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On semipositivity theorems

Osamu Fujino and Taro Fujisawa

We generalize the Fujita–Zucker–Kawamata semipositivity theo-
rem from the analytic viewpoint.

1. Introduction

The main purpose of this paper is to generalize the well-known Fujita–
Zucker–Kawamata semipositivity theorem (see [13, §4. Semi-positivity], [14,
Theorem 2], [7, Section 5], [8, Theorem 3], and [9]) from the analytic view-
point.

Theorem 1.1. Let X be a complex manifold and let X0 ⊂ X be a Zariski
open set such that D = X \X0 is a normal crossing divisor on X. Let V0 be
a polarizable variation of R-Hodge structure over X0 with unipotent mon-
odromies around D. Let F b be the canonical extension of the lowest piece of
the Hodge filtration. Let F b → L be a quotient line bundle of F b. Then the
Hodge metric of F b induces a singular hermitian metric h on L such that√
−1Θh(L ) ≥ 0 and the Lelong number of h is zero everywhere.

As a direct consequence of Theorem 1.1, we have:

Corollary 1.2 (cf. [15]). Let X be a complex manifold and let X0 ⊂ X be
a Zariski open set such that D = X \X0 is a normal crossing divisor on X.
Let V0 be a polarizable variation of R-Hodge structure over X0 with unipotent
monodromies around D. Let F b be the canonical extension of the lowest piece
of the Hodge filtration. Then OPX(F b)(1) has a singular hermitian metric h

such that
√
−1Θh(OPX(F b)(1)) ≥ 0 and that the Lelong number of h is zero

everywhere. Therefore, F b is nef in the usual sense when X is projective.

Remark 1.3. There exists a quite short published proof of Corollary 1.2
(see the proof of [15, Theorem 1.1]). However, we have been unable to fol-
low it. We also note that the arguments in [13, §4. Semi-positivity] contain
various troubles. For the details, see [8, 4.6. Remarks].
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1360 O. Fujino and T. Fujisawa

Remark 1.4. When X is projective and V0 is geometric in Corollary 1.2,
the nefness of F b has already played important roles in the Iitaka program
and the minimal model program for higher-dimensional complex algebraic
varieties.

More generally, we can prove:

Theorem 1.5. Let X be a complex manifold and let X0 ⊂ X be a Zariski
open set such that D = X \X0 is a normal crossing divisor on X. Let V0 be
a polarizable variation of R-Hodge structure over X0 with unipotent mon-
odromies around D. If M is a holomorphic line subbundle of the associated
system of Hodge bundles Gr•F V =

⊕
p GrpF V which is contained in the ker-

nel of the Higgs field

θ : Gr•F V → Ω1
X(logD)⊗OX

Gr•F V ,

then the Hodge metric induces a singular hermitian metric h on its dual
M ∨ such that

√
−1Θh(M ∨) ≥ 0 and that the Lelong number of h is zero

everywhere.

For the details of the Higgs field θ : Gr•F V → Ω1
X(logD)⊗OX

Gr•F V in
Theorem 1.5, see Definition 2.7 below.

As a direct easy consequence of Theorem 1.5, we obtain:

Corollary 1.6 ([23] and [2, Theorem 1.8]). Let X be a complex mani-
fold and let X0 ⊂ X be a Zariski open set such that D = X \X0 is a normal
crossing divisor on X. Let V0 be a polarizable variation of R-Hodge structure
over X0 with unipotent monodromies around D. If A is a holomorphic sub-
bundle of the associated system of Hodge bundles Gr•F V =

⊕
p GrpF V which

is contained in the kernel of the Higgs field

θ : Gr•F V → Ω1
X(logD)⊗Gr•F V ,

then OPX(A∨)(1) has a singular hermitian metric h such that

√
−1Θh(OPX(A∨)(1)) ≥ 0

and that the Lelong number of h is zero everywhere. Therefore, the dual
vector bundle A∨ is nef in the usual sense when X is projective.

Corollary 1.6 is an analytic version of [2, Theorem 1.8] (see also [9]). For
some generalizations of [2, Theorem 1.8] from the Hodge module theoretic
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On semipositivity theorems 1361

viewpoint, see [17, Theorem 18.1] and [18, Theorem A]. For a very recent
development on semipositivity theorems from the theory of Higgs bundles,
see [1].

Remark 1.7. Let a be the integer such that F a+1
0 ( F a0 = V0. Then, in

Corollary 1.6, GraF V is a holomorphic subbundle of Gr•F V and is con-
tained in the kernel of θ. Therefore, we can use Corollary 1.6 for A = GraF V .
By considering the dual Hodge structure in Corollary 1.6 and putting A =
GraF V , Corollary 1.6 is also a generalization of the Fujita–Zucker–Kawamata
semipositivity theorem (see, for example, [7, Remark 3.15]). Of course, by
considering the dual Hodge structure, Theorem 1.5 contains Theorem 1.1 as
a special case.

Our proof in this paper heavily depends on [16], which is based on [3],
and Demailly’s approximation result for quasi-plurisubharmonic functions
on complex manifolds (see [4] and [5]).

