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A note on logarithmic growth of solutions

of p-adic differential equations

without solvability

Shun Ohkubo

For a p-adic differential equation solvable in an open disc (in a p-
adic sense), around 1970, Dwork proves that the solutions satisfy a
certain growth condition on the boundary. Dwork also conjectures
that a similar phenomenon should be observed without assuming
the solvability. In this paper, we verify Dwork’s conjecture in the
rank two case, which is the first non-trivial result on the conjecture.
The proof is an application of Kedlaya’s decomposition theorem of
p-adic differential equations defined over annulus.

1. Introduction

Cauchy’s theorem on ordinary linear differential equations over C asserts
that a differential equation

dmf

dzm
+ am−1(z)

dm−1f

dzm−1
+ · · ·+ a0(z)f = 0

where ai(z) ∈ C[[z]] converging on the open unit disc D has a full set of solu-
tions on D ([Ked10, Theorem 7.2.1]). In the p-adic setting, a näıve analogue
of Cauchy’s theorem fails due to the absence of “p-adic” analytic continua-
tion. Even the exponential series exp (t) converges only on |t| < p−1/(p−1).

After his proof of the rationality part of Weil conjecture using p-adic
differential equations, Dwork starts systematic studies of p-adic differential
equations in the 1960s. Thanks to efforts of Dwork and his successors, we can
measure the obstruction that local solutions f of p-adic differential equations
extend to global solutions firstly by the radius of convergence of f , secondly
by growth of f on the boundary of its convergence disc.

This paper mainly concerns the latter invariant, so called logarithmic
growth (log-growth for short) of solutions of p-adic differential equations.
More concretely, we prove the first non-trivial instance of the following con-
jecture of Dwork.
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1528 Shun Ohkubo

Let us fix notation. Let (K, | · |) be a complete discrete valuation field
of mixed characteristic (0, p). Let K{t} be the ring of power series over
K converging on the p-adic open unit disc |t| < 1. Let K[[t]]0 be the ring
consisting of f ∈ K{t} which is bounded on |t| < 1. Let R denote either
K[[t]]0 or K{t}. Then R is endowed with the derivation d = d/dt. A differen-
tial module over R is a finite free R-module M endowed with a differential
operator D relative to d, that is, an additive map D : M →M satisfying
D(r ·m) = dr ·m+ r ·D(m) for all r ∈ R,m ∈M . We put M∇=0 = kerD.

A power series
∑

i∈N ait
i with ai ∈ K has order of log-growth at most

δ ∈ R≥0 if supi∈N {|ai|/(i+ 1)δ} <∞. We denote by K[[t]]δ the set of power
series over K having order of log-growth at most δ. For δ < 0, we set K[[t]]δ =
K[[t]]0 for simplicity. Recall that K[[t]]δ is a K[[t]]0-submodule of K{t}, and
is stable under d ([CT09, Proposition 1.2 (1), (3), (4)]). For a differential
module M over K[[t]]0, we regard M ⊗K[[t]]0 K{t} as a differential module
over K{t} by extending D by the formula D(m⊗ f) = D(m)⊗ f +m⊗ df
for m ∈M,f ∈ K{t}. Then M ⊗K[[t]]0 K[[t]]δ is stable under D. We denote
by (M ⊗K[[t]]0 K[[t]]δ)

∇=0 the kernel of D restricted to M ⊗K[[t]]0 K[[t]]δ.
We would like to generalize the following fundamental theorem on this

topic:

Theorem 1.1 ([Dwo73, Theorem 1]). Let M be a differential module
over K[[t]]0 of rank m. Assume that

m = dimK(M ⊗K[[t]]0 K{t})
∇=0.

Then,

(M ⊗K[[t]]0 K[[t]]m−1)∇=0 = (M ⊗K[[t]]0 K{t})
∇=0.

The assumption of the theorem, which can be regarded as a solvability
condition, is satisfied, for example, whenM admits a Frobenius structure, or,
M comes from geometry via Gauss-Manin connection. See [CT09], [CT11],
and [Ohk17] in recent developments in the setup assuming Frobenius struc-
tures.

When the solvability fails, Dwork proposes

Conjecture 1.2 ([Dwo73, Conjecture 1]). Let M be a differential mod-
ule over K[[t]]0. Let

m′ = dimK(M ⊗K[[t]]0 K{t})
∇=0.
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A note on logarithmic growth of solutions 1529

Then,

(M ⊗K[[t]]0 K[[t]]m′−1)∇=0 = (M ⊗K[[t]]0 K{t})
∇=0.

The case where m′ is equal to the rank of M is nothing but Theorem 1.1.
In the case m′ = 0, we have nothing to prove. In particular, the conjecture
is trivial modulo Theorem 1.1 in the rank one case. Besides these cases, as
long as the author knows, no general result on the conjecture is known. Our
main result verifies the conjecture in the first non-trivial case:

Main Theorem. Conjecture 1.2 is true if rank M = 2.

The main ingredient of the proof is Kedlaya’s decomposition theorem of
p-adic differential equations by the intrinsic generic subsidiary radii which
is a refinement of the generic radius of convergence (Theorem 3.5). Precisely
speaking, the strong decomposition over E extends to an annulus K〈α/t, t]]0,
which reduces Main Theorem to studying some rank one objects (Corol-
lary 4.3). In the higher rank case, our strategy does not seem to work since
we do not know whether an analogue of Theorem 1.1 over K〈α/t, t]]0 holds.

