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Boundedness of threefolds of Fano type

with Mori fibration structures

Chen Jiang

We show boundedness of 3-folds of ε-Fano type with Mori fibration
structures. The proof is based on the birational boundedness result
in our previous work [14] combining with arguments in Kawamata
[17] and Kollár–Miyaoka–Mori–Takagi [24].

1. Introduction

Throughout this paper, we work over the field of complex numbers C. See
Subsection 2.1 for notation and conventions.

A normal projective variety X is of ε-Fano type if there exists an effective
Q-divisor B such that (X,B) is an ε-klt log Fano pair. 0-Fano type is also
called Fano type for simplicity. The notion of Fano type was introduced by
Prokhorov–Shokurov [31].

We are mainly interested in the boundedness of varieties of ε-Fano type.
Our motivation is the following conjecture due to A. Borisov, L. Borisov,
and V. Alexeev.

Conjecture 1.1 (BAB Conjecture). Fix an integer n > 0, 0 < ε < 1.
Then the set of all n-dimensional varieties of ε-Fano type is bounded.

BAB Conjecture is one of the most important conjectures in birational
geometry. It is related to the termination of flips (cf. [4, 7]) and has in-
teresting application for the Jordan property of Cremona groups (cf. [32]).
Besides, varieties of Fano type form a fundamental class in birational ge-
ometry according to Minimal Model Program and have many interesting
properties (cf. [9, 12, 26]). Hence it is very interesting to understand the
basic properties of this class, such as boundedness.

The author was supported by Grant-in-Aid for JSPS Fellows (KAKENHI No. 25-
6549).
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BAB Conjecture in dimension two was proved by Alexeev [1] with a
simplified argument by Alexeev–Mori [3]. In higher dimension, BAB Con-
jecture still remains open. There are only some partial boundedness results
(cf. [2, 8, 17, 22, 24]).

We recall the following theorem proved in [13] by using Minimal Model
Program.

Theorem 1.2 (cf. [13, Proof of Theorem 2.3]). Fix an integer n > 0
and 0 < ε < 1. Every n-dimensional variety X of ε-Fano type is birational to
an n-dimensional variety X ′ of ε-Fano type with a Mori fibration structure.

We will recall the proof in Section 3. Here we emphasize that having
a Mori fibration structure implies that having at most Q-factorial terminal
singularities by our definition (see Subsection 2.1). According to this theo-
rem, it is important and interesting to investigate varieties of ε-Fano type
with Mori fibration structures. In fact, in the proof of BAB Conjecture in
dimension two (cf. [1, 3]), the first step is to classify (and bound) all surfaces
of ε-Fano type with Mori fibration structures, which are just projective plane
or Hirzebruch surfaces Fn with n < 2/ε. Therefore, we are interested in the
boundedness of 3-folds of ε-Fano type with Mori fibration structures, as the
first step towards BAB Conjecture in dimension three.

The following is our main theorem.

Theorem 1.3. Fix 0 < ε < 1. The set of all 3-folds of ε-Fano type with
Mori fibration structures is bounded.

For interesting examples in dimension three, we refer to [28], where 3-
folds of Fano type with conic bundle structures were constructed, which
proves the birational unboundedness of 3-folds of 0-Fano type.

1.1. Sketch of the proof

Let X be a 3-fold of ε-Fano type with a Mori fibration f : X → Z. If dimZ =
0, then X is a Q-factorial terminal Fano 3-fold of Picard number one, which
is bounded by Kawamata [17]. So we only need to consider the case when
dimZ > 0.

We recall the following theorem from [14], by which we proved the bira-
tional boundedness of 3-folds of ε-Fano type.
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Theorem 1.4 (cf. [14, Proof of Corollaries 1.5, 1.8]). Fix 0 < ε < 1.
Then there exist positive integers Nε and Vε depending only on ε, with the
following property:

If X is a 3-fold of ε-Fano type with a Mori fibration f : X → Z.

(1) If dimZ = 1 (i.e. Z = P1), take a general fiber F of f , then
(1-1) −KX +NεF is ample;
(1-2) (−KX +NεF )3 ≤ Vε.

(2) If dimZ = 2, then there exists a very ample divisor H on Z such that
(2-1) −KX +Nεf

∗H is ample;
(2-2) (−KX +Nεf

∗H)3 ≤ Vε.

We will recall the proof in Section 4. By this theorem, to show the
boundedness, it suffices to show the boundedness of Gorenstein indices due
to Kollár’s effective base point free theorem (see Subsection 5.3). We will
explain the idea of bounding the Gorenstein indices.