Remark 1.8 (Singular hermitian metrics on vector bundles). We
note that our results explained above are local analytic. Therefore, we can
easily see that the Hodge metric of F b in Theorem 1.1 is a semipositively
curved singular hermitian metric in the sense of Păun–Takayama (see [19,
Definition 2.3.1] and [11, Lemma 18.2]). Moreover, in Corollary 1.6, the
induced metric on A is a seminegatively curved singular hermitian metric
in the sense of Păun–Takayama (see [19, Definition 2.3.1] and [11, Lemma
18.2]). For the details of singular hermitian metrics on vector bundles and
some related topics, see [19] (see also [11] and [1]).

2. Preliminaries

In this section, we collect some basic definitions and results.

2.1 (Singular hermitian metrics, multiplier ideal sheaves, and so
on). Let us recall some basic definitions and facts about singular hermitian
metrics and plurisubharmonic functions. For the details, see [5, (1.4), (3.12),
(5.4), and so on].

Definition 2.2 (Singular hermitian metrics and curvatures). Let L
be a holomorphic line bundle on a complex manifold X. A singular hermitian
metric h on L is a metric which is given in every trivialization θ : L |U '
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U × C by

||ξ||h = |θ(ξ)|e−ϕ(x), x ∈ U, ξ ∈ Lx,

where ϕ ∈ L1
loc(U) is an arbitrary function, called the weight of the metric

with respect to the trivialization θ. Note that L1
loc(U) is the space of locally

integrable functions on U . The curvature Θh(L ) of a singular hermitian
metric h on L is defined by

Θh(L ) := 2∂∂ϕ,

where ϕ is a weight function and ∂∂ϕ is taken in the sense of currents. It
is easy to see that the right hand side does not depend on the choice of
trivializations. Therefore, we get a global closed (1, 1)-current Θh(L ) on X.
In this paper,

√
−1Θh(L ) ≥ 0 means that

√
−1Θh(L ) is positive in the

sense of currents.
Let L be a holomorphic line bundle on a smooth projective variety X.

Then it is well known that there exists a singular hermitian metric h on
L with

√
−1Θh(L ) ≥ 0 if and only if L is pseudoeffective (see [5, (6.17)

Theorem (c)]).

Definition 2.3 ((Quasi-)plurisubharmonic functions). A function ϕ :
U → [−∞,∞) defined on an open set U ⊂ Cn is called plurisubharmonic if

(i) ϕ is upper semicontinuous, and

(ii) for every complex line L ⊂ Cn, ϕ|U∩L is subharmonic on U ∩ L, that is,
for every a ∈ U and ξ ∈ Cn satisfying |ξ| < d(a, U c) = inf{|a− x| |x ∈
U c}, the function ϕ satisfies the mean inequality

ϕ(a) ≤ 1

2π

∫ 2π

0
ϕ(a+ eiθξ)dθ.

Let X be an n-dimensional complex manifold. A function ϕ : X →
[−∞,∞) is said to be plurisubharmonic if there exists an open cover X =⋃
i∈I Ui such that ϕ|Ui

is plurisubharmonic on Ui (⊂ Cn) for every i. A quasi-
plurisubharmonic function is a function ϕ which is locally equal to the sum
of a plurisubharmonic function and of a smooth function.

Let ϕ be a quasi-plurisubharmonic function on a complex manifold X.
Then the multiplier ideal sheaf J (ϕ) ⊂ OX is defined by

Γ(U,J (ϕ)) = {f ∈ OX(U) | |f |2e−2ϕ ∈ L1
loc(U)}
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for every open set U ⊂ X. It is well known that J (ϕ) is a coherent ideal
sheaf on X.

Definition 2.4 (Lelong numbers). Let ϕ be a quasi-plurisubharmonic
function on U (⊂ Cn). The Lelong number ν(ϕ, x) of ϕ at x ∈ U is defined
as follows:

ν(ϕ, x) = lim inf
z→x

ϕ(z)

log |z − x|
.

It is well known that ν(ϕ, x) ≥ 0.

In this paper, we will implicitly use the following easy lemma repeatedly.

Lemma 2.5. Let L be a holomorphic line bundle on a complex manifold
X. Let h = ge−2ϕ be a singular hermitian metric on L , where g is a smooth
hermitian metric on L and ϕ is a locally integrable function on X. We
assume that

√
−1Θh(L ) ≥ 0. Then there exists a quasi-plurisubharmonic

function ψ on X such that ϕ coincides with ψ almost everywhere. In this
situation, we put J (h) = J (ψ). Moreover, we simply say the Lelong num-
ber of h to denote the Lelong number of ψ if there is no risk of confusion.

2.6 (Systems of Hodge bundles, Higgs fields, curvatures, and so
on). Let us recall the definition of systems of Hodge bundles.

Definition 2.7 (Systems of Hodge bundles). Let V0 = (V0, F0) be a
polarizable variation of R-Hodge structure on a complex manifold X0, where
V0 is a local system of finite-dimensional R-vector spaces on X0 and {F p0 }
is the Hodge filtration. Then we obtain a Higgs bundle (E0, θ0) on X0 by
setting

E0 = Gr•F0
V0 =

⊕
p

F p0 /F
p+1
0

where V0 = V0 ⊗ OX0
. Note that θ0 is induced by the Griffiths transversality

∇ : F p0 → Ω1
X0
⊗OX0

F p−1
0 .