In Appendix 1, we give an alternative proof of Theorem 3.5. In Ap-
pendix 2, we give an explicit example of a differential module over K[[t]]0
of rank two, and explain Main Theorem and Theorem 3.5 by using this
example.

Notation

In this paper, we adopt the notation in [Ked10]. Let p be a prime number,
K a complete non-archimedean valuation field of mixed characteristic (0, p).
Denote by OK the integer ring of K. Let | · | : K → R≥0 be the multiplicative
norm on K normalized by |p| = p−1. We define the valuation v on K by
v(·) = − log | · |. Put ω = p−1/(p−1) = |p1/(p−1)| < 1.

Let (G, | · |) be a normed abelian group, and T : G→ G be an endomor-
phism of G. We define the operator norm and spectral norm of T by

|T |op,G = sup
g∈G,g 6=0

{|T (g)|/|g|},

|T |sp,G = lim
s→∞

|T s|1/sop,G.
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2. Local decomposition by subsidiary radii

We recall the decomposition of differential modules over complete non-
archimedean valuation field proved by Kedlaya, based on works of Christol-
Dwork and Robba.

Definition 2.1 ([Ked10, Defintions 9.4.1, 9.4.3]). Let ρ ∈ (0,∞). The
ρ-Gauss norm | · |ρ on K(t) is the unique multiplicative norm satisfying
|
∑
ait

i|ρ = sup |ai|ρi for ai ∈ K. Let Fρ be the completion of K(t) under
| · |ρ.

We also denote by | · |1 the multiplicative norm on OK [[t]] defined by
|
∑
ait

i|1 = sup |ai| for ai ∈ OK . We define E as the completion of the frac-
tion field of OK [[t]] under | · |1.

Both Fρ and E are equipped with the derivation d = d/dt.

Assumption 2.2 ([KX10, Definition 1.4.1]). Let (K, | · |) be a complete
non-archimedean valuation field (may not be discretely valued) of mixed
characteristic (0, p). We assume that (K, ∂) is a differential field of rational
type, i.e.,

∂ : K → K
is a derivation and there exists u ∈ K such that

(a) we have ∂(u) = 1 and |∂|op,K = |u|−1,

(b) we have |∂|sp,K ≤ ω|∂|op,K.

Example 2.3. In this paper, we consider only the cases where

(K, ∂) = (Fρ, d), (E , d).

Both satisfy the assumptions (a) and (b) with u = t ([Ked10, Defnition 9.4.1]).

Definition 2.4 ([KX10, Definitions 1.2.2, 1.2.6, 1.2.8]). A differential
module over K is a finite dimensional K-vector space V equipped with an
action of ∂. Define the intrinsic generic radius of convergence of V as

IR(V ) = |∂|sp,K/|∂|sp,V ∈ (0, 1]

for any fixed K-compatible norm | · | on V . The intrinsic generic radius of
convergence does not depend on the choice of the norm. Let V1, . . . , Vm be
the Jordan-Hölder constituents of V in the category of differential mod-
ules over K. We define the intrinsic generic subsidiary radii of convergence
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A note on logarithmic growth of solutions 1531

IR(V ) as the multiset consisting of IR(Vi) with multiplicity dimK Vi for
i = 1, . . . ,m. Let IR(V ; 1) ≤ · · · ≤ IR(V ; dimK V ) denotes the elements in
IR(V ) in increasing order.

Any differential module isomorphic to a direct sum of copies of (K, d) is
said to be trivial.

We say that V has pure radii if IR(V ) consists of dimK V copies of
IR(V ).

Example 2.5. (i) ([Ked10, Example 9.5.2]) Let K be as in Example 2.3.
For a fixed λ ∈ K, let V = Ke be the rank one differential module over
K defined by ∂(e) = λt−1e. Then, IR(V ) = 1 if and only if λ ∈ Zp.

(ii) We consider the differential modules V = Ee over E defined by ∂(e) =
−te. We will prove IR(V ) = ω. Since |∂|sp,E = ω ([Ked10, Definition
9.4.1]), it suffices to prove |∂|sp,V = 1. For i, j ∈ N, by induction on
i, we have ∂i(tje) = ((−1)iti+j + εij(t))e for some polynomial εij(t) ∈
Z + Zt+ · · ·+ Zti+j−1. Therefore, |∂|op,V ≤ 1 hence |∂|sp,V ≤ 1. Since
|∂i(e)| = |(−t)i + εi0(t)|1|e| = |e|, we also have |∂i|op,V ≥ 1 hence
|∂|sp,V ≥ 1, which implies the assertion.

Lemma 2.6 ([KX10, Lemma 1.2.9]). For an exact sequence of non-zero
differential modules over K

0→ V ′ → V → V ′′ → 0,

we have

IR(V ) = IR(V ′) ∪ IR(V ′′).

Theorem 2.7 ([KX10, Theorem 1.4.21]). Let V be a differential module
over K. Then, there exists a decomposition of differential modules over K

V =
⊕
r∈(0,1]

Vr,

where Vr has pure radii r.

3. Global decomposition by subsidiary radii

We recall one of “globalizations” of Theorem 2.7.
In the rest of this section, assume that K is discretely valued.
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Definition 3.1 ([Ked10, §§ 8.1, 15.1]). We have the ring of (bounded)
analytic functions on the open unit disc 0 ≤ |t| < 1

K[[t]]0 =

{∑
i∈N

ait
i ∈ K[[t]]; ai ∈ K, sup

i∈N
|ai| <∞

}
= OK [[t]]⊗OK

K,

K{t} =

{∑
i∈N

ait
i ∈ K[[t]]; ai ∈ K, lim

i→∞
|ai|ηi = 0 (η ∈ (0, 1))

}
.

