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Prime twists of elliptic curves

Daniel Kriz and Chao Li

For certain elliptic curves E/Q with E(Q)[2] = Z/2Z, we prove a
criterion for prime twists of E to have analytic rank 0 or 1, based
on a mod 4 congruence of 2-adic logarithms of Heegner points. As
an application, we prove new cases of Silverman’s conjecture that
there exists a positive proposition of prime twists of E of rank zero
(resp. positive rank).

1. Introduction

1.1. Silverman’s conjecture

Let E/Q be an elliptic curve. For a square-free integer d, we denote by
E(d)/Q its quadratic twist by Q(

√
d). Silverman made the following conjec-

ture concerning the prime twists of E (see [10, p.653], [9, p.350]).

Conjecture 1.1 (Silverman). Let E/Q be an elliptic curve. Then there
exists a positive proportion of primes ` such that E(`) or E(−`) has rank
r = 0 (resp. r > 0).

Remark 1.2. Conjecture 1.1 is known for the congruent number curve
E : y2 = x3 − x. In fact, E(`) has rank r = 0 if ` ≡ 3 (mod 8) and r = 1 if
` ≡ 5, 7 (mod 8). This follows from classical 2-descent for r = 0 and Birch
[1] and Monsky [8] for r = 1 (see also [12]).

Remark 1.3. Although Conjecture 1.1 is still open in general, many special
cases have been proved. For r = 0, see Ono [9] and Ono–Skinner [10, Cor. 2]
(including all elliptic curves with conductor ≤ 100). For r = 1, see Coates–Y.
Li–Tian–Zhai [2, Thm. 1.1].

In our recent work [7, Thm. 4.3], we have proved Conjecture 1.1 (for
both r = 0 and r = 1) for a wide class of elliptic curves with E(Q)[2] = 0.
The goal of this short note is to extend our method to certain elliptic curves
with E(Q)[2] ∼= Z/2Z.
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1.2. Main results

Let E/Q be an elliptic curve of conductor N . We will use K to denote an
imaginary quadratic field satisfying the Heegner hypothesis for N :

each prime factor ` of N is split in K.

We denote by P ∈ E(K) the corresponding Heegner point, defined up to sign
and torsion with respect to a fixed modular parametrization πE : X0(N)→
E. Let

f(q) =

∞∑
n=1

an(E)qn ∈ Snew
2 (Γ0(N))

be the normalized newform associated to E. Let ωE ∈ Ω1
E/Q := H0(E/Q,Ω1)

such that

π∗E(ωE) = f(q) · dq/q.

We denote by logωE
the formal logarithm associated to ωE .

Our main result is the following criterion for prime twists of E of analytic
(and hence algebraic) rank 0 or 1.

Theorem 1.4. Let E/Q be an elliptic curve. Assume E(Q)[2] ∼= Z/2Z
and E has no rational cyclic 4-isogeny. Assume there exists an imaginary
quadratic field K satisfying the Heegner hypothesis for N such that

(F) 2 splits in K and
|Ẽns(F2)| · logωE

(P )

2
6≡ 0 (mod 2).

Let S be the set of primes

S := {` - 2N : ` splits in K, |E(F`)| 6≡ 0 mod 4}.

Let N be the set of signed primes

N = {d = ±` : ` ∈ S, any odd prime q||Nsplits in Q(
√
d)}.

Then for any d ∈ N , we have the analytic rank ran(E(d)/K) = 1. In partic-
ular,

ran(E(d)/Q) =

{
0, if w(E(d)/Q) = +1,

1, if w(E(d)/Q) = −1.

where w(E(d)/Q) denotes the global root number of E(d)/Q.
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Remark 1.5. Recall that |Ẽns(F`)| denotes the number of F`-points of the
nonsingular part of the mod ` reduction of E, which is |E(F`)| = `+ 1−
a`(E) if ` - N , `± 1 if `||N and ` if `2|N .

Remark 1.6. The assumption on Heegner points in Theorem 1.4 forces
ran(E/Q) ≤ 1.

As a consequence, we deduce the following cases of Silverman’s conjec-
ture.

Theorem 1.7. Let E/Q as in Theorem 1.4. Let φ : E → E0 := E/E(Q)[2]
be the natural 2-isogeny. Assume the fields Q(E[2], E0[2]), Q(

√
−N), Q(

√
q)

(where q runs over odd primes q||N) are linearly disjoint. Then Conjec-
ture 1.1 holds for E/Q.

1.3. Novelty of the proof

The proof of [7, Thm. 4.3] mentioned above uses the mod 2 congruence
between 2-adic logarithms of Heegner points on E and E(d) (recalled in
§3.1 below), arising from the isomorphism of Galois representations E[2] ∼=
E(d)[2]. For the congruence to be nontrivial on both sides, one needs the
extra factor |E(F`)| appearing in the formula to be odd for `|d. This is only
possible when E(Q)[2] = 0.