More precisely, ∇ induces

θp0 : F p0 /F
p+1
0 → Ω1

X0
⊗OX0

(
F p−1

0 /F p0

)
for every p. Then

θ0 =
⊕
p

θp0 : E0 → Ω1
X0
⊗OX0

E0.
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The pair (E0, θ0) is usually called the system of Hodge bundles associated to
V0 = (V0, F0) and θ0 is called the Higgs field of (E0, θ0).

We further assume that X0 is a Zariski open set of a complex manifold
X such that D = X \X0 is a normal crossing divisor on X and that the
local monodromy of V0 around D is unipotent. Then, by [20, (4.12)], we can
extend (E0, θ0) to (E, θ) on X, where

E = Gr•F V =
⊕
p

F p/F p+1

and

θ : E → Ω1
X(logD)⊗OX

E.

Note that V is the canonical extension of V0 and F p is the canonical exten-
sion of F p0 , that is,

F p = j∗F
p
0 ∩ V ,

where j : X0 ↪→ X is the natural open immersion, for every p.

We need the following important calculations of curvatures by Griffiths.
For the basic definitions and properties of the induced metrics and curvatures
for subbundles and quotient bundles of a vector bundle, see [10, §1 and §2].

Lemma 2.8. We use the same notation as in Definition 2.7. Let F b0 be the
lowest piece of the Hodge filtration. Let q0 be the metric of F b0 induced by the
Hodge metric. Let Θq0(F

b
0 ) be the curvature form of (F b0 , q0). Then we have

Θq0(F
b
0 ) + (θb0)∗ ∧ θb0 = 0

where (θb0)∗ is the adjoint of θb0 with respect to the Hodge metric (see, for
example, [10] and [20, (7.18) Lemma]). Let L0 be a quotient line bundle of
F b0 . Then we have the following short exact sequence of locally free sheaves:

0→ S0 → F b0 → L0 → 0.

Let A be the second fundamental form of the subbundle S0 ⊂ F b0 . Let h0 be
the induced metric of L0. Then we obtain

√
−1Θh0

(L0) =
√
−1Θq0(F

b
0 )|L0

+
√
−1A ∧A∗

= −
√
−1(θb0)∗ ∧ θb0|L0

+
√
−1A ∧A∗.

Note that A∗ is the adjoint of A with respect to q0. Therefore, the curvature
form of (L0, h0) is a semipositive smooth (1, 1)-form on X0.
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In the proof of Theorem 1.1 in Section 4, we will investigate asymptotic
behaviors of log h0, ∂ log h0, ∂∂ log h0 near the normal crossing divisor D
and see that the largest lower semicontinuous extension h of h0 on X has
desired properties.

Lemma 2.9. We use the same notation as in Definition 2.7. Let q0 be the
Hodge metric on the system of Hodge bundles (E0, θ0) induced by the original
Hodge metric. Let Θq0(E0) be the curvature form of (E0, q0). Then we have

Θq0(E0) + θ0 ∧ θ∗0 + θ∗0 ∧ θ0 = 0

where θ∗0 is the adjoint of θ0 with respect to q0 (see, for example, [10] and
[20, (7.18) Lemma]). Therefore, we have

√
−1Θq0(E0) = −

√
−1θ0 ∧ θ∗0 −

√
−1θ∗0 ∧ θ0.

Let M0 be a line subbundle of E0 which is contained in the kernel of θ0 and
let h†0 be the induced metric on M0. Then

√
−1Θh†

0
(M0) =

√
−1Θq0(E0)|M0

+
√
−1A∗ ∧A

= −
√
−1θ0 ∧ θ∗0|M0

−
√
−1θ∗0 ∧ θ0|M0

+
√
−1A∗ ∧A

= −
√
−1θ0 ∧ θ∗0|M0

+
√
−1A∗ ∧A

where A is the second fundamental form of the line subbundle M0 ⊂ E0 and
A∗ is the adjoint of A with respect to q0. Therefore, the curvature of (M0, h

†
0)

is a seminegative smooth (1, 1)-form on X0.

3. Nefness

Let us start with the definition of nef line bundles on projective varieties.

Definition 3.1 (Nef line bundles). A line bundle L on a projective
variety X is nef if L · C ≥ 0 for every curve C on X.

In this paper, we need the notion of nef locally free sheaves (or vector
bundles) on projective varieties, which is a generalization of Definition 3.1.

Definition 3.2 (Nef locally free sheaves). A locally free sheaf (or vector
bundle) E of finite rank on a projective variety X is nef if the following
equivalent conditions are satisfied:
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(i) E = 0 or OPX(E )(1) is nef on PX(E ).

(ii) For every map from a smooth projective curve f : C → X, every quo-
tient line bundle of f∗E has nonnegative degree.

A nef locally free sheaf in Definition 3.2 was originally called a (numer-
ically) semipositive sheaf in the literature.

Let us recall the definition of nef line bundles in the sense of Demailly
(see [5, (6.11) Definition]).

Definition 3.3 (Nef line bundles in the sense of Demailly). A holo-
morphic line bundle L on a compact complex manifold X is said to be nef
if for every ε > 0 there is a smooth hermitian metric hε on L such that√
−1Θhε

(L ) ≥ −εω, where ω is a fixed hermitian metric on X.

We can easily check:

Lemma 3.4. If X is projective in Definition 3.3, then L is nef in the
sense of Demailly if and only if L is nef in the usual sense.

Proof. It is an easy exercise. For the details, see [5, (6.10) Proposition]. �

The following proposition is more or less well-known to the experts. We
write the proof for the reader’s convenience.

