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We construct an algebraic version of Lagrangian Floer homology
for immersed curves inside the pillowcase. We first associate to the
pillowcase an algebra A. Then to an immersed curve L inside the
pillowcase we associate an A∞ module M(L) over A. Then we
prove that Lagrangian Floer homology HF (L,L′) is isomorphic to
a suitable algebraic pairing of modules M(L) and M(L′). This ex-
tends the pillowcase homology construction — given a 2-stranded
tangle inside a 3-ball, if one obtains an immersed unobstructed
Lagrangian inside the pillowcase, one can further associate an A∞
module to that Lagrangian.
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1468 Artem Kotelskiy

1. Introduction

1.1. Background

Since the groundbreaking work of Donaldson, gauge theory became a pow-
erful tool to study low-dimensional topology. Gauge theory provides invari-
ants of diffeomorphism types of 4-manifolds, homological invariants of 3-
manifolds, and homological invariants of knots inside 3-manifolds. These
invariants are defined using moduli spaces of solutions to certain partial dif-
ferential equations on manifolds. The following two theories emerged over
the years: instanton theory, where one counts solutions to anti-self-dual
Yang-Mills equations, and Seiberg-Witten theory, where one counts solu-
tions to Seiberg-Witten monopole equations. The corresponding invariants
of 3-manifolds are called instanton Floer homology [10], introduced by Floer,
and monopole Floer homology [22], introduced by Kronheimer and Mrowka.

Another way to construct homological invariants for 3-manifolds and
knots is to use symplectic geometry. The general strategy for 3-manifolds
is as follows: one takes a Heegaard splitting U1 ∪Σg

U2 = Y 3, and associates
to it two Lagrangians inside a certain moduli space (which should possess a
natural symplectic structure): L(U1), L(U2)→ (M(Σg), ω). Then the desired
Floer homology is defined via Lagrangian Floer homologyHF (L(U1), L(U2)).
The first homological invariant of this type is called Heegaard Floer homol-
ogy, and was introduced by Ozsváth and Szabó [37], [36]. See a recent survey
article [19] for an introduction and numerous applications of this theory.

It is interesting that these two methods to obtain Floer homologies
run in parallel, connected by Atiyah-Floer type conjectures. The follow-
ing is the original formulation for instantons. Having a Heegaard splitting
Y 3 = U1 ∪Σg

U2, associate to Ui and Σg their SU(2) representation varieties
R(Ui), R(Σg). One then has maps R(Ui)→ R(Σg). It was conjectured in
[2] that instanton Floer homology I(Y 3) should be equal to the Lagrangian
Floer homology HF (R(U1), R(U2)). Spaces R(U1), R(U2), R(Σg) are singu-
lar, and thus symplectic instanton Floer homology HF (R(U1), R(U2)) was
not possible to define at that moment. The symplectic side of the isomor-
phism, as well as the proof of Atiyah-Floer conjecture, are still under devel-
opment. There are different versions of symplectic instanton Floer homology,
which should correspond to different versions of instanton Floer homology.
Notably, the corresponding conjecture on the monopole side was proved in
[27] and [7]: monopole Floer homology and Heegaard Floer homology are
equal.
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Bordered theory for pillowcase homology 1469

For a thorough introduction to the above Floer-theoretic invariants,
connections between them, and their applications see [33], and references
therein. See also more recent papers [6], [17], [18] on symplectic instanton
Floer homology, and [8] on Atiyah-Floer conjecture.

Now we turn our attention to knot invariants. The first Floer-theoretic
invariant for knots inside 3-manifolds was knot Floer homology
ĤFK(Y 3,K), introduced by Ozsváth and Szabó in [35] using symplectic

geometry. The special case of knots in a sphere is denoted by ĤFK(K) =

ĤFK(S3,K). Some properties and applications of knot Floer homology are

the following: ĤFK(K) categorifies the Alexander polynomial, detects the
3-dimensional genus of a knot and hence detects the unknot, detects fibered-
ness of a knot in S3, and also provides lower bounds for the 4-ball genus
of a knot. See [34] and [40] for an introduction to this invariant. A gauge-
theoretic counterpart of knot Floer homology was constructed in [23] and
[26].

On the instanton side, only gauge theoretic constructions of knot in-
variants are fully developed. Floer in [11] and Kronheimer and Mrowka in
[23] constructed a knot invariant called sutured instanton knot homology
KHI(K). It has properties similar to knot Floer homology, like detecting
the genus of a knot (non-vanishing result). In fact, KHI(K) is conjectured

to be isomorphic to knot Floer homology ĤFK(K) (both of them categorify
the Alexander polynomial of a knot). In [25], [24] Kronheimer and Mrowka
constructed another knot invariant called singular instanton knot homology,
which is denoted by I\(K). In [24] they proved that there is a spectral se-
quence from Khovanov homology Kh(K) to I\(K), and that I\(K) is, in
fact, isomorphic to KHI(K). This, together with the non-vanishing result
for KHI(K), proved that Khovanov homology detects the unknot.

In order to better understand and compute I\(K), Hedden, Herald, and
Kirk in [14] and [15] developed a certain geometric construction. The out-
come of their construction is an F2-vector space Hpil(K,S, π), which is called
pillowcase homology. Despite of the fact that Hpil(K,S, π) depends not only
on the knot K, but also on the choices of a Conway sphere S and a certain
perturbation data π, the authors in [15] conjectured and provided lots of ev-
idence that Hpil(K,S, π) is in fact a knot invariant. They also conjectured
that Hpil(K,S, π) should be the symplectic side of Atiyah-Floer conjecture
for singular instanton knot homology I\(K), see [15, Conjecture 6.5].

Our primary motivation was to enhance the construction of pillowcase
homology. We do it by associating algebraic invariants not only to knots,
but also to tangles. Let us first describe pillowcase homology in more detail.
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1.2. Pillowcase homology

We sketch how the pillowcase homology construction works in the first two
columns of Figure 1.

*

* *

*

*

* *

*

*

* *

algebra

module

module

Trivial 
tangle

*

*

* *

*

T
Outside
tangle

Knot
T(2,3)

Figure 1: The pillowcase homology construction (the first and the second
columns), and its algebraic extension (the 3rd column).

We now describe the construction. Having a knot in K ⊂ S3, one first
finds a Conway sphere, i.e. a 2-sphere that intersects the knot in four points.
We denote it by S, or (S, 4) if we want to emphasize the four points S ∩K.
The decomposition of a knot into two tangles by this 2-sphere should be
such that one of the tangles is a trivial tangle consisting of two arcs A1, A2.
Then the steps are as follows:

(1) To that Conway sphere with four marked points (denote by γi, i =
1, 2, 3, 4, loops around those points) one associates a traceless character
variety:

R(S, 4) = {h ∈ hom(π1(S \ 4pt), SU(2)) | tr(h(γi)) = 0}/conj.



i
i

“11-Kotelskiy” — 2019/11/18 — 12:16 — page 1471 — #5 i
i

i
i

i
i

Bordered theory for pillowcase homology 1471

It turns out that this character variety is equal (as an orbifold) to the
pillowcase — a torus quotiented by the hyperelliptic involution

R(S, 4) ∼= P = S1 × S1/((γ, θ) ∼ (−γ,−θ)),

see [14, Proposition 3.1] for the proof.

(2) To the trivial tangle, which consists of two arcs A1, A2, one associates
an immersed curve L\ in the pillowcase by the following procedure.
First, one adds a circle H with an arc W to the tangle, as shown
on the left of the second row of Figure 1. Then one forms a space of
traceless representations:

R\(D3, A1 ∪A2) = {h ∈ hom(π1(D3 \ (A1 ∪A2 ∪H ∪W )), SU(2)) |
| tr(h(µAi

)) = tr(h(µH)) = 0, h(µW ) = −I }/conj.

Because S \ 4pt ⊂ D3 \ (A1 ∪A2 ∪H ∪W ), there is a map in the re-
versed direction R\(D3, A1 ∪A2)→ R(S, 4). Because this map is sin-
gular, and R\(D3, A1 ∪A2) is not 1-dimensional, one needs to do a
holonomy perturbation of the space. After specifically defined pertur-
bation (see [14, Section 7]), one gets an immersed circle L\ : R\π(D3,
A1 ∪A2)# P depicted on the left of Figure 8, missing all four singular
points.

(3) To the tangle K \ (A1 ∪A2) from the other side one applies almost the
same procedure. The only difference is that the circle and the arc H ∪
W are not added (this is why here the image will often pass through
a singular point). One still needs to perturb R(D3,K \ (A1 ∪A2)) in
this case (see, for example, [15, Section 11.6] for the case of the (3,4)
torus knot). This results in the immersion L(K,S,π) : Rπ(D3,K \ (A1 ∪
A2))# P . Examples of such immersions for torus knots (with two arcs
removed) are depicted in Figure 20.

(4) Having done all that, one associates to the initial knot K a vector
space called pillowcase homology. It is equal to the Lagrangian Floer
homology Hpil(K,S, π) = HF∗(L

\, L(K,S,π)) inside P , where P is the
pillowcase with deleted small neighborhoods of four singular points 1,
see Figure 2.

1One actually obtains Lagrangians in P and should consider Floer homology
where discs do not cross singular points. But one can delete small neighborhoods
of singular points to get P , and the corresponding Lagrangian Floer complex will
be unchanged.
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=

Figure 2: Pillowcase P .

On the level of chain complexes, the vector space isomorphism
Cpil(K,S, π) ∼= CI\(K) is true by construction. In [15] the authors provided
lots of examples where the homologies of these chain complexes are indeed
isomorphic.

Remark. Let us note that it seems hard to prove directly thatHpil(K,S, π)
is, in fact, a knot invariant. It is unclear how to control the dependence on
the Conway sphere S and the perturbation data π.

Also, strictly speaking Hpil(K,S, π) was not well defined: apriori it is
not clear why the immersion L(K,S,π) is unobstructed and admissible with

respect to L\, in order for Lagrangian Floer homology to be defined with-
out difficulties. This difficulty can be easily resolved, though, as one can
homotope L(K,S,π) and make it unobstructed and admissible with respect

to L\.

1.3. The bordered construction and motivation

The construction in this paper is an algebraic enhancement of pillowcase
homology. It answers the following question: what algebraic structures one
should associate to L\ and L(K,S,π), in order to be able to recover

Hpil(K,S, π) = HF∗(L
\, L(K,S,π))

algebraically, without looking at the intersection picture on the pillowcase.
The relevant objects can be seen in the third column of Figure 1. Namely,
to the Conway sphere S we have associated a pillowcase P , and now fur-
ther associate an algebra A. To the trivial 2-stranded tangle we associated
the immersed circle L\ in P , and now further associate a specific module



i
i

“11-Kotelskiy” — 2019/11/18 — 12:16 — page 1473 — #7 i
i

i
i

i
i
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M(L\)A, see Figure 9. To the tangle from the other side K \ (A1 ∪A2),
similarly already having L(K,S,π), we associate a module M(L(K,S,π))A. To
a union of these two tangles we associate a homology H∗(M(L(K,S,π))A �
Abarr

A � AM(L\)). The fact that this algebraic pairing is equal to the pil-
lowcase homology Hpil(K,S, π) is the main result of this paper. In the next
subsection we formulate a slightly more general result, where we consider
any two Lagrangian immersions.

Let us describe the motivation behind the bordered construction.
First, it provides a natural candidate for an algebraic invariant of a 2-

stranded tangle T inside a ball D3. To such a tangle one can associate an
immersed Lagrangian L(T, π) : Rπ(D3, T )# R(∂D3, 4) = P , and then an
A∞ module M(L(T, π))A

2. As with pillowcase homology, there are missing
ingredients in this construction: it needs to be proved that the homotopy
type of M(L(T, π))A does not depend on the perturbation π.

