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The character field theory and homology

of character varieties

David Ben-Zvi, Sam Gunningham, and David Nadler

We construct an extended oriented (2 + ε)-dimensional topological
field theory, the character field theory XG attached to a affine alge-
braic group in characteristic zero, which calculates the homology
of character varieties of surfaces. It is a model for a dimensional re-
duction of Kapustin-Witten theory (N = 4 d = 4 super-Yang-Mills
in the GL twist), and a universal version of the unipotent character
field theory introduced by two of the authors. Boundary conditions
in XG are given by quantum Hamiltonian G-spaces, as captured by
de Rham (or strong) G-categories, i.e., module categories for the
monoidal dg category D(G) of D-modules on G. We show that the
circle integral XG(S1) (the center and trace of D(G)) is identified
with the category D(G/G) of “class D-modules”, while for an ori-
ented surface S (with arbitrary decorations at punctures) we show
that XG(S) ' HBM

∗ (LocG(S)) is the Borel-Moore homology of the
corresponding character stack. We also describe the “Hodge filtra-
tion” on the character theory, a one parameter degeneration to a
TFT whose boundary conditions are given by classical Hamilto-
nian G-spaces, and which encodes a variant of the Hodge filtration
on character varieties.

1. Introduction

Let us fix a field k of characteristic zero and an affine algebraic group G over
k – for example a complex reductive group.

1.1. Summary of results

Given a topological surface S, the character stack (or Betti space) LocG(S)
is the (derived) stack of G-local systems on S, i.e. of representations of the
fundamental (∞-)groupoid of S into G. In particular for a pointed connected
oriented surface of positive genus g, LocG(S) is the quotient by G of the
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1314 D. Ben-Zvi, S. Gunningham, and D. Nadler

(derived) fiber of the map G2g → G given by

(A1, B1, . . . , Ag, Bg) 7→ ΠiAiBiA
−1
i B−1

i .

We denote by Cat the (∞, 1)-category of k-linear stable presentable∞-
categories (or equivalently differential graded categories) where morphisms
are colimit-preserving functors. We denote by Alg(1)Cat the Morita (∞, 2)-
category of algebra objects in Cat (i.e., monoidal dg categories). (See Sec-
tion 2.1 for the relevant definitions.)

Theorem 1.1. There is a 2d oriented TFT, i.e., symmetric monoidal func-
tor

XG : Bordor2 → Alg(1)(Cat),

which assigns the following invariants:

• To a point, XG assigns the “categorical group algebra” D(G) of D-
modules on G under convolution.

• To a circle, XG assigns the category D(G)G of G-equivariant D-modules
(“class sheaves”) on G.

• To a closed oriented surface S, XG assigns the Borel-Moore chains
CBM∗ (LocG(S)).

• More generally to any oriented surface with boundary S, ∂S =
∂inS

∐
∂outS , XG assigns a functor D(LocG(∂inS))→ D(LocG(∂outS)

which is identified with the integral transform q∗p
! along the correspon-

dence

LocG(S)
p

ww

q

''

LocG(∂inS) LocG(∂out(S))

In this context, the Borel-Moore chains CBM∗ (LocG(Σ)) means the renor-
malized G-equivariant Borel-Moore chains of Hom(π1(Σ, x), G) (see Sec-
tion 2.3). The categorical group algebra D(G) is Morita equivalent to the
monoidal category HCG of Harish-Chandra bimodules [5, Theorem 3.5.7], as
well as (for G reductive) to the universal Hecke categories D(N\G/N) and
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The character field theory 1315

D(H)(N\G/N)(H) [3]; any of these monoidal categories may be considered
as the value of XG on a point1.

1.1.1. Twisted Character Stacks. Given a finite subset {xi} of S la-
beled by conjugacy classes {γi} in G (i = 1, . . . , k), we likewise consider the
stack LocG(S, xi, γi) of local systems on S \ {xi} with monodromy around
xi contained in γi. The TFT XG encodes the Borel-Moore chains of
LocG(S, xi, γi) as follows. The punctured surface, considered as a cobordism

from k circles to the empty 1-manifold, is assigned a functor from
(
D(G)G

)⊗k
to Vect. Thus XG assigns a chain complex to a punctured surface (S, xi)
where each puncture is decorated with with an object Fi ∈ D(G)G. Taking
the Fi = δγi , the D-module of δ-functions on γi, we obtain the homology of
the twisted character stack.

Example 1.2. In the case G = SLn, consider the case where the surface
has a single puncture, decorated with a primitive nth-root of the identity
matrix. This stack is represented by a Z/nZ-gerbe over a smooth affine vari-
ety, the twisted character variety appearing in the work of Hausel, Letellier
and Rodriguez-Villegas [14, 15]. The finite gerbe does not affect the coho-
mology, thus the values of the TFT XSLn

encode the cohomology groups
of the twisted character varieties studied in loc. cit. Similarly, the values of
the twisted GLn character variety are encoded by XGLn

, where they appear
with an extra factor consisting of the Z(GLn)-equivariant homology of a
point.

1.1.2. Classical Limit and Hodge Filtration. Recall that the classi-
cal Rees construction identifies filtered modules with flat Gm-equivariant
quasicoherent sheaves over A1, recovering our module as the fiber at 1 and
its associated graded as the fiber at 0. For example the filtrations on en-
veloping algebras Ug and differential operators DX are embodied by the
corresponding Rees constructions, which are Gm-equivariant algebras U~g
andD~,X over A1 with special fiber the associated graded algebras Sym g and
O(T ∗X). In the nonlinear setting following [19] (see [13, IV.5.1] in the de-
rived setting) one may define a filtration on an object to be a Gm-equivariant
family over A1 recovering our object as the fiber at 1.

Categories of D-modules have a natural filtration and resulting degen-
eration to their classical analog, in which D-modules are replaced by quasi-
coherent sheaves on cotangent stacks. In particular the monoidal category

1We will use the notations (−)(G), (−)(G) for a group G to denote weak G-
(co)invariants, reserving (−)G, (−)G for strong (co)invariants.
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D(G) has a classical analog, the category QC(T ∗G) with monoidal structure
given by convolution: we consider T ∗G, with its two (left and right) projec-
tions to g?, as a groupoid over g? (the action groupoid for the coadjoint ac-
tion of G ), so that quasi coherent sheaves QC(T ∗G) acquires a convolution
monoidal structure. Just as D(G) is Morita equivalent to HCG, Gaitsgory’s
1-affineness theorem [12] implies that QC(T ∗G) is Morita equivalent to the
rigid symmetric monoidal category

HC0,G = QC(g?/G) ' QC(G\T ∗G/G).