For convenience, we define G and FX as following.

Definition 1.5. Let X be a 3-fold of ε-Fano type with a Mori fibration
f : X → Z such that dimZ > 0. Keep the notation in Theorem 1.4.

1) Define the projective smooth surface G to be a general fiber F (resp.
a general element of |f∗(H)|) if dimZ = 1 (resp. dimZ = 2).

2) Define the torsion free sheaf FX := TX ⊕OX(NεG), where TX is the
tangent sheaf on X.

We remark that G is a del Pezzo surface (resp. conic bundle over a
general H) if dimZ = 1 (resp. dimZ = 2).

Following the idea of Kollár–Miyaoka–Mori–Takagi [24], we can prove
the pseudo-effectivity of c2(FX).

Theorem 1.6. Fix 0 < ε < 1. Let X be a 3-fold of ε-Fano type with a
Mori fibration f : X → Z such that dimZ > 0. Keep the notation in Defi-
nition 1.5. Then c2(FX) is pseudo-effective.

Following the idea of Kawamata [17], after bounding (−KX) · c2(X) from
below, we can get an upper bound for Cartier index of KX , which eventually
implies the desired boundedness.

Theorem 1.7. Fix 0 < ε < 1. Let X be a 3-fold of ε-Fano type with a Mori
fibration f : X → Z such that dimZ > 0, then
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1) (−KX) · c2(X) ≥ −Mε;

2) rεKX is Cartier,

where Mε = 5Vε + 12Nε and rε = (24 +Mε)!, Nε and Vε are the numbers
defined in Theorem 1.4.

This paper is organized as follows. For the reader’s convenience, in Sec-
tions 3 and 4, we recall the proof of Theorems 1.2 and 1.4. In Section 5, we
prove our main theorems, Theorems 1.6, 1.7, and 1.3.

2. Preliminaries

2.1. Notation and conventions

We adopt the standard notation and definitions in [18] and [25], and will
freely use them.

A pair (X,B) consists of a normal projective variety X and an effective
Q-divisor B on X such that KX +B is Q-Cartier.

The pair (X,B) is called a log Fano pair if −(KX +B) is ample.
Let f : Y → X be a log resolution of the pair (X,B), write

KY = f∗(KX +B) +
∑

aiFi,

where {Fi} are distinct prime divisors. For some ε ∈ [0, 1], the pair (X,B)
is called

(a) ε-kawamata log terminal (ε-klt, for short) if ai > −1 + ε for all i;

(b) ε-log canonical (ε-lc, for short) if ai ≥ −1 + ε for all i;

(c) terminal if ai > 0 for all f -exceptional divisors Fi and all f .

Usually we write X instead of (X, 0) in the case B = 0. Note that 0-klt (resp.
0-lc) is just klt (resp. lc) in the usual sense.

Fi is called a non-klt place (resp. non-lc place) of (X,B) if ai ≤ −1 (resp.
< −1). A subvariety V ⊂ X is called a non-klt center (resp. non-lc center) of
(X,B) if it is the image of a non-klt place (resp. non-lc place). The non-klt
locus Nklt(X,B) is the union of all non-klt centers of (X,B). The non-lc
locus Nlc(X,B) is the union of all non-lc centers of (X,B).

A normal projective variety X is of ε-Fano type if there exists an effective
Q-divisor B such that (X,B) is an ε-klt log Fano pair. 0-Fano type is also
called Fano type for simplicity.
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A projective morphism f : X → Z between normal projective varieties
is called a Mori fibration (or Mori fiber space) if

1) X is Q-factorial with terminal singularities;

2) f is a contraction, i.e., f∗OX = OZ ;

3) −KX is ample over Z;

4) ρ(X/Z) = 1;

5) dimX > dimZ.

We say that X is with a Mori fibration structure if there exists a Mori
fibration X → Z. In particular, in this situation, X has at most Q-factorial
terminal singularities by definition.

A collection of varieties {Xt}t∈T is said to be bounded (resp. birationally
bounded) if there exists h : X → S a projective morphism between schemes
of finite type such that each Xt is isomorphic (resp. birational) to Xs for
some s ∈ S.

2.2. Volumes

Let X be an n-dimensional projective variety and D be a Cartier divisor on
X. The volume of D is the real number

Vol(X,D) = lim sup
m→∞

h0(X,OX(mD))

mn/n!
.