When E(Q)[2] 6= 0, we instead take advantage of the exceptional isomor-
phism between the mod 4 semisimplified Galois representations E[4]ss ∼=
E(d)[4]ss, and consequently a mod 4 congruence between 2-adic logarithm
of Heegner points. When E(Q)[2] = Z/2Z and E has no rational cyclic 4-
isogeny, it is possible that the extra factor |E(F`)| is even but nonzero mod
4. This is the key observation to prove Theorem 1.4. The application Theo-
rem 1.7 then follows by Chebotarev’s density after translating the condition
|E(F`)| 6≡ 0 (mod 4) into an inert condition for ` in Q(E[2]) and Q(E0[2])
(Lemma 4.1).

2. Examples

Let us illustrate the main results by two explicit examples.

Example 2.1. Consider the elliptic curve (in Cremona’s labeling)

E = 256b1 : y2 = x3 − 2x
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with E(Q)[2] ∼= Z/2Z. It has j-invariant 1728 and CM by Q(i). The imag-
inary quadratic field K = Q(

√
−7) satisfies the Heegner hypothesis. The

associated Heegner point yK = (−1,−1) satisfies Assumption (F). The set
S consists of primes ` such that ` ≡ 1, 2, 4 (mod 7) and ` ≡ 5 (mod 8):

S = {29, 37, 53, 109, 149, 197, 277, 317, 373, 389, . . . , }.

By Theorem 1.4, we have

ran(E(±`)/K) = 1, for any ` ∈ S.

We compute the global root number w(E(±`)/Q) = −1 and conclude that

ran(E(±`)/Q) = 1, ran(E(±7`)/Q) = 0, for any ` ∈ S.

Remark 2.2. Notice the two congruence conditions for ` ∈ S are both
necessary for the conclusion: for example, we have ran(E(`)) = 2 for ` = 31
and ran(E(7`)) = 2 for ` = 5.

Example 2.3. Consider the elliptic curve

E = 256a1 : y2 = x3 + x2 − 3x+ 1

with E(Q)[2] ∼= Z/2Z. It has j-invariant 8000 and CM by Q(
√
−2). The

imaginary quadratic field K = Q(
√
−7) satisfies the Heegner hypothesis.

The associated Heegner point yK = (0, 1) satisfies Assumption (F). The
2-isogenous curve is

E0 = 256a2 : y2 = x3 + x2 − 13x− 21.

We have Q(E[2]) = Q(E0[2]) = Q(
√

2) and Q(
√
−N) = Q(i). Hence

Q(E[2], E0[2]) and Q(
√
−N) are linearly disjoint. Since there is no odd prime

q||N , Theorem 1.7 implies that Silverman’s conjecture holds for E.
In fact, the set S in this case consists of primes ` such that ` ≡ 1, 2, 4

(mod 7) and ` ≡ 3, 5 (mod 8):

S = {11, 29, 37, 43, 53, 67, 107, 109, 149, 163, 179, 197, 211, 277, 317, 331, . . .}.

Computing the global root number gives

ran(E(`)/Q) = 1, ran(E(−`)/Q) = 0, for any ` ∈ S.
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3. Proof of Theorem 1.4

3.1. Congruences between Heegner points

We first recall Theorem 1.16 of [7].

Theorem 3.1. Let E and E′ be two elliptic curves over Q of conductors N
and N ′ respectively. Suppose p is a prime such that there is an isomorphism
of semisimplified GQ := Gal(Q/Q)-representations

E[pm]ss ∼= E′[pm]ss

for some m ≥ 1. Let K be an imaginary quadratic field satisfying the Heegner
hypothesis for both N and N ′. Let P ∈ E(K) and P ′ ∈ E′(K) be the Heegner
points. Assume p is split in K. Then we have ∏

`|pNN ′/M

|Ẽns(F`)|
`

 · logωE
P

≡ ±

 ∏
`|pNN ′/M

|Ẽ′,ns(F`)|
`

 · logωE′
P ′ (mod pm).

Here

M =
∏

`| gcd(N,N′)
a`(E)≡a`(E

′) (mod pm)

`ord`(NN ′).

3.2. Proof of Theorem 1.4

For a prime ` - Nd, we have a`(E) = ±a`(E(d)) since E(d) is a quadratic twist
of E. Since E(Q)[2] 6= 0, we know that |E(F`)| and |E(d)(F`)| are even since
the reduction mod ` map is injective on prime-to-` torsion. Hence if ` 6= 2,
then a`(E), a`(E

(d)) are also even. Since a`(E) = ±a`(E(d)), we obtain the
following mod 4 congruence

a`(E) ≡ a`(E(d)) (mod 4), for any ` - 2Nd.

It follows that we have an isomorphism of GQ-representations

E[4]ss ∼= E(d)[4]ss.
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Now we can apply Theorem 3.1 to E′ = E(d), p = 2 and m = 2. By
assumption, any prime `|2N splits in K. By the definition of S, the prime
` = |d| splits in K. Notice the odd prime factors of N ′ = N(E(d)) are exactly
the odd prime factors of Nd, thus K also satisfies the Heegner hypothesis
for N ′.