Building on this idea, one can isolate the part of Hpil(K,S, π) which
depends on L(K,S,π), i.e., if one changes L(K,S,π) in some way, it is more nat-
ural to understand how M(L(K,S,π))A changes, rather than Hpil(K,S, π) =

H∗(M(L(K,S,π))A �
Abarr

A � AM(L\)).
A very interesting direction of research is to further develop the bordered

theory for pillowcase homology Hpil(K,S, π) into full bordered theory. Let
us briefly describe the way that such a theory would work. The strategy is
the following:

(1) To understand what algebra should be associated to a 2n punctured
sphere (S2, 2n).

(2) To understand what bimodules (over the algebras from the previous
step) correspond to tangles inside S2 × I, which connect (S2, 2k) to
(S2, 2(k + 1)).

(3) To build up a chain complex Calg(K) and prove that its homology
Halg(K) is a knot invariant. The construction of Calg(K) should in-
volve composing (via derived tensor product, or morphism space pair-
ing) bimodules from the second step, and modules that correspond to
the trivial tangles M(LU ),M(L\) (Examples 8.1, 8.2).

2Here one must be careful. Definition of M(L(T, π))A requires a parameterization
of the pillowcase R(∂D3, 4). Thus there needs to be additional information, for this
parameterization to be fixed. Namely, the boundary of the tangle (∂D3, 4) must be
bordered, i.e. parameterized by a standard fixed (S2, 4).
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(4) To prove that this construction, in fact, computes singular instanton
knot homology: Halg(K) ∼= I\(K).

This is a difficult project. Even completing the step (1) is hard. The
desired algebra should be the algebra of the Fukaya category of the smooth
stratum of the representation variety R(S2, 2n). After the pillowcase
R(S2, 4), the next space of interest is R(S2, 6). It is already a compli-
cated singular 6-dimensional manifold, see [20]. See also [16] for the study of
R(S2, 2n). Let us note that additional structures on representation spaces
could help to compute their Fukaya category. For example, in case of Hee-
gaard Floer homology, the Fukaya category of Symg(Σg \ 1pt) was computed
in [4] using the structure of a Lefschetz fibration over C.

Nevertheless, if one manages to guess the algebras and bimodules, one
can dismiss the underlying geometry and try to prove that the knot invariant
is well defined algebraically (step (3)).

Examples of analogous bordered theories developed for other invariants
are: bordered Heegaard Floer homology [31], [30]; bordered theory for knot
Floer homology [40], [39], [38]; bordered theories for Khovanov homology
[41], [42], [32]. Step (3) for Heegaard Floer homology was done in [44], and
for knot Floer homology in [39], [38].

Let us mention that there is a related work by Zibrowius [45]: he as-
sociates a different algebra to a 4-punctured 2-sphere and modules to 2-
stranded tangles, and has a pairing theorem resulting in knot Floer homol-
ogy.

1.4. Main result

We construct an algebraic version of Lagrangian Floer homology for two
immersed curves inside the pillowcase P . The construction works as follows.
To the pillowcase P we associate an algebra A. To an immersed curve (circle
or arc with ends on the boundary) L inside P we associate an A∞ module
M(L)A. Then we prove the following pairing result:

Theorem. Let L0, L1 be two admissible unobstructed curves in the pillow-
case P . Then their Lagrangian Floer complex is homotopy equivalent to the
following algebraic pairing of curves:

CF∗(L0, L1) 'M(L1)A �
Abarr

A � AM(L0).

See Definitions 2.4, 2.1 for terms “admissible” and “unobstructed”;

AM(L0)) denotes a dual module; Abarr
A is a specific type DD structure,
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constructed in such a way, that the above homotopy equivalence is true.
Another explanation for why we had to work with Abarr

A is that, in or-
der to obtain a chain complex, A∞ modules are usually paired with type
D structures, and so it was convenient for us to insert a type DD structure
Abarr

A between the modules.
From the above homotopy equivalence it follows that

HF∗(L0, L1) ∼= H∗(M(L1)A �
Abarr

A � AM(L0)).

Let us mention that this construction of algebraic Lagrangian Floer ho-
mology can be generalized to any oriented surface with boundary Σ. In order
for the process to be analogous, one has to make sure to put enough base-
points on ∂Σ and parameterizing arcs on Σ, so that the algebra A becomes
directed, i.e. there are no cycles in the generating graph Γ. Though it is not
absolutely necessary — in [13] the authors work out the case of torus with
boundary, without requiring the algebra to be directed. There the process
is actually reversed: they start with a D-structure (or A-module), and from
that they obtain an immersed curve.

Additionally, the algebraic pairing H∗(M(L1)A � AbarrA � AM(L0))
gives an algorithm for computing the geometric (i.e. minimal) intersection
number of two curves, and the geometric self-intersection number of one
curve, on a surface with boundary 3.

1.5. The underlying structures

The main object behind the scene is the partially wrapped Fukaya category.
This special flavor of the Fukaya category was introduced by Auroux in [4],
[3], in order to reinterpret bordered Heegaard Floer homology via symplec-
tic geometry. From this point of view the main result of this paper can be
reformulated as a computation of the enlargement by immersed Lagrangians
of the partially wrapped Fukaya category of P . See [5, Section 3] for the gen-
eral description of the following process, i.e. what does it mean to generate
a category, and what is the Yoneda embedding.

Consider the partially wrapped Fukaya category Fpw(P ), where the
stops are the basepoints z1, z2, z3, z4 on the left of Figure 5. Note that,
because Auroux was considering cohomology instead of homology, we have
CF∗(L0, L1) = homFpw(P )(L1, L0). The parameterization of P by the red
arcs in Section 4.1 corresponds to picking a set of Lagrangians L1 =

3One should treat the case of Per(L0, L1) = Z separately, and subtract 2 from
rk(H∗) in order to obtain the geometric intersection number.
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i0, . . . , L6 = j2 ∈ Fpw(P ). The algebra A, which we define in Section 4.2,
is the A∞ algebra

⊕
i,j
homFpw(P )(Li, Lj) =

⊕
i,j
CF∗(Lj , Li).

In Section 5, to an immersed curve (circle or arc with ends on the bound-
ary) L inside P we associate an A∞ module M(L)A. It is secretly a module⊕
i
homFpw(P )(L,Li) =

⊕
i
CF∗(Li, L), the image of L under the Yoneda em-

bedding Fpw(P )→ modA. We do not define it this way, because the partially
wrapped Fukaya category was not defined using immersed Lagrangians.

Then, by [3, Theorem 1], we know that L1, . . . , L6 generate the category
Fpw(P ), which consists of embedded Lagrangians. This implies that if L0, L1

are embedded Lagrangians, then we have

HF∗(L0, L1) = H∗(homFpw(P )(L1, L0)) ∼= H∗(MormodA(M(L0),M(L1))).

What we want is to extend this result to immersed Lagrangians, which
were not part of the Fukaya category. We also want the algebraic part of the
isomorphism to be easily computable, in the light of the morphism spaces
of A∞ modules being often infinitely generated.

Instead of extending the notion of the partially wrapped Fukaya category
to immersed Lagrangians (although for surfaces this is entirely possible), and
then proving that L1, . . . , L6 still generate it, we choose a different method.
We first note that the morphism complex can be described in the follow-
ing way via the bar resolution, see [28, Proposition 2.10]: MormodA(M(L0),
M(L1)) ∼= M(L1)�A Barr(A)�AM(L0). In Section 6.2, we describe (fol-
lowing [28]) a smaller model for the dual bar resolution, AbarA. Although
we do not explicitly prove it, this DD bimodule is homotopy equivalent to
Barr(A), just as in the case of bordered algebra, see [28, Proposition 5.13].
We then describe explicitly the reduced version of dual small bar resolution
Abarr

A.
Suppose we have two immersed curves L0, L1 in the pillowcase P . [3,

Theorem 1] suggests that

HF∗(L0, L1) = hom∗(L1, L0) ∼= H∗(Mor(M(L0),M(L1))).

The way we constructed Abarr
A suggests, that H∗(Mor(M(L0),M(L1))) ∼=

H∗(M(L1)A � AbarrA �AM(L0)). We now dismiss the morphism complex,
and prove in Section 7 directly that

HF∗(L0, L1) ∼= H∗(M(L1)A �
Abarr

A �AM(L0)),

by interpreting Abarr
A in a geometric way.
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Conventions, assumptions, prerequisites. We will work over F2, and
we will work with Lagrangian Floer homology, as opposed to cohomology.

By differential we will mean not only the map d : C → C, such that
d2 = 0, but also the following. If, for example, d(x) = y1 + y2 + y3, then we
say that there is a differential from x to y1 (and from x to y2, and from x
to y3). We will denote these differentials by arrows: x→ y1.

In this paper we will use dg-algebras, A∞ modules, type DD structures
(DD bimodules), and box tensor product � operation. For definitions of
these objects and operations we refer to [31] and [30].

2. Immersed curves in the pillowcase: setup

2.1. Pillowcase

Fix an oriented torus T 2 = S1 × S1 = R/(2π · Z2) as a product of two unit
circles. The pillowcase is a quotient of the torus by the hyperelliptic involu-
tion

P = T 2/ (γ, θ) ∼ (−γ,−θ).

This quotient has four singular points (which are cones over RP 1), we call
them corners. The intersection theory we are interested in happens in the
compliment of the corners, or, equivalently, in the compliment of small neigh-
borhoods of the corners. Thus we delete small neighborhoods of the corners
and denote the result by

P = P \ U(0, 0) ∪ U(0, π) ∪ U(π, 0) ∪ U(π, π).

We will be working with this space from now on (also calling it a pillowcase).
Note that it is diffeomorphic to a 2-sphere with four discs removed.

2.2. Immersed curves

By a curve L we mean a circle or an arc in the pillowcase: L : S1 # P or
L : [0, 1]# P . Later we will often write L instead of Im(L) inside P .

Definition 2.1. A curve L is called unobstructed if it is an image of an
embedded arc (if L is an arc) or properly embedded line (if L is a circle) in
the universal cover of P .
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If the curve is smooth and properly immersed, the above definition of an
unobstructed curve is equivalent (see [1, Lemma 2.2]) to saying that there
is no fishtail (see Figure 3), and L is not null-homotopic.

Figure 3: Fishtail.

Assumption 2.2. From now on any curve L will be assumed to satisfy the
following properties:

• L is smoothly immersed, i.e. the differential is injective. This implies
that locally L is an embedding.

• If L is a circle, it is contained in the interior int(P ). If L is an arc, only
the endpoints of it are mapped to the boundary ∂P . Also the endpoints
of L should be distinct on ∂P , and transverse to the boundary.

• All self-intersections of L are transverse, and there are no triple
self-intersections.

• L is unobstructed.

We will call such curves either “unobstructed curves”, or simply “curves”.

Assumption 2.3. Throughout the paper, when we state different La-
grangian boundary conditions, we will always assume that the maps can be
precomposed with the corresponding Lagrangians. More precisely, consider
a curve L, and consider a map from a surface with boundary into the pil-
lowcase f : (F, ∂F )→ (P , Im(L)). We require that this map can be precom-
posed with L when restricted to the boundary: f |∂F = L ◦ g : ∂F → P for
some g : ∂F → Dom(L). We will denote such maps by f : (F, ∂F )→ (P ,L).

An example of a disc f : (D, ∂D)→ (P , Im(L)) which does not meet the
requirement above is in Figure 3.

Lagrangian Floer homology is a homology theory for a pair of curves,
denoted by HF (L0, L1). In order for this to be well defined, we will need
pairs to satisfy certain properties.
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Definition 2.4. We call a pair of curves (L0, L1) admissible if the following
properties are satisfied:

• All intersection points in L0 ∩ L1 are transverse.

• There are no triple intersection points.

