Prime twists of elliptic curves

Daniel Kriz and Chao Li

For certain elliptic curves E / \mathbb{Q} with $E(\mathbb{Q})[2]=\mathbb{Z} / 2 \mathbb{Z}$, we prove a criterion for prime twists of E to have analytic rank 0 or 1, based on a mod 4 congruence of 2 -adic logarithms of Heegner points. As an application, we prove new cases of Silverman's conjecture that there exists a positive proposition of prime twists of E of rank zero (resp. positive rank).

1. Introduction

1.1. Silverman's conjecture

Let E / \mathbb{Q} be an elliptic curve. For a square-free integer d, we denote by $E^{(d)} / \mathbb{Q}$ its quadratic twist by $\mathbb{Q}(\sqrt{d})$. Silverman made the following conjecture concerning the prime twists of E (see [10, p.653], 9, p.350]).

Conjecture 1.1 (Silverman). Let E / \mathbb{Q} be an elliptic curve. Then there exists a positive proportion of primes ℓ such that $E^{(\ell)}$ or $E^{(-\ell)}$ has rank $r=0(r e s p . r>0)$.

Remark 1.2. Conjecture 1.1 is known for the congruent number curve $E: y^{2}=x^{3}-x$. In fact, $E^{(\ell)}$ has rank $r=0$ if $\ell \equiv 3(\bmod 8)$ and $r=1$ if $\ell \equiv 5,7(\bmod 8)$. This follows from classical 2-descent for $r=0$ and Birch [1] and Monsky [8] for $r=1$ (see also [12]).

Remark 1.3. Although Conjecture 1.1 is still open in general, many special cases have been proved. For $r=0$, see Ono [9] and Ono-Skinner [10, Cor. 2] (including all elliptic curves with conductor ≤ 100). For $r=1$, see Coates-Y. Li-Tian-Zhai [2, Thm. 1.1].

In our recent work [7, Thm. 4.3], we have proved Conjecture 1.1 (for both $r=0$ and $r=1$) for a wide class of elliptic curves with $E(\mathbb{Q})[2]=0$. The goal of this short note is to extend our method to certain elliptic curves with $E(\mathbb{Q})[2] \cong \mathbb{Z} / 2 \mathbb{Z}$.

1.2. Main results

Let E / \mathbb{Q} be an elliptic curve of conductor N. We will use K to denote an imaginary quadratic field satisfying the Heegner hypothesis for N :
each prime factor ℓ of N is split in K.
We denote by $P \in E(K)$ the corresponding Heegner point, defined up to sign and torsion with respect to a fixed modular parametrization $\pi_{E}: X_{0}(N) \rightarrow$ E. Let

$$
f(q)=\sum_{n=1}^{\infty} a_{n}(E) q^{n} \in S_{2}^{\mathrm{new}}\left(\Gamma_{0}(N)\right)
$$

be the normalized newform associated to E. Let $\omega_{E} \in \Omega_{E / \mathbb{Q}}^{1}:=H^{0}\left(E / \mathbb{Q}, \Omega^{1}\right)$ such that

$$
\pi_{E}^{*}\left(\omega_{E}\right)=f(q) \cdot d q / q
$$

We denote by $\log _{\omega_{E}}$ the formal logarithm associated to ω_{E}.
Our main result is the following criterion for prime twists of E of analytic (and hence algebraic) rank 0 or 1.

Theorem 1.4. Let E / \mathbb{Q} be an elliptic curve. Assume $E(\mathbb{Q})[2] \cong \mathbb{Z} / 2 \mathbb{Z}$ and E has no rational cyclic 4-isogeny. Assume there exists an imaginary quadratic field K satisfying the Heegner hypothesis for N such that
(\star) 2 splits in K and $\frac{\left|\tilde{E}^{\mathrm{ns}}\left(\mathbb{F}_{2}\right)\right| \cdot \log _{\omega_{E}}(P)}{2} \not \equiv 0 \quad(\bmod 2)$.
Let \mathcal{S} be the set of primes

$$
\mathcal{S}:=\left\{\ell \nmid 2 N: \ell \text { splits in } K,\left|E\left(\mathbb{F}_{\ell}\right)\right| \not \equiv 0 \bmod 4\right\} .
$$

Let \mathcal{N} be the set of signed primes

$$
\mathcal{N}=\{d= \pm \ell: \ell \in \mathcal{S}, \text { any odd prime } q \| N \text { splits in } \mathbb{Q}(\sqrt{d})\}
$$

