
i
i

“2-Sivek” — 2019/11/13 — 15:52 — page 1281 — #1 i
i

i
i

i
i

Math. Res. Lett.
Volume 26, Number 5, 1281–1290, 2019

Khovanov homology detects the

Hopf links

John A. Baldwin, Steven Sivek, and Yi Xie

We prove that any link in S3 whose Khovanov homology is the
same as that of a Hopf link must be isotopic to that Hopf link.
This holds for both reduced and unreduced Khovanov homology,
and with coefficients in either Z or Z/2Z.

Khovanov homology [4] associates to each link L ⊂ S3 a bigraded group
Kh∗,∗(L), whose graded Euler characteristic recovers the Jones polynomial
VL(q), as well as a reduced variant Kh∗,∗red(L) [5]. In their landmark paper
[8], Kronheimer and Mrowka proved that Khovanov homology detects the
unknot. Since then, Khovanov homology has been shown to detect both
the n-component unlink for all n [2] and the trefoils [1]. In this article, we
prove the same for the Hopf links H±, which are oriented so that the two
components have linking number ±1. This is the first Khovanov homology
detection result for any nontrivial link with more than one component.

Recall that the Khovanov homology of H± is given by

Kh(H+;Z) ∼= Z(0,0) ⊕ Z(0,2) ⊕ Z(2,4) ⊕ Z(2,6)

Kh(H−;Z) ∼= Z(0,0) ⊕ Z(0,−2) ⊕ Z(−2,−4) ⊕ Z(−2,−6)

where Z(h,q) denotes a copy of Z in bigrading (h, q). The reduced Khovanov
homology of a link depends in general on a choice of distinguished compo-
nent, which we typically suppress from the notation, but we have that

Khred(H+;Z) ∼= Z(0,1) ⊕ Z(2,5)

Khred(H−;Z) ∼= Z(0,−1) ⊕ Z(−2,−5)

regardless of this choice. Our main result is the following.
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Theorem 1. Let L be a link in S3 such that either Kh(L) ∼= Kh(H±) or
Khred(L) ∼= Khred(H±) as bigraded groups, with coefficients in either Z or
Z/2Z. Then L = H±.

Our proof makes use of a handful of spectral sequences involving Kho-
vanov homology. First, we combine Batson and Seed’s link splitting spectral
sequence [2] with Kronheimer and Mrowka’s spectral sequence converging
to singular instanton knot homology [8] to conclude that a link L satisfying
the hypotheses of Theorem 1 must have exactly two unknotted components
with linking number ±1. The hypotheses on L also determine the module
structure on Khred(L). Given this module structure, we apply a refinement
by the third author [13] of Kronheimer and Mrowka’s spectral sequence to
conclude that the instanton knot homology KHI (L) of [7] has rank at most
4. Finally, we use all of the above to determine the Alexander grading on
KHI (L), which tells us that L has Seifert genus zero, and we conclude that
L must be a Hopf link.

If L is a link with r components, then Kh∗,∗(L) is invariant as a module
over the ring

Rr = Z[x1, . . . , xr]/〈x21, . . . , x2r〉

[3, 5], in which each xi preserves the h (“homological”) grading while lower-
ing the q (“quantum”) grading. If we define the reduced Khovanov homology
of L using the component which corresponds to xr, then Kh∗,∗red(L) is a mod-
ule over Rr−1. We begin by determining this module structure.

Proposition 2. Let L be a link in S3, and let H be either H+ or H−. Let
F = Z/2Z. Suppose that any one of the following is true as an isomorphism
of bigraded groups:

1) Kh(L;Z) ∼= Kh(H;Z).

2) Kh(L;F) ∼= Kh(H;F).

3) Khred(L;Z) ∼= Khred(H;Z) for some choice of component of L.

4) Khred(L;F) ∼= Khred(H;F) for some choice of component of L.

Then L has exactly two components, which are both unknots, and if H = H±
then their linking number is ±1. Moreover, we have rank Khred(L;Z) = 2,
with

Khred(L;Q) ∼=

{
Q(0,1) ⊕Q(2,5), H = H+

Q(0,−1) ⊕Q(−2,−5), H = H−,
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and the R1-action on Khred(L;Q) is trivial.