• If both curves (L0, L1) are arcs then the following condition must be
satisfied. First of all, our pillowcase will be equipped with four base-
points on every boundary component as on the left of Figure 5. Sup-
pose now a ∈ ∂L0, b ∈ ∂L1, and a and b lie in the same component of
∂P with a basepoint zi. Then, with respect to the natural orientation
of ∂P , the order of the three points should be first a, then b, then zi.
For example, on the left of Figure 5, the pair (i0, i1) is admissible, but
the pair (j1, j2) is not.

• There is no essential immersed annulus with boundary on L0 and L1

A : (S1 × [0, 1], S1 × {0}, S1 × {1})→ (P ,L0, L1).

We will not assume that admissibility is always satisfied. Instead we will
isotope the curves in order to make them admissible.

3. Geometric pairing

3.1. Outline

Our first goal is to define Lagrangian Floer homology HF (L0, L1) for a pair
of immersed unobstructed curves L0, L1 in the pillowcase P . We sketch here
the construction, following [13], [1], [9], [15]. The plan is the following:

(1) For the homology to be well defined we need to restrict the class
of curves we consider — the appropriate class for us are admissible
pairs of unobstructed curves (the same setup as in [13]), see Defini-
tions 2.4, 2.1. Thus, having two unobstructed curves (L0, L1), we need
to know how to isotope L0 to L′0 so that (L′0, L1) is admissible.

(2) A chain complex CF (L′0, L1) is generated over F2 by intersection
points L′0 ∩ L1. The differential ∂ : CF (L′0, L1)→ CF (L′0, L1) is de-
fined on generators as mod 2 sum

∂x =
∑
y

M(x, y) · y,
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where M(x, y) counts the number of immersed discs 4 from x to y in
the pillowcase, with the right boundary on L′0 and the left boundary on
L1, and convex angles at x and y, see Figure 4. We require these discs to
be orientation preserving, and count them up to reparameterizations,
which are orientation preserving diffeomorphisms. The main difficulty
in this step is to prove that M(x, y) is finite for any two generators
x, y.

x

y

L
0

L
1

Figure 4: Immersed disc from x to y. Note that there are no fishtails due to
the presence of ∂P .

(3) We prove that ∂2 = 0, and, more generally, that A∞ relations hold.
Then the Lagrangian Floer homology is defined by HF (L0, L1) =
H∗(CF (L′0, L1), ∂). The correctness of the definition follows from the
following two statements.

(4) Suppose L0 ∼ L′0 as basepoint free loops. If (L0, L1) and (L′0, L1) are
both admissible pairs, they can be connected through elementary iso-
topies (of both L0 and L1) called finger moves (see Figure 7) such that
admissibility does not break down on each step.

(5) If an admissible pair (L0, L1) is connected to an admissible pair (L′0, L1)
by a finger move, then HF (L0, L1) = HF (L′0, L1).

Remark. From these two steps it also follows that Lagrangian Floer
homology is invariant with respect to isotopies (isotopies of arcs are
considered relative to the endpoints).

4Because at the domain of the map we have a disc with two right angles, some-
times these discs are called lunes.
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3.2. More details

We will follow the plan, outlined in the previous section, giving more at-
tention to the admissibility condition — the only place where our setup is
different from [15, Sections 2, 3].

(1) Here we need to show how to isotope L0 to L′0 so that (L′0, L1) is
admissible. The only problematic part is to rule out immersed annuli.
Let us first understand when essential annuli exist at all.

Definition 3.1. A periodic map is a smooth annulus A : (S1 × [0, 1],
S1 × {0}, S1 × {1})→ (P ,L0, L1).

Denote by Per(L0, L1) the set of homotopy classes of periodic maps.

Lemma 3.2. Per(L0, L1) = Z or {0}. Admissibility can break down,
i.e. essential annuli can exist, only if Per(L0, L1) = Z. This is equiv-
alent to pL0 ∼ qL1 as basepoint free loops for some co-prime integers
p and q (in particular, both curves should be close immersed circles).

Proof. Denote Li : Si # P . By Assumption 2.3 we can precompose

boundaries with Li, i.e. A : S1 × {i} → Si
Li−→ P . Thus, after intro-

ducing intersection point between L0 and L1 via isotopy, if necessary,
we get the following sequence

Per(L0, L1)→ π1(S0 × S1) = π1(S0)× π1(S1)
L0∗+L1∗−−−−−→ π1(P ).

The statement of the lemma follows from

Per(L0, L1) ∼= Ker(L0∗ + L1∗).

Surjectivity is straightforward, while injectivity follows from π2(P ) =
0. �

Definition 3.3. A shadow of A ∈ Per(L0, L1) is a two-chain

Sh(A) =
∑

open Di ⊂ P\(L0∪L1)

deg(A|Di
) ·Di.

The key observation is that for A to have immersed orientation pre-
serving representative requires Sh(A) to have all coefficients positive.
We call such shadows positive. In fact, we have:
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Lemma 3.4. The following four statements are equivalent:
a) There exists an essential immersed periodic map A : (S1 × [0, 1],

S1 × {0}, S1 × {1})→ (P ,L0, L1), and so (L0, L1) is not admissi-
ble.

b) There exists a periodic map A with positive shadow for a pair
(L0, L1) in P .

c) There exists a periodic map A, such that L̃0 ∩ L̃1 = ∅, where L̃i is
a lift of Li to a covering P̃ corresponding to the subgroup Im(A∗) ⊂
π1(P ).

d) There exists a periodic map A, such that a pair (L̃0, L̃1) in P̃ has
a periodic map with positive shadow.

Proof. Suppose Im(A∗) = 〈pL0〉 = 〈qL1〉. Choose a metric so that P is
hyperbolic. Then P̃ = H/〈γ〉, where γ is a translation along a geodesic.
This geodesic is the preimage of a geodesic representing pL0 = qL1.
Because this translation is fixed point free, it is either parabolic or
hyperbolic. This implies that P̃ is homeomorphic to a cylinder. It is
now straightforward to see that d) is equivalent to all other statements.

�

Now we are prepared to make any pair (L0, L1) admissible. Suppose
there is an essential immersed periodic map A. Then we isotope one of
the curves (say L̃0) in the covering P̃ to introduce an intersection with
another curve, and then push the isotopy down to pillowcase. Note
that if Im(A∗) = 〈pL0〉 = 〈qL1〉, then we need to do isotopies of L̃0 in
p different points, so that it projects down to an isotopy of L0.

(2) Here we need to show that M(x, y) is finite, assuming (L0, L1) is ad-
missible 5. Denote by π2(x, y) the space of homotopy classes of smooth
discs from x to y. We first show that there is a finite number of elements
φ ∈ π2(x, y), which can have immersed representatives (the relevant
condition is shadow Sh(φ) being positive). Then we show that every
such class φ has exactly one immersed representative from M(x, y).

Lemma 3.5. In case π2(x, y) 6= ∅ we have a free and transitive action

Per(L0, L1) ∼= π2(x, x) y π2(x, y).

5In fact, one can prove thatM(x, y) if finite for not admissible pairs too, but for
our purposes we do not need this.
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Proof. The general definition of multiplication

π2(x, y)× π2(y, z)→ π2(x, z)

(φ, ψ) 7→ φ ∗ ψ

is given by pinching an arc in the middle of the disc and considering
maps φ and ψ on the resulting two discs (which are connected by one
point). The statement follows from this construction. �

Thus we get that π2(x, y) = {φ}, Z or ∅. Next, let us prove that in
the case π2(x, y) = Z we have only a finite number of elements with
immersed representatives.

The shadow of an element φ ∈ π2(x, y) is defined in the same way
as for A ∈ Per(L0, L1).

Proposition 3.6. Only a finite number of elements in π2(x, y) have
a positive shadow, and thus can have an immersed representative from
M(x, y).

Proof. Every 0 6= φ ∈ π2(x, x) has a shadow with both negative and
positive coefficients because (L0, L1) is admissible (see Lemma 3.4).
For ψ ∈ π2(x, x) ∼= Per(L0, L1) and φ ∈ π2(x, y) we have Sh(ψ ∗ φ) =
Sh(ψ) + Sh(φ). This, along with Lemma 3.5, implies the statement of
the proposition. �

Proposition 3.7. The element φ ∈ π2(x, y) can have at most one
immersed representative, up to smooth reparameterizations.

Proof. This follows from the fact that φ ∈M(x, y) can be reconstructed
from its positive shadow, see the proof of [9, Theorem 6.8], which ap-
plies in our case after passing to a universal cover and considering its
compact submanifold containing the immersed discs in question. �

(3) The main idea behind ∂2 = 0 is that consecutive immersed discs with
convex angles come in pairs (here we use the absence of fishtails), and
so they cancel each other. For the details here we refer to [1, Lemma
2.11].

(4) We have an isotopy Lt0 from admissible (L0, L1) to admissible (L′0, L1).
We have problems with keeping this isotopy admissible only if
Per(L0, L1) = Z. Suppose A is a generator of that group. Then, pass-
ing to a covering P̃ corresponding to the subgroup Im(A∗) ⊂ π1(P ),
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just like in Lemma 3.4, we can 1) isotope L̃1 to L̃′1 in such a way that
all isotopies L̃t0 intersect L̃′1, and L̃0, L̃′0 intersect L̃t1 at every time 2)
do an isotopy Lt0 from L0 to L′0 3) isotopy L̃′1 back to L̃1. Both steps
1) and 3) can be done in such a way that the isotopy can be projected
to P . This sequence of isotopies keeps the pair admissible all the time.

(5) One possibility here is to use the A∞ relations to define chain maps
between CF (L0, L1) and CF (L′0, L1), and prove that their composition
is homotopic to the identity, see [15, Lemma 4.2] (with appropriate
change of argument because of the weaker notion of admissibility in
our case).

Another approach is to note that the finger move from Figure 7
on the level of the Lagrangian Floer chain complex corresponds to a
cancellation of the differential (see [9, Appendix C]). Here we need
to prove that there is exactly one immersed disc between two points
on the left of Figure 7. There is only one other possibility, which is
a disc covering the lower left and the lower right domains on the left
of Figure 7. But if such an immersed disc exists, we would have an
immersed annulus on the right of Figure 7, and this would contradict
admissibility.

4. Pillowcase algebra

In this section we will first parameterize the pillowcase P by arcs. Then we
will associate to this parameterization a dg-algebra A.

4.1. Parameterization of the pillowcase

In order to associate a concrete algebra to the pillowcase, we first need
to pick a parameterization. The ultimate result — Theorem 7.1, algebraic
computation of pillowcase homology — will not depend on the choice of a
parameterization, and so we are free to choose a particular, simple enough
parameterization of the pillowcase. It is entirely possible to choose a differ-
ent parameterization, though it might result in a slightly more complicated
algebra6. The difference between any two parameterizations is measured in
a bimodule associated to the mapping class sending one parameterization to
another. It turns out that every such mapping class can be decomposed into

6Namely, if the graph Γ, defined on the next page, has cycles, several proofs in
this paper become more complicated, and so we will choose such a parameterization
that Γ has no cycles.
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simple mapping classes called arc-slides, and the bimodules for arc-slides are
easy to understand. This was carried out in detail in [29], for the case of
genus g surfaces with one boundary component.

A parameterization consists of basepoints on the boundary ∂P , and
a set of non-intersecting embedded arcs with ends on ∂P . The following
properties should be satisfied: each component of ∂P = S1 ∪ S1 ∪ S1 ∪ S1

should get at least one basepoint, and cutting along the arcs should result
a set of discs each having exactly one basepoint on the boundary. We pick a
parameterization of the pillowcase as on the left of Figure 5. Sometimes we
will refer to the parameterizing arcs as the “red arcs”.
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Figure 5: Parameterization of the pillowcase, and the corresponding algebra.

