
i
i

“9-Rivera” — 2019/10/20 — 22:41 — page 1179 — #1 i
i

i
i

i
i

Math. Res. Lett.
Volume 26, Number 4, 1179–1186, 2019

A lower bound for the Bogomolny-Schmit

constant for random monochromatic

plane waves

Maxime Ingremeau and Alejandro Rivera

Let f be the the Planar Monochromatic Wave, i.e, the unique a.s.
continuous stationary centred Gaussian field on R2 with covariance
E[f(x)f(y)] = J0(|x− y|). Its average number of nodal domains
per unit area is given by the Bogomolny-Schmit (or Nazarov-Sodin)
constant. In this paper, we prove that νBS ≥ 1.39x10−4.

1. Introduction

Let f : R2 → R be the stationary, isotropic planar centered almost surely
continuous Gaussian field1 with covariance E[f(x)f(y)] = J0(|x− y|) where
J0(r) = 1

2π

∫ 2π
0 eir sin(θ)dθ is the 0th Bessel function of the first kind. We call

this field the random monochromatic plane wave. For each R > 0, let
us denote by B(0, R) the ball of centre 0 and of radius R, and by N(R, f)
the number of connected components of R2\f−1({0}) included in B(0, R).

In [10], [12], Nazarov and Sodin showed that the limit

(1) νBS = 4π × lim
R→∞

EN(R, f)

πR2

exists, and is positive. However, their method does not give an explicit value
for the constant νBS , sometimes called the Bogomolny-Schmit constant (or
also Nazarov-Sodin constant). An equivalent definition for νBS is that it is
the limit of the average number of nodal domains for a random spherical
harmonic divided by the degree of this spherical harmonic. The factor 4π can
be interpreted as the area of the unit sphere. Bogomolny and Schmit gave
in [5] a highly heuristical argument, based on percolation, which yielded the

1We refer the reader to [1] for the definition and properties of random fields.
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value

νBS ' 0.0624.

However, numerical simulations carried out by Nastasescu (in [9]), Kon-
rad (in [7]) and Beliaev and Kereta (in [3]) showed that νBS ' 0.0589, con-
tradicting Bogomolny and Schmit’s prediction by a few percents. Experimen-
tal measurements of νBS were also realised by Kuhl, Höhmann, Stöckmann
and Gnutzmann ([8]), using Berry’s conjecture ([4]) that high frequency
eigenmodes in a chaotic cavity should locally behave like the monochro-
matic random wave f . From the mathematical point of view, though, very
little is known regarding the value of νBS . The best rigorous lower bound so
far was the one given in [9], which is of the order of 10−319. The aim of this
note is obtain a much better lower bound by elementary means:

Theorem 1.1.

νBS ≥ 1.39× 10−4.

This bound is much smaller than the expected value of νBS . However,
our method does not take into account all nodal domains, but only those
which are included in circles of radius 3.8 (the first minimum of the Bessel
function J0). After visual inspection of computer simulations we expect that
these are not very common. Aside from this, in our use of Lemma 2.2, we
ignore the fact that small, isolated nodal domains should be somewhat rare.
We hope that our methods can be used to count more general nodal do-
mains, and to obtain sharper lower bounds on νBS .

Before proving Theorem 1.1 let us recall two basic facts about random
monochromatic plane waves.

• The function f almost surely satisfies ∆f + f = 0 where ∆ is the
Laplace operator. This follows by applying the Laplace operator with
respect to x to the expression E[f(x)f(y)] = J0(|x− y|) because J0 is
also an eigenfunction of the Laplace operator.

• In polar coordinates, f can be given the simple expression

(2) f(r, θ) = X0J0(r)−
√

2
∑
n≥1

Jn(r) (Xn cos(nθ) + Yn sin(nθ)) .

where for each n ∈ Z we denote by Jn the nth Bessel function of the
first kind, that is Jn(x) = 1

2π

∫ 2π
0 einθ−x sin(θ)dθ, and where (Xk)k≥0

and (Yk)k≥1 are two families of centred Gaussian random variables
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with unit variance and independent as a whole. An explanation for
this fact can be found for instance in Section 4.2 of [11].
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2. Proof of Theorem 1.1

We now prove Theorem 1.1. The idea is to consider points such that f does
not vanish on a certain circle around this point. We start by producing a
lower bound for the probability that 0 is such a point.

