,B = B

′
+B

′′
)

satisfies condition (4). So we complete this step.

Step 2. We put D = h
∗
D. By construction, we have KX +B ∼R π

∗D. In
this step, we construct a diagram

(X,B)

π

��

// (X,B)

π
��

// (X0, B0)

π0

��
Z Z

h

oo Z0
h0

oo

such that (X0, B0), π0 and h := h ◦ h0 satisfy all the conditions of the lemma.
By construction of π : (X,B)→ Z, there exists an R-divisor T ≥ 0 on Z

such that B
′′ ∼R π

∗T . By [8, Corollary 3.2], there exists a klt pair on Z. Let
h0 : Z0 → Z be a dlt blow-up of the klt pair, which is a small birational mor-
phism. By construction, Z0 is Q-factorial. Let ϕ : W → X be a log resolution
of (X, SuppB

′
) such that the induced map πW : W 99K Z0 is a morphism.
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We pick a boundary divisor Ψ′
W

so that (W,Ψ′
W

) is a log smooth model of

(X,B
′
). Then, we have

KW + Ψ′
W

= ϕ∗(KX +B
′
) + EW ∼R ϕ

∗π∗(D − T ) + EW

= (h0 ◦ πW )∗(D − T ) + EW

for a ϕ-exceptional divisor EW ≥ 0. By construction of Ψ′
W

, any ϕ-

exceptional prime divisor Ei on W is a component of EW if and only if

a(Ei, X,B
′
) > −1.

We run the (KW + Ψ′
W

)-MMP over Z0 with scaling of an ample divisor.
By the argument of very exceptional divisors (see [3, Theorem 3.4]), EW
is contracted after finitely many steps. Thus, we get a model (W,Ψ′

W
) 99K

(X0, B
′
0) such that KX0

+B′0 ∼R, Z0
0. Let π0 : X0 → Z0 be the induced mor-

phism. We have the following diagram.

(X,B
′
)

π
��

(W,Ψ′
W

)
ϕoo

πW

%%

// (X0, B
′
0)

π0

��
Z Z0

h0

oo

Moreover, we have KX0
+B′0 ∼R π

∗
0h
∗
0(D − T ). Let B′′0 be the birational

transform of ϕ∗B
′′

on X0, and we put B0 = B′0 +B′′0 . Recall that the divisor

T on Z satisfies B
′′ ∼R π

∗T . Hence we have B′′0 ∼R π
∗
0h
∗
0T .

From now on, we check that the pair (X0, B0 = B′0 +B′′0 ) and the mor-
phisms π0 : X0 → Z0 and h ◦ h0 : Z0 → Z satisfy all the conditions of the
lemma. By construction, π0 and h ◦ h0 satisfy condition (1), and Z0 satisfies
condition (5). Since B′′0 ∼R π

∗
0h
∗
0T , we have

KX0
+B0 = KX0

+B′0 +B′′0 ∼R π
∗
0h
∗
0(D − T ) + π∗0h

∗
0T = π∗0h

∗
0D.

Therefore, we see that KX0
+B0 satisfies condition (3). Next, we check that

(X0, B0) satisfies condition (2). Note that (X0, B0) is lc since (X,B) is lc
and KX +B and KX0

+B0 are both R-linearly equivalent to the pullback
of D. Let Ei be a ϕ-exceptional prime divisor on W such that a(Ei, X,B) >
−1. We show that Ei is contracted by the map W 99K X0. Since we have
a(Ei, X,B

′
) ≥ a(Ei, X,B) > −1, we see that Ei is a component of EW .

Then, Ei is contracted by W 99K X0 since EW is contracted by W 99K X0,
and therefore (X0, B0) is a log birational model of (X,B). Since W is smooth
and (W,Ψ′

W
) 99K (X0, B

′
0) is a sequence of steps of the (KW + Ψ′

W
)-MMP,
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(X0, 0) is Q-factorial klt. Therefore, we see that (X0, B0) satisfies condition
(2). Finally we check that the pair (X0, B0 = B′0 +B′′0 ) satisfies condition
(4). Pick any prime divisor P over X0 such that a(P,X0, B

