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Counting conics on sextic 4-folds

Yalong Cao

We study rational curves of degree two on a smooth sextic 4-fold
and their counting invariant defined using Donaldson-Thomas the-
ory of Calabi-Yau 4-folds. By comparing it with the corresponding
Gromov-Witten invariant, we verify a conjectural relation between
them proposed by the author, Maulik and Toda.

1. Introduction

Let X be a smooth sextic 4-fold in P5 and Mβ be the moduli scheme of one
dimensional stable sheaves on X with Chern character (0, 0, 0, β, 1). We are
interested in the counting invariant of Mβ defined using Donaldson-Thomas
theory of Calabi-Yau 4-folds, introduced in [1, 2]. In particular, there exists
a virtual class

[Mβ]vir ∈ H2(Mβ,Z).

And we may use insertions to define counting invariants: for a class γ ∈
H4(X,Z), let

τ(γ) := πM∗(π
∗
Xγ ∪ ch3(E)) ∈ H2(Mβ,Z),

where πX , πM are projections from X ×Mβ onto corresponding factors and
ch3(E) is the Poincaré dual to the fundamental class of the universal sheaf E .

The degree matches and we define DT4 invariants as follows

DT4(β | γ) :=

∫
[Mβ ]vir

τ(γ) ∈ Z.

Since the definition of the virtual class involves a choice of orientation on
certain (real) line bundle over Mβ, the invariant will also depend on that
(see Sect. 3.1 for more detail).

Another obvious way to enumerating curves on X is by GW theory.
More specifically, for γ ∈ H4(X,Z), the genus 0 Gromov-Witten invariant
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of X is

GW0,β(γ) :=

∫
[M0,1(X,β)]vir

ev∗(γ) ∈ Q,

where ev : M0,1(X,β)→ X is the evaluation map.
In a previous work [4], the author, Maulik and Toda proposed a conjec-

tural relation between DT4 invariants for one dimensional stable sheaves on
X and genus zero GW invariants of X (see Conjecture 3.3 for details). The
main result of this note is to verify this conjecture for degree two curve class
on a smooth sextic 4-fold.

Theorem 1.1. (Theorem 3.4) Conjecture 3.3 is true for degree one and two
classes of a smooth sextic 4-fold X ⊆ P5, i.e. for the line class l ∈ H2(X,Z)
and any γ ∈ H4(X), we have

GW0,l(γ) = DT4(l | γ),

GW0,2l(γ) = DT4(2l | γ) +
1

4
·DT4(l | γ),

for certain choice of orientation in defining the RHS.

The proof of the above result relies on the study of the Hilbert scheme
of conics on X. By the deformation invariance of DT4 and GW invariants,
we may assume X to be a generic hypersurface in P5, so that M2l is smooth
of expected dimension whose closed points are structure sheaves of smooth
conics or pairs of distinct intersecting lines (i.e. there is no double line)
(ref. Propositions 2.4, 3.2). A parallel study of the moduli space of stable
maps shows that it consists of two components, one corresponding to the
embedding of smooth or ‘broken’ conics, another one corresponding to the
double cover from P1 to lines on X. From this, we can conclude the above
result.

2. Geometry of moduli spaces of conics on sextic 4-folds

Let X ⊆ P5 be a smooth sextic 4-fold, i.e. smooth degree 6 hypersurface in
P5. By the adjunction formula, X is a smooth projective Calabi-Yau 4-fold
[13]. We are interested in the moduli space of conics (degree two curves)
in X. To be precise, let I1(X, 2) be the moduli scheme of ideal sheaves on
X with Chern character (1, 0, 0,−2,−1), which is isomorphic to the Hilbert
scheme of one dimensional closed subschemes in X with Hilbert polynomial
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χ(t) = 2t+ 1. The inclusion X ⊆ P5 induces a closed embedding

I1(X, 2) ↪→ Hilb(P5, 2t+ 1)

= {subscheme C ⊆ P5 with Hilbert polynomial 2t+ 1}

into the Hilbert scheme Hilb(P5, 2t+ 1) of conics in P5.