Proof. Suppose that H = H+; the case of H− is identical. We first claim
that each of conditions (1), (2), and (3) implies condition (4), and then use
the latter to prove the rest of the proposition. Certainly (1) implies (2) and
(3) implies (4) by the universal coefficient theorem. Moreover, (2) and (4)
are equivalent by the identity

Khh,q(K;F) ∼= Khh,q−1
red (K;F)⊕Khh,q+1

red (K;F)

where K is an arbitrary link [11, Corollary 3.2.C], so this proves the claim.

We suppose from now on that condition (4) holds; since this is equivalent
to (2), we have

Kh(L;F) ∼= F(0,0) ⊕ F(0,2) ⊕ F(2,4) ⊕ F(2,6)

Khred(L;F) ∼= F(0,1) ⊕ F(2,5).

If L were a knot, then the rank of Khred(L;F) would be congruent mod 2 to
VL(−1) = ±det(L) ≡ 1 (mod 2), so L must be a link, say L = K1 ∪K2 ∪
· · · ∪Kr with r ≥ 2.

We apply the rank inequality [2, Corollary 1.6] derived from Batson and
Seed’s link splitting spectral sequence, namely that if K is any field then

(1) rank Kh(L;K) ≥ rank

r⊗
i=1

Kh(Ki;K).

For K = F, the left side is 4 while the right side is at least 2r with equality if
and only if Ki is unknotted [8], so r = 2 and K1 and K2 are both unknotted.
(See [2, Proposition 7.1].) In fact, this inequality respects the grading ` =
h− q: Define

rank` Kh(K;F) = rank

 ⊕
h−q=`

Khh,q(K;F)

 .

If we let t = 2 lk(K1,K2), then [2, Corollary 4.4] says that

rank` Kh(L;F) ≥ rank`+t

(⊗
i

Kh(Ki;F)

)
= rank`+t

(
F(0,−1) ⊕ F(0,1)

)⊗2
.
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The left side has ranks 1, 2, 1 in `-gradings 0,−2,−4 respectively, and the
right side has rank 2 when `+ t = 0, so we must have −2 + t = 0, or
lk(K1,K2) = 1

2 t = 1.

Finally, applying the inequality (1) with K=Q says that rank Kh(L;Q)≥
4, and there is an exact triangle

· · · → Kh(L;Q)→ Khred(L;Q)→ Khred(L;Q)→ · · · ,

so we must have rank Khred(L;Q) ≥ 2. Applying the universal coefficient
theorem repeatedly, we determine first that rank Khred(L;Z) ≥ 2, and that
if this inequality is strict then rank Khred(L;F) > 2 as well, which is false.
Thus rank Khred(L;Z) = 2 = rank Khred(L;F), and so the Z summands of
the former have the same bigrading as the F summands of the latter. We
deduce from this that

Khred(L;Q) ∼= Q(0,1) ⊕Q(2,5).

Now if we pick a distinguished component of L so that Khred(L;Q) is a mod-
ule over R1 = Z[x1]/〈x21〉, then x1 acts with square zero on each Khh,∗

red(L;Q),
which is either 0 or Q, and so it must act trivially as claimed. �

We will now make use of Kronheimer and Mrowka’s instanton knot ho-
mology KHI , defined in [7] and extended to links in [6]. They showed in [8]
that for any knot K, the complex vector space KHI (K) is isomorphic to the
reduced singular instanton knot homology I\(K;C), and using a spectral
sequence Kh(K)⇒ I\(K) they deduced a rank inequality

rank Khred(K) ≥ rank KHI (K).

Based on results in [7], this proved that Khred has rank 1 if and only if K is
unknotted. The third author [13] extended this from knots to pointed links
and incorporated the module structure on Khovanov homology to prove the
following.

Theorem 3 ([13, Theorem 5.4]). Let L be a link of r components in S3,
and fix a base point on the rth component, equipping Khred(L;Z) with an
Rr−1-module structure. Let X ′ = (x1, . . . , xr−1) ∈ R⊕r−1r−1 . Then

rank KHI (L) ≤ rankH∗(Khred(L;Z)⊗Rr−1
K(X ′)),
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where K(X ′) is the Koszul complex

0→ Rr−1
∧X′−−→ Λ1R⊕r−1r−1

∧X′−−→ Λ2R⊕r−1r−1
∧X′−−→ · · · ∧X

′

−−→ Λr−1R⊕r−1r−1 → 0.