Then for any $d \in \mathcal{N}$, we have the analytic rank $r_{\mathrm{an}}\left(E^{(d)} / K\right)=1$. In particular,

$$
r_{\mathrm{an}}\left(E^{(d)} / \mathbb{Q}\right)= \begin{cases}0, & \text { if } w\left(E^{(d)} / \mathbb{Q}\right)=+1 \\ 1, & \text { if } w\left(E^{(d)} / \mathbb{Q}\right)=-1\end{cases}
$$

where $w\left(E^{(d)} / \mathbb{Q}\right)$ denotes the global root number of $E^{(d)} / \mathbb{Q}$.

Remark 1.5. Recall that $\left|\tilde{E}^{\text {ns }}\left(\mathbb{F}_{\ell}\right)\right|$ denotes the number of \mathbb{F}_{ℓ}-points of the nonsingular part of the $\bmod \ell$ reduction of E, which is $\left|E\left(\mathbb{F}_{\ell}\right)\right|=\ell+1-$ $a_{\ell}(E)$ if $\ell \nmid N, \ell \pm 1$ if $\ell \| N$ and ℓ if $\ell^{2} \mid N$.

Remark 1.6. The assumption on Heegner points in Theorem 1.4 forces $r_{\text {an }}(E / \mathbb{Q}) \leq 1$.

As a consequence, we deduce the following cases of Silverman's conjecture.

Theorem 1.7. Let E / \mathbb{Q} as in Theorem 1.4. Let $\phi: E \rightarrow E_{0}:=E / E(\mathbb{Q})[2]$ be the natural 2-isogeny. Assume the fields $\mathbb{Q}\left(E[2], E_{0}[2]\right), \mathbb{Q}(\sqrt{-N}), \mathbb{Q}(\sqrt{q})$ (where q runs over odd primes $q \| N$) are linearly disjoint. Then Conjecture 1.1 holds for E / \mathbb{Q}.

1.3. Novelty of the proof

The proof of [7, Thm. 4.3] mentioned above uses the mod 2 congruence between 2-adic logarithms of Heegner points on E and $E^{(d)}$ (recalled in $\$ 3.1$ below), arising from the isomorphism of Galois representations $E[2] \cong$ $E^{(d)}[2]$. For the congruence to be nontrivial on both sides, one needs the extra factor $\left|E\left(\mathbb{F}_{\ell}\right)\right|$ appearing in the formula to be odd for $\ell \mid d$. This is only possible when $E(\mathbb{Q})[2]=0$.

When $E(\mathbb{Q})[2] \neq 0$, we instead take advantage of the exceptional isomorphism between the mod 4 semisimplified Galois representations $E[4]^{\mathrm{ss}} \cong$ $E^{(d)}[4]^{\text {ss }}$, and consequently a mod 4 congruence between 2-adic logarithm of Heegner points. When $E(\mathbb{Q})[2]=\mathbb{Z} / 2 \mathbb{Z}$ and E has no rational cyclic 4isogeny, it is possible that the extra factor $\left|E\left(\mathbb{F}_{\ell}\right)\right|$ is even but nonzero mod 4. This is the key observation to prove Theorem 1.4. The application Theorem 1.7 then follows by Chebotarev's density after translating the condition $\left|E\left(\mathbb{F}_{\ell}\right)\right| \not \equiv 0(\bmod 4)$ into an inert condition for ℓ in $\mathbb{Q}(E[2])$ and $\mathbb{Q}\left(E_{0}[2]\right)$ (Lemma 4.1).

2. Examples

Let us illustrate the main results by two explicit examples.
Example 2.1. Consider the elliptic curve (in Cremona's labeling)

$$
E=256 b 1: y^{2}=x^{3}-2 x
$$

with $E(\mathbb{Q})[2] \cong \mathbb{Z} / 2 \mathbb{Z}$. It has j-invariant 1728 and CM by $\mathbb{Q}(i)$. The imaginary quadratic field $K=\mathbb{Q}(\sqrt{-7})$ satisfies the Heegner hypothesis. The associated Heegner point $y_{K}=(-1,-1)$ satisfies Assumption \star. The set \mathcal{S} consists of primes ℓ such that $\ell \equiv 1,2,4(\bmod 7)$ and $\ell \equiv 5(\bmod 8)$:

$$
\mathcal{S}=\{29,37,53,109,149,197,277,317,373,389, \ldots,\}
$$

By Theorem 1.4, we have

$$
r_{\mathrm{an}}\left(E^{(\pm \ell)} / K\right)=1, \text { for any } \ell \in \mathcal{S}
$$