′
0) = −1. Then, we

have a(P,W,Ψ′
W

) = −1, and hence a(P,X,B
′
) = −1 because (W,Ψ′

W
) is a

log smooth model of (X,B
′
). Because the pair (X,B

′
+B

′′
) satisfies condi-

tion (4), P dominates Z. Since h0 : Z0 → Z is birational, P dominates Z0

and hence any lc center of (X0, B
′
0) dominates Z0. Since we have B′′0 ∼R, Z0

0,
the pair (X0, B0 = B′0 +B′′0 ) satisfies condition (4). So we are done. �

Remark 3.2. By construction of the diagram, we see that the divisor B′′0
is reduced, i.e., all coefficients of B′′0 are one (see [12, Lemma 4.3]). But we
do not use this fact in this paper.

Lemma 3.3. Let π : (X,B)→ Z be a contraction such that

• (X,B) is a projective Q-factorial lc pair such that (X, 0) is klt,

• KX +B ∼R π
∗D for some D on Z,

• B = B′ +B′′ with B′ ≥ 0 and B′′ ≥ 0 such that B′′ ∼R, Z 0 and any lc
center of (X,B′) dominates Z, and

• Z is a projective Q-factorial variety such that (Z, 0) is klt.

Let T be an effective R-divisor on Z such that B′′ ∼R π
∗T . If D is pseudo-

effective but D − eT is not pseudo-effective for any e > 0, then we can con-
struct the following diagram

(X,B) //

π

��

(X̃, B̃)

π̃
��

Z // Z̃ // Z∨

where B̃ is the birational transform of B on X̃, such that

• (X̃, B̃) is projective Q-factorial lc, (X̃, 0) is klt, Z̃ is projective and
Q-factorial, (Z̃, 0) is klt, and Z∨ is normal and projective,

• the maps X 99K X̃ and Z 99K Z̃ are birational contractions,

• the morphism Z̃ → Z∨ is a contraction such that ρ(Z̃/Z∨) = 1 and
dimZ∨ < dim Z̃, and

• KX̃ + B̃ ∼R π̃
∗D̃ and D̃ ∼R, Z∨ 0, where D̃ is the birational transform

of D on Z̃.
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Proof. We can construct the desired diagram by the same argument as in
[12, Step 1 and 2 in the proof of Proposition 5.3]. We write down the details
for the reader’s convenience.

Let {en}n≥1 be a strictly decreasing sequence of positive real numbers
such that en < 1 for any n and limn→∞en = 0. By [8, Corollary 3.2], for any
n ≥ 1, we can find a boundary R-divisor Θn such that (Z,Θn) is klt and

KX +B − enB′′ ∼R π
∗(D − enT ) ∼R π

∗(KZ + Θn).

Since KZ + Θn ∼R D − enT is not pseudo-effective for any n ≥ 1, we can
run the (KZ + Θn)-MMP with scaling and obtain a Mori fiber space Z̃n →
Z∨n , and let Z 99K Z̃n be the corresponding birational contraction. Let D̃n

and T̃n be the birational transforms of D and T on Z̃n, respectively. Since
KZ + Θn ∼R D − enT and since D is pseudo-effective, D̃n − enT̃n is anti-
ample over Z∨n and D̃n is nef over Z∨n . Therefore, T̃n is ample over Z∨n .
Furthermore, by applying the R-boundary divisor version of [12, Lemma
3.6], we have the following diagram

(X,B − enB′′) //

π

��

(X̃n, B̃n − enB̃′′n)

πn

��

Z // Z̃n // Z∨n

such that the upper horizontal birational map is a sequence of steps of the
(KX +B − enB′′)-MMP and

KX̃n
+ B̃n − enB̃′′n ∼R π

∗
n(D̃n − enT̃n) and B̃′′n ∼R π

∗
nT̃n,

where B̃n and B̃′′n are the birational transforms of B and B′′ on X̃n, respec-
tively. Now apply the ACC for log canonical thresholds ([11, Theorem 1.1])
to X̃n and apply the ACC for numerically trivial pairs ([11, Theorem 1.5])
to the general fiber of X̃n → Z∨n . We see that for some n the pair (X̃n, B̃n)
is lc and KX̃n

+ B̃n ∼R, Z∨
n

0 ([12, Step 2 in the proof of Proposition 5.3]).