Proposition 4. Let L ⊂ S3 be a link satisfying any of the hypotheses of
Proposition 2. Then rank KHI (L) ≤ 4.

Proof. Proposition 2 tells us that L is a 2-component link, and that
Khred(L;Q) ∼= Q2 has a trivial action of R1 = Z[x1]/〈x21〉. In this case the
Koszul complex K(X ′) is

0→ R1
·x1−−→ R1 → 0,

and Khred(L;Q) ∼= (R1/〈x1〉 ⊗Z Q)⊕2 as R1-modules. The complex

(R1/〈x1〉 ⊗Z Q)⊗R1
K(X ′) =

(
0→ Q 0−→ Q→ 0

)
has cohomology Q2, so we conclude that

rankH∗(Khred(L;Z)⊗R1
K(X ′)) = 4

and the proposition now follows from Theorem 3. �

For links in S3 (and more generally for null-homologous links with a
choice of Seifert surface), instanton knot homology is equipped with an
Alexander grading

KHI (L) =

g−1+r⊕
j=−g+1−r

KHI (L, j),

where L has r components and Seifert genus g. This grading is symmet-
ric in the sense that KHI (L, j) ∼= KHI (L,−j) for all j. Each KHI (L, j) is
canonically Z/2Z-graded, and the Euler characteristics of these summands
determine the Alexander polynomial of L by

(2)
∑
j

χ(KHI (L, j))tj = −(t1/2 − t−1/2)r−1∆L(t).

See [6, Theorem 3.6] or [9].
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Let ∆̃L(t1, t2) denote the multivariable Alexander polynomial of a 2-
component link L = K1 ∪K2. This is related to the single-variable Alexan-
der polynomial ∆L(t) by

∆L(t) = ±(t1/2 − t−1/2)∆̃L(t, t),

see e.g. [10, Lemma 10.1]. It follows from (2) that∑
j

χ(KHI (L, j))tj = ±(t1/2 − t−1/2)2∆̃L(t, t),

and hence that the right side of

(3) ∆̃L(t, t) = ±

(∑
j χ(KHI (L, j))tj

t− 2 + t−1

)

must be a Laurent polynomial, i.e. that t− 2 + t−1 divides the numerator.
Torres [12] proved that ∆̃L(t1, t2) also satisfies ∆̃L(1, 1) = ± lk(K1,K2).

Proposition 5. Let L = K1 ∪K2 be a two-component link with lk(K1,K2)
= ±1. If rank KHI (L) ≤ 4, then

KHI (L) = C1 ⊕ (C⊕2)0 ⊕ C−1,

where the subscripts denote the Alexander grading, and ∆L(t) = ±(t1/2 −
t−1/2).

Proof. We first claim that in fact KHI (L) is nonzero in at least three differ-
ent Alexander gradings. If not, then (3) has the form

∆̃L(t, t) = ±
(
c1t

e1 + c2t
e2

t− 2 + t−1

)
for some integers c1, c2 which are not both zero and some integers e1 6=
e2. (The numerator cannot be identically zero because then ∆̃L(t, t) = 0,
contradicting ∆̃L(1, 1) = ±1.) The denominator has a double root at t = 1,
so it cannot divide the numerator, which is either a monomial (and is thus
nonzero when t = 1) or a binomial with only simple roots, and we have a
contradiction.

Next, we show that rank KHI (L) = 4. It is already at least three, since
it has positive rank in each of at least three Alexander gradings. But the
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rank must be even, since it has the same parity as
∑

j χ(KHI (L, j))(−1)j

and this sum is equal to ±4∆̃L(−1,−1) ∈ 4Z by setting t = −1 in (3). Thus
the total rank is 4 as claimed.