The monoidal categories QC(T ∗G) and HC0,G are naturally graded, i.e.,
have a structure of algebras over QC(Gm) (or of sheaves of monoidal cate-
gories over pt/Gm).

We can interpolate between D(G) and QC(T ∗G) (or between HCG and
HC0,G) using the Rees construction for the standard filtration on D(G)
(equivalently by considering sheaves on Simpson’s Hodge filtration GHod on
GdR [19]). The result is a filtered monoidal category2 – D~(G) ∈ Catfilt
– i.e., a Gm equivariant family of monoidal categories D~(G) for ~ ∈ A1

(a family of monoidal categories over A1/Gm, or by [12] an algebra over
QC(A1/Gm)). The ∞-categorical theory of the filtration on D-modules and
the Rees construction is developed in [13, IV.4-5].

Theorem 1.1 can be generalized as follows:

Theorem 1.3. There is a filtered 2d oriented TFT

X~,G : Bordor2 → Alg(1)(Catfilt),

with X1,G ' XG and the associated graded theory X0,G has the following val-
ues:

• To a point, X0,G assigns the monoidal category QC(g?/G).

• To a circle, X0,G assigns QC(T ∗(G/G)).

• To a closed oriented surface S, X0,G assigns the “Dolbeault homology”
of the character stack,

Γ(LocG(S)Dol;ω)

More generally the value on an oriented surface with boundary is given
by integral transforms along LocG(S).

2Motivated by our context, we will use the potentially confusing terminology
filtered categories Catfilt for categories over A1/Gm, i.e., “Rees categories”.
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The character field theory 1317

Moreover the resulting filtration on X1,G(S) coincides with the cohomology
of the Hodge filtration on the dualizing complex of LocG(S).

Remark 1.4. As observed in [2], the symmetric monoidal category QC(X)
defines an oriented TFT for any perfect stack X, defined by applying the
pull/push functors for quasi-coherent sheaves on correspondences of map-
ping stacks defined by cobordisms. The TFT X0,G assigns QC(g∗/G) to a
point, but it carries a different Calabi-Yau structure (i.e., different extension
from framed to oriented TFT), arising from a similar pull/push formalism
but for Ind-coherent sheaves on Dolbeault stacks.

The filtration on the Borel-Moore homology of LocG(S) that arises is
the Hodge filtration studied in [13, IV.5.5], the derived version of the so-
called “naive” Hodge filtration, i.e. the filtration arising from the de Rham
to Dolbeault degeneration of the (non-proper, and not necessarily smooth)
character stack (a form of the Hodge filtration of cyclic homology [23]). As
remarked upon in [21, 23], the naive Hodge filtration filtration on a (non-
smooth or non-proper) variety does not always agree with the Deligne Hodge
filtration from the theory of mixed Hodge structures. Nonetheless, we expect
that for character stacks these filtrations do, indeed, agree:

Conjecture 1.5. The naive Hodge filtration on the Borel-Moore homology
of character stacks for complex reductive G agrees with the Hodge filtration
in the sense of mixed Hodge structure.

For a mixed Hodge structure of Tate type, the Hodge filtration and
the weight filtration agree up to reindexing. Thus, Conjecture 1.5 implies
that the mixed Hodge polynomials of character stacks of complex reductive
groups are encoded in the TFT X~,G.

Remark 1.6 (Filtered proofs). The proof of Theorem 1.3 closely imi-
tates the proof of Theorem 1.1 but is notationally more cumbersome and the
background less documented in the literature. We therefore confine ourself
throughout the text to proofs in the unfiltered setting and accompanying
remarks explaining the necessary modifications for the filtered version.

1.2. Motivation: Character varieties

The cohomology of character varieties of complex reductive groups is a sub-
ject of great interest and extremely rich structure, see in particular [7, 14, 15].
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In [15] the cohomology of character varieties is studied using the counts of
points of character varieties of the finite Lie groups G(F ) for F a finite field.
Such counts are well known to fit in the framework of topological field the-
ory. Namely for any finite group Γ there is an extended 2d topological field
theory ZΓ (topological Γ-Yang-Mills theory, see for example [9, 10]), which
assigns to any closed oriented surface S the count of Γ-bundles

ZΓ(Σ) = #{Hom(π1(Σ),Γ)/Γ} ∈ C

where as usual a bundle P is weighted by 1/Aut(P). This is the volume
of the orbifold of Γ-bundles on the surface. To a circle, ZΓ assigns class
functions:

ZΓ(S1) = C[Γ]Γ = C[Γ/adΓ] ∈ VectfdC ,

the vector space of functions on the orbifold of Γ-bundles on the circle. To a
point, ZΓ assigns the category of finite-dimensional representations of Γ (or
C[Γ]-modules)

ZΓ(pt) = RepfdC (Γ) ∈ AbCatC.

This is the category of finite-dimensional algebraic vector bundles on the
orbifold of Γ-bundles on a point. Equivalently we may consider ZΓ as tak-
ing values in the Morita 2-category of associative algebras, and assigning
ZΓ(pt) = C[Γ]. The value of a field theory Z on a point encodes the cat-
egory of boundary conditions of Z (with morphisms given by interfaces).
Thus boundary conditions for ZΓ are given by representations of Γ – e.g.,
the space of functions C[X] on any finite Γ-set X. By the Cobordism Hy-
pothesis [16] this assignment in turn recovers the rest of the structure of the
field theory.

In this paper we show that the Borel-Moore homologies of the complex
character stacks LocG(S) are themselves the output on S of an extended
topological field theory XG, a categorified analog of the finite group theory
ZΓ. The role of functions on finite sets in the construction of ZΓ is taken up
by D-modules on varieties and stacks in the construction of XG. In particular
the value XG(S1) on the circle is given by “class D-modules”, i.e. adjoint
equivariant D-modules on the group G, or D-modules on LocG(S1) ' G/G.

There is likewise a natural categorification of the group algebra C[Γ],
namely the monoidal category D(G) of D-modules on the group G under
convolution. In order to apply the cobordism hypothesis and construct a
topological field theory out of a monoidal category C, we need it to satisfy a
strong finiteness condition, 2-dualizability, and for the resulting TFT to be
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The character field theory 1319

defined on all oriented surfaces we further need to equip C with a nondegen-
erate cyclic trace - a Calabi-Yau structure. A natural finiteness condition to
ask for a monoidal category is that it be rigid, i.e. that [compact] objects
have left and right duals. Indeed in [4] it is shown that rigid monoidal cat-
egories are 2-dualizable. This result was applied to construct the unipotent
character theory of a reductive group G starting from the Hecke category
D(B\G/B). However D(G) is not rigid when G is not finite, and thus it was
not clear (and indeed was not expected by experts) that D(G) should be
2-dualizable.