Lemma 2.1. Let S be the tautological rank three subbundle of the trivial
bundle over Gr(3, 6). Then there exists an isomorphism

Hilb(P5, 2t+ 1) ∼= P(Sym2(S∗)),

where P(Sym2(S∗)) is a P5-bundle over Gr(3, 6).
Let π : Hilb(P5, 2t+ 1)→ Gr(3, 6) be the natural projection. Then the

rank 13 vector bundle E = π∗Sym6(S∗)/(T ⊗ π∗Sym4(S∗)) has a section
whose zero locus is isomorphic to the moduli space I1(X, 2) of conics in
X. Here T is the tautological line bundle over P(Sym2(S∗)).

Proof. As any conic in P5 is contained in a unique plane P2 ⊆ P5, so we have
the desired isomorphism (see e.g. [6, Lemma 2.2.6]).

The description of I1(X, 2) comes from a similar one for quintic threefold
([9, Theorem 3.1]), which we briefly recall as follows. An equation for X
induces a section of Sym6(S∗) hence a section of π∗Sym6(S∗). At a conic
C ∈ Hilb(P5, 2t+ 1), the section represents a plane sextic cut out by the
plane supporting C. The conic lies in X if and only if X factors into C
and a quartic. Such quartics globalize to the vector bundle T ⊗ π∗Sym4(S∗)
which is a subbundle of π∗Sym6(S∗). We consider the quotient bundle E =
π∗Sym6(S∗)/(T ⊗ π∗Sym4(S∗)). Then I1(X, 2) is exactly isomorphic to the
zero locus of the section of E induced by the defining equation of X ⊆ P5. �

Let P := P(H0(P5,OP5(6))) ∼= P461 be the projective space of sextics in P5.
For a ‘generic’ choice of sextic X in P (i.e. generic sextics means all sextics
except those parameterized by a proper subvariety of P ), the moduli space
of conics in X is smooth. To prove that, we need the following lemma.

Lemma 2.2. For any conic C in P5, the restriction map

H0(P5,OP5(6))→ H0(C,OC(6))

is surjective.
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Proof. Given a conic C, we have an exact sequence

H0(P5,OP5(6))→ H0(C,OC(6))→ H1(P5, IC(6))→ 0,

where IC is the ideal sheaf of C in P5. We only need to prove H1(P5, IC(6)) =
0.

Let P2 ⊆ P5 be the unique plane containing C. By diagram chasing, we
have a short exact sequence

0→ IP2/P5 → IC → OP2(−2)→ 0,

where IP2/P5 is the ideal sheaf of P2 in P5. By taking RΓ(P5,−) and its
cohomology, we have

H1(P5, IP2/P5(6))→ H1(P5, IC(6))→ 0.

So we are left to show H1(P5, IP2/P5(6)) = 0. Similarly, from a short exact
sequence

0→ IP3/P5 → IP2/P5 → OP3(−1)→ 0,

we are further reduced to show H1(P5, IP3/P5(6)) = 0. By repeating the ar-
gument, the claim is reduced to the obvious vanishing H1(P5, IP4/P5(6)) =
0. �

Proposition 2.3. For a generic sextic X ⊆ P5, the moduli space I1(X, 2)
of conics in X is a smooth projective curve.

In particular, the Euler class of vector bundle E → Hilb(P5, 2t+ 1) in
Lemma 2.1 satisfies

ι∗[I1(X, 2)] = PD(e(E)) ∈ H2(Hilb(P5, 2t+ 1),Z),

where ι∗ : I1(X, 2) ↪→ Hilb(P5, 2t+ 1) is the closed embedding.

Proof. Let I be the incidence variety

I = {(C,X) ∈ Hilb(P5, 2t+ 1)× P | C ⊆ X}

with projections π1 : I → Hilb(P5, 2t+ 1), π2 : I → P .
Given a conic [C] ∈ Hilb(P5, 2t+ 1), π−11 (C) is the set of all sextics con-

taining C. By Lemma 2.2, H0(P5,OP5(6))→ H0(C,OC(6)) is surjective,
hence π1 is smooth. Therefore, I is irreducible, smooth of dimension 462.
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By the generic smoothness (ref. [7, Corollary 10.7, pp. 272]), there exists
a non-empty open subset U ⊆ P such that π2 : π−12 (U)→ U is a smooth
morphism. Hence a generic fiber of π2 (i.e. I1(X, 2) for a generic X ⊆ P5) is
smooth of dimension one. �

Next, we show that a generic sextic 4-fold contains at most a finite number
of broken conics and no double lines.

Proposition 2.4. A generic sextic X ⊆ P5 contains at most a finite num-
ber of broken conics (i.e. pairs of distinct intersecting lines), and no ‘double’
lines.