Lemma 2.1. Fix r > 0 and write Ψ : t 7→
∫ +∞
t e−t

2/2 dt√
2π

. Let Er be the

event that the zero set of f does not intersect the circle of radius r. Then,
for each T ∈ R,

P [Er] ≥ 2Ψ(T )−
√

2rΨ

(
T√

1− J0(r)2

)
.

Proof. In this proof we use the expression (2) for f . Fix r > 0 and for each
θ ∈ [0, 2π], let u(θ) = X0J0(r)− f((r cos(θ), r sin(θ)). We first fix x0 > 0 and
try to estimate the probability that u(θ) crosses the level x0J0(r) when θ
varies on the unit circle. Also, throughout our calculations, we will use the
following two Bessel function identities:

(3) J−n(x) = (−1)nJn(x);
∑
n∈Z

Jn(x)2 = 1;
∑
n∈Z

n2Jn(x)2 =
x2

2
.

These identities follow from the following classical formula (cf. [13, Chap-
ter 2]) ∑

n∈Z
tnJn(x) = e

x

2
(t−t−1)

by setting t = eiθ and applying Parseval’s formula.
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Now, observe that, since f is stationary, isotropic and (f,∇f) is non-
degenerate, u is a stationary Gaussian field on the unit circle and the field
(u, u′) is non-degenerate so that u crosses the level x0J0(r) almost surely an
even number of times. In particular, by Markov’s inequality,

P [∃θ; u(θ) = x0J0(r)] ≤ 1

2
E [Card{θ ∈ [0, 2π]; u(θ) = x0J0(r)}] .

To compute the right-hand side of this inequality, we apply the Kac-Rice
formula (see Theorem 6.2 from [2]). Define α(r) > 0 by α(r)2 = Var(u(θ)) =
2
∑

n≥1 Jn(r)2. Then, by the first and second identity in (3), α(r)2 = 1−
J0(r)2. By the Kac-Rice formula,

E [Card{θ ∈ [0, 2π]; u(θ) = x0J0(r)}]

=

∫ 2π

0
E
[
|u′(θ)| |u(θ) = x0J0(r)

] e− x20J0(r)2

2α(r)2

α(r)
√

2π
dθ .

The fact that u is stationary, implies first that the integrand is independent
of θ and second, that u′(θ) is independent of u(θ). Observe that Var (u′(θ)) =

2
∑

n≥1 n
2Jn(r)

2. By the first and third identities in (3), Var(u′(θ)) = r2

2 . More-

over, if ξ is a centred Gaussian of variance one, E [|ξ|] =
√

2
π . Therefore,

E [Card{θ ∈ [0, 2π]; u(θ) = x0J0(r)}] =

√
2r

α(r)
exp

(
−x

2
0J0(r)2

2α(r)2

)
.

On the other hand, we have

P[¬Er; X0 = x0] = P
[
∃θ ∈ [0, 2π]; u(θ) = x0J0(r)

]
≤ E [Card{θ ∈ [0, 2π]; u(θ) = x0J0(r)}]

In particular, for each T ∈ R, the probability that f has a zero on the
circle of radius r centred at 0 satisfies

(4) P [Er] ≥ E
[(

1− r√
2α(r)

exp

(
−X

2
0J0(r)2

2α(r)2

))
1[|X0|≥T ]

]
.

Let Ψ(t) = P[X0 ≥ t] =
∫ +∞
t e−t

2/2 t√
2π

. Then, the right-hand side is

2Ψ(T )− 2
r√

2α(r)
E
[
exp

(
−X

2
0J0(r)2

2α(r)2

)
1[X0≥T ]

]
.
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But for each a > 0, a simple calculation shows that E
[
e−aX

2
01[X0≥T ]

]
=

Ψ(
√

1+2aT)√
1+2a

so

P [Er] ≥ 2Ψ(T )−
√

2r√
α(r)2 + J0(r)2

Ψ
(√

1 + J0(r)2/α(r)2T
)

Replacing α(r) by its expression, we get, for any T > 0 and any r > 0,

(5) P [Er] ≥ 2Ψ(T )−
√

2rΨ

(
T√

1− J0(r)2

)
.