The construction of an extended field theory from a monoidal category
C however depends on C only up to Morita equivalence (i.e., only its 2-
category C −mod of module categories). As pointed out in [5], Gaitsgory’s
fundamental 1-affineness theorem [12] implies thatD(G) is Morita equivalent
to the rigid monoidal category HCG of Harish-Chandra bimodules (and
hence is 2-dualizable). Recall that

HCG = D(G)(G)(G) = Mod
(G)
g = ModGg⊗g

is the convolution category of left- and right-weakly G-equivariant D-
modules on G – or more concretely, Ug-bimodules which are integrable to
G under the diagonal action. We further prove the following:

Theorem 1.7. The monoidal category D(G) is a fully dualizable Calabi-
Yau object of Alg(1)(Cat).

Remark 1.8. As mentioned, the categorical group algebra D(G) is (mono-
idally) Morita equivalent to HCG; it is also Morita equivalent (for G reduc-
tive) to the universal Hecke category D(H)(N\G/N)(H) (these are both rigid
monoidal). Each of these categories thus carries the structure of a Calabi-
Yau algebra object. One can equally well consider XG as assigning any of
these monoidal categories to a point. Alternatively, one can instead assign
their categories of modules in Cat (also known as de Rham G-categories).

1.3. Motivation: Boundary conditions and Hamiltonian actions

The cobordism hypothesis may be interpreted as the assertion that extended
topological field theories are completely determined by the higher category
formed by boundary conditions and their interfaces. For example in two
dimensions a topological gauge theory with gauge group G is determined
by specifying the class of G-quantum mechanics that form boundary condi-
tions, while in three dimensions we need to specify a class of two-dimensional
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field theories with G symmetry. In our current setting, where we attach a
monoidal category A to a point, boundary conditions form the 2-category
of A-module categories. Thus by specifying different categorical “group al-
gebras” (monoidal categories of sheaves on G with convolution) we can con-
struct different gauge theories. Three natural examples are given by local
systems, Higgs sheaves and D-modules on G, leading to theories of Betti,
Dolbeault and de Rham G-categories.

First let us mention the theory of Betti (or locally trivial) G-categories
whose theory is beautifully developed by Teleman [22]. There we take for A
the monoidal category of local systems on G, i.e., sheaves on the homotopy
type of G, or modules for the E2-algebra of chains on the based loop space
of G. Examples of module categories are provided by Fukaya categories of
spaces with Hamiltonian actions of the maximal compact Gc of G. In other
words, boundary conditions come from equivariant A-models. This provides
a mathematical model of the “A-twist” of 3dN = 4 super-Yang-Mills theory,
for which Teleman develops complete “character formulae”.

The classical character theory X0,G has as boundary conditions Dolbeault
G-categories, or B-models of algebraic Hamiltonian G-spaces. Consider an
Hamiltonian G-space, that is, a Poisson G-variety X (with Poisson ring of
functions A0 = C[X]) equipped with a G-equivariant, Poisson moment map
µ : X → g? (i.e. C[g?]→ A0), or equivalently

µ : X/G→ g?/G,

which generates the g-action on X. Standard examples are provided by X =
T ∗M for M a G-variety and X = g? itself. This data can be reformulated
as a Poisson map X → g? equipped with an action of T ∗G (as groupoid
over g?) on X. This endows QC(X) with the structure of module category
for the monoidal category QC(T ∗G) of Higgs sheaves on G. Equivalently,
the equivariant moment map µ endows QC(X/G) with the structure of
HC0,G = QC(g?/G)-module category, which corresponds to QC(X) under
the Morita equivalence between HC0,G and QC(T ∗G).

The character theory XG has as boundary conditions module categories
D(G)−mod for D(G), known as de Rham, or strong, G-categories, whose
study plays a central role in geometric representation theory and the geo-
metric Langlands correspondence [1]. They arise from quantum analogs of
Hamiltonian G-spaces – e.g., deformation quantized B-models of Hamilto-
nian G-spaces. Such an analog is provided by a strong or Harish-Chandra
action of G on an associative algebra A: i.e., an action of G on A by algebra
automorphisms, for which the Lie algebra action is made internal by means
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of a homomorphism µ∗ : Ug→ A. Standard examples are the ring of dif-
ferential operators A = Γ(DM ) for a G-space M and A = Ug itself. In this
case the action of G on the category A−mod is enhanced to the structure
of module category for the monoidal category D(G). Equivalently, apply-
ing the Morita equivalence between D(G) and HCG, the weak G-invariants
(A−mod)(G) form a module category for HCG.

1.4. Supersymmetric gauge theory context

The character field theory XG (and its deformation X~,G) is a mathematical
model (as an extended TFT) for a “B-type” topological twisted form of max-
imally supersymmetric (N = 8) three-dimensional gauge theory with gauge
group the compact form Gc of G. Namely, 3d N = 8 super Yang-Mills theory
is a dimensional reduction of 4d N = 4 super Yang-Mills, and we consider a
dimensionally reduced analog of the “B̂-model” [24] – the Kapustin-Witten
twist with the B-type supercharge (corresponding to the parameter Ψ =∞).
In 3d language, we are considering N = 4 super-Yang-Mills with (massless)
adjoint matter. After the topological twist the adjoint scalars become adjoint
one-forms, which we add to the gauge field to define a complex G-connection.
The graded parameter ~ arises as a Nekrasov ε-parameter: it comes as the 3d
limit of compactifying 4d N = 4 on a circle with an Ω-background around
the circle. In other words, we consider a supercharge Q that squares to a
translation along the compactification direction [24]. This deformation does
not affect the underlying supersymmetric field theory [18] but changes the
topological theory.

The Kapustin-Witten B̂-model compactified on a circle times a surface
S produces the derived functions on LocG(S × S1), the inertia stack (or
derived loop space) of the character stack. Our dimensionally reduced theory
XG(S) produces differential forms (or polyvector fields) on the character
stack, which is the linearization of functions on the loop space along constant
loops.

The identification of the character theory as a dimensional reduction of
the Kapustin-Witten B̂-model can also be seen directly from our assignment
of the 2-category ModD~(G) 'ModHC~,G

as the boundary conditions in
X~,G. Recall that boundary conditions in a circle compactification of a TFT
Z may be interpreted as codimension 2 defects of Z. Since the category
HC0,G is known [6] to be identified with the derived Satake category, i.e.,
with line operators (or endomorphisms of the trivial surface defect) in the
Kapustin-Witten theory, our boundary conditions ModHC0,G

are identified
with surface defects in the 4d theory which have nontrivial interface with the
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trivial surface defect, a topological way of imposing that the compactification
circle is taken to be small.