Proof. Any conic in P5 is contained in a unique plane P2 ⊆ P5. It is either
a smooth conic, a pair of distinct intersecting lines, or a ‘double’ line (see
e.g. [6, Lemma 2.2.6]). By Proposition 2.3, the moduli space of conics in a
generic sextic 4-fold is a smooth projective curve.

We first show generic sextics do not contain double lines. Let

I2 = {2l ∈ Hilb(P5, 2t+ 1) | l is line}

be the 11 dimensional variety of ‘double’ lines in P5, and

C2 = {(2l, F ) ∈ I2 × P(H0(P5,OP5(6))) | 2l ⊆ F−1(0)}.

The subspace of sextics (inside P(H0(P5,OP5(6)))) containing one such dou-
ble line 2l has dimension h0(P5,OP5(6)))− 1− h0(C,OC(6)) = 448. Hence
C2 has dimension 459. Thus a generic sextic can not lie in the image of
π2 : C2 → P as P has dimension 461.

Let

I1 = {(l1, l2) | l1, l2 ∈ P5, l1 ∩ l2 6= ∅}

be the 13 dimensional variety of pairs of distinct intersecting lines in P5, and

C1 = {(l1, l2, F ) ∈ I1 × P(H0(P5,OP5(6))) | l1 ∪ l2 ⊆ F−1(0)}

with projections π1 : C1 → I1, π2 : C1 → P .
The subspace of sextics (inside P(H0(P5,OP5(6)))) containing one such

intersecting lines (l1, l2) has dimension h0(P5,OP5(6)))− 1− h0(C,OC(6)) =
448. As in Proposition 2.3, C1 is irreducible, smooth of dimension 461. The
generic smoothness theorem implies that for a generic sextic F , π−12 ([F ]) is
smooth of dimension zero. �
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3. Counting conics on sextic 4-folds

There are many ways to count conics on a sextic 4-fold X. For instance,
we can use DT4 invariants count one dimensional stable sheaves supported
on conics inside X, as well as Gromov-Witten invariants count stable maps
to conics in X. In this section, we compare them and verify a conjectural
relation [4] between GW invariants and DT4 invariants for one dimensional
stable sheaves in this setting.

3.1. Review of DT4 invariants

We first review the framework for DT4 invariants. We fix an ample divisor
ω on X and take a cohomology class v ∈ H∗(X,Q).

The coarse moduli space Mω(v) of ω-Gieseker semistable sheaves E on
X with ch(E) = v exists as a projective scheme. We always assume that
Mω(v) is a fine moduli space, i.e. any point [E] ∈Mω(v) is stable and there
is a universal family

E ∈ Coh(X ×Mω(v)).(1)

In [1, 2], under certain hypotheses, the authors construct a DT4 virtual
class

[Mω(v)]vir ∈ H2−χ(v,v)(Mω(v),Z),(2)

where χ(−,−) is the Euler pairing. Notice that this class will not necessarily
be algebraic.

Roughly speaking, in order to construct such a class, one chooses at
every point [E] ∈Mω(v), a half-dimensional real subspace

Ext2+(E,E) ⊂ Ext2(E,E)

of the usual obstruction space Ext2(E,E), on which the quadratic form Q
defined by Serre duality is real and positive definite. Then one glues local
Kuranishi-type models of form

κ+ = π+ ◦ κ : Ext1(E,E)→ Ext2+(E,E),

where κ is a Kuranishi map of Mω(v) at E and π+ is the projection according
to the decomposition Ext2(E,E) = Ext2+(E,E)⊕

√
−1 · Ext2+(E,E).

In [2], local models are glued in three special cases:
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1) when Mω(v) consists of locally free sheaves only;

2) when Mω(v) is smooth;

3) when Mω(v) is a shifted cotangent bundle of a derived smooth scheme.

And the corresponding virtual classes are constructed using either gauge
theory or algebro-geometric perfect obstruction theory. The general glu-
ing construction is due to Borisov-Joyce [1], based on Pantev-Töen-Vaquié-
Vezzosi’s theory of shifted symplectic geometry [12] and Joyce’s theory of
derived C∞-geometry. The corresponding virtual class is constructed using
Joyce’s D-manifold theory.

The moduli space considered in this note is smooth of expected dimen-
sion, so the virtual class (up to sign) is simply the usual fundamental class
of the moduli space (see Prop. 3.2).