Note that the limsup is actually a limit. Moreover by the homogenous prop-
erty of volumes, we can extend the definition to Q-Cartier Q-divisors. Note
that if D is a nef Q-divisor, then Vol(X,D) = Dn.

For more background on volumes, see [27, 11.4.A]. It is easy to see the
following inequality for volumes by comparing global sections by exact se-
quences.

Lemma 2.1 ([14, Lemma 2.5]). Let X be a projective normal variety,
D a Q-Cartier Q-divisor and S a semi-ample normal Cartier prime divisor.
Then for any rational number q > 0,

Vol(X,D + qS) ≤ Vol(X,D) + q(dimX)Vol(S,D|S + qS|S).
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2.3. Log canonical thresholds and α-invariants

Let (X,B) be an lc pair and D ≥ 0 be a Q-Cartier Q-divisor. The log canon-
ical threshold of D with respect to (X,B) is

lct(X,B;D) = sup{t ∈ Q | (X,B + tD) is lc}.

For application, we need to consider the case when D is not effective. Let G
be a Q-Cartier Q-divisor satisfying G+B ≥ 0, The generalized log canonical
threshold of G with respect to (X,B) is

glct(X,B;G) = sup{t ∈ [0, 1] ∩Q | (X,B + tG) is lc}.

Note that the assumption t ∈ [0, 1] guarantees that B + tG ≥ 0.
If (X,B) is an lc log Fano pair, the (generalized) α-invariant of (X,B)

is defined by

α(X,B) = inf{glct(X,B;G) | G ∼Q −(KX +B), G+B ≥ 0}.

2.4. Non-klt centers

The following lemma suggests a standard way to construct non-klt centers.

Lemma 2.2 (cf. [25, Lemma 2.29]). Let (X,B) be a pair and V ⊂ X a
closed subvariety of codimesion k such that V is not contained in the singular
locus of X. If multVB ≥ k, then V is a non-klt center of (X,B).

Recall that the multiplicity multV F of a divisor F along a subvariety V
is defined by the multiplicity multxF of F at a general point x ∈ V .

Unfortunately, the converse of Lemma 2.2 is not true unless k = 1. Usu-
ally we do not have good estimates for the multiplicity along a non-klt center
but the following lemma.

Lemma 2.3 (cf. [27, Theorem 9.5.13]). Let (X,B) be a pair and V ⊂ X
a non-klt center of (X,B) such that V is not contained in the singular locus
of X. Then multVB ≥ 1.

We have the following connectedness lemma of Kollár and Shokurov for
non-klt locus (cf. Shokurov [34], Kollár [19, 17.4]).

Theorem 2.4 (Connectedness Lemma). Let f : X → Z be a proper
morphism of normal varieties with connected fibers and D a Q-divisor such
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that −(KX +D) is Q-Cartier, f -nef, and f -big. Write D = D+ −D− where
D+ and D− are effective with no common components. If D− is f -exceptional
(i.e. all of its components have image of codimension at least 2), then
Nklt(X,D) ∩ f−1(z) is connected for any z ∈ Z.

As an application, we have the following theorem on inversion of adjunc-
tion (cf. [25, Theorem 5.50]). Here we only use a weak version.

Theorem 2.5 (Inversion of adjunction). Let (X,B) be a pair and S ⊂
X a normal Cartier divisor not contained in the support of B. Then

Nklt(X,B) ∩ S ⊂ Nklt(S,B|S).

In particular, if Nklt(X,B) ∩ S 6= ∅, then (S,B|S) is not klt.

2.5. Length of extremal rays

Recall the result on length of extremal rays due to Kawamata.

Theorem 2.6 ([16]). Let (X,B) be a klt pair. Then every (KX +B)-
negative extremal ray R is generated by a rational curve C such that

0 < −(KX +B) · C ≤ 2 dimX.

However, we need to deal with non-klt pairs in application. We have a
slightly generalization of this theorem for non-klt pairs.

Theorem 2.7 ([10, Theorem 1.1(5)]). Let (X,B) be a pair. Fix a (KX +
B)-negative extremal ray R. Assume that

R ∩NE(X)Nlc(X,B) = {0},

where

NE(X)Nlc(X,B) = Im(NE(Nlc(X,B))→ NE(X)).

Then R is generated by a rational curve C such that

0 < −(KX +B) · C ≤ 2 dimX.
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3. Proof of Theorem 1.2

In this section, for the reader’s convenience, we recall the proof of Theo-
rem 1.2 from [13]. We start with two lemmas. The first lemma is about
equivalent definitions of ε-Fano type.