4.2. Pillowcase algebra

Any parameterization of P specifies a graph Γ — the vertices are the arcs
in the parameterization, and the edges are chords between the arcs on the
boundary of P , which do not pass through basepoints. One can see the graph
corresponding to our parameterization on the right of Figure 5.
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Definition 4.1. Pillowcase algebra A is a path algebra of the graph Γ. It
means that it is generated over F2 by paths in Γ consisting of edges of one
color (or same letters), and concatenating of paths corresponds to multi-
plication. When concatenating is not possible, or gives a path with edges
of different colors, the multiplication results in zero. We mentioned that
we want to have a dg-algebra corresponding to the pillowcase — we define
the differential to be trivial on A. The subalgebra generated by vertices
I = 〈i0, i1, i2, j0, j1, j2〉 is called idempotent subalgebra.

Explicit description of A. Algebra A is generated by the following ele-
ments (we specify here only those non-trivial multiplications which do not
involve vertices):

A = 〈i0, i1, i2, j0, j1, j2,(4.1)

ρ0, ρ2, ξ1, ξ2, ξ3,

ξ12 = ξ1ξ2, ξ23 = ξ2ξ3, ξ123 = ξ1ξ2ξ3 = ξ12ξ3 = ξ1ξ23,

η1, η2, η3, η12 = η1η2, η23 = η2η3,

η123 = η1η2η3 = η1η23 = η12η3〉F2
.

Regarding multiplications which involve vertices: notice that constant paths
(i.e. the vertices) are idempotents, and every path in A has its own left and
right idempotent. These idempotents correspond to vertices of the start and
the end of the path. All other vertices annihilate the path. For example, for
the path ξ12 we have i1ξ12j2 = ξ12, and multiplication by other idempotents
results in zero.

5. From curves to modules

To an immersed curve L in P we associate a right A∞ module M(L)A over
the algebra A. Before defining the module we need to isotope L appropri-
ately.

5.1. Preliminary isotopies of L

Definition 5.1. We call a position of a curve L nice if for every parame-
terizing arc i the pair (i, L) is admissible, and also there are no immersed
discs contributing to the differential in CF (i, L).

Lemma 5.2. Every curve L can be isotoped to be in a nice position.
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Proof. First, if L is an arc, we make a perturbation of L in a small neigh-
borhood of ∂P by applying a twist along the orientation of ∂P , such that
the end comes close to a basepoint passing all the parameterizing arcs on
its way, see Figure 6. This ensures that all the parameterizing arcs i are
admissible with L as a pair (i, L).

L

z

L

z

Figure 6: Perturbation near the boundary.

Now we exclude the immersed discs contributing to CF (i, L). We first
fix the notation of arcs and discs, on which they cut the pillowcase, as in
Figure 8. Consider traversing along L on the pillowcase — this travers-
ing (up to isotopies of L which do not change intersections with arcs) is
encoded in the cyclic sequence S(L) of discs Bk (we call them big do-
mains), which are visited by L, as well as the connecting arcs between
them. For example for the curve L\ in Figure 8 we have a cyclic sequence
S(L\) = B1j2B4i2B1i0B2j0B1j1B3i1. If L is an arc then the sequence is not
cyclic.

We isotope a curve L further, so that the sequence S(L) does not have
the same arcs around one big domain, i.e. it does not have a pattern iBli.
Such an isotopy exists because if we have such a pattern, there is a finger
move isotopy of L removing iBli from the sequence S(L), see Figure 7. The
length of the sequence decreases, so the process of doing such finger move
isotopies has to stop.

We claim that once there are not patterns iBli in S(L), there cannot
be immersed discs contributing to CF (i, L). Suppose there is an immersed
disc; then we can decrease the number of intersections of L with the param-
eterizing arcs by doing a long finger move along that disc. In the process of
doing that finger move every time the number of intersections decreases, it
is because we eliminated some pattern iBli from S(L). But such patterns
did not exist =⇒ contradiction. �

Lemma 5.3. If two isotopic curves L and L′ are both in a nice position,
their sequences are equal: S(L) = S(L′).
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B
l

i

B
l

i

L L

Figure 7: Finger move isotopy.

Proof. This is straightforward, because both S(L) and S(L′) can be recon-
structed from the element [L] = [L′] ∈ π1(P , ∂P ). �

5.2. Definition of M(L)

By Lemma 5.2 we now assume that L is in a nice position. A right A∞ mod-
ule M(L)A is defined as follows. Over F2 it is generated by all intersections
of the curve L with the red arcs. For example, for the curve L\ in Figure 8
we have M(L\) = 〈z, w, s, t, y, x〉F2

.
Idempotent subalgebra I acts on M(L) from the right: every generator

has a unique idempotent which preserves it, this idempotent corresponds to
the arc on which this generator is sitting. Other idempotents annihilate the
generator. For example for M(L\) we get the following idempotents for the
generators: zi0 , wj0 , sj1 , ti1 , yj2 , xi2 .

The rest of A acts on M(L) by counting immersed (in fact they are
all embedded, because (1) L is in a nice position; (2) the graph Γ does
not have cycles) discs, missing basepoints, from one generator to another
generator, such that the right boundary of the disc is mapped to arcs or ∂P ,
left boundary of the disc is mapped to L, and all the angles are convex —
see Figure 10. Non-idempotent elements of the algebra a1, . . . , an which such
a disc picks up on ∂P give an A∞ action x⊗I a1 ⊗I a2 ⊗I · · · ⊗I an → y.

Now, let us explain howM(L) can be recovered combinatorially, by doing
it on the example curve L\ in Figure 8. First, let us count all the “basic”
discs, which are contained entirely in one of the big domains Bl. Because
there is one basepoint in each big domain Bl, there is exactly one basic
disc between two consecutive generators. For the curve L\ from Figure 8 the

basic discs are: z
D2−−→ x, y

D0−−→ x, t
D6−−→ y, t

D4+D3−−−−→ s, w
D1−−→ s, z

D4+D5−−−−→ w.
Thus first we get a circle (if L is an arc we get a sequence) of generators and
actions between them, see Figure 9 for an example of the module M(L\).
Notice that except the basic actions that form a circle there are two extra

actions: z
D1+D4+D5−−−−−−−→ s, t

D0+D6−−−−→ x. These are the actions which correspond
to discs which are formed by juxtaposing basic discs along the arcs. These
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Figure 8: Curve L\ on the pillowcase.

discs ensure that d2 = 0 in our A∞ module. Note that every immersed disc
can be decomposed into basic discs. Also every basic disc is contained in the
finite number of discs — otherwise we would have a cycle of chords on the
∂P , and this is not possible because the graph Γ has no cycles.

The fact that the moduleM(L)A is well defined follows from Lemma 5.3.
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Figure 9: M(L\)A, where L\ is from Figure 8.
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Figure 10: Immersed discs of this type define A∞ actions of the algebra A
on the module M(L).

6. Algebraic pairing

Here we will describe how to compute HF (L0, L1) in terms of M(L0)A and
M(L1)A. One can skip most of this section, and jump straight to Defini-
tion 6.3. The material before that definition is included to show how we
arrived at that definition.

6.1. Koszul dual algebra

First, note that our algebra A is a 1-strand moving algebra A(Z, 1) (see [43,
Definition 2.6]) of the arc diagram Z drawn in Figure 11.
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Figure 11: Arc diagram Z, whose 1-strand moving algebra is A.

Definition 6.1. Let us define a new algebra A5s as 6− 1 = 5-strand mov-
ing algebra A(Z, 5) of the same arc diagram. We call it Koszul dual algebra
to algebra A.

Explicit description of A5s. First, consider a new graph Γ′ in Figure 12,
consisting of the reversed paths in the graph Γ from Figure 5. Our algebra
is a path algebra of graph Γ′, i.e.

A5s = 〈{paths in Γ′}〉F2
.

Notice that now all the paths are of the same color. Let us denote the
non-idempotent elements by i′a(e1, e2, . . . , em)j′ , where ei is an edge in Γ′,
and indices are the start and the end of the path. As before, multiplication
corresponds to concatenating paths, and so non-zero multiplications are all
of the form

i′a(e1, e2, . . . , em)j′ · j′a(em+1, em+2, . . . , em+l)k′ =i′ a(e1, e2, . . . , em+l)k′ .

There is a natural 1-1 correspondence between idempotents of A and A5s

given by i↔ i′. Also, edge e in graph Γ′ naturally gives an element aA(e) ∈ A
by “reversing” the path, for example, ξ′32 7→ ξ23.
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Differential this time is not zero. First, we specify differential on “linear”
elements, consisting of one edge (as always, we list only non-zero differen-
tials):

d(a(ξ′21)) = a(ξ′2, ξ
′
1), d(a(ξ′32)) = a(ξ′3, ξ

′
2),

d(a(ξ′321)) = a(ξ′32, ξ
′
1) + a(ξ′3, ξ

′
21),

d(a(η′21)) = a(η′2, η
′
1), d(a(η′32)) = a(η′3, η

′
2),

d(a(η′321)) = a(η′32, η
′
1) + a(η′3, η

′
21).

These induce differential on paths that consist of more edges by Leibniz rule.
For example, for 3-edge paths we have

d(a(e1, e2, e3)) = d(a(e1) · a(e2) · a(e3))

= d(a(e1)) · a(e2) · a(e3) + a(e1) · d(a(e2)) · a(e3)

+ a(e1) · a(e2) · d(a(e3)).

i′0

j′0

j′1 i′1

i′2

j′2Γ′

η′3

η′2

η′1

η ′
32

η′21

η′321

ρ′0 ρ′2

ξ′3
ξ′2

ξ′1
ξ
′
32

ξ′21

ξ′321

Figure 12: Graph Γ′, consisting of the reversed paths in the graph Γ from
Figure 5.

Remark. For clarity we repeat here our notation: elements of algebra A
are denoted by letters as described in Definition 4.1. Some of those letters
are edges of the graph Γ. For elements of the algebra A5s the notation is
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a(e1, . . . , em), where ei are the edges of the graph Γ′. Each edge e in graph
Γ′ naturally gives an element aA(e) ∈ A by “reversing” the path.

Remark. Although we will not use it, let us note that the algebra A5s =
A(Z, 5) is Koszul dual to A = A(Z, 1) in the sense of [28, Definition 8.5].
The proof is the same as for Koszul duality of algebras in bordered Heegaard
Floer homology, see [28, Proposition 8.17]. Let us describe the rank-1 (over
I) Koszul dualizing bimodule AKA

5s

. We define

K = 〈(i0, i′0), (i2, i
′
2), (i2, i

′
2), (j0, j

′
0), (j1, j

′
1), (j1, j

′
1)〉F2

∼= 〈1〉I ,

with differential δ1 : K → A⊗I K ⊗I A5s given by

δ1(k, k′) =
∑

s′ek′ edge in Γ′
kaA(e)s ⊗ (s, s′)⊗ (a(s′ek′)).

6.2. DD bimodule, and the pairing

Definition 6.2. Dual small bar resolution of algebra A is a type DD struc-
ture AbarA, whose generators correspond to elements of A5s, i.e. each ele-
ment i′a(e1, e2, . . . , el)j′ ∈ A5s gives an element ib(e1, e2, . . . , el)j ∈ bar. The

type DD structure on bar over A is given by:

δ1 : bar → A⊗I bar ⊗I A,

δ1(ib(e1, e2, . . . , el)j)

=
∑

e∈Edges(Γ′),start(e)=j′
1⊗ ib(e1, e2, . . . , el, e)k ⊗ kaA(e)j

+
∑

e∈Edges(Γ′),end(e)=i′
iaA(e)k ⊗ kb(e, e1, e2, . . . , el)j ⊗ 1

+
∑

ei∈{e1,e2,...,el}

1⊗ b(e1, e2, . . . , ei−1) · d(b(ei)) · b(ei+1, . . . , el)⊗ 1.