�

Let Gr = Gr(f) ⊂ R2 be the (random) set of points x ∈ R2 for which f
does not vanish on the circle of radius r centred at x. If x, y ∈ R2, we will
write x ∼r y if x, y ∈ Gr and x, y belong to the same connected component
of R2\f−1({0}). The next step of the proof is to show that the connected
components of Gr are not too large.

Lemma 2.2. Let r1 and r2 denote the first and second zeros of J0 and
let r ∈]r1, r2[. Then, for each x ∈ Gr, the connected component of x in
R2\f−1({0}) is included in B(x, r). In particular, if x, y ∈ Gr are such that
x ∼r y, then |x− y| ≤ r.

Remark 2.3. The result of this lemma may be optimal, deterministically
speaking. But, we expect equivalence classes of Gr of diameter close to r
to be very rare. We probably lose a large factor in this step. However, this
intuition seems difficult to quantify.

Proof of Lemma 2.2. In this proof, we use the fact that f satisfies ∆f + f =
0 almost surely. Without loss of generality, we may suppose that f(x) > 0.
We claim that f(z) < 0 for all z such that |x− z| = r. We already know that
f(z) has constant sign for all z such that |x− z| = r. Consider the function

g(z) :=
1

2π

∫ 2π

0
f(Rθz)dθ,

where Rθ is the rotation of centre x and of angle θ. The function g satisfies
(∆ + 1)g = 0 (because f(Rθ·) does for each θ ∈ [0, 2π]), and it is radially
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symmetric around x. Therefore, we must have

g(z) = λJ0(|z − x|)

for some λ 6= 0. Since f(x) > 0, we must have λ > 0, and hence, f(z) <
0 for all z such that |x− z| = r. Therefore, the connected component of
R2\f−1({0}) containing x is included in B(x, r) and the Lemma follows. �

We now finish off the proof of Theorem 1.1 by estimating the expected
size of Gr using Lemma 2.1. Let 0 < r1 < r2 be the first two zeros of the
Bessel function J0 and fix r ∈]r1, r2[. Then, by Lemma 2.2, for each x ∈
Gr, the equivalence class of x has diameter at most r. By the isodiametric
inequality (see paragraph 10 of [6]) its area is no greater than π

4 r
2. Also, two

different equivalence classes are included in different connected components
of R2\f−1({0}). Finally, if R > r and x ∈ B(0, R− r), then the connected
component of R2 \ f−1 ({0}) containing x is included in B(0, R). Thus, for
each R > r,

Vol (Gr ∩B(0, R− r)) ≤
∑
c

Vol(c) ≤ π

4
r2 ×N(R, f)

where the sum runs over the equivalence classes of Gr intersecting B(0, R−
r). Taking expectations, by stationarity, we get

Vol (B(R− r))P [0 ∈ Gr] ≤
π

4
r2 × E [N(R, f)] .

Dividing by Vol (B(0, R)) = πR2 and letting R→ +∞, we get P [0 ∈ Gr] ≤
1
16r

2νBS which yields the following lower bound for the Bogomolny-Schmit
constant:

νBS ≥
16P[0 ∈ Gr]

r2
.

By Lemma 2.1, we have, for each T > 0 and each r > r0,

νBS ≥
32

r2

[
Ψ(T )− r√

2
Ψ

(
T√

1− J0(r)2

)]
.

Taking r = 3.8 (the first minimum of J0) and T = 3.35 (the smallest T for
which in (4), the function whose expectation we compute is always positive),
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we get

32

r2
≥ 2.216 ;

T√
1− J0(r)2

≥ 3.659 ;
r√
2
≤ 2.69 .

We therefore obtain the announced lower bound

νBS ≥ 1.39× 10−4 .
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