Moreover, we have D̃n ∼R, Z∨
n

0 because we have KX̃n
+ B̃n ∼R π

∗
nD̃n. For

this n, we put Z̃ = Z̃n, Z∨ = Z∨n and X̃ = X̃n. Then,

(X,B) //

π

��

(X̃, B̃)

��

Z // Z̃ // Z∨
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is the desired diagram. �

Proof of Theorem 1.3. By hypothesis, there is an R-divisor C onX such that
(X,C) is lc andKX + C ≡ 0. Then, we haveKX + C ∼R 0 by the abundance
theorem for numerically trivial lc pairs. Thus, we may assume C 6= 0, and
Theorem 1.3 for (X,∆) is equivalent to Theorem 1.3 for (X, t∆ + (1− t)C)
for any 0 < t < 1 because KX + t∆ + (1− t)C ∼R t(KX + ∆). Therefore,
throughout the proof we may freely replace (X,∆) with (X, t∆ + (1− t)C).

By taking a dlt blow-up of (X,C) and by replacing (X,∆) with (X, t∆ +
(1− t)C) for some 0 < t� 1, we can assume X is Q-factorial and (X, 0) is
klt.

We prove Theorem 1.3 by induction on the dimension of X.

Step 1. Let τ(X, 0; ∆) be the pseudo-effective threshold of ∆ with respect
to (X, 0), that is,

τ(X, 0; ∆) = inf{τ ∈ R≥0 | KX + τ∆ is pseudo-effective}.

Since C 6= 0, the divisor KX is not pseudo-effective, and thus we have
τ(X, 0; ∆) > 0. By replacing (X,∆) with (X, τ(X, 0; ∆)∆), we can assume
τ(X, 0; ∆) = 1. We apply [10, Lemma 3.1] in lc setting. By the same argu-
ment as in [10, Proof of Lemma 3.1] (see also the proof of Lemma 3.3), the
assertion of [10, Lemma 3.1] also holds when the given pair is Q-factorial
lc and its underlying variety is klt. Therefore, we can construct a birational
contraction φ : X 99K X ′ and a contraction X ′ → Z ′ such that dimZ ′ <
dimX ′, (X ′, φ∗∆) is lc and KX′ + φ∗∆ ∼R, Z′ 0. We note that the assump-
tion τ(X, 0; ∆) = 1 is only used for this argument. So we do not use the
assumption in the rest of the proof. Since we have KX + C ∼R 0, the pair
(X ′, φ∗C) is lc. Take a log resolution ψ : Y → X of (X,Supp(∆ + C)) so that
the induced map f : Y 99K X ′ is a morphism, and let (Y,∆Y ) and (Y,CY )
be log smooth models of (X,∆) and (X,C), respectively.

Since KX + C ∼R 0, by the negativity lemma, we have ψ∗(KX + C) =
f∗(KX′ + φ∗C). By construction of log smooth models, we see that KY +
CY − f∗(KX′ + φ∗C) is effective, and it is f -exceptional. So we can run
the (KY + CY )-MMP over X ′ with scaling of an ample divisor, and by [3,
Theorem 3.5], after finitely many steps the f -exceptional divisor is con-
tracted. Hence, we get a model f ′ : (Y ′, CY ′)→ X ′ such that KY ′ + CY ′ =
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f ′∗(KX′ + φ∗C) ∼R 0. Now we have the following diagram.

Y //

ψ
��

f

  

Y ′

f ′

��
X

φ
// X ′ // Z ′

By construction, the pair (Y ′, CY ′) is lc and Y 99K Y ′ is a sequence of steps
of the (KY + t∆Y + (1− t)CY )-MMP for any 0 < t� 1. Fix a sufficiently
small t > 0 and set ΓY = t∆Y + (1− t)CY . Since (Y,∆Y ) and (Y,CY ) are log
smooth and lc, (Y,ΓY ) is Q-factorial dlt. Let ΓY ′ be the birational transform
of ΓY on Y ′. Then, the pair (Y ′,ΓY ′) is Q-factorial dlt, and we can write

KY ′ + ΓY ′ = f ′∗
(
KX′ + tφ∗∆ + (1− t)φ∗C

)
+ F

with an f ′-exceptional divisor F . Note that F may not be effective. Run
the (KY ′ + ΓY ′)-MMP over X ′ with scaling of an ample divisor. By [3,
Theorem 3.5], we reach a model f ′′ : (Y ′′,ΓY ′′)→ X ′ such that