Lemma 3.1 (cf. [31, Lemma-Definition 2.6]). Let Y be a projective
normal variety, and ε ∈ [0, 1). The following are equivalent:

1) Y is of ε-Fano type;

2) There exists an effective Q-divisor ∆ such that ∆ is big, (Y,∆) is ε-klt,
and KY + ∆ ≡ 0.

Proof. First we assume that Y is of ε-Fano type, that is, there exists an
effective Q-divisor B on Y such that (Y,B) is ε-klt log Fano pair. Then take
a general effective ample Q-divisor A on Y such that (Y,B +A) is ε-klt and

KY +B +A ∼Q 0.

We may take ∆ = A+B.
Then we assume that there exists an effective Q-divisor ∆ such that

∆ is big, (Y,∆) is ε-klt, and KY + ∆ ≡ 0. Since ∆ is big, we may write
∆ = A+G where A is an ample Q-divisor and G is an effective Q-divisor.
We may take a sufficiently small δ > 0 such that (Y,∆ + δG) is again ε-klt.
Hence (Y, (1− δ)∆ + δG) is ε-klt, and

−(KY + (1− δ)∆ + δG) ≡ δA

is ample. Hence Y is of ε-Fano type. �

Being of ε-Fano type is preserved by MMP according to the following
lemma.

Lemma 3.2 (cf. [12, Lemma 3.1]). Let Y be a projective normal variety
and f : Y → Z be a projective birational contraction.

1) If Y is of ε-Fano type, so is Z;

2) Assume that f is small, then Y is of ε-Fano type if and only if so is Z.

In particular, minimal model program preserves ε-Fano type.
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Proof. First we assume that Y is of ε-Fano type, that is, by Lemma 3.1,
there exists an effective Q-divisor ∆ such that ∆ is big, (Y,∆) is ε-klt, and
KY + ∆ ≡ 0. Pushing forward by f , by negativity lemma,

KY + ∆ = f∗(KZ + f∗∆) ≡ 0.

Hence f∗∆ is big, (Z, f∗∆) is ε-klt, and KZ + f∗∆ ≡ 0, that is, Z is of ε-Fano
type.

Next we assume that f is small and Z is of ε-Fano type. Let Γ be an
effective big Q-divisor on Z such that (Z,Γ) is ε-klt and KZ + Γ ≡ 0. Let ∆
be the strict transform of Γ on Y . Then ∆ is big since f is small. Again by
f is small,

KY + ∆ = f∗(KZ + Γ).

Hence (Y,∆) is ε-klt and KY + ∆ ≡ 0. Hence Y is of ε-Fano type. �

Proof of Theorem 1.2. Fix 0 < ε < 1, an integer n > 0. Let X be a variety
of ε-Fano type of dimension n, that is, by Lemma 3.1, there exists an ef-
fective Q-divisor ∆ such that ∆ is big, (X,∆) is ε-klt, and KX + ∆ ≡ 0.
By [6, Corollary 1.4.3], taking Q-factorialization of (X,∆), we have a bi-
rational morphism φ : X0 → X where KX0

+ φ−1∗ ∆ = φ∗(KX + ∆), X0 is
Q-factorial, and φ is isomorphic in codimension one.

Again by [6, Corollary 1.4.3], taking terminalization of X0, we have
a birational morphism π : X1 → X0 where KX1

+ ∆X1
= π∗(KX0

+ φ−1∗ ∆),
∆X1

≥ π∗(φ−1∗ ∆) is an effective Q-divisor, X1 is Q-factorial terminal. Here
KX1

+ ∆X1
≡ 0 and (X1,∆X1

) is ε-klt. Since ∆ is big and φ is small, ∆X1
≥

π∗(φ−1∗ ∆) is big. Therefore, X1 is Q-factorial terminal and of ε-Fano type.
Running K-MMP on X1, we get a sequence of normal projective vari-

eties:

X1 99K X2 99K X3 99K · · · 99K Xr → T.

Since −KX1
is big, this sequence ends up with a Mori fiber space Xr → T (cf.