Proposition 3.5. Let X be a compact complex manifold and let L be a
holomorphic line bundle equipped with a singular hermitian metric h. As-
sume that

√
−1Θh(L ) ≥ 0 and the Lelong number of h is zero everywhere.

Then L is a nef line bundle in the sense of Definition 3.3.

First, we give a quick proof of Proposition 3.5 when X is projective. It
is an easy application of the Nadel vanishing theorem and the Castelnuovo–
Mumford regularity.

Proof of Proposition 3.5 when X is projective. Let A be an ample line bun-
dle on X such that |A | is basepoint-free. By Skoda’s theorem (see [5, (5.6)
Lemma]), we have J (hm) = OX for every positive integer m, where J (hm)
is the multiplier ideal sheaf of hm. Here, we used the fact that the Lelong
number of h is zero everywhere. By the Nadel vanishing theorem,

H i(X,ωX ⊗L ⊗m ⊗A ⊗n+1−i) = 0

for every 0 < i ≤ n = dimX and every positive integer m. By the
Castelnuovo–Mumford regularity, ωX ⊗L ⊗m ⊗A ⊗n+1 is generated by
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global sections for every positive integer m. We take a curve C on X. Then
C · (ωX ⊗L ⊗m ⊗A ⊗n+1) ≥ 0 for every positive integer m. This means that
C ·L ≥ 0. Therefore, L is nef in the usual sense. �

Next, we prove Proposition 3.5 when X is not necessarily projective.
The proof depends on Demailly’s approximation theorem for quasi-plurisub-
harmonic functions on complex manifolds (see [4]).

Proof of Proposition 3.5: general case. Let ω be a hermitian metric on X
and let ε be any positive real number. We fix a smooth hermitian metric g
on L . Then we can write h = ge−2ϕ, where ϕ is an integrable function on
X. Since

√
−1Θh(L ) ≥ 0, we see that

√
−1∂∂ϕ ≥ −1

2

√
−1Θg(L ) =: γ.

By Lemma 2.5, we may assume that ϕ is quasi-plurisubharmonic. Note that
γ is a smooth (1, 1)-form on X. By [4, Proposition 3.7] (see also [5, (13.12)
Theorem] and [6, Theorem 56]), we can construct a quasi-plurisubharmonic
function ψε on X with only analytic singularities (see (3.1) below) such that

√
−1∂∂ψε ≥ γ −

1

2
εω

(see [4, Proposition 3.7 (iii)], [5, (13.12) Theorem (c)], and [6, Theorem 56
(c)]). Since the Lelong number of h is zero everywhere by assumption, we
obtain

0 ≤ ν(ψε, x) ≤ ν(ϕ, x) = 0

for every x ∈ X by [4, Proposition 3.7 (ii)] (see also [5, (13.12) Theorem (b)]
and [6, Theorem 56 (b)]). Therefore, the Lelong number of ψε is zero ev-
erywhere. By construction, we can easily see that ψε is smooth outside
{x ∈ X |ψε(x) = −∞}. As mentioned above, ψε has only analytic singu-
larities, that is, it can be written locally near every point x0 ∈ X as

(3.1) ψε(z) = c log
∑

1≤j≤N
|gj(z)|2 +O(1)

with a family of holomorphic functions {g1, . . . , gN} defined near x0 and a
positive real number c (see [6, Definition 52]). Since ν(ψε, x) = 0 for every
x ∈ X, we obtain that ψε 6= −∞ everywhere. Therefore, ψε is a smooth
function on X. We put hε = ge−2ψε . Then hε is a smooth hermitian metric
on L such that

√
−1Θhε

(L ) ≥ −εω. This means that L is a nef line bundle
in the sense of Definition 3.3. �
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4. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1 and Corollary 1.2. The arguments
below heavily depend on [16, Section 5]. Therefore, we strongly recommend
the reader to see [16, Section 5], especially [16, Definition 5.3], before reading
this section.

4.1. We put ∆a = {z ∈ C | |z| < a}, ∆a = {z ∈ C | |z| ≤ a}, and ∆∗a = ∆a \
{0}. On ∆n

a , we fix coordinates z1, . . . , zn.

Let us quickly recall the definition of nearly boundedness and almost
boundedness due to Kollár for the reader’s convenience.

Definition 4.2 (see [16, Definition 5.3 (vi) and (vii)]). On (∆∗a)
n

with 0 < a < e−1, we define the Poincaré metric by declaring the coframe{
dzi

zi log |zi|
,

dz̄i
z̄i log |zi|

}
to be unitary. This defines a frame of every Ωk which we will refer to as the
Poincaré frame.

A function f defined on a dense Zariski open set of ∆n
a is called nearly

bounded on ∆n
a if f is smooth on (∆∗a)

n and there are C > 0, k > 0 and ε > 0
such that for every ordering of the coordinate functions z1, . . . , zn at least
one of the following conditions is satisfied for every z ∈ {z ∈ (∆∗a)

n | |z1| ≤
· · · ≤ |zn|}.

(a): |f | ≤ C,

(b): |z1| ≤ exp(−|zm|−ε) and |f | ≤ C(− log |zm|)k for some 2 ≤ m ≤ n.