KY ′′ + ΓY ′′ = f ′′∗
(
KX′ + tφ∗∆ + (1− t)φ∗C

)
+ FY ′′

with FY ′′ ≤ 0. Now we recall that (X ′, φ∗∆) and (X ′, φ∗C) are lc. Combin-
ing it with the above equation, we see that (Y ′′,ΓY ′′ − FY ′′) is also lc. By
construction, we also have KY ′′ + ΓY ′′ − FY ′′ ∼R, Z′ 0. Since −FY ′′ ≥ 0 and
(Y ′′, 0) is Q-factorial klt, by [13, Theorem 1.1], we can run the (KY ′′ + ΓY ′′)-
MMP over Z ′ and obtain a good minimal model (Y ′′,ΓY ′′) 99K (Y ′′′,ΓY ′′′)
over Z ′. Let π : Y ′′′ → Z be the contraction over Z ′ induced by KY ′′′ + ΓY ′′′ ,
and let CY ′′′ be the birational transform of CY on Y ′′′. Note that dimZ =
dimZ ′ because the restriction of KY ′′′ + ΓY ′′′ to any general fiber of Y ′′′ →
Z ′ is trivial. We also have KY ′′′ + ΓY ′′′ ∼R, Z 0 and KY ′′′ + CY ′′′ ∼R 0. Fur-
thermore, by construction, the birational map Y 99K Y ′′′ is a sequence of
steps of the (KY + ΓY )-MMP. If KY ′′′ + ΓY ′′′ is R-linearly equivalent to
an effective divisor, then KY + ΓY is R-linearly equivalent to an effective
divisor, and so is KX + t∆ + (1− t)C. Since KY ′′′ + CY ′′′ ∼R 0, the pair
(Y ′′′,ΓY ′′′) satisfies the hypothesis of Theorem 1.3. So we can replace (X,∆)
and (X,C) by (Y ′′′,ΓY ′′′) and (Y ′′′, CY ′′′).

In this way, to prove Theorem 1.3, we can assume that there exists a
contraction π : X → Z to a normal projective variety Z such that dimZ <
dimX and KX + ∆ ∼R, Z 0.
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Step 2. We apply Lemma 3.1 to (X,C)→ Z. We can construct a diagram

(X,C) //

π

��

(X0, C0)

π0

��
Z Z0

h
oo

such that

• π0 and h are contractions and h is birational,

• (X0, C0) is a log birational model of (X,C) and it is a projective Q-
factorial lc pair such that (X0, 0) is klt,

• KX0
+ C0 ∼R 0,

• C0 = C ′0 + C ′′0 with C ′0 ≥ 0 and C ′′0 ≥ 0 such that C ′′0 ∼R, Z0
0 and any

lc center of (X0, C
′
0) dominates Z0, and

• Z0 is a projective Q-factorial variety and (Z0, 0) is klt.

Let ϕ : W → X and ϕ0 : W → X0 be a common resolution. We define the
divisor Ψ on W by equation KW + Ψ = ϕ∗(KX + ∆), and set ∆0 = ϕ0∗Ψ.
Note that ∆0 may not be effective but t∆0 + (1− t)C0 is effective for any
0 < t� 1 because (X0, C0) is a log birational model of (X,C). By construc-
tion, we have KX0

+ ∆0 ∼R, Z0
0 and any lc center of (X0, t∆0 + (1− t)C0)

is an lc center of (X0, C0). The pair (X0, t∆0 + (1− t)C0) is lc and it satisfies
the hypothesis of Theorem 1.3 since KX0

+ C0 ∼R 0. Moreover, it is suffi-
cient to prove Theorem 1.3 for (X0, t∆0 + (1− t)C0). Therefore, we can re-
place (X,∆)→ Z and (X,C) by (X0, t∆0 + (1− t)C0)→ Z0 and (X0, C0),
respectively.

In this way, we can assume that

(i) Z is a projective Q-factorial variety and (Z, 0) is klt,

(ii) C = C ′ + C ′′ for some C ′ ≥ 0 and C ′′ ≥ 0 such that C ′′ ∼R, Z 0 and
any lc center of (X,C ′) dominates Z, and

(iii) any lc center of (X,∆) is an lc center of (X,C).