We endow K[[t]]0 (resp. K{t}) with (natural extensions of) Gauss norms
| · |α for α ∈ [0, 1] (resp. α ∈ [0, 1)).

We have the ring of (bounded) analytic functions on the annulus α ≤
|t| < 1 for α ∈ (0, 1)

K〈α/t, t]]0 =

{∑
i∈Z

ait
i; ai ∈ K, lim

i→−∞
|ai|αi = 0, sup

i∈Z
|ai| <∞

}
,

K〈α/t, t} =

{∑
i∈Z

ait
i; ai ∈ K, lim

i→±∞
|ai|ηi = 0 (η ∈ [α, 1))

}
.

We endow K〈α/t, t]]0 (resp. K〈α/t, t}) with Gauss norms | · |ρ for ρ ∈ [α, 1]
(resp. ρ ∈ [α, 1)).

We define the (bounded) Robba ring by

E† =
⋃

α∈(0,1)

K〈α/t, t]]0, R =
⋃

α∈(0,1)

K〈α/t, t}.

Each of these rings is equipped with the derivation d = d/dt.
For simplicity, we define K〈0/t, t]]0 and K〈0/t, t} as K[[t]]0 and K{t}

respectively. We also define [0,− log 0] and (0,− log 0] as [0,∞) and (0,∞)
respectively.

We explain relations between these rings and those defined in § 2. For ρ ∈
[α, 1), the ring K[t][t−1] is dense in K〈α/t, t]]0 with respect to the topology
defined by | · |ρ, hence, Fρ is regarded as the completion of the fraction field
of K〈α/t, t]]0 with respect to | · |ρ. By a similar reason, for ρ ∈ [α, 1), Fρ is
regarded as the completion of the fraction field of K〈α/t, t} with respect to
| · |ρ. Furthermore, the ring K[[t]]0[t−1] is dense in K〈α/t, t]]0 with respect to
the topology defined by | · |1, hence, E is regarded as the completion of the
fraction field of K〈α/t, t]]0 with respect to | · |1.
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Definition 3.2. Let δ ∈ [0,∞). A power series f ∈ K{t} has order of log-
growth at most δ if

|f |ρ = O((− log (1/ρ))δ) as ρ ↑ 1.

We denote by K[[t]]δ the set consisting of f ∈ K{t} having order of log-
growth at most δ. Note that K[[t]]δ is an increasing sequence of K[[t]]0-
modules and, for a power series f =

∑
i∈N ait

i with ai ∈ K, f ∈ K[[t]]δ if
and only if supi∈N{|ai|/(i+ 1)δ} <∞ ([Chr83, Proposition 2.3.3]).

Definition 3.3 ([KX10, Notation 2.2.4, Remark 2.2.8]). Let α ∈
[0, 1). A differential module M over K〈α/t, t]]0 is a finite free K〈α/t, t]]0-
module equipped with an action of d.

Let m be the rank of M . For r ∈ (0,− logα] and i ∈ {1, . . . ,m}, define

fi(M, r) = − log IR(M ⊗K〈α/t,t]]0 Fe−r ; i) + r.

We also define

fi(M, 0) = − log IR(M ⊗K〈α/t,t]]0 E ; i).

We recall only a few properties of the fi’s, which will be used in this
paper.

Theorem 3.4 ([Ked10, Remarks 11.3.4, 11.6.5]). Let α ∈ [0, 1) and M
a differential module over K〈α/t, t]]0 of rank m. For i = 1, . . . ,m, the func-
tion fi(M, r) on [0,− logα] is continuous and piecewise affine with finitely
many different slopes.

Theorem 3.5 ([KX10, Theorem 2.3.9, Remark 2.3.11], cf. [Ked10,
Theorem 12.5.2, Remark 12.5.3]). Let α ∈ [0, 1) and M a differential
module over K〈α/t, t]]0 of rank m. Suppose that for some i ∈ {1, . . . ,m−
1}, we have fi(M, 0) > fi+1(M, 0). Then, M ⊗K〈α/t,t]]0 K〈α′/t, t]]0 for some
α′ ∈ [α, 1) admits a direct sum decomposition separating the first i intrinsic
generic subsidiary radii of M ⊗K〈α/t,t]]0 Fρ for ρ ∈ [α′, 1) and M ⊗K〈α/t,t]]0 E.

4. Proof of Main Theorem

In this section, we still assume that K is discretely valued.
We first prepare some lemmata.
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Lemma 4.1 (cf. [Chr83, Proposition 5.2.5]). Let α ∈ [0, 1) and M a
differential module over K〈α/t, t]]0 of rank m. If IR(M ⊗K〈α/t,t]]0 E ;m) < 1,
then

(M ⊗K〈α/t,t]]0 R)∇=0 = 0.