[6, Corollary 1.3.3]). Since we run K-MMP, Xr is again Q-factorial terminal.
By Lemma 3.2, for all i, Xi is of ε-Fano type. Now Xr is an n-dimensional
variety of ε-Fano type with a Mori fiber structure by construction, which is
birational to X. We complete the proof of Theorem 1.2. �

4. Proof of Theorem 1.4

In this section, for the reader’s convenience, we recall the proof of The-
orem 1.4 from [14]. The proof of Theorem 1.4 follows from Lemmas 4.3
and 4.4 below.
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4.1. Setting

Fix 0 < ε < 1. Let X be a 3-fold of ε-Fano type with a Mori fibration f :
X → Z and dimZ > 0. Suppose (X,B) is an ε-klt log Fano pair. We will
explain more about the surface G defined in Definition 1.5.

If dimZ = 1, then Z = P1. In this case G is defined to be a general fiber
of f , which is a smooth del Pezzo surface.

If dimZ = 2, then we want to explain the choice of H first. We first
claim that such Z forms a bounded family. Since X is of ε-Fano type, there
exist effective Q-divisors ∆ and ∆′ such that (Z,∆) is klt, −(KZ + ∆) is
ample by [11, Corollary 3.3], and (Z,∆′) is δ-klt, −(KZ + ∆′) ∼Q 0 by [5,
Corollary 1.7]. Note that δ is a positive number depends only on ε. We may
choose sufficiently small t > 0 such that (Z, (1− t)∆′ + t∆) is still δ-klt. In
this case,

−(KZ + (1− t)∆′ + t∆) ∼ −t(KZ + ∆)

is ample. Hence Z is of δ-Fano type. Hence by BAB Conjecture in dimension
2, such Z forms a bounded family. This means that there is a positive integer
dε depending only on ε, and we may find a general very ample divisor H on
Z such that H2 ≤ dε. Now we take G = f∗H, which is a conic bundle over
the curve H (i.e. −KG is ample over H). Note that H and G are smooth
since H is general. Also (G,B|G) is ε-klt and −(KG +B|G) +G|G is ample
by adjunction. Note that G|G = f∗(H|H) is the sum of (H2) fibers of f and
(H2) ≤ dε. Hence −(KG +B|G) + dεF is ample, where F is a general fiber
of f .

4.2. Two boundedness theorems on surfaces

We recall two boundedness theorems on surfaces, the idea of proofs of them
are from the proof of BAB Conjecture in dimension two by Alexeev–Mori
[3].

Theorem 4.1 ([13, Theorem 2.8]). Fix 0 < ε < 1. Then there exists a
number µ(2, ε) > 0 depending only on ε with the following property:

If (X,B) is an ε-klt log Fano pair and X is a smooth surface, then
α(X,B) ≥ µ(2, ε).

Theorem 4.2 ([14, Theorem 1.7]). Fix 0 < ε < 1. Then there exists a
number λ(2, ε) > 0 depending only on ε, satisfying the following property:
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1) If (G,B) is an ε-klt log Fano pair and G is a smooth del Pezzo surface,
then (G, (1 + t)B) is klt for 0 < t ≤ λ(2, ε);

2) If f : G→ H is a conic bundle from a smooth surface G to a smooth
curve, (G,B) is an ε-klt pair and −(KG +B) + dεF is ample, then
(X, (1 + t)B) is klt for 0 < t ≤ λ(2, ε). Here F is a general fiber of f
and dε is the number depending only on ε defined in Subsection 4.1.

Note that in [14], such a conic bundle G in (2) is called a (2, 1, dε, ε)-Fano
fibration.

4.3. Boundedness of ampleness

Lemma 4.3 (cf. [14, Lemma 3.2]). Keep the setting in Subsection 4.1,
then there exists a positive integer Nε depending only on ε such that −KX +
kG is ample for all k ≥ Nε.

Proof. Let X be a 3-fold of ε-Fano type with a Mori fibration f : X → Z
and dimZ > 0. Suppose (X,B) is an ε-klt log Fano pair.

By our construction, in either case, (G,B|G) satisfies one of the two
conditions in Theorem 4.2. Hence (G, (1 + λ)B|G) is klt for λ = λ(2, ε).

Hence, in either case, every curve in Nklt(X, (1 + λ)B) is contracted by
f by inversion of adjunction. In particular, every curve C0 supported in
Nklt(X, (1 + λ)B) satisfies that G · C0 = 0.

Now we consider an extremal ray R of NE(X). Since X is of Fano type,
R is always generated by a rational curve by Cone Theorem.

If R is (KX + (1 + λ)B)-non-negative, recall that −(KX +B) is ample,
then

−KX ·R = −
(

1 +
1

λ

)
(KX +B) ·R+

1

λ
(KX + (1 + λ)B)) ·R > 0.