A form η defined on a dense Zariski open set of ∆n
a is called nearly

bounded on ∆n
a if the coefficient functions are nearly bounded on ∆n

a when
we write η in terms of the Poincaré frame. If η1 and η2 are nearly bounded
on the same ∆n

a , then η1 ∧ η2 is nearly bounded on ∆n
a .

A form η defined on a dense Zariski open set of ∆n
a is called almost

bounded on ∆n
a if there is a proper bimeromorphic map p : W → ∆n

a such
that W is smooth and every w ∈W has a neighborhood where p∗η is nearly
bounded.

Remark 4.3. The definition of nearly boundedness and almost bounded-
ness in Definition 4.2 is slightly different from Kollár’s original one (see [16,
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Definition 5.3 (vii)]). We think that it is a kind of clarification. Of course,
everything in [16, Section 5] works well for our definition.

4.4 (Proof of Theorem 1.1). We fix a smooth hermitian metric g on L .
The Hodge metric induces a smooth hermitian metric h0 on L |X0

. Then we
can write

h0 = ge−2ϕ0

for some smooth function ϕ0 on X0. We use the same notation as in Lemma
2.8. Let V be the canonical extension of V0 = V0 ⊗ OX0

. Let q0 be the Hodge
metric on V0. For simplicity, we use the same notation q0 to denote (q0)|F b

0
,

that is, the metric on F b0 induced by the metric q0 on V0. Let P be an arbi-
trary point of X. We take a suitable local coordinate (z1, . . . , zn) centered
at P and a small positive real number a with a < e−1. Then, by [3, Theorem
5.21] (see also [12] and [21, Claim 7.8]), we can write

V |∆n
a
'

r⊕
i=1

O∆n
a
ei(z),

where ei(z) ∈ Γ(∆n
a ,V ), such that

(4.1) q0(ei(z), ei(z)) ≤ C1(− log |z1|)a1 · · · (− log |zn|)an

for z ∈ (∆∗a)
n, where a1, . . . , an are some positive integers and C1 is a large

positive real number. By making a smaller, we may further assume that

L |∆n
a
' O∆n

a
e(z),

where e(z) ∈ Γ(∆n
a ,L ) is a nowhere vanishing section of L on ∆n

a . We take
a lift f(z) ∈ Γ(∆n

a , F
b) of e(z), that is, p(f(z)) = e(z), where p : F b → L .

Then we can write

(4.2) f(z) = f1(z)e1(z) + · · ·+ fr(z)er(z),

where fi(z) is a holomorphic function on ∆n
a for every i. By making a smaller

again, we may assume that fi(z) is holomorphic in a neighborhood of (∆a)
n.

Of course, we may further assume that e(z) 6= 0 in a neighborhood of (∆a)
n.

By (4.1) and (4.2), we obtain that there exists some large positive real
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number C2 such that

q0(f(z), f(z)) ≤ C2(− log |z1|)a1 · · · (− log |zn|)an

holds for z ∈ (∆∗a)
n. Therefore,

C3e
−2ϕ0(z) ≤ g(e(z), e(z))e−2ϕ0(z)

= h0(e(z), e(z))

≤ q0(f(z), f(z)) ≤ C2(− log |z1|)a1 · · · (− log |zn|)an

for z ∈ (∆∗a)
n, where

C3 = min
z∈(∆a)n

g(e(z), e(z)) > 0.

Thus,

−ϕ0(z) ≤ log (C (− log |z1|)a1 · · · (− log |zn|)an)

holds for z ∈ (∆∗a)
n, where C is some large positive real number. By applying

similar arguments to the dual line bundle L ∨, we may further assume that

ϕ0(z) ≤ log (C (− log |z1|)a1 · · · (− log |zn|)an)

holds for z ∈ (∆∗a)
n. Let ϕ be the smallest upper semicontinuous function

that extends ϕ0 to X. More explicitly,

ϕ(z) = lim
ε→0

sup
w∈∆n

ε∩X0

ϕ0(w),

where ∆n
ε is a polydisc on X centered at z ∈ X. Then, by Lemma 4.6, we

obtain:

Lemma 4.5. ϕ is locally integrable on X.

Proof of Lemma 4.5. Let P be an arbitrary point of X. In a small open
neighborhood of P , we have

0 ≤ ϕ±(z) ≤ log (C (− log |z1|)a1 · · · (− log |zn|)an)

where ϕ+ = max{ϕ, 0} and ϕ− = ϕ+ − ϕ. By Lemma 4.6 below, we obtain
that ϕ is locally integrable on X. �

We have already used:
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Lemma 4.6. We have ∫ a

0
r log(− log r)dr <∞

for 0 < a < e−1.

Proof of Lemma 4.6. We put t = − log r. Then we can easily check∫ a

0
r log(− log r)dr =

∫ ∞
− log a

e−2t(log t)dt

≤
∫ ∞
− log a

te−2tdt ≤
∫ ∞
− log a

e−tdt = a <∞

by direct calculations. �

We put

h = ge−2ϕ.

Then h is a singular hermitian metric on L in the sense of Definition 2.2. The
following lemma is essentially contained in [16, Propositions 5.7 and 5.15].

Lemma 4.7. Let P be an arbitrary point of X. Then ∂ϕ0 and ∂̄∂ϕ0 are
almost bounded in a neighborhood of P ∈ X. More precisely, there exists ∆n

a

on X centered at P for some 0 < a < e−1 such that ϕ0, ∂ϕ0, and ∂̄∂ϕ0 are
smooth on (∆∗a)

n and that ∂ϕ0 and ∂̄∂ϕ0 are almost bounded on ∆n
a .