Proof. We abbreviate ⊗K〈α/t,t]]0 as ⊗. Suppose the contrary, i.e., (M ⊗
R)∇=0 6= 0. We choose η ∈ [α, 1) such that (M ⊗K〈η/t, t})∇=0 6= 0. Since,
for ρ ∈ [η, 1), we have

(M ⊗K〈η/t, t})∇=0 ⊂ (M ⊗ Fρ)∇=0,

M ⊗ Fρ has a non-zero trivial subobject. In particular, IR(M ⊗ Fρ;m) = 1
for ρ ∈ [η, 1) by Lemma 2.6. By the continuity of fm (Theorem 3.4), we have

IR(M ⊗ E ;m) = exp (−fm(M, 0)) = lim
r↓0

exp (−fm(M, r))

= lim
r↓0

IR(M ⊗ Fe−r ;m)e−r = 1,

which is a contradiction. �

Lemma 4.2. Let α ∈ [0, 1) and f ∈ K〈α/t, t} with f 6= 0. Then, the fol-
lowing are equivalent.

(i) f ∈ K〈α/t, t]]0.

(ii) f has a finite number of zeroes on α ≤ |t| < 1, i.e.,

#{t ∈ Kalg;α ≤ |t| < 1, f(t) = 0} <∞,

where Kalg is an algebraic closure of K.

Proof. (i)⇒(ii) Since K is discretely valued, any element of K〈α/t, t]]0 is
written as the product of K〈α/t, t]]×0 and a polynomial over K. Since u ∈
K〈α/t, t]]×0 has no zeroes on α ≤ |t| < 1, we obtain the assertion.
(ii)⇒(i) Recall that Newton polygon of f =

∑
ait

i ∈ K〈α/t, t} with ai ∈ K
is the boundary of the lower convex hull of the set (−i, v(ai)) where i ∈ Z
such that ai 6= 0, retaining only those slopes within (0,− logα] ([Ked10,
Definition 8.2.2]). The condition (ii) implies the finiteness of the width of
Newton polygon of f . Hence, there exists i ∈ Z such that v(aj) ≥ v(ai) for
all j ≥ i, in particular, f ∈ K〈α/t, t]]0. �
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Corollary 4.3. Let α ∈ [0, 1) and M a differential module over K〈α/t, t]]0
of rank 1. Then,

(M ⊗K〈α/t,t]]0 E
†)∇=0 = (M ⊗K〈α/t,t]]0 R)∇=0.

Proof. Since we have

(M ⊗K〈α/t,t]]0 E
†)∇=0 ⊂ (M ⊗K〈α/t,t]]0 R)∇=0

and both K-vector spaces are at most one dimensional, we have only to
prove that if (M ⊗K〈α/t,t]]0 R)∇=0 6= 0, then (M ⊗K〈α/t,t]]0 E†)∇=0 6= 0. Let
e be a basis of M and g ∈ K〈α/t, t]]0 such that D(e) = ge. We may assume
that g 6= 0. By assumption, there exists a non-zero f ∈ R such that e⊗ f ∈
(M ⊗K〈α/t,t]]0 R)∇=0. We have only to prove that f ∈ E†. Let η ∈ [α, 1) such
that f ∈ K〈η/t, t}. Since g has a finite number of zeroes on η ≤ |t| < 1 by
Lemma 4.2, so does f by the relation

df/dt = −gf,

hence, f ∈ K〈η/t, t]]0 ⊂ E† by Lemma 4.2. �

Proof of Main Theorem. The case m′ = 0 is trivial and the case m′ = 2 is a
special case of Dwork’s theorem 1.1. Hence, we may assume that m′ = 1.
If IR(M ⊗K[[t]]0 E) = 1, then M ⊗K[[t]]0 K{t} is trivial by Dwork’s trans-
fer theorem ([Ked10, Theorem 9.6.1]), which contradicts to m = 1. Hence,
IR(M ⊗K[[t]]0 E ; 1) < 1. Since

0 6= (M ⊗K[[t]]0 K{t})
∇=0 ⊂ (M ⊗K[[t]]0 R)∇=0,

IR(M ⊗K[[t]]0 E ; 2) = 1 by Lemma 4.1. Thus,

f1(M, 0) > f2(M, 0).

By Theorem 3.5, for some α ∈ [0, 1), there exists a direct sum decomposition

M ⊗K[[t]]0 K〈α/t, t]]0 = M1 ⊕M2

separating the first intrinsic generic (subsidiary) radius of M ⊗K[[t]]0 Fρ for
ρ ∈ [α, 1) and M ⊗K[[t]]0 E . That is, we have{

f1(M1, r) = f1(M, r),

f1(M2, r) = f2(M, r)
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for r ∈ [0,− logα]. We fix such an α. Since

IR(M1 ⊗K[[t]]0 E ; 1) = exp (−f1(M1, 0)) = exp (−f1(M, 0))

= IR(M ⊗K[[t]]0 E ; 1) < 1,

we have (M1 ⊗K〈α/t,t]]0 R)∇=0 = 0 by Lemma 4.1. Hence, we have

(M ⊗K[[t]]0 R)∇=0 = (M1 ⊗K〈α/t,t]]0 R)∇=0 ⊕ (M2 ⊗K〈α/t,t]]0 R)∇=0

= (M2 ⊗K〈α/t,t]]0 R)∇=0 = (M2 ⊗K〈α/t,t]]0 E
†)∇=0,

where the last equality follows from Corollary 4.3. Therefore,

(M ⊗K[[t]]0 K{t})
∇=0 = (M ⊗K[[t]]0 K{t})

∇=0 ∩ (M ⊗K[[t]]0 R)∇=0

=
(

(M ⊗K[[t]]0 K{t})
∇=0 ∩ (M2 ⊗K〈α/t,t]]0 E

†)∇=0
)

⊂
(

(M ⊗K[[t]]0 K{t})
∇=0 ∩ (M ⊗K[[t]]0 E

†)∇=0
)

= (M ⊗K[[t]]0 (K{t} ∩ E†))∇=0

= (M ⊗K[[t]]0 K[[t]]0)∇=0 = M∇=0,

i.e., (M ⊗K[[t]]0 K{t})∇=0 ⊂M∇=0, and the converse inclusion is trivial. �

As a final remark, we note that we can easily deduce the following generic
analogue of Conjecture 1.2 from the generic version of Dwork’s theorem.