For the explicit description of the elements and the differential in AbarA

see Appendix. For convenience let us write here one example of how the
differential acts:
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δ1|b(η′3,ξ′3,ξ′21) =

j0b(η
′
3, ξ
′
3, ξ
′
21)i1

j0b(η
′
3, ξ
′
3, ξ
′
2, ξ
′
1)i1

+

j0b(η
′
3, ξ
′
3, ξ
′
21)i1

j0b(η
′
3, ξ
′
3, ξ
′
21, η

′
1)i0 i0η1i1

We will simplify AbarA preserving its homotopy type. For that there
exists a convenient tool called “cancellation”. Suppose there are two gener-
ators in a DD bimodule AbarA satisfying δ1(x) = y + . . ., i.e. there is only
one action from x to y, and it does not have any outgoing algebra elements
(an example would be b(η′3, ξ

′
3, ξ
′
21)→ 1⊗ b(η′3, ξ′3, ξ′2, ξ′1)⊗ 1). Then we can

cancel these two generators, i.e., first, erase x, y and the arrows involving
them from the bimodule, and second, add some other arrows between the
generators left in the bimodule, guided by a certain cancellation rule. The
outcome is a bimodule Abar′A with less generators, and which is homotopy
equivalent to the previous one Abar′A ' AbarA. See [44, Section 3.1] for the
details of how cancellation works.

We want to cancel all possible differentials in AbarA. It is clear that
it does not matter which differentials and in which order we cancel, up to
homotopy equivalence the end result Abarr

A will be the same. Moreover,
in our case it turns out that even the isomorphism class of Abarr

A does
not depend on the choice and order of cancellations. We could describe
the cancellation process and prove the uniqueness of the resulting bimodule
Abarr

A, but we decided to skip this unnecessary step, and simply define
Abarr

A explicitly below. Note that below we change the notation: instead
of primes we will write minuses, i.e. b(ξ′1) becomes b(−ξ1), except for the
constant path elements, in which case b(i′0) becomes b(i0). This is convenient
for interpreting generators and differentials of Abarr

A in Figure 5.

Definition 6.3. Reduced small bar resolution Abarr
A of algebra A is a type

DD structure which consists of the following 24 generators (we list them with
their idempotents):
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i2(b(i2))i2 ,i0 (b(i0))i0 ,j1 (b(j1))j1 ,j2 (b(j2))j2 ,j0 (b(j0))j0 ,i1 (b(i1))i1 ,

j0(b(−ρ0))i0 ,j1 (b(−η2))i1 ,j2 (b(−ξ2))i2 ,

j0(b(−η3))j1 ,j1 (b(−ξ3))j2 ,j2 (b(−ρ2))i2 ,i2 (b(−ξ1))i1 ,i1 (b(−η1))i0 ,

j2(b(−ρ2,−ξ1))i1 ,j1 (b(−ξ3,−ρ2))i2 ,j0 (b(−η3,−ξ3))j2 ,i2 (b(−ξ1,−η1))i0 ,

j0(b(−η3,−ξ3,−ρ2))i2 ,j1 (b(−ξ3,−ρ2,−ξ1))i1 ,j2 (b(−ρ2,−ξ1,−η1))i0 ,

j1(b(−ξ3,−ρ2,−ξ1,−η1))i0 ,j0 (b(−η3,−ξ3,−ρ2,−ξ1))i1 ,

j0(b(−η3,−ξ3,−ρ2,−ξ1,−η1))i0 .

These are the actions of Abarr
A:

b(−η3,−ξ3,−ρ2,−ξ1) −→ 1⊗ b(−η3,−ξ3,−ρ2,−ξ1,−η1)⊗ η1,

b(−ρ2,−ξ1,−η1) −→ ξ3 ⊗ b(−ξ3,−ρ2,−ξ1,−η1)⊗ 1,

b(−η3) −→ 1⊗ b(−η3,−ξ3)⊗ ξ3,

b(i2) −→ ξ2 ⊗ b(−ξ2)⊗ 1,

b(i2) −→ 1⊗ b(−ξ1)⊗ ξ1,

b(i2) −→ ρ2 ⊗ b(−ρ2)⊗ 1,

b(j1) −→ η3 ⊗ b(−η3)⊗ 1,

b(j1) −→ 1⊗ b(−ξ3)⊗ ξ3,

b(j1) −→ 1⊗ b(−η2)⊗ η2,

b(j2) −→ 1⊗ b(−ξ2)⊗ ξ2,

b(j2) −→ ξ3 ⊗ b(−ξ3)⊗ 1,

b(j2) −→ 1⊗ b(−ρ2)⊗ ρ2,

b(j0) −→ 1⊗ b(−ρ0)⊗ ρ0,

b(j0) −→ 1⊗ b(−η3)⊗ η3,

b(−ξ3,−ρ2,−ξ1,−η1) −→ η3 ⊗ b(−η3,−ξ3,−ρ2,−ξ1,−η1)⊗ 1,

b(i1) −→ ξ1 ⊗ b(−ξ1)⊗ 1,

b(i1) −→ 1⊗ b(−η1)⊗ η1,

b(i1) −→ η2 ⊗ b(−η2)⊗ 1,

b(−ρ2,−ξ1) −→ 1⊗ b(−ρ2,−ξ1,−η1)⊗ η1,

b(−ρ2,−ξ1) −→ ξ3 ⊗ b(−ξ3,−ρ2,−ξ1)⊗ 1,

b(i0) −→ ρ0 ⊗ b(−ρ0)⊗ 1,
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b(i0) −→ η1 ⊗ b(−η1)⊗ 1,

b(−ξ1) −→ ρ2 ⊗ b(−ρ2,−ξ1)⊗ 1,

b(−ξ1) −→ 1⊗ b(−ξ1,−η1)⊗ η1,

b(−η1) −→ ξ1 ⊗ b(−ξ1,−η1)⊗ 1,

b(−ξ3) −→ 1⊗ b(−ξ3,−ρ2)⊗ ρ2,

b(−ξ3) −→ η3 ⊗ b(−η3,−ξ3)⊗ 1,

b(−ρ2) −→ 1⊗ b(−ρ2,−ξ1)⊗ ξ1,

b(−ρ2) −→ ξ3 ⊗ b(−ξ3,−ρ2)⊗ 1,

b(−η3,−ξ3,−ρ2) −→ 1⊗ b(−η3,−ξ3,−ρ2,−ξ1)⊗ ξ1,

b(−ξ3,−ρ2,−ξ1) −→ η3 ⊗ b(−η3,−ξ3,−ρ2,−ξ1)⊗ 1,

b(−ξ3,−ρ2,−ξ1) −→ 1⊗ b(−ξ3,−ρ2,−ξ1,−η1)⊗ η1,

b(−ξ3,−ρ2) −→ η3 ⊗ b(−η3,−ξ3,−ρ2)⊗ 1,

b(−ξ3,−ρ2) −→ 1⊗ b(−ξ3,−ρ2,−ξ1)⊗ ξ1,

b(−η3,−ξ3) −→ 1⊗ b(−η3,−ξ3,−ρ2)⊗ ρ2,

b(−ξ1,−η1) −→ ρ2 ⊗ b(−ρ2,−ξ1,−η1)⊗ 1.

Looking at the left of Figure 5, it is convenient to see generators of
Abarr

A as paths (against orientation) on the boundaries of big domains B2,
B3, B4, B1, encoded by the algebra elements one encounters on that path.
The differential then corresponds to prolonging paths by one chord. See
Figure 13 for an example of this geometric interpretation of the differential.

i
1

i
0

i
2

j
2

i
1

i
0

i
2

j
2

prolongation of the path

corresponds to di!erential

Figure 13: Geometric interpretation of the differential in Abarr
A.
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Algebraic pairing. First, let us refer to [28, Section 2.3] for definitions
of dual A∞ modules and type D-structures. Having an A∞ module MA,
we denote its dual by AM . Now we are ready to define algebraic pairing of
curves in the pillowcase.

Definition 6.4. Suppose L0, L1 are two curves in the pillowcase P . An
algebraic pairing of curves is given by a complex

M(L1)A �
Abarr

A � AM(L0).

Remark. The way we constructed Abarr
A ensures thatM(L1)A � AbarrA �

AM(L0) 'Mor(M(L0)A,M(L1)A), see Section 1.5.

7. Pairings are the same

Theorem 7.1. Let L0, L1 be two admissible unobstructed curves in the
pillowcase P . Then their Lagrangian Floer complex is homotopy equivalent
to the algebraic pairing of curves:

CF∗(L0, L1) 'M(L1)A �
Abarr

A � AM(L0).

Proof. The plan for the proof is the following:

(1) We first isotope curves L0, L1 in a certain way.

(2) We prove that after the step (1) the pair (L0, L1) becomes admissible.

(3) We then prove that the two chain complexes we consider are isomor-
phic: CF∗(L0, L1) ∼= M(L1)A � AbarrA � AM(L0).
a) We first see that the generators are in 1-1 correspondence.
b) We then prove that the differentials coincide. This is done by “local-

izing” differential in the geometric pairing, i.e. by noting that every
disc contributing to the differential is contained almost entirely in
one of the big domains B1, B2, B3, B4.

We will be illustrating each step on our running example of curves: L0 = L\

— curve in Figure 8, that corresponds to the trivial tangle A1 ∪A2, and
L1 = Lb — belt around the pillowcase on the left of Figure 2. For A∞ actions
on the dual module AM(L\) see Figure 19, and A∞ actions on M(Lb)A =
〈x, s, z, w〉F2

(see Figure 16) are as follows: z ⊗ (ξ3, η3)→ x, z ⊗ ρ0 → x, z ⊗
(η1, ξ1)→ w, w ⊗ ξ2 → s.
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(1). For a short visual description of the required isotopy one may look at
Figure 16. Let us describe it now.

First and foremost, we need to isotope both curves L0, L1 to make their
positions nice, so that we can see modules M(L0)A,M(L1)A geometrically.
For that see Section 5.1.

Let us describe further isotopies of L0. Mark four points b1, b2, b3, b4 in
the big domains B1, B2, B3, B4 like in Figure 16, and call them centers of
the big domains. We then isotope the curve L0 in the following way: first
we make it intersect every red arc near its center (the centers of arcs are
marked in Figure 16). Then we isotope L0 so that in big domains it goes
from the centers of big domains to the centers of red arcs straight (or, if
L0 is an arc, to the point on ∂P , see Figure 15). See Figure 16 for how the
isotoped L0 looks like.

Concerning the curve L1, we also make it intersect the red arcs near
their centers. But the rest of the isotopy is different from L0. First, tilt the
angle in which it intersects the centers of the red arcs, so that the following
is true: 1) L1 is almost parallel to red arcs and intersects each nearby piece
of L0 exactly once; 2) going clockwise around the center of the red arc, we
encounter the rays in the following order: red arc, all the pieces of L1, all
the pieces of L0. See Figure 14.

L
0

L
1

Figure 14: Perturbation near the centers of red arcs.

Next, we make the final isotopy of the L1 curve, which has to do with
the way it behaves inside the big domains. Divide L1 on the segments by
intersections with red arcs. We already specified how L1 looks near those
intersections. Now we will describe how each segment between those inter-
sections is isotoped, by traversing L1. First, an important thing to note,
the whole L1 will not leave the small neighborhood of ∂P ∪ {red arcs}. We
start at the center of the red arc, enter one of the big domains, and then
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z
3

b
3

L
0L

1

Figure 15: Perturbation of the end segments of the arcs.

go near the ∂P ∪ {red arcs} in that domain until it reaches a basepoint. If
this is the end segment of L1 being an arc, then L1 is connected to ∂P near
that basepoint, such that (L0, L1) is admissible, see Figure 15. Otherwise
L1 turns by 360◦ (in the direction towards the other end of the segment,
i.e. such that it does not introduce a fishtail), and goes backwards until it
reaches the other end of the segment. See Figure 16 for how the isotoped L1

looks like.