2. Calabi-Yau structure on the categorical group algebra

The goal of this section is to prove the following result.

Theorem 2.1. The monoidal category D(G) carries the structure of a
Calabi-Yau algebra object in Cat.

This is analogous to the claim that the group algebra CΓ of a finite
group Γ is a symmetric Frobenius algebra. Recall that, as D(G) is Morita
equivalent to the rigid monoidal category HCG [5], it is also fully dualiz-
able as an object of Alg(1)(Cat). Thus, Theorem 2.1 together with Lurie’s
cobordism hypothesis [16], shows that D(G) defines a 2d TFT XG valued in
Alg(1)(Cat).

We also describe a filtered version of the TFT XG, in which D(G) is
replaced by its Rees construction D~(G):

Theorem 2.2. The filtered monoidal category D~(G) defined by the Rees
construction on D(G) carries the structure of a Calabi-Yau algebra object in
Catfilt.

Likewise,D~(G) is Morita equivalent to a rigid filtered monoidal category
HC~,G, the Rees construction on HCG, and so defines a topological field
theory X~,G valued in the Morita theory of filtered monoidal categories,
Alg(1)(Catfilt).

2.1. Preliminaries

We will work over a fixed field k of characteristic zero. Let Cat denote
the (∞, 1) category of k-linear, stable, presentable∞-categories where mor-
phisms are functors which are left adjoints (equivalently, functors which
preserve small colimits). Recall that Cat comes equipped with a symmetric
monoidal structure ⊗. The unit object of Cat is the ∞-category Vectk of
(differential graded) k-vector spaces. We denote by Alg(Cat) the (∞, 1)-
category of algebra objects in Cat, i.e., monoidal dg categories, and by
Alg(1)(Cat) the Morita (∞, 2)-category of monoidal categories [16]. In other
words the objects of Alg(1)(Cat) are algebra objects in Cat and the mor-
phism (∞, 1)-categories are given by bimodules, MapAlg(1)(Cat)(A,B) =
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ModA⊗Bop(Cat). (Note that we will not need the theory of symmetric
monoidal (∞, 2)-categories, other than to quote the cobordism hypothesis
and verify its explicit conditions.)

Likewise we consider a filtered version, in which Vect is replaced by
the rigid symmetric monoidal category QC(A1/Gm) in Cat. Indeed as ex-
plained in [13, IV.5.1], for a category C ∈ Cat, filtered objects of C (i.e.,
functors from Z to C) are identified with objects of (C ⊗QC(A1))Gm . Fol-
lowing [19] we take as the definition of a filtration a Gm-equivariant family
over A1, and so define Catfilt := CatA1/Gm

, the symmetric monoidal cate-
gory of QC(A1/Gm)-modules in Cat, which by [12] is equivalent to quasico-
herent sheaves of categories over A1/Gm. The symmetric monoidal category
CatA1/Gm

is in particular “good” in the sense of [16, Definition 4.1.7], i.e.
admits sifted colimits, which are preserved by the monoidal structure. We
thus have filtered monoidal categories Alg(Catfilt) and their Morita theory
Alg(1)(Catfilt), sharing the formal properties of their unfiltered version.

Given an algebra object A in Cat (or any good symmetric monoidal
category, such as Catfilt), recall [16] that a Calabi-Yau structure on A is
the data of an S1-equivariant morphism

t : T r(A)→ Vect

such that the composite morphism

A×A ∗−→ A → T r(A)
t−→ Vect

is the evaluation map exhibiting A as self dual in Cat.

2.2. Cyclic Bar Construction

Given an algebra object A in Cat the bar resolution of A is the simplicial
object A•+2 of Cat, where the face maps are given by the monoidal oper-
ations and the degeneracies are given by unit maps (see e.g. [2]). The bar
resolution is augmented by A, and the augmentation gives an equivalence

A '
∣∣A⊗(•+2)

∣∣
where | | denotes the colimit (also called geometric realization) of the cor-
responding diagram in Cat. The bar construction can be used to calculate
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the center

Z(A) = HomA⊗Aop(A,A) = HomA⊗Aop(
∣∣∣A⊗(•+2)

∣∣∣ ,A)

= Tot
{

Hom(A⊗•,A)
}

and trace

T r(A) = A⊗A⊗Aop A =
∣∣∣A⊗(•+2)

∣∣∣⊗A⊗Aop A

=
∣∣∣A⊗(•+1)

∣∣∣
In order to express the cyclic symmetry of the trace, it is convenient to

take a more geometric model as factorization or topological chiral homology
Tr(A) '

∫
S1 A, which we now recall following [17, Section 5.3.3] and [4].

First, given a framed circle S (for example, the standard circle S1 =
[0, 1]/∼ with its natural induced orientation) let IS be the∞-category given
by the nerve of the poset of framed embeddings of finite disjoint unions of
open intervals in S with partial order given by framed inclusions. We note
that the ∞-category IS is equivalent to the opposite category of the cyclic
category Λ; an IS shaped diagram in a category is known as a cyclic object.

Given a basepoint 0 ∈ S we let I ′S,0 denote the nerve of the poset of
framed embeddings of intervals, in which one interval is marked, and the
marked interval must cover the basepoint. Note that I ′S,0 is equivalent to the
opposite of the simplex category. There is a functor I ′S,0 → IS , which forgets
the marking; thus we say that every cyclic object (IS-shaped diagram) has an
underlying simplicial object (I ′S-shaped diagram), see [17, Lemma 5.3.3.10].

Given an E1-algebra object A in a symmetric monoidal category C, we
have a cyclic object given by the functor

A⊗− : IS // C A⊗−(I) = A⊗π0(I)

whose structure on morphisms is given by the E1-structure on A. By defi-
nition, the factorization (or topological chiral) homology of A over S is the
colimit ∫

S A = colimIS A⊗−

Observe that the above makes sense for families of framed circles, and so
exhibits

∫
S A as the fiber of an ∞-local system over the moduli of framed

circles BDiff+(S1) = BS1 (or equivalently,
∫
S1 A carries an action of S1).
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Choosing a basepoint of 0 ∈ S, we see that the underlying simplicial
object ofA⊗− is the bar complex which computes the trace, and thus (by [17,
Theorem 5.3.3.11])∫

S
A = colimIS A⊗−

∼←− colimI′S,0
A⊗− = T r(A).

In particular, T r(A) carries a canonical S1-action.