Let

τ : E → E [[X − t]]0; f 7→
∞∑
n=0

1

n!

dnf

dtn
(X − t)n

be a ring homomorphism ([CT09, Proposition 0.1]).

Proposition 4.4. Let V be a differential module over E. Let

m′ := dimE(τ
∗V ⊗E[[X−t]]0 E{X − t})

∇=0 ∈ {0, . . . ,dimK V }.

Then,

(τ∗V ⊗E[[X−t]]0 E [[X − t]]m′−1)∇=0 = (τ∗V ⊗E[[X−t]]0 E{X − t})
∇=0.
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Proof. We have only to prove that the RHS is contained in the LHS. By
Theorem 2.7, we may assume that V has pure radii r. Then,

m′ =

{
dimK V if r = 1,

0 if 0 < r < 1

by the geometric interpretation of the generic radius of convergence ([Ked10,
Proposition 9.7.5]; though the proposition treats only differential modules
over Fρ, the same proof works for differential modules over E .). Hence, we
may assume that r = 1. Then, the assertion is nothing but the generic version
of Dwork’s theorem, i.e., Theorem 1.1 for K = E , t = X − t, and M = τ∗V .

�

5. Appendix 1: Proof of theorem 3.5

Theorem 3.5 plays a crucial role in the proof of Main Theorem. However,
the proof of Theorem 3.5 in [KX10] is referred to [Ked10] where the proof is
left as an exercise (see Remark 12.5.3 loc. cit.). In this section, we will give
a proof of Theorem 3.5 for the reader in a self-contained manner admitting
some basic facts in [Ked10].

Throughout this section, we assume that K is discretely valued.

Key Lemma

We reduce Theorem 3.5 to the following lemma.

Lemma 5.1 (Key Lemma). Let M be a finite differential module over
K〈α/t, t]]0 of rank m. Assume that there exists i ∈ {0, . . . ,m− 1} such that

fi(M, 0) > fi+1(M, 0).

Then, there exist α′ ∈ [α, 1) and a differential submodule M ′′ of M ⊗K〈α/t,t]]0
K〈α′/t, t]]0 of rank m− i such that

fi+j(M, 0) = fj(M
′′, 0) for j = 1, . . . ,m− i.

Proof of Theorem 3.5 assuming Lemma 5.1. We may freely replace M by
M ⊗K〈α/t,t]]0 K〈α′/t, t]]0 for any α′ ∈ [α, 1). Hence, by Lemma 5.1, we may
assume that there exists a differential submodule M ′′ ⊂M of rank m− i
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such that

(a) fi+j(M, 0) = fj(M
′′, 0) for j = 1, . . . ,m− i.

Denote by M∨ the dual of M . Since fj(M, 0) = fj(M
∨, 0) for all j ([Ked10,

Lemma 6.2.8 (b)]), by Lemma 5.1 again, there exists a differential submodule
M⊂M∨ of rank m− i such that

fj(M, 0) = fi+j(M
∨, 0) = fi+j(M, 0) for j = 1, . . . ,m− i.

Let ( , ) : M ⊗K〈α/t,t]]0 M∨ → K〈α/t, t]]0 be the canonical perfect pairing
and

M ′ := {v ∈M ; (v, w) = 0 ∀w ∈M}.

Since M ′ ∼= (M∨/M)∨, M ′ is a differential submodule of M of rank i such
that

(b) fj(M
′, 0) = fj(M, 0) for j = 1, . . . , i.

Since

(c) fi(M
′, 0) = fi(M, 0) > fi+1(M, 0) = f1(M ′′, 0)

by (a) and (b), we have IR(M ′ ⊗K〈α/t,t]]0 E) ∩ IR(M ′′ ⊗K〈α/t,t]]0 E) = ∅,
which implies M ′ ∩M ′′ = {0}. By comparing ranks, M ′ ⊕M ′′ = M . By (c)
and the continuity of the fi’s (Theorem 3.4), we may assume that

fi(M
′, r) > f1(M ′′, r) for r ∈ [0,− logα]

by choosing α sufficiently close to 1 if necessary. By the definition of the
fi’s,

fj(M, r) = fj(M
′, r) for r ∈ [0,− logα] and j = 1, . . . , i

which implies the assertion. �

Notation on differential rings

A differential ring (R, dR) is a commutative ring R with a derivation dR :
R→ R. A homomorphism of differential rings f : (R, dR)→ (S, dS) is a ring
homomorphism f : R→ S such that dS ◦ f = f ◦ dR. When no confusion
arises, we write (R, d), (S, d) for (R, dR), (S, dS).
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A differential (R, dR)-module (M,D) is an R-module M (we do not as-
sume a freeness in the following) with an additive map D : M →M satisfy-
ing

D(r ·m) = dr ·m+ r ·D(m), r ∈ R,m ∈M.