Step 3. In this step we prove Theorem 1.3 for (X,∆) when C ′′ = 0. In this
case we have C = C ′.

By conditions (ii) and (iii) in Step 2, all lc centers of (X,∆) and those
of (X,C) dominate Z. Therefore, by [8, Corollary 3.2], there exists an R-
divisor Θ (resp. G) on Z such that (Z,Θ) is klt (resp. (Z,G) is klt) and
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KX + ∆ ∼R π
∗(KZ + Θ) (resp. KX + C ∼R π

∗(KZ +G)). Then, there is an
R-divisor E ≥ 0 such that KZ + Θ ∼R E by the induction hypothesis. Thus,
we see that KX + ∆ ∼R π

∗E and so we are done.

Step 4. By Step 3, we can assume that C ′′ 6= 0. Then, the divisor KX +
C ′ ∼R −C ′′ is not pseudo-effective, and hence(

KX + t∆ + (1− t)C
)
− (1− t)C ′′ = t(KX + ∆) + (1− t)(KX + C ′)

is not pseudo-effective for any 0 < t� 1. We fix a sufficiently small t > 0
and set ∆(t) = t∆ + (1− t)C, C ′(t) = C ′ + tC ′′ and C ′′(t) = (1− t)C ′′. Then

C ′(t) + C ′′(t) = C. Since (X,C) is lc, any lc center of (X,C ′(t)) is an lc center

of (X,C ′), and thus any lc center of (X,C ′(t)) dominates Z. Moreover, by

construction of ∆(t), any lc center of (X,∆(t)) is an lc center of (X,C).
Therefore, we see that ∆(t), C

′
(t) and C ′′(t) satisfy the conditions (ii) and (iii) in

Step 2 in this proof. We also have ∆(t) − C ′′(t) = t∆ + (1− t)C ′, and therefore

any lc center of (X,∆(t) − C ′′(t)) is an lc center of (X,C ′). So any lc center of

(X,∆(t) − C ′′(t)) dominates Z. Since we have KX + ∆(t) − C ′′(t) = KX + t∆ +

(1− t)C − (1− t)C ′′, the divisor KX + ∆(t) − C ′′(t) is not pseudo-effective. In

this way, we can replace ∆, C ′ and C ′′ by ∆(t), C
′
(t) and C ′′(t) respectively, and

we may assume that ∆− C ′′ ≥ 0, any lc center of (X,∆− C ′′) dominates Z
and KX + ∆− C ′′ is not pseudo-effective.

We put τ = τ(X,∆− C ′′;C ′′), where the right hand side is the pseudo-
effective threshold of C ′′ with respect to (X,∆− C ′′). We have 0 < τ ≤ 1 by

construction. Put ∆ = ∆− C ′′ + τC ′′, C
′
= C ′ + (1− τ)C ′′ and C

′′
= τC ′′.

Then ∆− C ′′ = ∆− C ′′ and C
′
+ C

′′
= C. In particular, ∆− C ′′ ≥ 0 and

any lc center of (X,∆− C ′′) dominates Z. Note that any lc center of (X,C
′
)

is an lc center of (X,C ′) since τ > 0 and (X,C) is lc, and hence any lc

center of (X,C
′
) dominates Z. Note also that any lc center of (X,∆) is

an lc center of (X,C). Thus, the pair (X,∆) and the divisors C
′

and C
′′

satisfy the conditions (ii) and (iii) in Step 2. Because it is sufficient to prove

Theorem 1.3 for (X,∆), we can replace ∆, C ′ and C ′′ by ∆, C
′

and C
′′
,

respectively.
In this way, by replacing those divisors, we can assume that

• ∆− C ′′ ≥ 0 and any lc center of (X,∆− C ′′) dominates Z, and

• KX + ∆− eC ′′ is not-pseudo-effective for any e > 0.