Proof of Lemma 4.7. We consider the following short exact sequence:

0→ S → F b → L → 0.

We fix smooth hermitian metrics g1, g2 and g on S , F b, and L , respectively.
We assume that g1 = g2|S and that g is the orthogonal complement of g1

in g2. Let h1 and h2 be the induced Hodge metrics on S0 = S |X0
and

F b0 , respectively. By applying the calculations in [16, Section 5] to det S ,
we obtain deth1 = det g1 · e−ϕ1 on X0 such that ∂ϕ1 and ∂̄∂ϕ1 are almost
bounded in a neighborhood of P . More precisely, we can take a polydisc ∆n

a

centered at P for some 0 < a < e−1 and a composite of permissible blow-ups
p : W → ∆n

a (see [16, 5.9] and [22, Theorem 3.5.1]) such that ϕ1 is smooth
on (∆∗a)

n and that every w ∈W has a neighborhood ∆n
a′
w

centered at w ∈W
for some 0 < a′w < e−1 where p∗(∂ϕ1) and p∗(∂̄∂ϕ1) are nearly bounded on
∆n
a′
w

. For the details, see [16, Propositions 5.7 and 5.15]. On the other hand,
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we have deth2 = det g2 · e−ϕ2 on X0 such that ϕ2 is smooth on (∆∗a)
n and

that the coefficient functions of p∗(∂ϕ2) and p∗(∂̄∂ϕ2) with respect to the
Poincaré frame are bounded on ∆n

a′
w

by [3, (5.22) Proposition] if we make a′w
sufficiently small. By construction, ϕ0 = −ϕ1 + ϕ2. Therefore, ϕ0 is smooth
on (∆∗a)

n, and p∗(∂ϕ0) and p∗(∂∂ϕ0) are nearly bounded on ∆n
a′
w

. This means

that ϕ0, ∂ϕ0, and ∂∂ϕ0 are smooth on (∆∗a)
n and that ∂ϕ0 and ∂∂ϕ0 are

almost bounded on ∆n
a . �

We prepare an easy lemma.

Lemma 4.8. We assume 0 < a < e−1. We have∫ a

0

log(− log r)

− log r
dr <∞.

Proof of Lemma 4.8. We put t = − log r. Then r = e−t. We have∫ a

0

log(− log r)

− log r
dr =

∫ − log a

∞

log t

t
(−e−t)dt

=

∫ ∞
− log a

log t

t
e−tdt

≤
∫ ∞
− log a

e−tdt = a <∞.

This is what we wanted. �

The following lemma is missing in [16, Section 5]. This is because it
is sufficient to consider the asymptotic behaviors of ∂ϕ0 and ∂̄∂ϕ0 for the
purpose of [16, Section 5].

Lemma 4.9. Let η be a smooth (2n− 1)-form on ∆n
a with compact support.

We put

S~ε = {z ∈ ∆n
a | |zi| ≥ εi for every i and |zi0 | = εi0 for some i0}

where ~ε = (ε1, . . . , εn) with εi > 0 for every i. Then there is a sequence {~εk}
with ~εk ↘ 0 such that

lim
k→∞

∫
S~εk

ϕη = 0.
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Proof of Lemma 4.9. We put

Sε,1 = {z ∈ ∆n
a | |z1| = ε}.

Then it is sufficient to prove that

lim
k→∞

∫
Sεk,1

ϕη = 0

for some sequence {εk} with εk ↘ 0. Without loss of generality, we may
assume that η is a real (2n− 1)-form by considering η+η̄

2 and η−η̄
2
√
−1

. Let us

consider the real 1-form

ω =
1

(2(− log |z1|)2)1/2

(
dz1

z1
+
dz̄1

z̄1

)
.

This form is orthogonal to the foliation Sε,1 and has length one everywhere
by the Poincaré metric. We consider the vector field

v =
1

(2(− log |z1|)2)1/2

(
z1(log |z1|)2 ∂

∂z1
+ z̄1(log |z1|)2 ∂

∂z̄1

)
,

which is dual to ω. We fix ε with 0 < ε < a < e−1. We consider the flow ft
on ∆∗a ×∆n−1

a corresponding to −v. We can explicitly write

ft : [0,∞)× Sε,1 → ∆∗a ×∆n−1
a

by

(t, (w, z2, . . . , zn))(4.3)

7→
(
w

ε
exp

(
− exp

(
1√
2
t+ log(− log ε)

))
, z2, . . . , zn

)
.

Therefore, by using the flow ft, we can parametrize {z ∈ C | 0 < |z| ≤ ε} ×
∆n−1
a by [0,∞)× Sε,1. If we write

ω ∧ ϕη = f(z)dV,

where dV is the standard volume form of Cn, then we put

(ω ∧ ϕη)+ = max{f(z), 0}dV
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and

(ω ∧ ϕη)− = (ω ∧ ϕη)+ − ω ∧ ϕη.
We can easily see that ∫

∆n
a

(ω ∧ ϕη)± <∞

by Lemmas 4.6 and 4.8. Therefore, we obtain

(4.4)

∫
[0,∞)×Sε,1

(ω ∧ ϕη)± <∞.