If R is (KX + (1 + λ)B)-negative and G ·R = 0, then −KX ·R > 0 since
−KX is ample over Z and R is contracted by f .

If R is (KX + (1 + λ)B)-negative and G ·R > 0, then every curve gen-
erating R is not supported in Nklt(X, (1 + λ)B). By Theorem 2.7, R is
generated by a rational curve C such that

(KX + (1 + λ)B) · C ≥ −6.
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On the other hand, G · C ≥ 1 since G · C > 0 and G is Cartier. Hence(
−KX +

6

λ
G
)
· C

= −
(

1 +
1

λ

)
(KX +B) · C +

1

λ
(KX + (1 + λ)B) · C +

6

λ
G · C > 0.

In summary,

(−KX + kG) ·R > 0

holds for every extremal ray R and for all k ≥ 6
λ (recall that G is nef). By

Kleiman’s Ampleness Criterion, −KX + kG is ample for all k ≥ 6
λ . We may

take

Nε =
6

λ(2, ε)

and complete the proof. �

4.4. Boundedness of volumes

Lemma 4.4 (cf. [14, Theorem 4.1]). Keep the setting in Subsection 4.1,
then there exists a positive number Vε depending only on ε such that (−KX +
NεG)3 ≤ Vε.

Proof. Let X be a 3-fold of ε-Fano type with a Mori fibration f : X → Z
and dimZ > 0. Suppose (X,B) is an ε-klt log Fano pair.

If dimZ = 1, G is a smooth del Pezzo surface and (G,B|G) is an ε-klt log
Fano pair. Note that Vol(G,−KG) = K2

G ≤ 9. Assume that for some w > 0,

(−KX +NεG)3 > 27(Nε + w).

It suffices to find an upper bound for w. We may assume that w > 2. By
Lemma 2.1,

Vol(X,−KX − wG) ≥ Vol(X,−KX +NεG)− 3(Nε + w)Vol(G,−KG) > 0.

Hence there exists an effective Q-divisor B′ ∼Q −KX − wG. For two general
fibers G1 and G2, consider the pair (X, (1− 2

w )B + 2
wB
′ +G1 +G2) where

2/w < 1. Note that

−
(
KX +

(
1− 2

w

)
B +

2

w
B′ +G1 +G2

)
∼Q −

(
1− 2

w

)
(KX +B)

is ample. By Connectedness Lemma, Nklt(X, (1− 2
w )B + 2

wB
′ +G1 +G2) is

connected. On the other hand, it contains G1 ∪G2, hence contains a non-klt
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center dominating Z. By inversion of adjunction, (G, (1− 2
w )B|G + 2

wB
′|G)

is not klt for a general fiber G. On the other hand, (G,B|G) is an ε-klt
log Fano pair of dimension 2, G is a del Pezzo surface, and B′|G −B|G ∼Q
−(KG +B|G). Hence by Theorem 4.1,

2

w
≥ glct(G,B|G;B′|G −B|G) ≥ µ(2, ε).

Hence w ≤ 2
µ(2,ε) . In this case, we may take

Vε = 27
(
Nε +

2

µ(2, ε)

)
.

Now assume that dimZ = 2. As constructed in Subsection 4.1, G→ H
is a conic bundle from a smooth surface to a smooth curve.

Claim 1. Vol(G,−KX |G +NεG|G) ≤ 8 + 4(Nε + 1)dε.

Proof of Claim 1. Note that −KX +NεG is ample, so is −KX |G +NεG|G.
Also note that (H2) ≤ dε and G|G = (H2)F where F ' P1 is a general fiber
of f . Hence

Vol(G,−KX |G +NεG|G) = (−KX |G +NεG|G)2

= (−KG + (Nε + 1)G|G)2

= (KG)2 − 2(Nε + 1)KG · (H2)F

≤ 8 + 4(Nε + 1)dε

Here we use the fact that for the conic bundle G, (KG)2 ≤ 8. �

Assume that for some w > 0,

(−KX +NεG)3 > 3(Nε + w)(8 + 4(Nε + 1)dε).

It suffices to find an upper bound for w. We may assume that w > 3. By
Lemma 2.1 and Claim 1,

Vol(X,−KX − wG)

≥ Vol(X,−KX +NεG)− 3(Nε + w)Vol(G,−KX |G +NεG|G) > 0.