On orientations. To construct the above virtual class (2) with coefficients
in Z (instead of Z2), we need an orientability result for Mω(v), which is
stated as follows. Let

(3) L := det(RHomπM (E , E)) ∈ Pic(Mω(v)), πM : X ×Mω(v)→Mω(v),

be the determinant line bundle of Mω(v), equipped with a symmetric pairing
Q induced by Serre duality. An orientation of (L, Q) is a reduction of its
structure group (from O(1,C)) to SO(1,C) = {1}; equivalently, we require
a choice of square root of the isomorphism

(4) Q : L ⊗ L → OMω(v)

to construct virtual class (2). An existence result of orientations is proved
in [3, Theorem 2.2] for CY 4-folds X such that Hol(X) = SU(4) and
Hodd(X,Z) = 0 1. Notice that, if orientations exist, their choices form a tor-
sor for H0(Mω(v),Z2).

3.2. DT4 virtual class for stable sheaves supported on conics

Fix β ∈ H2(X,Z) ∼= H6(X,Z) and

v = (0, 0, 0, β, 1) ∈ H0(X)⊕H2(X)⊕H4(X)⊕H6(X)⊕H8(X),

1For instance, smooth sextic 4-folds satisfy this assumption.
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we set

Mβ = Mω(0, 0, 0, β, 1)

to be the Gieseker moduli space of semi-stable sheaves with Chern charac-
ter v.

Remark 3.1. Note that Mβ is the moduli space of one dimensional sheaves
E’s on X satisfying the following: for any 0 6= E′ ( E, we have χ(E′) 6 0.
In particular, it is independent of the choice of ω and is a fine moduli space.

Since χ(v, v) = 0 in this case, we have

[Mβ]vir ∈ H2(Mβ,Z).

To define invariants, we need insertions: for a class γ ∈ H4(X,Z), let

τ(γ) := πM∗(π
∗
Xγ ∪ ch3(E)),(5)

DT4(β | γ) :=

∫
[Mβ ]vir

τ(γ) ∈ Z.(6)

Here πX , πM are projections from X ×Mβ onto corresponding factors, and
ch3(E) is the Poincaré dual to the fundamental class of the universal sheaf E .

For degree two class in a smooth sextic 4-fold X, the moduli space and
its DT4 virtual class can be described as follows.

Proposition 3.2. Let X ⊆ P5 be a generic sextic 4-fold and β = 2l ∈
H2(X,Z) be the degree two class. Then the moduli space M2l of one di-
mensional stable sheaves on X has an isomorphism

M2l
∼= I1(X, 2)

to the Hilbert scheme of conics in X.
Furthermore, the DT4 virtual class

[M2l]
vir = [M2l] ∈ H2(M2l,Z)

is the usual fundamental class for certain choice of orientation in defining
the LHS.

Proof. By Proposition 2.4, we may assume X contains smooth and broken
conics only.
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For E ∈M2l, χ(E) = 1 implies h0(E) > 1, so there exists a nontriv-
ial section s : OX → E. If the image Im(s) ⊆ E is a proper subsheaf, then
χ(Im(s)) 6 0 by the stability of E. Note that Im(s) is the structure sheaf
of some one dimensional subscheme whose fundamental class is l or 2l, so
χ(Im(s)) 6 0 can not happen. Thus s is surjective and E ∼= OC for some
smooth or broken conic in X. Conversely, when C is smooth, OC is obvi-
ously stable. As for a broken conic C = l1 + l2, to test the stability of OC ,
we take a saturated (i.e. E2 is pure) extension

0→ E1 → OC → E2 → 0,

we may assume supp(Ei) = li (i = 1, 2) without loss of generality. Then Ei ∼=
Oli(ai) for some ai ∈ Z. From the exact sequence

0→ Ol1(−1)→ OC → Ol2 → 0,

we have

0→ Hom(Ol1 ,Ol1(−1))→ Hom(Ol1 ,OC)→ Hom(Ol1 ,Ol2) = 0.

Hence Hom(Ol1 ,OC) = 0. So a1 6 −1, which implies the stability of OC .
So we have a bijective morphism

θ : I1(X, 2)→M2l, IC 7→ OC .