The image of {t} × Sε,1 in ∆n
a is Sε(t),1 with 0 < ε(t) ≤ ε. By (4.3), we have

ε(t) = exp

(
− exp

(
1√
2
t+ log(− log ε)

))
.

We note that ω is orthogonal to Sε(t),1 and unitary. More explicitly, we can
directly check

f∗t ω = −dt.
Therefore, the above integral (4.4) transforms to∫

[0,∞)

(∫
Sε(t),1

(ϕη)±

)
dt <∞.

Note that (ϕη)± is defined by

f∗t (ω ∧ ϕη)± = −dt ∧ (ϕη)±.

This can happen only if ∫
Sε(tk),1

(ϕη)± → 0

for some sequence {tk} with tk ↗∞. This implies that we can take a se-
quence {εk} with εk ↘ 0 such that

lim
k→∞

∫
Sεk,1

ϕη = 0.

Therefore, we have a desired sequence {~εk}. �

Remark 4.10. The real 1-form ω and the corresponding flow ft in the
proof of Lemma 4.9 are different from the 1-form ω and the flow vt in the
proof of [16, Proposition 5.16], respectively.
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By combining the proof of [16, Proposition 5.16] and the proof of Lemma
4.9, we have:

Lemma 4.11. Let η be a nearly bounded (2n− 1)-form on ∆n
a with compact

support. Then there exists a sequence {~ε′k} with ~ε′k ↘ 0 such that

lim
~ε′k↘0

∫
S~ε′k

η = 0.

We leave the details of Lemma 4.11 to the reader (see the proof of [16,
Proposition 5.16] and the proof of Lemma 4.9).

By Lemmas 4.7 and 4.9, we have the following lemma.

Lemma 4.12. Let η be a smooth (2n− 2)-form on ∆n
a with compact sup-

port. We further assume that ∂ϕ0 and ∂̄∂ϕ0 are nearly bounded on ∆n
a .

Then ∫
∆n

a

ϕ∂∂̄η =

∫
∆n

a

∂∂̄ϕ0 ∧ η.

Note that the right hand side is an improper integral. Therefore, we obtain∫
∆n

a

∂∂̄ϕ ∧ η =

∫
∆n

a

∂∂̄ϕ0 ∧ η,

where we take ∂∂̄ of ϕ as a current.

Proof of Lemma 4.12. We put

V~εk = {z ∈ ∆n
a | |zi| ≥ εik for every i}

where ~εk = (ε1
k, . . . , ε

n
k) with εik > 0 for every i. Then∫

∆n
a

ϕ∂∂̄η = lim
~εk↘0

∫
V~εk

ϕ0∂∂̄η

= lim
~εk↘0

∫
V~εk

d(ϕ0∂̄η)− lim
~ε′k↘0

∫
V~ε′k

∂ϕ0 ∧ ∂̄η

= lim
~εk↘0

∫
S~εk

ϕ0∂̄η + lim
~ε′k↘0

∫
V~ε′k

d(∂ϕ0 ∧ η)− lim
~ε′k↘0

∫
V~ε′k

∂̄∂ϕ0 ∧ η

= lim
~ε′k↘0

∫
V~ε′k

∂∂̄ϕ0 ∧ η

=

∫
∆n

a

∂∂̄ϕ0 ∧ η.
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The first equality holds since ϕ is locally integrable. The second one follows
from integration by parts. Note that ϕ0 is smooth in a neighborhood of V~εk .
We also note that

lim
~εk↘0

∫
V~εk

∂ϕ0 ∧ ∂̄η = lim
~ε′k↘0

∫
V~ε′k

∂ϕ0 ∧ ∂̄η

holds. The third one follows from Stokes’ theorem and integration by parts.
We obtain the fourth one by Lemmas 4.9 and 4.11. Note that∫

V~ε′k

d(∂ϕ0 ∧ η) =

∫
S~ε′k

∂ϕ0 ∧ η

by Stokes’ theorem. The final one follows from [16, Proposition 5.16 (i)]. �

Lemma 4.13. Let η be a smooth (2n− 2)-form on ∆n
a with compact sup-

port. We assume that ∂ϕ0 and ∂̄∂ϕ0 are almost bounded on ∆n
a . Then∫

∆n
a

ϕ∂∂̄η =

∫
∆n

a

∂∂̄ϕ0 ∧ η.

Proof of Lemma 4.13. By assumption, ∂ϕ0 and ∂̄∂ϕ0 are almost bounded on
∆n
a . Therefore, after taking some suitable blow-ups and a suitable partition

of unity, we can apply Lemma 4.12. Then we obtain the desired equality. �

Lemma 4.14. Let η1 and η2 be a smooth (2n− 2)-form and a smooth (2n−
3)-form on X with compact support, respectively. Then

(4.5)

∫
X

√
−1Θh0

(L |X0
) ∧ η1 <∞

and

(4.6)

∫
X

√
−1Θh0

(L |X0
) ∧ dη2 = 0.

Therefore,
√
−1Θh0

(L |X0
) can be extended to a closed positive current T

on X by improper integrals. We note that
√
−1Θh0

(L |X0
) is a semipositive

smooth (1, 1)-form on X0 (see Lemma 2.8).



i
i

“6-Fujino” — 2019/11/18 — 11:55 — page 1377 — #19 i
i

i
i

i
i

On semipositivity theorems 1377

Proof of Lemma 4.14. We note that

√
−1Θh0

(L |X0
) =
√
−1Θg(L )|X0

+ 2
√
−1∂∂ϕ0

by definition and that
√
−1Θg(L ) is a d-closed smooth (1, 1)-form on X.