(2). Let us prove that after step (1) the pair (L0, L1) becomes admissi-
ble. All the non-smooth corners, triple intersections, non-transverse inter-
sections are eliminated by introducing a slight perturbation. There are no im-
mersed annuli because of intersections introduced in Figure 14. If pL0 ∼ qL1,
and so Per(L0, L1) = Z, those intersections lift to the covering from the
Lemma 3.4,d). If L0, L1 are arcs, they are in admissible position relative to
basepoints because we ensured it while isotoping L1, see Figure 15.

(3a). The generators of CF∗(L0, L1), as well as the generators of M(L1)A �
Abarr

A � AM(L0), are in 1-1 correspondence with the set of paths along
∂Bi, from intersections L1 ∩ {i0, i1, i2, j0, j1, j2} = {generators of M(L1)} to
intersections L0 ∩ {i0, i1, i2, j0, j1, j2} = {generators of M(L0)}. The paths
are against natural orientations of ∂Bi, and consist of chords −γ of length
one (which are also elements of A). Let us explain how to see those paths.

Remember that elements of Abarr
A naturally correspond to such paths,

see Figure 13. For the generators in M(L1)A � AbarrA � AM(L0), they each
have their element of Abarr

A in the center, and that describes the path
from a generator in M(L1) to generator in M(L0). For the generators of
CF∗(L0, L1), the desired path can be traversed along the L1, see Figure 16.
Notice that we include “0 length” paths, which correspond to intersections
introduced when both L0, L1 cross the same red arc, see Figure 14.

Considering example in Figure 16, we have:

M(L1) = 〈x, s, z, w〉F2
, M(L0) = 〈x∗, s∗, z∗, w∗, t∗, y∗〉F2

.
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The intersection points L0 ∩ L1 in Figure 16 correspond to the generators
of M(L1)A � AbarrA � AM(L0) in the following way:

w � b(i2)� w∗ ↔ w, s� b(j2)� s∗ ↔ s,

x� b(j0)� x∗ ↔ x, z � b(i0)� z∗ ↔ z,

s� b(−ρ2,−ξ1,−η1)� z∗ ↔ p3, s� b(−ρ2)� w∗ ↔ p9,

s� b(−ξ2)� w∗ ↔ p11, s� b(−ρ2,−ξ1)� t∗ ↔ p6,

w � b(−ξ1,−η1)� z∗ ↔ p2, w � b(−ξ1)� t∗ ↔ p7,

x� b(−η3)� y∗ ↔ p12, x� b(−η3,−ξ3,−ρ2,−ξ1,−η1)� z∗ ↔ p4,

x� b(−η3,−ξ3)� s∗ ↔ p10, x� b(−η3,−ξ3,−ρ2,−ξ1)� t∗ ↔ p5,

x� b(−η3,−ξ3,−ρ2)� w∗ ↔ p8, x� b(−ρ0)� z∗ ↔ p1.
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Figure 16: Isotopies of L0 = L\ and L1 = Lb so that the chain complexes
of geometric and algebraic pairings become isomorphic: CF∗(L0, L1) ∼=
M(L1)A � AbarrA � AM(L0).
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(3b). Here we want to show that differentials in CF∗(L0, L1) andM(L1)A �
Abarr

A � AM(L0) coincide. We will do it by partitioning both differentials
into smaller groups, and showing how smaller groups correspond to each
other.

Lemma 7.2. Every immersed disc contributing to differential in CF∗(L0, L1)
is contained inside a small neighborhood of one of the big domains B1, B2,
B3, B4.

Proof. For an immersed disc to go from one big domain to another big do-
main, it must pass through an intersection of type q � b(i)� k∗, because
the disc is not allowed to touch the ∂P . Here, in the notation, we use 1-1
correspondence between the generators of CF∗(L0, L1) and the generators
of M(L1)A � AbarrA � AM(L0). Such intersections happen when both L0

and L1 cross the red arc, i.e. they correspond to “0 length” paths, see Fig-
ure 14. Also only two opposite parts of the corner q � b(i)� k∗ ∈ L0 ∩ L1

are allowed to be filled by the disc. Thus the disc cannot pass through such
intersection point, as such disc cannot be immersed. �

Remark. We need to consider small neighborhoods of the big domains, as
intersections of type q � b(i)� k∗ are not happening exactly on the red arc,
but rather somewhere close to its center, see Figure 14.

Lemma 7.3. Every differential in M(L1)A � AbarrA � AM(L0) contains
an A∞ action either on the M(L1) side (Figure 17), or on the M(L0) side
(Figure 18), but not on both sides. Moreover, every such A∞ action comes
from a “basic” disc in the definition of M(Li)A, i.e. a disc contained entirely
in one of the big domains.

Proof. The first observation is that Abarr
A does not have differentials with

algebra elements outgoing on both sides:

This implies that the chain complex structure does not depend on the brack-
ets placement:

(M(L1)A �
Abarr

A)� AM(L0) = M(L1)A � (Abarr
A � AM(L0))

= M(L1)A �
Abarr

A � AM(L0).
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Usually only the homotopy type of the box tensor product does not depend
on the brackets placement. Also, it implies that the differential is either on
the M(L1) side (Figure 17), or on the M(L0) side (Figure 18). We call them
the 1st and the 2nd types of differentials.

The second observation is that the differentials in Abarr
A do not contain

outgoing algebra elements of chord length more than one (an example of
chord length two algebra element is ξ12). This observation implies the last
statement of the lemma. �

Now let us take one connected segment l0 of L0, which is cut out by a
small neighborhood of a big domain N(Bk). And also we take one connected
segment l1 of L1, which is cut out by the same neighborhood N(Bk). These
segments almost coincide with two of the segments from the division of
L0 and L1 by the intersections with red arcs. Their behavior inside N(Bk)
is completely described by our isotopy in step (1). Also note, that such
segments correspond to basic discs in the definition of M(Li)A. These basic
discs have a chance to contribute to the differential in M(L1)A � AbarrA �

AM(L0).
Due to Lemma 7.2, the differential in CF∗(L0, L1) is partitioned into

differentials with boundaries on segments l0, l1. We will denote such groups of
differentials by CF∗(l0, l1). Due to Lemma 7.3, the differential in M(L1)A �
Abarr

A � AM(L0) is partitioned into differentials using different basic discs.
We will denote such groups of differentials by M(l1)A � AbarrA � AM(l0),
as basic discs correspond to segments.

We are left to show how differentials in CF∗(l0, l1) correspond to differ-
entials in M(l1)A � AbarrA � AM(l0). We will do it by considering the 1st
and the 2nd type of differentials in M(l1)A � AbarrA � AM(l0) separately.

The 1st type. In this case the differential M(l1)A � AbarrA � AM(l0) has
outgoing algebra elements on the left, see Figure 17. This corresponds to
prolongation of the path in the backward direction, i.e. new length one
chords are concatenated to the path from the left. We use the following
notation in Figure 17: i, k are the red arcs intersecting l1 at (u1) and (u2),
j is the red arc intersecting l0 at (v), and γm represent chord length one
elements of A.

Let us describe the corresponding disc differentials in CF (l0, l1). Sup-
pose the disc goes from p to q. First, note that all intersections l0 ∩ l1 are
happening near one of the two ends of segment l0. Points p and q can be on
one end of the segment l0, or on the different ends. Let us consider those
pairs of point p and q, which are on one end of the segment l0. For this
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(u1)i ib(path)j j(v)� �

� �(u2)k kb(−γm, . . . ,−γ2,−γ1, path)j j(v)

...

γ 1

γ2

γm

Figure 17: The 1st type of differentials in M(L1)A � AbarrA � AM(L0).

to happen, traversing the l1 boundary of the disc, l1 must pass the 360◦

rotation point and come back. See, for example, the disc from p6 to p5 in
Figure 16. We say that such differentials are of the 1st type in CF (l0, l1).

These are precisely the discs that correspond to the 1st type of differ-
entials in M(l1)A � AbarrA � AM(l0). The reason is that both the 1st type
of differentials in M(l1)A � AbarrA � AM(l0), and the 1st type of differen-
tials in CF (l0, l1) exist if and only if (u2)k is before (u1)i is before j(v) with
respect to the basepoint and the direction against the natural orientation
of ∂Bi. For example, in Figure 16, the disc from p6 to p5 corresponds to
differential s� b(−ρ2,−ξ1)� t∗ → x� b(−η3,−ξ3,−ρ2,−ξ1)� t∗.

The 2nd type. In this case the differential M(l1)A � AbarrA � AM(l0) has
outgoing algebra elements on the right, see Figure 18. This corresponds to
prolongation of the path in the forward direction, i.e. new length one chords
are concatenated to the path from the right. We use the following notation
in Figure 18: i is the red arc intersecting l1 at (u), j, o are the red arcs
intersecting l0 at (v1) and (v2), and γm represent chord length one elements
of A.

The corresponding 2nd type of disc differentials in CF (l0, l1) are those,
which have their corners on two different ends of segment l0. They do not
pass through the 360◦ rotation point of l1, but instead they pass through
the center of the big domain, see the disc from p10 to p5 in Figure 16.
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(u)i ib(path)j j(v1)� �

� �(u)i ib(path,−γ1,−γ2, . . . ,−γm)o o(v2)

...

γ
1

γ
2

γm

Figure 18: The 2nd type of differentials in M(L1)A � AbarrA � AM(L0).

Both the 2nd type of differentials in M(l1)A � AbarrA � AM(l0), and
the 2nd type of differentials in CF (l0, l1) exist if and only if (u)i is be-
fore j(v1) is before o(v2) with respect to the basepoint and the direction
against the natural orientation of ∂Bi. For example, in Figure 16, the disc
from p10 to p5 corresponds to the differential x� b(−η3,−ξ3)� s∗ → x�
b(−η3,−ξ3,−ρ2,−ξ1)� t∗. �

8. Modules associated to tangles

Here we describe examples of modules M(L(K,S,π))A associated to tangles
K \ (A1 ∪A2). We use calculations from [15, Sections 7,11] to get immersed
curves L(K,S,π) in the pillowcase, see Figure 20. Also, for the sake of readabil-
ity of this section we will abuse notation and write LK instead of L(K,S,π).

Example 8.1 (Trivial tangle to pair with). First we consider a trivial
tangle A1 ∪A2 inside the Conway sphere, see the left picture of the second
row in Figure 1. For that tangle (decorated with an additional arc and a
circle to avoid reducibles) we associate a curve L\ in Figure 8, and to that
curve we associate a module described in Figure 9.

Because in the algebraic pairing M(LK)A � AbarrA � AM(L\) there is
a dual module AM(L\) involved, we describe it here:
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w*z*

x*

y* t*

s*

ρ0

η3

η2

(ξ1, ρ2)

ξ2

(η1, ξ1)

(η1, ξ12)

η23

Figure 19: AM(L\).

In the next examples we also compute pillowcase homology via the alge-
braic pairing, using computer program [21] for box tensor product of mod-
ules. Another way to see the chain complex and the differentials is to isotope
LK as in the proof of Theorem 7.1, and then to use the Lagrangian Floer
chain complex CF∗(L

\, LK).

Example 8.2 (The unknot). The next example is a trivial knot tangle
U −A1 −A2. Depending on how we pick the second tangle for the trivial
knot (the first tangle is A1 ∪A2), the resulting curve on the pillowcase can
be different. In the two simplest cases it can be an arc {γ = π} (in case the
second tangle looks like a crossing ×), or an arc {θ = 0} (in case the second
tangle is horizontal smoothing of that crossing). Note that we cannot pick a
vertical smoothing )( of a crossing, as it results in two circles if paired with
A1 ∪A2. On the left of Figure 20 we depicted an arc {θ = 0} = LU for a
crossing ×.

The corresponding module M(LU )A is qj1
η3−→ pj0 . The algebraic pair-

ing chain complex M(LU )A � AbarrA � AM(L\) has 13 generators and 12
differentials. Pillowcase homology then has rank one:

HF∗(L
\, LU ) = H∗(M(LU )A �

Abarr
A � AM(L\)) = F2,

which coincides with singular instanton knot homology I\(U).