Next, we compare their deformation-obstruction theory. For a conic C ⊆ X,
there is a distinguished triangle

OC → IC [1]→ OX [1],

which implies the diagram

RΓ(OX)[1]

��

RΓ(OX)[1]

��
RHom(IC ,OC) // RHom(IC , IC)[1] //

��

RHom(IC ,OX)[1]

��
RHom(IC , IC)0[1] RHom(OC ,OX)[2],
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where the horizontal and vertical arrows are distinguished triangles. By tak-
ing cones, we obtain a distinguished triangle

RHom(IC ,OC)→ RHom(IC , IC)0[1]→ RHom(OC ,OX)[2].(7)

Combining with distinguished triangle

RHom(OC ,OC)→ RHom(OX ,OC)→ RHom(IC ,OC),

and hi>1(OC) = 0, we obtain canonical isomorphisms

Ext1(OC ,OC) ∼= Ext1(IC , IC),

Ext2(OC ,OC) ∼= Ext2(IC , IC).

By Proposition 2.3, for a generic sextic 4-fold X, I1(X, 2) is smooth of di-
mension one. So Ext1(IC , IC) ∼= C, and Ext2(IC , IC) = 0 by Riemann-Roch
formula. Thus θ is an isomorphism and M2l is smooth of expected dimen-
sion. So the DT4 virtual class of M2l is its usual fundamental class for a
choice of orientation. �

3.3. GW invariants and GW/DT4 conjecture

As the virtual dimension of the moduli space M0,n(X,β) of genus zero, n-
pointed stable maps is 1 + n, we need insertions to define GW invariants.
For γ ∈ H4(X,Z), the genus 0 Gromov-Witten invariant of X is defined to
be

GW0,β(γ) :=

∫
[M0,1(X,β)]vir

ev∗(γ) ∈ Q,

where ev : M0,1(X,β)→ X is the evaluation map.
The following conjecture is proposed in [4] as an interpretation of Klemm-

Pandharipande’s Gopakumar-Vafa type invariants [10] on CY 4-folds in
terms of DT4 invariants of one dimensional stable sheaves.

Conjecture 3.3. ([4, Conjecture 1.3]) We have the identity

GW0,β(γ) =
∑
k|β

1

k2
·DT4(β/k | γ),

for certain choice of orientation in defining the RHS.
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We verify this conjecture for a smooth sextic 4-fold X and degree one
and two classes in H2(X,Z) ∼= Z.

Theorem 3.4. Conjecture 3.3 is true for degree one and two classes of a
smooth sextic 4-fold X ⊆ P5, i.e. for the line class l ∈ H2(X,Z) and any
γ ∈ H4(X), we have

GW0,l(γ) = DT4(l | γ),

GW0,2l(γ) = DT4(2l | γ) +
1

4
·DT4(l | γ),

for certain choice of orientation in defining the RHS.

Proof. We only prove for the degree two curve class as the proof for line
class is a simpler version of the same approach. As all invariants involved
are deformation invariant, we could assume the sextic 4-fold X to be generic
so that the space I1(X, 2) of conics in X is smooth of dimension one and
consists of smooth conics and at most a finite number of broken lines (as in
Propositions 2.3, 2.4).

The moduli space M0,k(X, 2l) of k-pointed stable maps is the disjoint
union of two connected components M0,k(X, 2l)emb, M0,k(X, 2l)cov, which
parametrizes the embedding of smooth or broken conics into X and double
cover from P1 to lines in X respectively.

We have a forgetful map

φ : M0,1(X, 2l)emb →M0,0(X, 2l)emb
∼= I1(X, 2),

φ : (f : C → X, p ∈ C) 7→ (f : C → X) 7→ If(C),

and a natural embedding

i = (φ, ev) : M0,1(X, 2l)emb ↪→ I1(X, 2)×X,
i(f : C → X, p ∈ C) = (If(C), f(P )),

whose image is the universal curve Z ⊆ I1(X, 2)×X. Note that Z is an
irreducible variety of dimension 4, so the virtual class of M0,1(X, 2l)emb is
its usual fundamental class.
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For γ ∈ H4(X), we have∫
[M0,1(X,2l)emb]vir

ev∗(γ) =

∫
[M0,1(X,2l)emb]

i∗(1 ∪ γ)

=

∫
i∗[M0,1(X,2l)emb]

γ

=

∫
[I1(X,2)×X]

(PD([Z]) ∪ γ)

= DT4(2l | γ),

where the last equality is by Proposition 3.2.
As for component M0,1(X, 2l)cov, it can be identified as M0,1(P1, 2l)×

M0,0(X, l) by

M0,1(P1, 2l)×M0,0(X, l) ∼= M0,1(X, 2l)cov,(8)

(t : P1 → P1, P ∈ P1; f : P1 → X) 7→ (f ◦ t : P1 → X, P ∈ P1).