2.3. D-modules

The general theory of D-modules in derived algebraic geometry is developed
in the book [13] as an instance of the theory of ind-coherent sheaves on
(ind-)inf-schemes. This is a powerful setting that extends the setting of de-
rived schemes to include objects such as quotients by formal groupoids. An
important example of an inf-scheme is Simpson’s de Rham space XdR [19]
for a scheme X, which can be described as the quotient of X by the formal
groupoid associated to the tangent Lie algebroid, namely the formal com-
pletion of the diagonal of X. Gaitsgory and Rozenblyum define the category
of D-modules D(X) as ind-coherent sheaves IndCoh(XdR) (also called right
crystals) and deduce the standard functorial properties of D-modules from
their general formalism for ind-coherent sheaves [13, III.4].

Let us briefly recall from [13, III.4] the theory of D-module functori-
ality and the relation with quasi-coherent and ind-coherent sheaves. Given
a morphism of stacks f : X → Y , we have pairs of functors f ! and f∗ on
D-modules; these functors are not adjoint in general, but are dual with
respect to the Verdier self-duality of D-modules and satisfy base change.
3 The canonical equivalence ΥXdR

: QC(XdR) ' IndCoh(XdR) between left
and right crystals induces two forgetful functors which fit in to a commuta-
tive diagram:

(1) D(X)

oblv`

zz

oblvr

&&

QC(X)
ΥX

// IndCoh(X)

3In this paper, the notation f∗ will always denote the renormalized direct image
functor; see [8, Section 9].
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This diagram intertwines the appropriate inverse image functors on each
category (i.e. the f∗ for QC and f ! for IndCoh and D). Each of these cat-
egories is self dual (via Verdier duality on D, Serre duality on IndCoh and
“naive” duality on QC), and taking the dual of Diagram 1 leads to a similar
diagram which intertwines the dual direct image functors (which we denote
f∗ in each case)

(2) D(X)

QC(X)

(oblvl)∨= ind′ r
::

IndCoh(X)
ΨX

oo

(oblvr)∨=indr
ff

If X is a smooth classical scheme then oblv` and oblvr are monadic,
with the corresponding monads DX and DopX respectively, thus identifying
the category of crystals with the traditional definition of left and right D-
modules.

2.4. Filtered D-modules

Given a Lie algebra g over k, we may obtain a Lie algebra g~ over A1/Gm

by rescaling the Lie bracket by ~ ∈ A1, [13, IV.5.1]. The enveloping algebra
Ug~ is (in the classical setting) the Rees construction on Ug, deforming Ug
to the graded algebra Sym g. We can preform an analogous construction for
Lie algebroids, in particular for the tangent Lie algebroid of a scheme X [13,
IV.5.3]. This results in another example of an inf-scheme, Simpson’s Hodge
space XHod → A1/Gm, which embodies the Hodge filtration on (nonabelian)
de Rham cohomology (see also [20]). It is defined as the quotient of X over
A1/Gm by the formal groupoid given by the deformation to the normal
cone of the de Rham groupoid, corresponding to rescaling the Lie bracket
on the tangent sheaf by ~. In other words, sheaves on the Hodge space
(for X a smooth classical scheme) are modules for the Rees construction
for the filtered algebra DX . The fiber over ~ = 0 is given by the category
IndCoh(XDol) ' QC(T ∗X) as a graded category (i.e., with its standard Gm

action). We denote the resulting category IndCoh(XHod) by D~(X) and refer
to it informally as filtered D-modules.

The formalism of [13, III.4] for functoriality of D-modules carries over
to the Hodge setting, once one observes that a map f : X → Y defines a
filtered map of de Rham groupoids, hence a map fHod : XHod → YHod which
shares the good properties of fdR (in particular for f nil-schematic, fHod is
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inf-schematic). As a result one has the basic D-module formalism of f∗, f
!

and their duality in the filtered setting.

2.5. Strong and weak G-categories

In this section we recall some results about invariants and coinvariants for
categorical group actions. The material here is mostly drawn from [5], Sec-
tion 2.

Recall that G denotes an affine algebraic group over k, and denote by
m : G×G→ G the multiplication map. Let us first recall the notions of
strong and weak G actions on a dg category. The category D(G) carries
a comonoidal structure (denoted D(G)coconv) induced by the functor m!

and a monoidal structure (denoted D(G)conv) induced by m∗. These struc-
tures are interchanged by the Verdier self-duality of D(G). By definition, a
(strong) G-category4 is a comodule for D(G)coconv, or equivalently a module
for D(G)conv.

Similarly, we have a comonoidal category QC(G)coconv induced by m∗

and a monoidal category QC(G)conv induced by m∗. These structures are
interchanged by the naive duality on QC(G). A weak G-category is defined
as a comodule for QC(G)coconv, or equivalently a module for QC(G)conv.

To relate the notions of strong and weak G-actions, let us also consider
the (co)monoidal categories IndCoh(G)coconv and IndCoh(G)conv, defined
using the relevant IndCoh functors m! and m∗. The diagrams 1 in the case
X = G gives a commutative diagram of comonoidal functors

D(G)coconv

oblv`

ww

oblvr

((

QC(G)coconv
ΥG

∼ // IndCoh(G)coconv

and similarly a dual diagram of monoidal categories

D(G)conv

QC(G)conv

(oblvl)∨= ind′ r
77

IndCoh(G)conv
ΨG

∼oo

(oblvr)∨=indr
gg

4We will usually omit the word strong unless it is helpful to emphasize the dis-
tinction with weak G-categories.
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Via these diagrams, we see that there is a forgetful functor from strong
to weak G-categories.

2.6. Categorical (co)invariants

Given a variety X with an action of G, there is a strong G-action on D(X)
and a weak G-action on QC(X). In particular, Vect = D(pt) = QC(pt) car-
ries a canonical strong and weak G-action; this is known as the trivial G-
category.

Recall that if C is aG-category, then the coinvariants are defined by CG =
C ⊗D(G) Vect and the invariants by CG = HomD(G)(Vect, C). Explicitly, the
coinvariants are computed as the colimit of the simplicial diagram

(3) C ⇔ C ⊗ D(G) · · ·

and the invariants are computed as the limit of the cosimplicial diagram

(4) C ⇒ Hom(D(G), C) · · ·

Similar definitions hold for C a weak G-category, giving rise to the notion
of weak G (co)invariants C(G), C(G) and for C ∈ Catfilt a D~(G)-module,
with the role of the D(G)-module Vect being taken by the unit Vect~ :=
QC(A1/Gm), i.e., the augmentation module over D~(G).