Therefore, it is sufficient to prove that

(4.7)

∫
∆n

a

√
−1∂∂ϕ0 ∧ η1 <∞

and

(4.8)

∫
∆n

a

∂∂ϕ0 ∧ dη2 = 0

by taking some suitable partition of unity. We see that (4.7) and (4.8) follow
from [16, Corollary 5.17] since ∂∂ϕ0 is almost bounded on ∆n

a (see Lemma
4.7). More precisely, by taking some suitable blow-ups and a suitable parti-
tion of unity, we can reduce the problems to the case where ∂∂ϕ0 is nearly
bounded on some polydisc ∆n

a . Then (4.7) follows from [16, Proposition 5.16
(i)]. By [16, Proposition 5.16 (i)], integration by parts, Stokes’ theorem, and
Lemma 4.11, we can directly check that∫

∆n
a

∂∂ϕ0 ∧ dη2 = 0

as in the proof of Lemma 4.12. �

By Lemma 4.13, we can see that

(4.9)
√
−1Θh(L ) =

√
−1Θg(L ) + 2

√
−1∂∂ϕ

coincides with T . Note that we took ∂∂ of ϕ as a current in (4.9). In partic-
ular,

√
−1Θh(L ) ≥ 0,

that is,
√
−1Θh(L ) is a closed positive current on X. By Lemma 2.5, ϕ is

a quasi-plurisubharmonic function since ϕ is the smallest upper semicontin-
uous function that extends ϕ0 to X.

Finally, we prove:



i
i

“6-Fujino” — 2019/11/18 — 11:55 — page 1378 — #20 i
i

i
i

i
i

1378 O. Fujino and T. Fujisawa

Lemma 4.15. Let ϕ be a quasi-plurisubharmonic function on ∆n
a for some

0 < a < e−1. Assume that there exist some positive integers a1, . . . , an and
a positive real number C such that

−ϕ(z) ≤ log (C (− log |z1|)a1 · · · (− log |zn|)an)

holds for all z ∈ (∆∗a)
n. Then the Lelong number of ϕ at 0 is zero.

Proof. We denote the Lelong number of ϕ at x by ν(ϕ, x). We can easily see
that

0 ≤ ν(ϕ, 0) = lim inf
z→0

ϕ(z)

log |z|

≤ lim inf
z→0

log (C (− log |z1|)a1 · · · (− log |zn|)an)

− log |z|
≤ 0

holds. Therefore, the Lelong number ν(ϕ, 0) of ϕ at 0 is zero. �

Thus we obtain Theorem 1.1 by Lemma 4.15.

Now Corollary 1.2 is almost obvious by Theorem 1.1.

Proof of Corollary 1.2. We put π : Y = PX(F b)→ X and Y0 = π−1(X0). We
consider the variation of Hodge structure π∗V0 on Y0. Then π∗F b is the
canonical extension of the lowest piece of the Hodge filtration. By apply-
ing Theorem 1.1 to the natural map π∗F b → OPX(F b)(1)→ 0, we obtain a
singular hermitian metric on OPX(F b)(1) with the desired properties. �

5. Proof of Theorem 1.5

In this section, we will prove Theorem 1.5 and Corollary 1.6. We will only
explain how to modify the arguments in Section 4.

5.1 (Proof of Theorem 1.5). Let {F p0 } be the Hodge filtration of the
polarizable variation of R-Hodge structure V0 = (V0, F0) on X0. We put

0 = F b+1
0 ( F b0 ⊆ · · · ⊆ F a+1

0 ( F a0 = V0 := V0 ⊗ OX0
.

By assumption, M is a holomorphic line subbundle of
⊕

p GrpF V . There-

fore, M is naturally a holomorphic line subbundle of Q :=
⊕b+1

p=a+1 V /F p.
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Then we have the following big commutative diagram of holomorphic vector
bundles on X.

0

��
0

��

M

��
0 // S ′

��

//
⊕

finite

V // Q //

��

0

0 // S

��

//
⊕

finite

V // Q′ //

��

0

M

��

0

0

We note that S ′ =
⊕b+1

p=a+1 F
p and Q′ = Q/M and that S is the kernel

of the naturally induced surjection
⊕

finite V → Q′. By taking the dual of
the above commutative diagram, M ∨ is a quotient bundle of Q∨ and Q∨

is a subbundle of
⊕

finite

V ∨. Therefore, we can apply the same arguments as

in Section 4 to M ∨ by considering the polarizable variation of R-Hodge
structure

⊕
finite

V ∨0 . Then we see that the Hodge metric of
⊕

finite

V ∨0 induces the

desired singular hermitian metric h on M ∨ by Lemma 2.9.

Finally, we give a proof of Corollary 1.6.

Proof of Corollary 1.6. We put π : Y = PX(A∨)→ X and Y0 = π−1(X0).
We consider π∗V0 on Y0. Then π∗A is contained in the kernel of the Higgs
field

π∗θ : Gr•F π
∗V → Ω1

Y (log π∗D)⊗Gr•F π
∗V .

By applying Theorem 1.5 to the line subbundle OPX(A∨)(−1) of π∗A, we
obtain the desired result. �
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