We denote by Mod(R, dR) the category of differential (R, dR)-modules. A
differential (R, dR)-submodule (M0, D0) of (M,D) is an R-submodule M0 of
M stable under D with the differential operator D0 = D|M0

. For simplicity,
we write (M0, D) for (M0, D0). Note that a differential submodule of (M,D)
is nothing but a subobject of (M,D). In the following, we consider the
situation where R is endowed with multiple derivations (see Example 5.3),
hence, we basically do not omit derivations or differential operators.

We define the pull-back and push-out via a homomorphism of differential
rings f : (R, dR)→ (S, dS)

f∗ : Mod(R, dR)→ Mod(S, dS),

f∗ : Mod(S, dS)→ Mod(R, dR)

as follows. For (M,D) ∈ Mod(R, dR), let f∗(M,D) = (f∗M,f∗D) where
f∗M = M ⊗R S, f∗D(m⊗ s) = D(m)⊗ s+m⊗ ds for m ∈M , s ∈ S. For
(N,D) ∈ Mod(S, dS), let f∗(N,D) = (f∗N, f∗D) where f∗N = N whose R-
structure is defined via f , and f∗D(n) = D(n).

Let (R, dR), (S, dS), (T, dT ), (U, dU ) be differential rings. Assume that

(1) S
β // U

R
γ //

α

OO

T

δ

OO

is a cocartesian diagram of commutative rings such that α, β, γ, and δ
induce morphisms of differential rings. Then, we define the derivation dS⊗T
on S ⊗R T by

dS⊗T (s⊗ t) = dS(s)⊗ t+ s⊗ dT (t)

and assume that the isomorphism

β ⊗ γ : S ⊗R T → U

induces an isomorphism of differential rings (S ⊗R T, dS⊗T )→ (U, dU ). In
this case, we say that (1) is a cocartesian diagram of differential rings. Note
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that the functors

γ∗α∗, δ∗β
∗ : Mod(S, dS)→ Mod(T, dT )

are naturally isomorphic to each other. In the following, we identify γ∗α∗
as δ∗β

∗.

Frobenius

In this subsection, we assume the following.

Assumption 5.2. Let ϕ : (R′, d′)→ (R, d′) be a homomorphism of differ-
ential rings. Assume that there exists t ∈ R× such that d′t/t ∈ ϕ(R′), and
{1, t, . . . , tp−1} is a basis of R as an R′-module, where R is regarded as an
R′-module via ϕ.

Note that ϕ is flat and we regard R′ as a subring of R. For an R-
module M , we define an R′-module homomorphism ψi : ϕ∗M → ϕ∗M for
i ∈ N as the map induced by the multiplication by ti via ϕ. Note that ψ0 =
idϕ∗M . Also note that if (M,D′) ∈ Mod(R, d′), then we have ϕ∗D

′ ◦ ψi =
(id′t/t)ψi + ψi ◦ ϕ∗D′ for i ≥ 1.

Example 5.3.

(i) (cf. [Ked10, Remark 10.3.5]) Let α ∈ (0, 1) and (K〈α/t, t]]0, d) as in
Definition 3.1. We apply the same construction as (K〈α/t, t]]0, d) re-
placing α, t by αp, tp to obtain (K〈αp/tp, tp]]0, d′). That is,

K〈αp/tp, tp]]0 :=

{∑
i∈Z

ai(t
p)i; ai ∈ K, lim

i→−∞
|ai|αpi = 0, sup

i∈Z
|ai| <∞

}

and d′ = d/d(tp). We endow K〈α/t, t]]0 with another derivation d′ =
(ptp−1)−1d.

Let

ϕ : K〈αp/tp, tp]]0 → K〈α/t, t]]0;
∑
i∈Z

ai(t
p)i 7→

∑
i∈Z

ait
pi

be the ring homomorphism, which induces a homomorphism of differ-
ential rings (K〈αp/tp, tp]]0, d′)→ (K〈α/t, t]]0, d′). Then, (ϕ, t) satisfies
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Assumption 5.2. Indeed, let
∑

i ait
i ∈ K〈α/t, t]]0 with ai ∈ K. Then,

we can write

∑
i∈Z

ait
i =

p−1∑
j=0

 ∑
i≥0

i≡j mod p

ai(t
p)(i−j)/p +

∑
i>0

i≡−j mod p

a−i(t
p)−(i+j)/p

 tj ,

where the coefficient of tj belongs to K〈αp/tp, tp]]0. We prove the lin-
ear independence of {1, . . . , tp−1} as follows. Assume that we have a
relation a(0)t0 + · · ·+ a(p−1)tp−1 = 0 with a(j) ∈ K〈αp/tp, tp]]0. Write
a(j) =

∑
n anp+j(t

p)n with anp+j ∈ K. Then,

0 =

p−1∑
j=0

a(j)tj =

p−1∑
j=0

∑
n∈Z

anp+jt
np+j ,

which implies anp+j = 0 for all n, j.

(ii) ([Ked10, Definition 10.3.1]) Let (E , d) be as in Definition 2.1. We apply
the same construction as (E , d) replacing t by the new variable tp to
obtain (E ′, d′). That is, E ′ is the fraction field of the p-adic completion
of OK [[tp]][(tp)−1] and d′ = d/d(tp). We endow E with another deriva-
tion d′ = (ptp−1)−1d. Let Φ : E ′ → E be the inclusion, which induces a
homomorphism of differential rings (E ′, d′)→ (E , d′) Then, (Φ, t) sat-
isfies Assumption 5.2. Note that there exists a cocartesian diagram of
differential rings

(K〈α/t, t]]0, d′) H // (E , d′)

(K〈αp/tp, tp]]0, d′) h //

ϕ

OO

(E ′, d′).