The key technical input to the proof of Theorem 2.1 is Gaitsgory’s 1-
affineness theorem [12] for pt/G, which asserts that the functor of weak
G-invariants defines an equivalence

ModQC(G) 'ModRepG.

Thus algebraic G-categories may be recovered from their weak invariants as
modules over the rigid symmetric monoidal category RepG = QC(pt/G).
We will utilize Beraldo’s ensuing parallel story for D(G)-modules [5],
which asserts that the a strong G-category can be recovered from its
weak G-invariants as a module for the rigid monoidal category HCG :=
IndCoh(G\GdR/G) (with its convolution monoidal structure). We will use
this to identify the center and trace of the monoidal category D(G) (later
we will need to keep track of extra structures on these identifications, so we
take extra care to make sure everything can be understood explicitly).
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Theorem 2.3. [5, Proposition 3.5.6, Theorem 3.5.7] There is a natural
equivalence

ModD(G) 'ModHCG

between D(G) and the rigid monoidal category HCG. Likewise there is a
natural filtered equivalence

ModD~(G) 'ModHC~,G

between D~(G) and the rigid filtered monoidal category HC~,G.

Proof. We sketch Beraldo’s proof and its straightforward extension to the fil-
tered setting. Given a D(G)-module we can take its weak invariants
as explained in 2.5. This defines a continuous and conservative functor
ModD(G) →ModRepG, a composition of the continuous and conservative
forgetful functor from strong to weak G-categories with Gaitsgory’s equiva-
lence. The functor admits a left adjoint provided by

E 7→ D(G)⊗QC(G) Vect⊗RepG E 'Modg ⊗Rep(G) E .

Applying the Barr-Beck-Lurie theorem, we identify ModD(G) with modules

for the monoidal category Mod
(G)
g which is readily identified with HCG

To see that HCG is rigid, note that the compact objects in RepG are
automatically left and right dualizable. Now we identify Rep(G) = QC(BG)
with IndCoh(BG) via the monoidal equivalence Υ and observe that push for-
ward along the morphism δ : pt/G = G\G/G→ G\GdR/G induces a com-
pact and monoidal functor

RepG = QC(BG)
Υ

∼ // IndCoh(BG)
δ∗
// IndCoh(G\GdR/G) = HCG.

(Here compactness follows from π being inf-proper.) Thus the images of
the compact, dualizable generators of RepG are compact and dualizable
generators of HCG.

In the filtered version we likewise take weak invariants of a D~(G)-
module, providing a continuous and conservative functor landing in
ModRep(G)(Catfilt). It admits a left adjoint identified with

E 7→Modg~ ⊗Rep(G) E ,

and the monad is identified with Mod
(G)
g~ ' HC~,G. Rigidity of HC~,G fol-

lows analogously from the inf-properness of pt/G× A1/Gm → G\GHod/G.
�
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Corollary 2.4 ([5], Theorem 3.6.15). There is a canonical equivalence

S : CG
∼−→ CG

The above equivalence takes an explicit form: it is induced by the functor

C → CG

c 7→ ωG ∗ c

where ωG = (G→ pt)!(C).

Proof. (Sketch) The corollary is a consequence of the rigidity ofHCG and the
self-duality of Rep(G) ∈ Cat. Namely under the Morita equivalence the aug-
mentation D(G)-module Vect is identified with the HCG-module Rep(G),
which is self-dual by rigidity of HCG (see [12] or [11]). �

Note that the proof has an obvious filtered analog.
Now, let us consider the case when C = D(X), for some variety X with

an action of G. The quotient stack X/G is the colimit of a simplicial variety:

(X/G)• = X ⇔ G×X · · ·

Let D(X/G)•,! (respectively D(X/G)•,∗) denote the cosimplicial (respec-
tively, simplicial) object of Cat with simplices D(X ×Gn), obtained by
taking the upper shriek (respectively, lower star) functor associated to the
structure maps of (X/G)•.

Lemma 2.5. The cosimplicial (respectively, simplicial) object D(X/G)•,!

(respectively, D(X/G)•,∗) is canonically identified with Diagram 4 (respec-
tively, Diagram 3) with C = D(X).

Proof. The theory of integral transforms for D-modules (see [13] or [4]) gives
equivalences

D(G)⊗n ⊗D(X) ' D(Gn ×X) ' Hom(D(G)⊗n,D(X))

(In fact these equivalences only rely on dualizability properties of the rele-
vant categories, and thus extend to the filtered setting.) This at least iden-
tifies the simplices of the diagrams in the Lemma. That the structure maps

5The theorem is stated for pro-unipotent groups, but the proof in the finite
dimensional case applies to any affine algebraic group.
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agree is immediate for the simplicial diagram, and for the cosimplicial dia-
gram, we note that under the self duality of categories of the form D(Y ) for
a smooth variety Y , the dual of a functor of the form f∗ is f !. �

Let π : X = (X/G)0 → X/G denote the quotient map.

Proposition 2.6. There are equivalences

D(X)G = colimD(X/G)•,∗ π∗

∼ // D(X/G)
π!

∼ // limD(X/G)•,! = D(X)G

Proof. The equivalence on the right is the statement of smooth descent for
D-modules (which extends to the filtered setting). Proposition 2.6 then gives
an equivalence D(X)G ' D(X/G). Noting that the functor π!π∗ : D(X)→
D(X) is identified with M 7→ ωG ∗M (via base-change) shows that this
equivalence is indeed induced by the map π∗, as claimed. �

Remark 2.7. In general, colimits in Cat are hard to compute. In the case
where the diagram C• (of which we want to compute the colimit) involves
maps which admit continuous right adjoints, then the colimit of C• may
be identified with the limit of (C•)R (the diagram obtained by taking right
adjoints of all the structure maps). For example, this is the case when we
consider bar constructions coming from modules for rigid monoidal cate-
gories, as explained in [12] (see also [3, 4]). Our situation is not of this form:
the monoidal category D(G) is not rigid (note that the structure maps of
of D(X/G)•,! are not right adjoint to those of D(X/G)•,∗, but rather left
adjoint—at least, up to a shift). However, the monoidal category HCG is
rigid, and Theorem 2.3 allows one to compute relative tensor products over
D(G) (in particular, coinvariants) in terms of those over HC, leading to the
proposition above.

2.7. Center and Trace of D(G)

Now consider the case of G acting on itself by conjugation, with quotient
stack denoted G/adG. In this case, the diagrams 3 and 4 (or equivalently
the diagrams D(G/adG)•,! and D(G/adG)•,∗) are naturally identified with
the cyclic bar and cobar constructions computing T r(D(G)) and Z(D(G))
respectively.
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Thus, Proposition 2.6 gives canonical equivalences

(5) T r(D(G)) ' D(G/adG) ' Z(D(G)).