We compute the global root number $w\left(E^{(\pm \ell)} / \mathbb{Q}\right)=-1$ and conclude that

$$
r_{\mathrm{an}}\left(E^{(\pm \ell)} / \mathbb{Q}\right)=1, \quad r_{\mathrm{an}}\left(E^{(\pm 7 \ell)} / \mathbb{Q}\right)=0, \text { for any } \ell \in \mathcal{S}
$$

Remark 2.2. Notice the two congruence conditions for $\ell \in S$ are both necessary for the conclusion: for example, we have $r_{\text {an }}\left(E^{(\ell)}\right)=2$ for $\ell=31$ and $r_{\text {an }}\left(E^{(7 \ell)}\right)=2$ for $\ell=5$.

Example 2.3. Consider the elliptic curve

$$
E=256 a 1: y^{2}=x^{3}+x^{2}-3 x+1
$$

with $E(\mathbb{Q})[2] \cong \mathbb{Z} / 2 \mathbb{Z}$. It has j-invariant 8000 and CM by $\mathbb{Q}(\sqrt{-2})$. The imaginary quadratic field $K=\mathbb{Q}(\sqrt{-7})$ satisfies the Heegner hypothesis. The associated Heegner point $y_{K}=(0,1)$ satisfies Assumption $\star \star$. The 2-isogenous curve is

$$
E_{0}=256 a 2: y^{2}=x^{3}+x^{2}-13 x-21
$$

We have $\mathbb{Q}(E[2])=\mathbb{Q}\left(E_{0}[2]\right)=\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{-N})=\mathbb{Q}(i)$. Hence $\mathbb{Q}\left(E[2], E_{0}[2]\right)$ and $\mathbb{Q}(\sqrt{-N})$ are linearly disjoint. Since there is no odd prime $q \| N$, Theorem 1.7 implies that Silverman's conjecture holds for E.

In fact, the set \mathcal{S} in this case consists of primes ℓ such that $\ell \equiv 1,2,4$ $(\bmod 7)$ and $\ell \equiv 3,5(\bmod 8)$:
$\mathcal{S}=\{11,29,37,43,53,67,107,109,149,163,179,197,211,277,317,331, \ldots\}$.
Computing the global root number gives

$$
r_{\mathrm{an}}\left(E^{(\ell)} / \mathbb{Q}\right)=1, \quad r_{\mathrm{an}}\left(E^{(-\ell)} / \mathbb{Q}\right)=0, \text { for any } \ell \in \mathcal{S} .
$$

3. Proof of Theorem 1.4

3.1. Congruences between Heegner points

We first recall Theorem 1.16 of [7].
Theorem 3.1. Let E and E^{\prime} be two elliptic curves over \mathbb{Q} of conductors N and N^{\prime} respectively. Suppose p is a prime such that there is an isomorphism of semisimplified $G_{\mathbb{Q}}:=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-representations

$$
E\left[p^{m}\right]^{\mathrm{ss}} \cong E^{\prime}\left[p^{m}\right]^{\mathrm{ss}}
$$

for some $m \geq 1$. Let K be an imaginary quadratic field satisfying the Heegner hypothesis for both N and N^{\prime}. Let $P \in E(K)$ and $P^{\prime} \in E^{\prime}(K)$ be the Heegner points. Assume p is split in K. Then we have

$$
\begin{aligned}
& \left(\prod_{\ell \mid p N N^{\prime} / M} \frac{\left|\tilde{E}^{\mathrm{ns}}\left(\mathbb{F}_{\ell}\right)\right|}{\ell}\right) \cdot \log _{\omega_{E}} P \\
\equiv & \pm\left(\prod_{\ell \mid p N N^{\prime} / M} \frac{\left|\tilde{E}^{\prime, \mathrm{ns}}\left(\mathbb{F}_{\ell}\right)\right|}{\ell}\right) \cdot \log _{\omega_{E^{\prime}}} P^{\prime} \quad\left(\bmod p^{m}\right)
\end{aligned}
$$