Example 8.3 (T (2, 3)). An immersed curve for the right-handed trefoil is
depicted on the left of Figure 20.

The corresponding module M(LT (2,3))A has generators:

ui0 , ej1 , vj1 , qi1 ,
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and actions:

u⊗ (η1, ξ1, ρ2, ξ3) −→ e, q ⊗ (η2) −→ e, q ⊗ (ξ1, ρ2, ξ3) −→ v.

The algebraic pairing chain complex M(LU )A � AbarrA � AM(L\) has 15
generators and 10 differentials. Pillowcase homology then has rank three:

HF∗(L
\, LT (2,3)) = H∗(M(LT (2,3))A �

Abarr
A � AM(L\)) = (F2)3,

which coincides with singular instanton knot homology I\(T (2, 3)).

In the next three examples immersed curves are unions of curves R0, R1,
R3, R4, see the right of Figure 20. Notice that R3 differs from R0 by a twist
around the boundary, and thus their pairings with L\ are the same (because
L\ is not an arc). We describe the modules M(LRi

)A for i = 0, 1, 4 in the
appendix. Using those modules we compute three more examples for tangles:

Example 8.4 (T (3, 7)). The corresponding immersed curve is depicted on
the right of Figure 20.

The corresponding module is M(LT (3,7)) = M(R0)⊕M(R1)⊕M(R1).

Pillowcase homology then has rank 9: HF∗(L
\, LT (3,7)) = H∗(M(LT (3,7))A �

Abarr
A � AM(L\)) = (F2)⊕ (F2)4 ⊕ (F2)4 = (F2)9, which coincides with

singular instanton knot homology I\(T (3, 7)).

Example 8.5 (T (5, 11)). The corresponding immersed curve is depicted
on the right of Figure 20.

The corresponding module is

M(LT (5,11)) = M(R0)⊕M(R1)⊕M(R1)⊕M(R4)⊕M(R4).

Pillowcase homology then has rank 17:

HF∗(L
\, LT (5,11)) = H∗(M(LT (5,11))A �

Abarr
A � AM(L\))

= (F2)⊕ (F2)4 ⊕ (F2)4 ⊕ (F2)4 ⊕ (F2)4 = (F2)17.

Singular instanton Floer homology is not known for T (5, 11).

Example 8.6 (T (3, 4)). The corresponding immersed curve is depicted on
the right of Figure 20. This is an example where we actually need to perturb
LT (3,4) in order to get an immersed 1-manifold.
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The corresponding module is M(LT (3,4)) = M(R1)⊕M(LR3
). Pillow-

case homology then has rank 5:

HF∗(L
\, LT (3,4)) = H∗(M(LT (3,4))A �

Abarr
A � AM(L\))

= (F2)4 ⊕ F2 = (F2)5,

which coincides with singular instanton knot homology I\(T (3, 4)).

See [15] and [12] for other examples of immersed curves associated to
tangles.
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1
+R

0
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4

Figure 20: Different immersions associated to tangles. L\ denotes an im-
mersed curve associated to trivial tangle consisting of two arcs A1, A2, see
Figure 1. LK denotes an immersed curve associated to tangle K \ (A1 ∪A2).

9. Appendix

Module. M(R0)A

4 generators with their idempotents: aj1 ,cj1 ,bi1 ,dj0 .
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Actions: a⊗ η3 −→ d, b⊗ η23 −→ d, b⊗ (ξ1, ρ2, ξ3) −→ c, b⊗ η2 −→ a.
Algebraic pairing with the trivial tangle module:

H∗(M(R0)A �
Abarr

A � AM(L\)) = F2.

Module. M(R1)A

4 generators with their idempotents: x1j1 ,y1j1 ,z1i1 ,t1i1 .

Actions: z1⊗ (ξ1, ρ2, ξ3) −→ y1, t1⊗ η2 −→ y1, z1⊗ η2 −→ x1,
t1⊗ (ξ1, ρ2, ξ3) −→ x1.

Algebraic pairing with the trivial tangle module:

H∗(M(R1)A �
Abarr

A � AM(L\)) = (F2)4.

Module. M(R4)A

4 generators with their idempotents: ai0 , ci1 , bi0 , ei1 , di1 , gi1 , hi1 , mj1 , lj1 ,
qj2 , pj2 , si2 , ri1 , uj1 , ti2 , wj0 , vj1 , yj1 , xj1 , zj0 .

Actions:
a⊗ η3 −→ d, b⊗ η23 −→ d, b⊗ (ξ1, ρ2, ξ3) −→ c, b⊗ η2 −→ a, p⊗ ξ3 −→ u,
t⊗ ξ2 −→ q, d⊗ (ξ1, ρ2, ξ3) −→ l, y ⊗ η3 −→ z, a⊗ η1 −→ g, s⊗ ξ2 −→ p,
c⊗ η2 −→ x, r ⊗ ξ123 −→ u, e⊗ η2 −→ m, d⊗ η2 −→ y, s⊗ ξ23 −→ u, h⊗
η2 −→ v, c⊗ η23 −→ w, r ⊗ ξ12 −→ p, q ⊗ ξ3 −→ v, r ⊗ ξ1 −→ s, a⊗ ρ0 −→
w, t⊗ ξ23 −→ v, b⊗ η1 −→ h, b⊗ η12 −→ v, d⊗ η23 −→ z, r ⊗ η2 −→ l, x⊗
η3 −→ w, c⊗ (ξ1, ρ2, ξ3) −→ m, e⊗ ξ12 −→ q, a⊗ η12 −→ u, b⊗ ρ0 −→ z,
e⊗ ξ123 −→ v, g ⊗ η2 −→ u, e⊗ ξ1 −→ t .
Algebraic pairing with the trivial tangle module:

H∗(M(R4)A �
Abarr

A � AM(L\)) = (F2)4.

Bimodule. AbarA

56 generators with their idempotents:

j1(b(ξ
′
32, ξ

′
1))i1 , j0(b(ρ

′
0))i0 , j1(b(ξ

′
3, ξ
′
2))i2 , j0(b(η

′
3, ξ
′
3, ρ
′
2, ξ
′
1))i1 , j0(b(η

′
3, ξ
′
32))i2 ,

j0(b(η
′
3, ξ
′
32, ξ

′
1, η
′
1))i0 , j0(b(η

′
3, ξ
′
3, ξ
′
2))i2 , j1(b(η

′
21))i0 , j0(b(η

′
3, ξ
′
3, ξ
′
2, ξ
′
1, η
′
1))i0 ,

j2(b(ξ
′
2))i2 , j2(b(ξ

′
2, ξ
′
1, η
′
1))i0 , j1(b(ξ

′
32))i2 , j2(b(ξ

′
21, η

′
1))i0 , j0(b(η

′
321))i0 ,

j2(b(ρ
′
2, ξ
′
1, η
′
1))i0 , j0(b(η

′
3))j1 , j1(b(ξ

′
3, ξ
′
2, ξ
′
1, η
′
1))i0 , j1(b(ξ

′
321, η

′
1))i0 , i2(b(i

′
2))i2 ,

j0(b(η
′
3, ξ
′
3, ρ
′
2, ξ
′
1, η
′
1))i0 , j1(b(ξ

′
3, ξ
′
21))i1 , j1(b(j

′
1))j1 , j0(b(η

′
3, ξ
′
3, ξ
′
21))i1 ,

j2(b(j
′
2))j2 , j0(b(j

′
0))j0 , j0(b(η

′
3, η
′
2))i1 , j1(b(ξ

′
3, ρ
′
2, ξ
′
1, η
′
1))i0 , i1(b(i

′
1))i1 ,

j2(b(ξ
′
21))i1 , j2(b(ρ

′
2, ξ
′
1))i1 , i0(b(i

′
0))i0 , i2(b(ξ

′
1))i1 , i1(b(η

′
1))i0 , j1(b(ξ

′
3))j2 ,

j0(b(η
′
3, ξ
′
321))i1 , j1(b(ξ

′
3, ξ
′
21, η

′
1))i0 , j0(b(η

′
32))i1 , j2(b(ρ

′
2))i2 , j0(b(η

′
3, η
′
21))i0 ,

j0(b(η
′
3, η
′
2, η
′
1))i0 , j0(b(η

′
3, ξ
′
3, ρ
′
2))i2 , j1(b(ξ

′
321))i1 , j2(b(ξ

′
2, ξ
′
1))i1 , j1(b(ξ

′
3, ρ
′
2, ξ
′
1))i1 ,
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j0(b(η
′
3, ξ
′
3, ξ
′
21, η

′
1))i0 , j0(b(η

′
32, η

′
1))i0 , j1(b(ξ

′
3, ρ
′
2))i2 , j0(b(η

′
3, ξ
′
32, ξ

′
1))i1 ,

j1(b(η
′
2))i1 , j0(b(η

′
3, ξ
′
3, ξ
′
2, ξ
′
1))i1 , j1(b(η

′
2, η
′
1))i0 , j0(b(η

′
3, ξ
′
321, η

′
1))i0 ,

j0(b(η
′
3, ξ
′
3))j2 , j1(b(ξ

′
32, ξ

′
1, η
′
1))i0 , i2(b(ξ

′
1, η
′
1))i0 , j1(b(ξ

′
3, ξ
′
2, ξ
′
1))i1 .

Actions:

b(ξ′32, ξ
′
1) −→ η3 ⊗ b(η′3, ξ′32, ξ

′
1)⊗ 1,

b(ξ′32, ξ
′
1) −→ 1⊗ b(ξ′32, ξ

′
1, η
′
1)⊗ η1,

b(ξ′32, ξ
′
1) −→ 1⊗ b(ξ′3, ξ′2, ξ′1)⊗ 1,

b(ξ′3, ξ
′
2) −→ η3 ⊗ b(η′3, ξ′3, ξ′2)⊗ 1,

b(ξ′3, ξ
′
2) −→ 1⊗ b(ξ′3, ξ′2, ξ′1)⊗ ξ1,

b(η′3, ξ
′
3, ρ
′
2, ξ
′
1) −→ 1⊗ b(η′3, ξ′3, ρ′2, ξ′1, η′1)⊗ η1,

b(η′3, ξ
′
32) −→ 1⊗ b(η′3, ξ′3, ξ′2)⊗ 1,

b(η′3, ξ
′
32) −→ 1⊗ b(η′3, ξ′32, ξ

′
1)⊗ ξ1,

b(η′3, ξ
′
32, ξ

′
1, η
′
1) −→ 1⊗ b(η′3, ξ′3, ξ′2, ξ′1, η′1)⊗ 1,

b(η′3, ξ
′
3, ξ
′
2) −→ 1⊗ b(η′3, ξ′3, ξ′2, ξ′1)⊗ ξ1,

b(η′21) −→ η3 ⊗ b(η′3, η′21)⊗ 1,

b(η′21) −→ 1⊗ b(η′2, η′1)⊗ 1,

b(ξ′2) −→ ξ3 ⊗ b(ξ′3, ξ′2)⊗ 1,

b(ξ′2) −→ 1⊗ b(ξ′2, ξ′1)⊗ ξ1,

b(ξ′2, ξ
′
1, η
′
1) −→ ξ3 ⊗ b(ξ′3, ξ′2, ξ′1, η′1)⊗ 1,

b(ξ′32) −→ 1⊗ b(ξ′32, ξ
′
1)⊗ ξ1,

b(ξ′32) −→ 1⊗ b(ξ′3, ξ′2)⊗ 1,

b(ξ′32) −→ η3 ⊗ b(η′3, ξ′32)⊗ 1,

b(ξ′21, η
′
1) −→ 1⊗ b(ξ′2, ξ′1, η′1)⊗ 1,

b(ξ′21, η
′
1) −→ ξ3 ⊗ b(ξ′3, ξ′21, η

′
1)⊗ 1,

b(η′321) −→ 1⊗ b(η′3, η′21)⊗ 1,

b(η′321) −→ 1⊗ b(η′32, η
′
1)⊗ 1,

b(ρ′2, ξ
′
1, η
′
1) −→ ξ3 ⊗ b(ξ′3, ρ′2, ξ′1, η′1)⊗ 1,

b(η′3) −→ 1⊗ b(η′3, ξ′32)⊗ ξ23,

b(η′3) −→ 1⊗ b(η′3, η′2)⊗ η2,

b(η′3) −→ 1⊗ b(η′3, ξ′321)⊗ ξ123,

b(η′3) −→ 1⊗ b(η′3, η′21)⊗ η12,

b(η′3) −→ 1⊗ b(η′3, ξ′3)⊗ ξ3,
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b(ξ′3, ξ
′
2, ξ
′
1, η
′
1) −→ η3 ⊗ b(η′3, ξ′3, ξ′2, ξ′1, η′1)⊗ 1,