Hence there exists an effective Q-divisor B′ ∼Q −KX − wG. For a general
fiber F of X over z ∈ Z, there exists a number η > 0 (cf. [21, 4.8]) such that
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for any general H ′ ∈ |H| containing z,

Nklt
(
X,
(

1− 3

w

)
B +

3

w
B′
)

= Nklt
(
X,
(

1− 3

w

)
B +

3

w
B′ + ηf∗(H ′)

)
.

We may take general Hj ∈ |H| containing z for 1 ≤ j ≤ J with J > 2
η and

take G1 =
∑J

j=1
2
J f
∗(Hj). Then multFG1 ≥ 2 and G1 ∼Q 2f∗(H) ∼Q 2G. In

particular, (X,G1) is not klt at F and by construction, in a neighborhood
of F ,

Nklt
(
X,
(

1− 3

w

)
B +

3

w
B′
)
∪ F

= Nklt
(
X,
(

1− 3

w

)
B +

3

w
B′ +G1

)
.

Take a general element G2 ∈ |f∗(H)| not containing F , consider the pair
(X, (1− 3

w )B + 3
wB
′ +G1 +G2) where 3/w < 1. Then

−
(
KX +

(
1− 3

w

)
B +

3

w
B′ +G1 +G2

)
∼Q −

(
1− 3

w

)
(KX +B)

is ample. Since

F ∪G2 ⊂ Nklt
(
X,
(

1− 3

w

)
B +

3

w
B′ +G1 +G2

)
,

by Connectedness Lemma, there is a curve C contained in Nklt(X, (1−
3
w )B + 3

wB
′ +G1 +G2), intersecting F and not contracted by f . Hence C

is contained in Nklt(X, (1− 3
w )B + 3

wB
′) by the construction of G1 and

generality of G2. Since C intersects F , so does Nklt(X, (1− 3
w )B + 3

wB
′).

By inversion of adjunction, (F, (1− 3
w )B|F + 3

wB
′|F ) is not klt for a general

fiber F . On the other hand, (F,B|F ) is ε-klt and F ' P1. Hence 3
w ≥ ε by

comparing the coefficients of 3
wB
′|F . Hence w ≤ 3

ε . Hence we may take

Vε = 3
(
Nε +

3

ε

)
(8 + 4(Nε + 1)dε)

by definition of w. �

5. Proof of main theorems

5.1. Pseudo-effectivity of c2(FX)

We recall a criterion of pseudo-effectivity of second Chern classes due to
Miyaoka [30].
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Definition 5.1 (cf. [30, Section 6]). Let X be an n-dimensional normal
projective variety. A torsion free sheaf E is called generically semi-positive
(or generically nef) if one of the following equivalent conditions holds:

1) For every quotient torsion free sheaf E → L and any ample divisors
Hi,

c1(L) ·H1 ·H2 · · ·Hn−1 ≥ 0.

2) E|C is nef for a general curve C = D1 ∩ · · · ∩Dn−1 for general Di ∈
|miHi| and mi � 0 and any ample divisors Hi.

The equivalence of these two definitions follows from the Mehta–
Ramanathan theorem [29] (cf. [30, Theorem 2.5]).

Theorem 5.2 ([30, Theorem 6.1]). Let X be a normal projective variety
which is smooth in codimension 2. Let E be a torsion free sheaf on X such
that

1) c1(E) is a nef Q-Cartier divisor, and

2) E is generically semi-positive.

Then c2(E) is pseudo-effective.

To check the generic semi-positivity of FX , it suffices to check that of
TX , which is proved by the following theorem.

Theorem 5.3 ([24, Proof of 1.2 (1)]). Let (X,B) be a Q-factorial klt log
Fano pair such that X is smooth in codimension 2. Then TX is generically
semi-positive.

This theorem is implicated by [24, Proof of 1.2 (1)], combining a struc-
ture theorem for the cone of nef curves (replacing [24, Theorem-Definition
2.2] by [6, Corollary 1.3.5]) and deformation theory of rational curves ([23,
(1.3) Corollary]).

Proof of Theorem 1.6. Recall that X is of Fano type and with Q-factorial
terminal singularities (terminal singularities implies smooth in codimension
2). Since TX is generically semi-positive by Theorem 5.3 and G is nef, FX =
TX ⊕OX(NεG) is again generically semi-positive. Since c1(FX) = −KX +
NεG is ample, c2(FX) is pseudo-effective by Theorem 5.2. �
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5.2. Upper bound of Gorenstein indices

In this subsection, we prove Theorem 1.7. We start from the estimate of
(−KX) · c2(X).