This allows us to define the trace map underlying the proposed Calabi-Yau
structure on D(G):

t = p∗e
! : T r(D(G)) ' D(G/adG)→ Vect

where

(6) G/adG pt/G
eoo

p
// pt

Lemma 2.8. The composite:

D(G)⊗D(G)→ D(G)→ D(G/adG)→ Vect

is the evaluation map for a self duality of D(G).

Proof. By base change, the composite functor is given by πG∗∇!, where
∇ : G→ G×G, ∇(g) = (g−1, g). The corresponding coevaluation map is
given by π!

G∇∗, and the standard duality identities (“Zorro conditions”)
follow from base change. �

Remark 2.9. The self duality of D(G) induced by the trace map differs
from the usual self duality of D(G) (coming from Verdier duality) by the
automorphism σ∗, where σ(g) = g−1.

2.8. Cyclic structure on class D-modules

To show that the trace map t defines a Calabi-Yau structure on D(G) it re-
mains to show the trace map defined above carries an S1-equivariant struc-
ture. This requires a geometric reinterpretation of the above constructions,
which we now discuss. Note that G/adG = L(BG) = Map(S1, BG) carries a
natural S1-action, giving rise to an action of S1 on D(G/adG).

Proposition 2.10. The equivalence of Equation 5

T r(D(G))
∼−→ D(G/adG).

carries a canonical S1-equivariant structure.
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Proof. To prove the proposition, we will exhibit the augmentation D(G/adG)
→ D(G/adG)•,∗ as the fiber of a family of such morphisms over the moduli
space of framed circles BS1.

Recalling the notation of Section 2.2, given a framed circle S and an
object I of IS , we associate the moduli space MG(S, I) of G-local sys-
tems on S, trivialized on the complement of the intervals. LetM(S) denote
the moduli of G-local systems on S. There are forgetful maps MG(S, I)→
MG(S) for each I, compatible with the structure maps of IS . Note that
MG(S, I) ' Gπ0(I), andMG(S)) ' G/adG. The underlying simplicial set of
the IS-diagram MG(S, I) is equivalent to (G/adG)•, and the forgetful map
MG(S, I)→MG(S) induces the augmentation map (G/adG)• → G/adG.
Furthermore, the IS-diagram of categories D(MG(S, I)) (taking the lower
star functor associated to the structure maps) is naturally identified with
the cyclic bar construction of the category D(G) as described e.g. in [4].

In particular, the morphism

colimIS D(MG(S, I))→ D(M(S))

carries a natural S1-equivariant structure. The left hand side is T r(D(G)),
the right hand side is D(G/adG), and the morphism is precisely the one con-
structed in Proposition 2.6. This defines the required S1-equivariant struc-
ture. �

We also note:

Lemma 2.11. The functor t = p∗e
! carries an S1-equivariant structure.

Proof. As in Proposition 2.10, the idea is to exhibit the diagram 6 as the
fiber of a family of such diagrams over the moduli of framed circles. For such
a circle S, consider the map S → pt, which is naturally equivariant for the
action of S1 by rotations.6 Thus, the diagram 6 is equivalent to:

MG(S)←MG(pt)→MG(∅).

from which the required S1-equivariant structure follows. �

Proof of Theorem 2.1. We have shown that D(G) carries an S1-equivariant
trace map,t, (by Lemma 2.11 and Proposition 2.10), which is non-degenerate
(by 2.8), as required. �

6It is natural from the perspective of TFT to think of pt as a disc, with S being
included as its boundary.
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2.8.1. Monoidal structure on class D-modules. We also note that
the categoryD(G/adG) = D((pt/G)S

1

) carries an E2-monoidal structure aris-
ing from the pair of pants multiplication. The Drinfeld center Z(A) of a
monoidal category A also carries such a structure. It is true that the functor

π! : D(G/adG)
∼−→ Z(D(G))

defined above carries an E2-monoidal structure. However, for the purposes of
this paper it will be enough to note that it is just monoidal. In fact, we only
need that it is naively monoidal, meaning that there exists an isomorphism

π!(M ∗N) ' π!(M) ∗ π!(N)

This follows from the observation that the comonadic forgetful functors from
D(G/adG) and Z(D(G)) to D(G) are both monoidal by construction.

3. The character field theory

In this section we will study the topological field theory XG defined, via
the cobordism hypothesis, from the 2-dualizable Calabi-Yau category HCG.
We also consider the classical version X0,G associated to classical Harish-
Chandra bimodules HC0,G and the filtered version. Let Bordor2 denote the
(∞, 2)-category of oriented bordisms of 2-manifolds.

Definition 3.1. The character TFT XG is the symmetric monoidal functor

XG : Bord2 −→ Alg(1)(Cat)

defined by applying the Cobordism Hypothesis to the SO(2)-invariant 2-
dualizable object HCG.

In particular we have for a closed oriented 1-manifold

XG(M) ' D(LocG(M)).

3.1. The character sheaf theory

Let Bordor1,2 denote the (∞, 1)-category of oriented bordisms of surfaces. We
would like to give a geometric description of the functor

X+
G : Bordor1,2 −→ Cat

given by restricting the field theory XG to closed 1-manifolds.
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Let us introduce another (1,2)-dimensional topological field theory,
namely the functor given by the composition

X+,geom
G : Bordor1,2

LocG // Corr
D // Cat

of the functor from the bordism category to the correspondence category of
stacks given by passing to stacks of local systems, i.e.,

LocG(−) = [−, BG],

and the functor on the correspondence category given by D-modules [13,
III.4].

Let us spell out this functor. Let Si : ∂inSi → ∂outSi be oriented surfaces
with boundary considered as cobordisms. Given an identification ∂outS1 '
∂inS2, let S denote the sewed surface

S = S1

∐
∂outS1'∂inS2

S2.

Then moduli of local systems on the surfaces compose as the composition
of spans, i.e., as fiber products of stacks:

LocG(S)

uu ))

LocG(S1)

ww ))

LocG(S2)

uu ''

LocG(∂inS1) LocG(∂outS1 ' ∂inS2) LocG(∂outS2)

The functor D is constructed in Section III.4 of [13]. In fact they con-
struct a symmetric monoidal category out of an (∞, 2)-category of prestacks
locally almost of finite type, with morphisms given by correspondences which
are ind-nil-schematic and 2-morphisms given by proper maps of correspon-
dences. We will only need the restriction of this functor to the (∞, 1)-
category in which we allow only isomorphisms of correspondences, and where
the objects are geometric stacks of finite type (in fact smooth ones). To a
stack X the functor attaches the dg category D(X) of D-modules on X,
while to a correspondence

X Z
q
oo

p
// Y
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it attaches the functor

p∗q
! : D(X) −→ D(Y ).