b(ξ′321, η
′
1) −→ 1⊗ b(ξ′3, ξ′21, η

′
1)⊗ 1,

b(ξ′321, η
′
1) −→ η3 ⊗ b(η′3, ξ′321, η

′
1)⊗ 1,

b(ξ′321, η
′
1) −→ 1⊗ b(ξ′32, ξ

′
1, η
′
1)⊗ 1,

b(i′2) −→ ξ2 ⊗ b(ξ′2)⊗ 1,

b(i′2) −→ ξ23 ⊗ b(ξ′32)⊗ 1,

b(i′2) −→ 1⊗ b(ξ′1)⊗ ξ1,

b(i′2) −→ ρ2 ⊗ b(ρ′2)⊗ 1,

b(ξ′3, ξ
′
21) −→ η3 ⊗ b(η′3, ξ′3, ξ′21)⊗ 1,

b(ξ′3, ξ
′
21) −→ 1⊗ b(ξ′3, ξ′21, η

′
1)⊗ η1,

b(ξ′3, ξ
′
21) −→ 1⊗ b(ξ′3, ξ′2, ξ′1)⊗ 1,

b(j′1) −→ 1⊗ b(η′21)⊗ η12,

b(j′1) −→ 1⊗ b(ξ′32)⊗ ξ23,

b(j′1) −→ η3 ⊗ b(η′3)⊗ 1,

b(j′1) −→ 1⊗ b(ξ′3)⊗ ξ3,

b(j′1) −→ 1⊗ b(ξ′321)⊗ ξ123,

b(j′1) −→ 1⊗ b(η′2)⊗ η2,

b(η′3, ξ
′
3, ξ
′
21) −→ 1⊗ b(η′3, ξ′3, ξ′21, η

′
1)⊗ η1,

b(η′3, ξ
′
3, ξ
′
21) −→ 1⊗ b(η′3, ξ′3, ξ′2, ξ′1)⊗ 1,

b(j′2) −→ 1⊗ b(ξ′2)⊗ ξ2,

b(j′2) −→ 1⊗ b(ξ′21)⊗ ξ12,

b(j′2) −→ ξ3 ⊗ b(ξ′3)⊗ 1,

b(j′2) −→ 1⊗ b(ρ′2)⊗ ρ2,

b(j′0) −→ 1⊗ b(ρ′0)⊗ ρ0,

b(j′0) −→ 1⊗ b(η′321)⊗ η123,

b(j′0) −→ 1⊗ b(η′3)⊗ η3,

b(j′0) −→ 1⊗ b(η′32)⊗ η23,

b(η′3, η
′
2) −→ 1⊗ b(η′3, η′2, η′1)⊗ η1,

b(ξ′3, ρ
′
2, ξ
′
1, η
′
1) −→ η3 ⊗ b(η′3, ξ′3, ρ′2, ξ′1, η′1)⊗ 1,

b(i′1) −→ ξ12 ⊗ b(ξ′21)⊗ 1,

b(i′1) −→ ξ1 ⊗ b(ξ′1)⊗ 1,

b(i′1) −→ 1⊗ b(η′1)⊗ η1,

b(i′1) −→ η23 ⊗ b(η′32)⊗ 1,

b(i′1) −→ ξ123 ⊗ b(ξ′321)⊗ 1,

b(i′1) −→ η2 ⊗ b(η′2)⊗ 1,
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b(ξ′21) −→ 1⊗ b(ξ′21, η
′
1)⊗ η1,

b(ξ′21) −→ ξ3 ⊗ b(ξ′3, ξ′21)⊗ 1,

b(ξ′21) −→ 1⊗ b(ξ′2, ξ′1)⊗ 1,

b(ρ′2, ξ
′
1) −→ 1⊗ b(ρ′2, ξ′1, η′1)⊗ η1,

b(ρ′2, ξ
′
1) −→ ξ3 ⊗ b(ξ′3, ρ′2, ξ′1)⊗ 1,

b(i′0) −→ ρ0 ⊗ b(ρ′0)⊗ 1,

b(i′0) −→ η12 ⊗ b(η′21)⊗ 1,

b(i′0) −→ η123 ⊗ b(η′321)⊗ 1,

b(i′0) −→ η1 ⊗ b(η′1)⊗ 1,

b(ξ′1) −→ ξ23 ⊗ b(ξ′32, ξ
′
1)⊗ 1,

b(ξ′1) −→ ρ2 ⊗ b(ρ′2, ξ′1)⊗ 1,

b(ξ′1) −→ ξ2 ⊗ b(ξ′2, ξ′1)⊗ 1,

b(ξ′1) −→ 1⊗ b(ξ′1, η′1)⊗ η1,

b(η′1) −→ ξ12 ⊗ b(ξ′21, η
′
1)⊗ 1,

b(η′1) −→ ξ123 ⊗ b(ξ′321, η
′
1)⊗ 1,

b(η′1) −→ η23 ⊗ b(η′32, η
′
1)⊗ 1,

b(η′1) −→ η2 ⊗ b(η′2, η′1)⊗ 1,

b(η′1) −→ ξ1 ⊗ b(ξ′1, η′1)⊗ 1,

b(ξ′3) −→ 1⊗ b(ξ′3, ξ′2)⊗ ξ2,

b(ξ′3) −→ 1⊗ b(ξ′3, ξ′21)⊗ ξ12,

b(ξ′3) −→ 1⊗ b(ξ′3, ρ′2)⊗ ρ2,

b(ξ′3) −→ η3 ⊗ b(η′3, ξ′3)⊗ 1,

b(η′3, ξ
′
321) −→ 1⊗ b(η′3, ξ′3, ξ′21)⊗ 1,

b(η′3, ξ
′
321) −→ 1⊗ b(η′3, ξ′32, ξ

′
1)⊗ 1,

b(η′3, ξ
′
321) −→ 1⊗ b(η′3, ξ′321, η

′
1)⊗ η1,

b(ξ′3, ξ
′
21, η

′
1) −→ 1⊗ b(ξ′3, ξ′2, ξ′1, η′1)⊗ 1,

b(ξ′3, ξ
′
21, η

′
1) −→ η3 ⊗ b(η′3, ξ′3, ξ′21, η

′
1)⊗ 1,

b(η′32) −→ 1⊗ b(η′3, η′2)⊗ 1,

b(η′32) −→ 1⊗ b(η′32, η
′
1)⊗ η1,

b(ρ′2) −→ 1⊗ b(ρ′2, ξ′1)⊗ ξ1,

b(ρ′2) −→ ξ3 ⊗ b(ξ′3, ρ′2)⊗ 1,

b(η′3, η
′
21) −→ 1⊗ b(η′3, η′2, η′1)⊗ 1,

b(η′3, ξ
′
3, ρ
′
2) −→ 1⊗ b(η′3, ξ′3, ρ′2, ξ′1)⊗ ξ1,

b(ξ′321) −→ 1⊗ b(ξ′32, ξ
′
1)⊗ 1,

b(ξ′321) −→ 1⊗ b(ξ′321, η
′
1)⊗ η1,
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b(ξ′321) −→ 1⊗ b(ξ′3, ξ′21)⊗ 1,

b(ξ′321) −→ η3 ⊗ b(η′3, ξ′321)⊗ 1,

b(ξ′2, ξ
′
1) −→ 1⊗ b(ξ′2, ξ′1, η′1)⊗ η1,

b(ξ′2, ξ
′
1) −→ ξ3 ⊗ b(ξ′3, ξ′2, ξ′1)⊗ 1,

b(ξ′3, ρ
′
2, ξ
′
1) −→ η3 ⊗ b(η′3, ξ′3, ρ′2, ξ′1)⊗ 1,

b(ξ′3, ρ
′
2, ξ
′
1) −→ 1⊗ b(ξ′3, ρ′2, ξ′1, η′1)⊗ η1,

b(η′3, ξ
′
3, ξ
′
21, η

′
1) −→ 1⊗ b(η′3, ξ′3, ξ′2, ξ′1, η′1)⊗ 1,

b(η′32, η
′
1) −→ 1⊗ b(η′3, η′2, η′1)⊗ 1,

b(ξ′3, ρ
′
2) −→ η3 ⊗ b(η′3, ξ′3, ρ′2)⊗ 1,

b(ξ′3, ρ
′
2) −→ 1⊗ b(ξ′3, ρ′2, ξ′1)⊗ ξ1,

b(η′3, ξ
′
32, ξ

′
1) −→ 1⊗ b(η′3, ξ′32, ξ

′
1, η
′
1)⊗ η1,

b(η′3, ξ
′
32, ξ

′
1) −→ 1⊗ b(η′3, ξ′3, ξ′2, ξ′1)⊗ 1,

b(η′2) −→ η3 ⊗ b(η′3, η′2)⊗ 1,

b(η′2) −→ 1⊗ b(η′2, η′1)⊗ η1,

b(η′3, ξ
′
3, ξ
′
2, ξ
′
1) −→ 1⊗ b(η′3, ξ′3, ξ′2, ξ′1, η′1)⊗ η1,

b(η′2, η
′
1) −→ η3 ⊗ b(η′3, η′2, η′1)⊗ 1,

b(η′3, ξ
′
321, η

′
1) −→ 1⊗ b(η′3, ξ′32, ξ

′
1, η
′
1)⊗ 1,

b(η′3, ξ
′
321, η

′
1) −→ 1⊗ b(η′3, ξ′3, ξ′21, η

′
1)⊗ 1,

b(η′3, ξ
′
3) −→ 1⊗ b(η′3, ξ′3, ξ′2)⊗ ξ2,

b(η′3, ξ
′
3) −→ 1⊗ b(η′3, ξ′3, ξ′21)⊗ ξ12,

b(η′3, ξ
′
3) −→ 1⊗ b(η′3, ξ′3, ρ′2)⊗ ρ2,

b(ξ′32, ξ
′
1, η
′
1) −→ η3 ⊗ b(η′3, ξ′32, ξ

′
1, η
′
1)⊗ 1,

b(ξ′32, ξ
′
1, η
′
1) −→ 1⊗ b(ξ′3, ξ′2, ξ′1, η′1)⊗ 1,

b(ξ′1, η
′
1) −→ ξ2 ⊗ b(ξ′2, ξ′1, η′1)⊗ 1,

b(ξ′1, η
′
1) −→ ρ2 ⊗ b(ρ′2, ξ′1, η′1)⊗ 1,

b(ξ′1, η
′
1) −→ ξ23 ⊗ b(ξ′32, ξ

′
1, η
′
1)⊗ 1,

b(ξ′3, ξ
′
2, ξ
′
1) −→ 1⊗ b(ξ′3, ξ′2, ξ′1, η′1)⊗ η1,

b(ξ′3, ξ
′
2, ξ
′
1) −→ η3 ⊗ b(η′3, ξ′3, ξ′2, ξ′1)⊗ 1.
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[38] P. Ozsváth and Z. Szabó, Bordered knot algebras with matchings,
preprint (2017), arXiv:1707.00597.
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