Proof of Theorem 1.7(1). Note that

c2(FX) = c2(TX ⊕OX(NεG)) = c2(X)−KX ·NεG.

By Theorem 1.6, c2(FX) is pseudo-effective, and thus

(−KX +NεG) · (c2(X)−KX ·NεG) ≥ 0.

Hence

(−KX) · c2(X) ≥ −(−KX +NεG) · (−KX) ·NεG−NεG · c2(X).

It suffices to prove the following lemma.

Lemma 5.4. The following inequalities hold:

1) (−KX +NεG) · (−KX) ·NεG ≤ Vε;

2) G · c2(X) ≤ 12 + 4Vε/Nε.

Proof. Recall that −KX is big, G is nef with G3 = 0, and −KX +NεG is
ample with (−KX +NεG)3 ≤ Vε.

For statement (1),

(−KX +NεG) · (−KX) ·NεG

≤ (−KX +NεG) · (−KX +NεG) ·NεG

≤ (−KX +NεG)3 ≤ Vε.

Now we prove statement (2).
If dimZ = 1, then G is a del Pezzo surface and G · c2(X) = c2(G) ≤ 11.
If dimZ = 2, by the exact sequence

0→ TG → TX |G → NG/X → 0,

we have

G · c2(X) = c2(G) + c1(G) · c1(NG/X)

= 12χ(OG)−K2
G −KG ·G|G.
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Note that G is a conic bundle over H, hence χ(OX) = 1− g(H) ≤ 1. On the
other hand,

−K2
G −KG ·G|G = −(KX +G)2 ·G− (KX +G) ·G2

= −KX · (KX + 3G) ·G
≤ −KX · (Nε + 3)G ·G
= (−KX +NεG) · (Nε + 3)G2

≤ (−KX +NεG) · Nε + 3

N2
ε

(−KX +NεG)2

≤ Nε + 3

N2
ε

Vε ≤
4Vε
Nε

.

Hence G · c2(X) ≤ 12 + 4Vε/Nε. �

By this lemma,

(−KX) · c2(X) ≥ −(5Vε + 12Nε).

Hence Theorem 1.7(1) is proved. �

By Reid’s Riemann–Roch formula, we can get the upper bound of Goren-
stein indices. This method highly depends on the classification of 3-dimen-
sional terminal singularities.

Proof of Theorem 1.7(2). Recall that X has at most terminal singularities.
Recall that every terminal singularity in dimension 3 can be deformed to a
collection of cyclic quotient terminal singularities. The basket of singularities
of X is the set of all such cyclic quotient terminal singularities. We denote
it by (b, r) if a cyclic quotient terminal singularity is of type 1

r (1,−1, b) for
integers b and r. Hence a basket is a set (allowing multiplicities) of the
form {(bi, ri)|i ∈ I}. Note that since ri is the local index of singularities,
l.c.m.{ri}KX is a Cartier divisor. By Reid’s Riemann–Roch formula (cf.
[15, Lemmas 2.2, 2.3] or [33, (10.3)]), we have

χ(OX) =
1

24
(−KX) · c2(X) +

1

24

∑(
ri −

1

ri

)
,

where ri runs over the basket of singularities. Note that χ(OX) = 1 by
Kawamata–Viehweg vanishing theorem since X is of Fano type. Hence by
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Theorem 1.7(1), ∑(
ri −

1

ri

)
≤ 24 +Mε.

In particular, ri ≤ 24 +Mε. Hence (24 +Mε)! is divisible by l.c.m.{ri}, which
implies that (24 +Mε)!KX is Cartier. �

5.3. Proof of Theorem 1.3

Proof of Theorem 1.3. Let X be a 3-fold of ε-Fano type with a Mori fibration
f : X → Z. If dimZ = 0, then X is a Q-factorial terminal Fano 3-fold with
Picard number one, which is bounded by Kawamata [17]. So we only need
to consider the case when dimZ > 0.

Keep the notation in Theorem 1.4. By Theorem 1.7, L := rε(−KX +
NεG) is a Cartier ample divisor. Recall that X is of Fano type. By Kollár’s
effective base point free theorem (cf. [20, 1.1 Theorem, 1.2 Lemma]), 720L
is base point free and 4321L is very ample. On the other hand, L3 ≤ r3εVε.
Hence X is a subvariety of projective spaces with bounded degree. Such X
forms a bounded family by the boundedness of Chow variety. �
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