We let m > k be the two largest Alexander gradings in which KHI (L)
is nonzero. By symmetry −m is the lowest such grading, so −m < k < m;
then KHI (L,−k) 6= 0 as well, so we must have had k ≥ 0. If k > 0 then
KHI (L, j) has positive rank for each of j = ±m,±k, and its total rank is 4,
so it must have rank exactly one in each of these gradings. Otherwise k = 0,
and by symmetry we have rank(KHI (L)) ≡ rank(KHI (L, 0)) (mod 2); the
former is even, so the latter is as well, and KHI (K, j) now has rank at least
1, 2, 1 for each of j = m, 0,−m and total rank 4. In either case we conclude
that

KHI (L) ∼= Cm ⊕ Ck ⊕ C−k ⊕ C−m

where m > k ≥ 0.

We do not know the Z/2Z grading of each summand, but from (3) there
must be signs εm, εk, ε−k, ε−m ∈ {±1} such that

∆̃L(t, t) = ±
(
εmt

m + εkt
k + ε−kt

−k + ε−mt
−m

t− 2 + t−1

)
.

The numerator must be a multiple of (t− 1)2, so both it and its derivative
are zero at t = 1, giving us the conditions

εm + εk + ε−k + ε−m = 0, m(εm − ε−m) + k(εk − ε−k) = 0.

From the second equation we have εm = ε−m, or else the first term would
have magnitude 2m and thus be strictly greater than |k(εk − ε−k)| ≤ 2k; and
from

∑
εj = 0 we now have εk + ε−k = −2εm, so that εk = ε−k = −εm. We

conclude that

∆̃L(t, t) = ±
(
tm − tk − t−k + t−m

t− 2 + t−1

)
.

Finally, we use the fact that ∆̃L(1, 1) = ±1 to determine m and k. Given
an equation involving Laurent polynomials of the form p(t) = tc(t− 1)2q(t)
we have q(1) = 1

2p
′′(1), and so taking p(t) = ±(tm − tk − t−k + t−m) and

q(t) = ∆̃L(t, t) gives us

∆̃L(1, 1) = ±1

2

d2

dt2
(tm − tk − t−k + t−m)

∣∣∣∣
t=1

= ±(m2 − k2).
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Since m > k ≥ 0, this can only be equal to ±1 if m = 1 and k = 0. Thus
KHI (L) is exactly as claimed, while ∆̃L(t, t) = ±1 and ∆L(t) = ±(t1/2 −
t−1/2)∆̃L(t, t) = ±(t1/2 − t−1/2). �

We now know enough about any link L with the same Khovanov homol-
ogy as a Hopf link H± to determine its link type.

Proof of Theorem 1. We have L = K1 ∪K2, with both Ki unknotted and
lk(K1,K2) = ±1, by Proposition 2. Proposition 4 gives us the bound
rank KHI (L) ≤ 4, so then

KHI (L) ∼= C1 ⊕ (C⊕2)0 ⊕ C−1

by Proposition 5, where again the subscripts denote the Alexander grading.

We now claim that the Seifert genus of L is 0, as a consequence of the
more general

g(L) + r − 1 = max{j | KHI (L, j) 6= 0}

for r-component links in S3 with irreducible complement. This generalizes
the case r = 1 of [7, Proposition 7.16], and the proof is essentially the same.
If Σ is a genus-g Seifert surface for L, then we identify the appropriate
Alexander grading with a sutured instanton homology group,

KHI (L, g + r − 1) ∼= SHI (S3(Σ)),

where S3(Σ) is obtained by cutting open the complement of L (with a pair
of meridional sutures on each component) along Σ. (The reason for the shift
by r − 1 is that the jth Alexander grading is the generalized 2j-eigenspace
of an operator µ(Σ̄) on the instanton homology of some closed manifold,
and the maximal real eigenvalue of µ(Σ̄) is 2g(Σ̄)− 2 = 2(g + r − 1), as in
[6, §2.5].) If Σ is genus-minimizing then S3(Σ) is a taut sutured manifold,
so SHI (S3(Σ)) 6= 0 by [7, Theorem 7.12] and the claim follows.

Thus L bounds an annulus A, and the core of A is isotopic to either of
the unknots Ki on its boundary. The boundary is in particular a cable of
the unknot, and the only such 2-component links with linking number ±1
are the positive and negative Hopf links. �
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