In the rest of the proof we do not use C ′.
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Step 5. Pick R-divisors D and T on Z such that KX + ∆ ∼R π
∗D and

C ′′ ∼R π
∗T respectively. By Step 1, 2 and 4, (X,∆)→ Z and C ′′ 6= 0 satisfy

• (X,∆) is a projective Q-factorial lc pair such that (X, 0) is klt,

• KX + ∆ ∼R π
∗D,

• Z is a projective Q-factorial variety such that (Z, 0) is klt,

• ∆− C ′′ ≥ 0, C ′′ ≥ 0, C ′′ ∼R π
∗T and any lc center of (X,∆− C ′′)

dominates Z, and

• KX + ∆− eC ′′ is not pseudo-effective for any e > 0.

Therefore, we can apply Lemma 3.3 and we can obtain the following diagram

(X,∆) //

π

��

(X̃, ∆̃)

π̃
��

Z // Z̃ // Z∨

where ∆̃ is the birational transform of ∆ on X̃, such that

• (X̃, ∆̃) is a projective Q-factorial lc pair, Z̃ is projective and Q-factorial,
and Z∨ is a normal projective variety,

• the maps X 99K X̃ and Z 99K Z̃ are birational contractions,

• the morphism Z̃ → Z∨ is a contraction such that ρ(Z̃/Z∨) = 1 and
dimZ∨ < dim Z̃, and

• KX̃ + ∆̃ ∼R π̃
∗D̃ and D̃ ∼R, Z∨ 0, where D̃ is the birational transform

of D on Z̃.

Take a log resolution Y1 → X of (X,Supp (∆ + C)) such that the induced
map Y1 99K X̃ is a morphism. Let (Y1,∆Y1

) and (Y1, CY1
) be log smooth

models of (X,∆) and (X,C) respectively. Then, we can apply the argu-
ment of Step 1 to Y1 → X̃ → Z∨ because (X̃, ∆̃) is lc and KX̃ + ∆̃ ∼R, Z∨ 0.
Thus, we can get a contraction Y ′′′1 → Z1 over Z∨ and lc pairs (Y ′′′1 ,ΓY ′′′

1
)

and (Y ′′′1 , CY ′′′
1

) such that dimZ1 = dimZ∨, KY ′′′
1

+ ΓY ′′′
1
∼R, Z1

0 and KY ′′′
1

+
CY ′′′

1
∼R 0. Here CY ′′′

1
is the birational transform of CY1

on Y ′′′1 , and ΓY ′′′
1

is
the birational transform of t∆Y1

+ (1− t)CY1
on Y ′′′1 for a sufficiently small

t > 0. As in Step 1, we see that it is sufficient to prove Theorem 1.3 for
(Y ′′′1 ,ΓY ′′′

1
). So we may replace (X,∆)→ Z and (X,C) by (Y ′′′1 ,ΓY ′′′

1
)→ Z1

and (Y ′′′1 , CY ′′′
1

), respectively. For details, see the second paragraph of Step 1.
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We replace (X,∆)→ Z by (Y ′′′1 ,ΓY ′′′
1

)→ Z1. After replacing it, the di-
mension of Z strictly decreases because we have dimZ1 = dimZ∨ < dimZ.
This is crucial to the proof.

Step 6. From now on, we repeat the argument of Step 2-5.
By the same argument as in Step 2, we can assume (X,∆)→ Z and

(X,C) satisfy conditions (i), (ii) and (iii) in Step 2. Then, there are two
possibilities:

• Theorem 1.3 holds for (X,∆) (see Step 3), or

• we can find a contraction Y ′′′2 → Z2 with dimZ2 < dimZ and lc pairs
(Y ′′′2 ,ΓY ′′′

2
) and (Y ′′′2 , CY ′′′

2
) such that KY ′′′

2
+ ΓY ′′′

2
∼R, Z2

0, KY ′′′
2

+
CY ′′′

2
∼R 0 and Theorem 1.3 for (X,∆) is implied from Theorem 1.3

for (Y ′′′2 ,ΓY ′′′
2

) (see Step 4 and 5).

If we are in the first case, we stop the argument. If we are in the second
case, we replace (X,∆)→ Z by (Y ′′′2 ,ΓY ′′′

2
)→ Z2 and repeat the argument

of Step 2-5. Each time we replace (X,∆)→ Z in the argument of Step 5, the
dimension of Z strictly decreases. Therefore, this process eventually stops.
Thus, we can prove Theorem 1.3, and so we are done.
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