Φ

OO

Lemma 5.4. Let (M,D′) ∈ Mod(R, d′) and (N ′, ϕ∗D
′) ⊂ (ϕ∗M,ϕ∗D

′) ∈
Mod(R′, d′) a subobject. Then, the following are equivalent.

(i) There exists a unique subobject (N,D′) ⊂ (M,D′) such that

(N ′, ϕ∗D
′) = (ϕ∗N,ϕ∗D

′).

(ii) For i = 0, . . . , p− 1, ψi(N
′) ⊂ N ′.
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Proof. (i)⇒(ii)

ψi(N
′) = ψi(ϕ∗N) = ϕ∗(t

iN) ⊂ ϕ∗N = N ′.

(ii)⇒(i) The uniqueness is obvious. We prove the existence. The R′-module
structure on ϕ∗M extends to an R-module structure by assumption. Indeed,
the multiplication by ti is defined by ψi. Let N be the R-module defined in
this way. Then, N is an R-submodule of M and D′(N) ⊂ N . It is obvious
(N,D′) satisfies the condition. �

Definition 5.5. Let (M,D′) ∈ Mod(R, d′) and (N ′, ϕ∗D
′) ⊂ (ϕ∗M,ϕ∗D

′)
∈ Mod(R′, d′) a subobject. We define the subobject Gϕ(N ′, ϕ∗D

′) of
(ϕ∗M,ϕ∗D

′) by

Gϕ(N ′, ϕ∗D
′) :=

(
p−1∑
i=0

ψi(N
′), ϕ∗D

′

)
.

Note that since ψi(
∑p−1

i′=0 ψi′(N
′)) ⊂

∑p−1
i′=0 ψi′(N

′), there exists, by
Lemma 5.4, a unique subobject (N,D′) of (M,D′) such that (ϕ∗N,ϕ∗D

′) =
Gϕ(N ′, ϕ∗D

′).

Let

(R, d′)
H // (R, d′)

(R′, d′)
h //

ϕ

OO

(R′, d′)

Φ

OO

be a cocartesian diagram of differential rings. Assume that there exists t ∈ R
such that (ϕ, t) and (Φ, H(t)) satisfy Assumption 5.2.

Lemma 5.6. Let notation be as above. Let (M,D′) ∈ Mod(R, d′) and
(N ′, ϕ∗D

′) ⊂ (ϕ∗M,ϕ∗D
′) a subobject. Then, (h∗N ′, h∗ϕ

∗D′) ⊂ (h∗ϕ∗M,
h∗ϕ∗D

′) is a subobject, and as subobjects of (h∗ϕ∗M,h∗ϕ∗D
′),

h∗Gϕ(N ′, ϕ∗D
′) = GΦ(h∗N ′, h∗ϕ∗D

′).

Proof. Since ψi and h∗ commute, we obtain the equality as R′-modules,
which implies the assertion. �
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Local computation

In this subsection, we use the notation in Example 5.3 (ii). We also use the
following notation.

For a non-negative real number s, let φ(s) := inf {sp, s/p}. Note that
φ(s) = s/p if s ≤ ω and φ(s) = sp if s ≥ ω, and φ is strictly increasing on
(0,∞). For S = {s1, . . . , sm} a multiset of non-negative real numbers, let

φ(S) :=

m⋃
i=1

{
{spi , ωp (p− 1 times)} if si > ω,

{si/p (p times)} if si ≤ ω.

Then, for multisets S, S′, we have φ(S) = φ(S′) if and only if S = S′. This
follows from the fact that the elements of φ(S) strictly greater than ωp

coincides with the p-th power of the elements of S strictly greater than ω.

Lemma 5.7. For (M,D) ∈ Mod(E , d), we define D′ := (ptp−1)−1D so that
(M,D′) ∈ Mod(E , d′).

(i) ([Ked10, Theorem 10.5.1]) Let (M,D) ∈ Mod(E , d). Then,

IR(Φ∗(M,D′)) = φ(IR(M,D)).

(ii) Let (M,D1), (N,D2) ∈ Mod(E , d). If there exists an isomorphism

(2) Φ∗(M,D′1) ∼= Φ∗(N,D
′
2)

in Mod(E ′, d′), then

IR(M,D1) = IR(N,D2).

Proof. (ii) The isomorphism (2) implies that φ(IR(M,D1)) = φ(IR(N,D2))
by (i), hence, IR(M,D1) = IR(N,D2). �

Let (M,D) ∈ Mod(E , d). By Theorem 2.7, there exists a unique decom-
position

(M,D) = (M≤s, D)⊕ (M>s, D)

such that any element of IR(M≤s) (resp. IR(M>s)) is less than or equal to s
(resp. strictly greater than s). Indeed, M≤s (resp. M>s) is given by the direct
sum of the Mr’s with r ≤ s (resp. r > s). For (Φ∗M,Φ∗D

′) ∈ Mod(E ′, d′),
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we have a similar decomposition

(Φ∗M,Φ∗D
′) = ((Φ∗M)≤φ(s),Φ∗D

′)⊕ ((Φ∗M)>φ(s),Φ∗D
′).

The first decomposition may be defined by the latter one by the following
lemma.

Lemma 5.8 (cf. [Ked10, Proof of Theorem 12.2.2]). Let notation be
as above. As subobjects of (Φ∗M,Φ∗D

′), we have

Φ∗(M>s, D
′) = GΦ((Φ∗M)>φ(s),Φ∗D

′).