Note that M0,1(P1, 2l) is smooth of dimension 3. For a generic sextic 4-
fold X, lines in X have normal bundle OP1(−1,−1, 0) and the moduli space
M0,0(X, l) ∼= I1(X, 1) is isomorphic to the (smooth) Fano scheme of lines
(see [11, Thm. 4.3, pp. 266 and Ex. 4.5 pp. 269]), which is one dimensional.
The obstruction space of M0,1(X, 2l)cov at g : P1 → X is

H1(P1, g∗TX) ∼= H1(P1, g∗OP1(−1,−1, 0)) ∼= H1(P1, g∗OP1(−1,−1)).

As g varies, H1(P1, g∗OP1(−1,−1)) forms a rank two bundle which is the
pull-back of an ‘obstruction’ bundle Ob→M0,1(P1, 2l) (its fiber over f :
P1 → P1 is H1(P1, f∗OP1(−1,−1))). Hence under the isomorphism (8), the
virtual class satisfies

[M0,1(X, 2l)cov]vir = PD(e(Ob))⊗ [M0,0(X, l)]

∈ H2(M0,1(P1, 2l))⊗H2(M0,0(X, l)).

We define

π : M0,1(P1, 2l)×M0,0(X, l)→M0,0(P1, 2l)×M0,0(X, l)×X,
π
(
t : P1 → P1, P ∈ P1, f : P1 → X

)
=
(
t : P1 → P1, f : P1 → X, f ◦ t(P )

)
.

By base change (e.g. [5, pp. 182]), the obstruction bundle Ob→M0,1(P1, 2l)
is the pullback of an obstruction bundle Ob→M0,0(P1, 2l) via the forgetful
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map F : M0,1(P1, 2l)→M0,0(P1, 2l). Then for γ ∈ H4(X), we have∫
[M0,1(X,2l)cov]vir

ev∗(γ) =

∫
[M0,1(P1,2l)×M0,0(X,l)]

π∗
(
e(Ob) ∪ γ

)
=

∫
π∗[M0,1(P1,2l)×M0,0(X,l)]

e(Ob) ∪ γ

=

(∫
F∗[M0,1(P1,2l)]

e
(
Ob
))
·
(∫

2[C]
γ

)
= 2

∫
[M0,0(P1,2l)]

e
(
Ob
)
·
∫
[M0,0(X,l)×X]

(
PD([C]

)
∪ γ)

= 2 · 1

23
·DT4(l | γ),

where C ⊆M0,0(X, l)×X is the universal line under the identification
M0,0(X, l) ∼= I1(X, 1), and the last equality is by the Aspinwall-Morrison
formula (e.g. [8, Lemma 27.5.3, pp. 547]) and identification of virtual classes

[Ml]
vir = [I1(X, 1)]vir = [I1(X, 1)] = [M0,0(X, l)]

vir = [M0,0(X, l)],

which can be obtained by a similar argument as in Proposition 3.2.
To sum up, we obtain

GW0,2l(γ) =

∫
[M0,1(X,2l)emb]vir

ev∗(γ) +

∫
[M0,1(X,2l)cov]vir

ev∗(γ)

= DT4(2l | γ) +
1

4
·DT4(l | γ),

i.e. Conjecture 3.3 is true for degree two class. �

Corollary-Definition 3.5. Let X ⊆ P5 be a smooth sextic 4-fold and H
be its hyperplane class. Then the number of lines, conics incident to 4-cycle
H2 is

DT4(l | H2) = 60480, DT4(2l | H2) = 440884080,

for certain choice of orientation in defining the LHS.

Proof. By Theorem 3.4, for certain choice of orientation, we have DT4(kl |
γ) = n0,kl(γ) for k = 1, 2, where n0,kl(γ) are Klemm-Pandharipande’s genus
zero GV type invariants defined using multiple cover formula and GW in-
variants. n0,kl(γ) are computed in [10, Table 2, pp. 33] by Picard-Fuchs
equations and mirror principle of Lian-Liu-Yau and Givental. �
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