Here

$$
M=\prod_{\substack{\ell \mid \operatorname{gcd}\left(N, N^{\prime}\right) \\ a_{\ell}(E) \equiv a_{\ell}\left(E^{\prime}\right) \\\left(\bmod p^{m}\right)}} \ell^{\operatorname{ord}_{\ell}\left(N N^{\prime}\right)}
$$

3.2. Proof of Theorem 1.4

For a prime $\ell \nmid N d$, we have $a_{\ell}(E)= \pm a_{\ell}\left(E^{(d)}\right)$ since $E^{(d)}$ is a quadratic twist of E. Since $E(\mathbb{Q})[2] \neq 0$, we know that $\left|E\left(\mathbb{F}_{\ell}\right)\right|$ and $\left|E^{(d)}\left(\mathbb{F}_{\ell}\right)\right|$ are even since the reduction $\bmod \ell \operatorname{map}$ is injective on prime-to- ℓ torsion. Hence if $\ell \neq 2$, then $a_{\ell}(E), a_{\ell}\left(E^{(d)}\right)$ are also even. Since $a_{\ell}(E)= \pm a_{\ell}\left(E^{(d)}\right)$, we obtain the following mod 4 congruence

$$
a_{\ell}(E) \equiv a_{\ell}\left(E^{(d)}\right) \quad(\bmod 4), \quad \text { for any } \ell \nmid 2 N d
$$

It follows that we have an isomorphism of $G_{\mathbb{Q}}$-representations

$$
E[4]^{\mathrm{ss}} \cong E^{(d)}[4]^{\mathrm{ss}}
$$

Now we can apply Theorem 3.1 to $E^{\prime}=E^{(d)}, p=2$ and $m=2$. By assumption, any prime $\ell \mid 2 N$ splits in K. By the definition of \mathcal{S}, the prime $\ell=|d|$ splits in K. Notice the odd prime factors of $N^{\prime}=N\left(E^{(d)}\right)$ are exactly the odd prime factors of $N d$, thus K also satisfies the Heegner hypothesis for N^{\prime}.

Let $\ell \mid \operatorname{gcd}\left(N, N^{\prime}\right)$ be an odd prime. We have:

1) if $\ell \| N$, then $a_{\ell}(E), a_{\ell}\left(E^{(d)}\right) \in\{ \pm 1\}$ is determined by their local root numbers at ℓ. By the definition of \mathcal{N}, we know that $\ell \operatorname{splits}$ in $\mathbb{Q}(\sqrt{d})$, and hence E / \mathbb{Q}_{ℓ} and $E^{(d)} / \mathbb{Q}_{\ell}$ are isomorphic. It follows that $a_{\ell}(E)=$ $a_{\ell}\left(E^{(d)}\right)$.
2) if $\ell^{2} \mid N$, then $a_{\ell}(E)=a_{\ell}\left(E^{(d)}\right)=0$,

Therefore M is divisible by all the prime factors of $\operatorname{gcd}\left(N, N^{\prime}\right)$. Notice the odd part of $\operatorname{gcd}\left(N, N^{\prime}\right)$ equals to the odd part of N, so the congruence formula in Theorem 3.1 implies
(1) $\prod_{\ell \mid 2 d} \frac{\left|\tilde{E}^{\mathrm{ns}}\left(\mathbb{F}_{\ell}\right)\right|}{\ell} \cdot \log _{\omega_{E}} P \equiv \pm \prod_{\ell \mid 2 d} \frac{\left|\tilde{E}^{(d), \mathrm{ns}}\left(\mathbb{F}_{\ell}\right)\right|}{\ell} \cdot \log _{\omega_{E^{(d)}}} P^{(d)} \quad(\bmod 4)$.

For $\ell=|d|$, we have

$$
\left|E\left(\mathbb{F}_{\ell}\right)\right| \not \equiv 0 \quad(\bmod 4)
$$

by the definition of \mathcal{S}. Now Assumption $\star \star$ implies that the left-hand-side of (1) is nonzero mod 4 . Hence the right-hand-side of (1) is also nonzero. In particular, the Heegner point $P^{(d)} \in E^{(d)}(K)$ is non-torsion, and hence $r_{\text {an }}\left(E^{(d)} / K\right)=1$ by the theorem of Gross-Zagier [3] and Kolyvagin [6], [5], as desired.