In particular for X = Y = pt we have

Z 7→ p∗q
!C = p∗ωZ = CBM∗ (Z) ∈ Vect,

the cohomology of the dualizing sheaf, or Borel-Moore chains, of Z.
Thus we see that for a closed oriented 1-manifold the functor X+,geom

G

attaches the category

X+,geom
G (M) ' D(LocG(M))

– concretely we have

S1 7→ D(G/adG).

Moreover for a closed surface S we have

X+,geom
G (S) ' CBM∗ (LocG(S)),

the Borel-Moore chains of the character stack.

3.2. Geometric identification of the character theory

We will not give the full structure of a natural equivalence of the two functors
X+
G and X+,geom

G , but content ourselves with the existence of an unstructured
identification of their values on any surface with boundary.

Theorem 3.2. For any oriented surface with boundary

S, ∂S = ∂inS
∐

∂outS

we have an equivalence

X+
G (S) ' X+,geom

G : D(LocG(∂inS)) // D(LocG(∂outS)) .

Proof. First consider S = D2 as a bordism from S1 to the empty set. In
X+
G this bordism defines the trace on T r(HCG) ' D(G/G) prescribing the



i
i

“4-Gunningham” — 2019/11/20 — 1:24 — page 1337 — #25 i
i

i
i

i
i

The character field theory 1337

Calabi-Yau structure, and as such we’ve identified it with the functor given
by the correspondence

LocG(S1) LocG(pt)oo // pt ,

which agrees with X+,geom
G .

Next consider the bordism D2 from the empty set to S1 and a fixed
pair of pants bordism from S1

∐
S1 to S1. In X+

G these bordisms are part
of the E2 monoidal structure on the center Z(HCG) ' X+

G (S1), namely
the unit and a binary product operation. We have identified Z(HCG) with
D(G/G) = D(LocG(S1)). We also checked the compatibility of this identifi-
cation with with the unit and the binary multiplication map coming from
convolution on G, i.e. of G-local systems on marked circles, hence with the
D-module functors applied to bordisms from unions of S1 to itself, in other
words with the morphisms defining the corresponding operations in X+,geom

G .
The theorem now follows from these basic building blocks using Propo-

sition 3.3. �

Proposition 3.3. Let Z,W denote two symmetric monoidal functors

Z,W : Bord1,2 −→ C,

and assume given equivalences

ιS1 : Z(S1) ' W(S1)

as well as equivalences

ιM : Z(M) ' W(M)

over ιS1 for M an incoming and outgoing disc and a pair of pants. Then
for any oriented surface with boundary S there exists an equivalence Z(S) '
W(S).

Proof. Consider the pairing Z(S1)⊗2 → 1C given by the outgoing elbow,
i.e., composition of the pair of pants and the outgoing disc. This pairing is
the evaluation for a self-duality of Z(S1), with coevaluation given by the
incoming elbow. Since the given data ι contain an identification of Z and
W on the circle, pair of pants and outgoing discs, hence of the evaluation
pairings, it follows that ι induces an identification of Z(S1) and W(S1) as
self-dual objects. In particular we obtain an identification of Z and W on
the incoming pair of pants.
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Given a general surface with boundary S, ∂S we first choose an identifica-
tion of ∂S with a disjoint union of standard circles, and thus an identification
of Z(∂S) with W(∂S). Next choose a decomposition of S as a composition
of morphisms in Bord1,2 each of which is identified with an incoming or
outgoing pair of pants or an incoming or outgoing disc (and respecting the
given identification of ∂S). We have therefore expressed Z(S) and W(S) as
compositions of morphisms between equivalent objects of C, which have also
been identified. The proposition follows. �

3.3. Filtered version

The proof of Theorem 3.2 extends directly to the filtered setting, given the
functoriality of filtered D-module outlined in Section 2.4. In other words, we
can relate the values of the restriction

X+
~,G : Bordor1,2 −→ Catfilt

on morphisms with the values of the composition

X+,geom
~,G : Bordor1,2

LocG // Corr
D~ // Catfilt .

The latter functor attaches to a stack X the filtered category of sheaves on
the Hodge stack D~(X) = IndCoh(XHod), and to a correspondence

X Z
q
oo

p
// Y

it attaches the functor

p∗q
! : D~(X) −→ D~(Y ).

In particular for X=Y =pt we attach to Z the filtered complex Γ(ZHod, ω)∈
IndCoh(A1/Gm) ' QC(A1/Gm), the cohomology of the canonical sheaf on
the deformation to the normal cone of the de Rham space of Z - in other
words (for Z classical and smooth) with the naive Hodge filtration on de
Rham cohomology defined by [21]. Note that in general we can identify this
with the global sections of the Hodge filtration on ωZdR

itself defined in [13,
IV.5.5].
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3.4. Dolbeault Homology

Specializing to ~ = 0 we recover what might be called the Dolbeault homol-
ogy: Γ(Z;ωZDol

).
If Z is a smooth scheme of dimension n, then the Dolbeault homology

is just given by

Γ(Z; Sym(TZ [1])⊗ ωZ) ' Γ

(
Z;
⊕
k

k∧
TZ [k]⊗ Ωn

Z [n]

)
(7)

' Γ

(
Z;
⊕
k

Ωk
Z [2n− k]

)

i.e. the usual Dolbeault cohomology shifted down by degree 2n (just as
Borel-Moore homology may be computed by a de Rham complex shifted
down by degree 2n). To see this, recall that one can identify IndCoh(XDol)
with modules for Sym(TX) in IndCoh(X) (this is the associated graded
of the realization of crystals as right D-modules). Under this equivalence,
Γ(ZDol;ωZDol

) is identified with Γ(Z;ωZ ⊗Sym(TZ) OZ). The usual Koszul
complex for OZ combined with the identification ωZ = det(Ωn

Z)[n] yields
the formula 7 above.

When Z is a quasi-smooth stack, we expect the Dolbeault homology is
still computed by the left hand side of formula 7, but where the tangent
sheaf is replaced by the tangent complex TZ .

In general, for a closed surface S, the stack LocG(S) is quasi-smooth (of
dimension zero). Moreover, when G is reductive, LocG(S) is symplectic; in
this case we can identify the Dolbeault homology with

Γ(LocG(S); Sym(L[1])) ' Γ(T[−1]LocG(S);O)
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