Let `| gcd(N,N ′) be an odd prime. We have:

1) if `||N , then a`(E), a`(E
(d)) ∈ {±1} is determined by their local root

numbers at `. By the definition of N , we know that ` splits in Q(
√
d),

and hence E/Q` and E(d)/Q` are isomorphic. It follows that a`(E) =
a`(E

(d)).

2) if `2|N , then a`(E) = a`(E
(d)) = 0,

Therefore M is divisible by all the prime factors of gcd(N,N ′). Notice
the odd part of gcd(N,N ′) equals to the odd part of N , so the congruence
formula in Theorem 3.1 implies

(1)
∏
`|2d

|Ẽns(F`)|
`

· logωE
P ≡ ±

∏
`|2d

|Ẽ(d),ns(F`)|
`

· logω
E(d)

P (d) (mod 4).

For ` = |d|, we have

|E(F`)| 6≡ 0 (mod 4)

by the definition of S. Now Assumption (F) implies that the left-hand-side
of (1) is nonzero mod 4. Hence the right-hand-side of (1) is also nonzero.
In particular, the Heegner point P (d) ∈ E(d)(K) is non-torsion, and hence
ran(E(d)/K) = 1 by the theorem of Gross–Zagier [3] and Kolyvagin [6], [5],
as desired.

4. Proof of Theorem 1.7

4.1. Elliptic curves with partial 2-torsion and no rational cyclic
4-isogeny

Let E be an elliptic curve of conductor N . Assume E(Q)[2] ∼= Z/2Z. Then
Q(E[2])/Q is the quadratic extension Q(

√
∆E), where ∆E is the discrimi-

nant of a Weierstrass equation of E.
Let φ : E → E0 := E/E(Q)[2] be the natural 2-isogeny. By [4, Lem. 4.2

(i)], E has no rational cyclic 4-isogeny if and only if Q(E0[2])/Q is a quadratic
extension. Assume we are in this case, then Q(E0[2]) = Q(

√
∆E0

).
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Lemma 4.1. Let ` - N be a prime. Then the following are equivalent:

1) |E(F`)| 6≡ 0 (mod 4),

2) E(F`)[2] ∼= E0(F`)[2] ∼= Z/2Z,

3) ` is inert in both Q(E[2]) and Q(E0[2]).

Proof. Since E and E0 are isogenous and ` is a prime of good reduction,
we know that |E(F`)| = |E0(F`)|. So |E(F`)| 6≡ 0 (mod 4) if and only if
|E0(F`)| 6≡ 0 (mod 4). In this case, certainly (2) holds. Conversely, if (2)
holds, then E(F`)[4] ∼= Z/2Z (otherwise E(F`)[4] ∼= Z/4Z, and thus E0(F`)[2]
∼= Z/2Z× Z/2Z generated by φ(E(F`)[4]) and the kernel of the dual isogeny
φ̂ : E0 → E), hence |E(F`)| 6≡ 0 (mod 4). We have shown that (1) is equiv-
alent to (2).

Moreover, E(F`)[2] ∼= Z/2Z (resp. Z/2Z× Z/2Z) if and only if Q`(E[2])/
Q` is a quadratic extension (resp. the trivial extension), if and only if ` is
inert (resp. split) in Q(E[2]). Similarly we know that E0(F`)[2] ∼= Z/2Z if
and only if ` is inert in Q(E0[2]). It follows that (2) is equivalent to (3). �

4.2. Proof of Theorem 1.7

By assumption, the fields Q(E[2], E0[2]), Q(
√
q) (q runs all odd prime q||N)

are linearly disjoint. Since K satisfies the Heegner hypothesis for N and 2
splits in K, we know the discriminant dK of K is coprime to 2N , hence K
is also linearly disjoint from the fields Q(E[2], E0[2]) and Q(

√
q)’s. It follows

from Chebotarev’s density that there is a positive density set T of primes
` - 2N such that

1) ` is split in K,

2) ` is inert in both Q(E[2]) and Q(E0[2]),

3) ` is split in Q(
√
q) for any odd prime q||N .

By Lemma 4.1, we know T ⊆ S. For ` ∈ T , we consider d = `∗ :=
(−1)(`−1)/2`. By the quadratic reciprocity law, we know that odd q||N is
split in Q(

√
`∗) if and only if ` is split in Q(

√
q). In particular, for any

` ∈ T , we have `∗ ∈ N . Now Theorem 1.4 implies that ran(E(`∗)/K) = 1.
Moreover,

ran(E(`∗)/Q) =

{
0, w(E(`∗)/Q) = +1,

1, w(E(`∗)/Q) = −1.
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Since Q(
√
`∗) has discriminant coprime to 2N , we have the well known

formula

w(E(`∗)/Q) = w(E/Q) ·
(
`∗

−N

)
.

By the quadratic reciprocity law, we obtain

w(E(`∗)/Q) = w(E/Q) ·
(
−N
`

)
.

By assumption, Q(
√
−N) is also linearly disjoint from the fields considered

above, hence the global root number w(E(`∗)/Q) takes both signs for a pos-
itive proportion of ` ∈ T by Chebotarev’s density. Therefore ran(E(`∗)/Q)
takes both values 0 and 1 for a positive proportion of ` ∈ T , as desired.
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