4. Proof of Theorem 1.7

4.1. Elliptic curves with partial 2-torsion and no rational cyclic 4-isogeny

Let E be an elliptic curve of conductor N. Assume $E(\mathbb{Q})[2] \cong \mathbb{Z} / 2 \mathbb{Z}$. Then $\mathbb{Q}(E[2]) / \mathbb{Q}$ is the quadratic extension $\mathbb{Q}\left(\sqrt{\Delta_{E}}\right)$, where Δ_{E} is the discriminant of a Weierstrass equation of E.

Let $\phi: E \rightarrow E_{0}:=E / E(\mathbb{Q})[2]$ be the natural 2-isogeny. By [4, Lem. 4.2 (i)], E has no rational cyclic 4-isogeny if and only if $\mathbb{Q}\left(E_{0}[2]\right) / \mathbb{Q}$ is a quadratic extension. Assume we are in this case, then $\mathbb{Q}\left(E_{0}[2]\right)=\mathbb{Q}\left(\sqrt{\Delta_{E_{0}}}\right)$.

Lemma 4.1. Let $\ell \nmid N$ be a prime. Then the following are equivalent:

1) $\left|E\left(\mathbb{F}_{\ell}\right)\right| \not \equiv 0(\bmod 4)$,
2) $E\left(\mathbb{F}_{\ell}\right)[2] \cong E_{0}\left(\mathbb{F}_{\ell}\right)[2] \cong \mathbb{Z} / 2 \mathbb{Z}$,
3) ℓ is inert in both $\mathbb{Q}(E[2])$ and $\mathbb{Q}\left(E_{0}[2]\right)$.

Proof. Since E and E_{0} are isogenous and ℓ is a prime of good reduction, we know that $\left|E\left(\mathbb{F}_{\ell}\right)\right|=\left|E_{0}\left(\mathbb{F}_{\ell}\right)\right|$. So $\left|E\left(\mathbb{F}_{\ell}\right)\right| \not \equiv 0(\bmod 4)$ if and only if $\left|E_{0}\left(\mathbb{F}_{\ell}\right)\right| \not \equiv 0(\bmod 4)$. In this case, certainly (2) holds. Conversely, if (2) holds, then $E\left(\mathbb{F}_{\ell}\right)[4] \cong \mathbb{Z} / 2 \mathbb{Z}$ (otherwise $E\left(\mathbb{F}_{\ell}\right)[4] \cong \mathbb{Z} / 4 \mathbb{Z}$, and thus $E_{0}\left(\mathbb{F}_{\ell}\right)[2]$ $\cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ generated by $\phi\left(E\left(\mathbb{F}_{\ell}\right)[4]\right)$ and the kernel of the dual isogeny $\left.\hat{\phi}: E_{0} \rightarrow E\right)$, hence $\left|E\left(\mathbb{F}_{\ell}\right)\right| \not \equiv 0(\bmod 4)$. We have shown that (1) is equivalent to (2).

Moreover, $E\left(\mathbb{F}_{\ell}\right)[2] \cong \mathbb{Z} / 2 \mathbb{Z}$ (resp. $\left.\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}\right)$ if and only if $\mathbb{Q}_{\ell}(E[2]) /$ \mathbb{Q}_{ℓ} is a quadratic extension (resp. the trivial extension), if and only if ℓ is inert (resp. split) in $\mathbb{Q}(E[2])$. Similarly we know that $E_{0}\left(\mathbb{F}_{\ell}\right)[2] \cong \mathbb{Z} / 2 \mathbb{Z}$ if and only if ℓ is inert in $\mathbb{Q}\left(E_{0}[2]\right)$. It follows that (2) is equivalent to (3).

4.2. Proof of Theorem 1.7

By assumption, the fields $\mathbb{Q}\left(E[2], E_{0}[2]\right), \mathbb{Q}(\sqrt{q})(q$ runs all odd prime $q \| N)$ are linearly disjoint. Since K satisfies the Heegner hypothesis for N and 2 splits in K, we know the discriminant d_{K} of K is coprime to $2 N$, hence K is also linearly disjoint from the fields $\mathbb{Q}\left(E[2], E_{0}[2]\right)$ and $\mathbb{Q}(\sqrt{q})$'s. It follows from Chebotarev's density that there is a positive density set \mathcal{T} of primes $\ell \nmid 2 N$ such that

1) ℓ is split in K,
2) ℓ is inert in both $\mathbb{Q}(E[2])$ and $\mathbb{Q}\left(E_{0}[2]\right)$,
3) ℓ is split in $\mathbb{Q}(\sqrt{q})$ for any odd prime $q \| N$.

By Lemma 4.1, we know $\mathcal{T} \subseteq \mathcal{S}$. For $\ell \in \mathcal{T}$, we consider $d=\ell^{*}:=$ $(-1)^{(\ell-1) / 2} \ell$. By the quadratic reciprocity law, we know that odd $q \| N$ is split in $\mathbb{Q}\left(\sqrt{\ell^{*}}\right)$ if and only if ℓ is split in $\mathbb{Q}(\sqrt{q})$. In particular, for any $\ell \in \mathcal{T}$, we have $\ell^{*} \in \mathcal{N}$. Now Theorem 1.4 implies that $r_{\mathrm{an}}\left(E^{\left(\ell^{*}\right)} / K\right)=1$. Moreover,

$$
r_{\mathrm{an}}\left(E^{\left(\ell^{*}\right)} / \mathbb{Q}\right)= \begin{cases}0, & w\left(E^{\left(\ell^{*}\right)} / \mathbb{Q}\right)=+1 \\ 1, & w\left(E^{\left(\ell^{*}\right)} / \mathbb{Q}\right)=-1\end{cases}
$$

Since $\mathbb{Q}\left(\sqrt{\ell^{*}}\right)$ has discriminant coprime to $2 N$, we have the well known formula

$$
w\left(E^{\left(\ell^{*}\right)} / \mathbb{Q}\right)=w(E / \mathbb{Q}) \cdot\left(\frac{\ell^{*}}{-N}\right) .
$$

By the quadratic reciprocity law, we obtain

$$
w\left(E^{\left(\ell^{*}\right)} / \mathbb{Q}\right)=w(E / \mathbb{Q}) \cdot\left(\frac{-N}{\ell}\right)
$$

By assumption, $\mathbb{Q}(\sqrt{-N})$ is also linearly disjoint from the fields considered above, hence the global root number $w\left(E^{\left(\ell^{*}\right)} / \mathbb{Q}\right)$ takes both signs for a positive proportion of $\ell \in \mathcal{T}$ by Chebotarev's density. Therefore $r_{\text {an }}\left(E^{\left(\ell^{*}\right)} / \mathbb{Q}\right)$ takes both values 0 and 1 for a positive proportion of $\ell \in \mathcal{T}$, as desired.

Acknowledgements

The examples in this note are computed using Sage ([11]).

References

[1] B. J. Birch, Elliptic curves and modular functions, in: Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69), pp. 27-32, Academic Press, London (1970).
[2] J. Coates, Y. Li, Y. Tian, and S. Zhai, Quadratic twists of elliptic curves, Proc. Lond. Math. Soc. (3) 110 (2015), no. 2, 357-394.
[3] B. H. Gross and D. B. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84 (1986), no. 2, 225-320.
[4] Z. Klagsbrun, Selmer ranks of quadratic twists of elliptic curves with partial rational two-torsion, Trans. Amer. Math. Soc. 369 (2017), no. 5, 3355-3385.
[5] V. A. Kolyvagin, Finiteness of $E(\mathbf{Q})$ and $\amalg(E, \mathbf{Q})$ for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 522-540, 670-671.
[6] V. A. Kolyvagin, Euler systems, in: The Grothendieck Festschrift, Vol. II, Vol. 87 of Progr. Math., pp. 435-483, Birkhäuser Boston, Boston, MA (1990).
[7] D. Kriz and C. Li, Goldfeld's conjecture and congruences between Heegner points, Forum Math. Sigma 7 (2019), e15, 80pp.
[8] P. Monsky, Mock Heegner points and congruent numbers, Math. Z. 204 (1990), no. 1, 45-67.
[9] K. Ono, Twists of elliptic curves, Compositio Math. 106 (1997), no. 3, 349-360.
[10] K. Ono and C. Skinner, Non-vanishing of quadratic twists of modular L-functions, Invent. Math. 134 (1998), no. 3, 651-660.
[11] T. Sage Developers, SageMath, the Sage Mathematics Software System (Version 7.2) (2016). http://www.sagemath.org.
[12] N. M. Stephens, Congruence properties of congruent numbers, Bull. London Math. Soc. 7 (1975), 182-184.

Department of Mathematics, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
E-mail address: dkriz@mit.edu

Department of Mathematics, Columbia University
2990 Broadway, New York, NY 10027, USA
E-mail address: chaoli@math.columbia.edu
Received November 27, 2017