Proof. We have only to prove the equality as sets. By Theorem 2.7, we may
assume that M has pure radii t ∈ (0,∞). We separate the cases as follows.

a-1. t ≤ s ≤ ω, a-2. s = ω < t, a-3. s < ω ≤ t, a-4. s < t ≤ ω.
b-1. t ≤ ω < s, b-2. ω < t ≤ s, b-3. ω < s < t.
When s < ω, either a-1, a-3, or a-4 occurs. When s = ω, either a-1 or

a-2 occurs. When s > ω, either b-1, b-2, or b-3 occurs.
In the cases a-1,a-3,a-4, or b-1, the assertion is obvious since

(M>s, (Φ∗M)>φ(s)) =

{
(0, 0) the cases a-1 or b-1,

(M,Φ∗M) the cases a-3 or a-4

by Lemma 5.7 (i). In these cases, the assertion is obvious. In the rest of
the cases, i.e., a-2, b-2, or b-3, we have ω < t, hence, there exists a Frobe-
nius antecedent M ′ of M , that is, (M,D′) ∼= (Φ∗M ′,Φ∗D′) ([Ked10, Theo-
rem 10.4.2]). We may identify (Φ∗M,Φ∗D

′) with (⊕p−1
i=0ψi(M

′),Φ∗D
′). By

the proof of [Ked10, Theorem 10.5.1], (ψ0(M ′),Φ∗D
′) has pure radii tp and

(ψi(M
′),Φ∗D

′) for 1 ≤ i ≤ p− 1 has pure radii ωp. Hence, we have

(M>s, (Φ∗M)>φ(s)) =

{
(M,ψ0(M ′)) the cases a-2 or b-3,

(0, 0) the case b-2.

In these cases, we obtain the assertion by

p−1∑
i=0

ψi ◦ ψ0(M ′) =

p−1∑
i=0

ψi(M
′) = M.

�
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Hensel’s lemma for twisted polynomials

In this subsection, let notation be as follows. Let F be a commutative ring
with multiplicative norms {| · |α}α∈I . We set vα(·) = − log | · |α. A sequence
{an}n∈N of F is Cauchy if it is a Cauchy sequence with respect to | · |α
for all α ∈ I. A sequence {an}n∈N of F is converging (to a ∈ F ) if {an}n∈N
converges to a with respect to | · |α for all α ∈ I. We assume that F is Fréchet
complete, i.e., any Cauchy sequence of F is converging.

Let d : F → F be a continuous derivation, i.e., d is a derivation such that
for any Cauchy sequence {an}n∈N, {dan}n∈N is Cauchy. Let F{T} be the ring
of twisted polynomials over F ([Ked10, § 5.5]). For f = R0 +R1T + · · · ∈
F{T}, Ri ∈ F , we define Newton polygon of f with respect to vα as the
boundary of the lower convex hull of the points (−i, vα(Ri)), i ∈ N ([Ked10,
Definition 2.1.3]).

For r ∈ R, we define

vαr

(∑
k

akT
k

)
= inf

k
{vα(ak) + kr}.

Let rα0 = infx∈F,x6=0 {vα(d(x))− vα(x)}.

Example 5.9. Let notation be as in Example 5.3 (i). Then, the ring
K〈α/t, t]]0 is Fréchet complete for Gaussian norms {| · |ρ}ρ∈[α,1] ([Ked10,
Proposition 8.2.5]). Moreover, rρ0 = log ρ (Definition 9.4.1 loc. cit.).

The following is a slight generalization of Robba’s analogue for differen-
tial operators of Hensel’s lemma for a twisted polynomial over a complete
non-archimedean valuation field ([Rob80, Théorèm 2.4]). Fortunately, the
original proof works in our situation.

Proposition 5.10 (cf. [Ked09, Proposition 3.2.2], [Ked10, Theo-
rem 2.2.1]). Let r ∈ R such that r < rα0 for all α ∈ I. Let

R = R0 +R1T + · · ·+RiT
i + · · · ∈ F{T}

such that

Ri ∈ F×,
vαr (R−RiT i) > vαr (RiT

i) ∀α ∈ I.

Then, R can be factored uniquely as PQ (resp. Q′P ′) where P ∈ F{T} (resp.
P ′ ∈ F{T}) has degree deg (R)− i and has all slopes with respect to vα
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strictly less than r, Q ∈ F{T} (resp. Q′ ∈ F{T}) is degree i whose lead-
ing term is Ri and has all slopes with respect to vα strictly greater than
r, vαr (P − 1) > 0, and vαr (Q−RiT i) > vαr (RiT

i) (resp. vαr (P ′ − 1) > 0, and
vαr (Q′ −RiT i) > vαr (RiT

i)).

Proof. Since there exists a canonical isomorphism F ad{T} ∼= F{T}op, where
F ad is the ring F with the derivation −d, we have only to prove the existence
and uniqueness for the first decomposition R = PQ ([Ked09, Remark 3.1.3]).

We first check the existence. Define sequences {Pl}, {Ql} as follows.
Define P0 = 1 and Q0 = RiT

i. Given Pl and Ql, write

R− PlQl =
∑
k

akT
k, ak ∈ F,

then put

Xl =
∑
k≥i

akT
k−iR−1

i , Yl =
∑
k<i

akT
k

and set Pl+1 = Pl+Xl, Ql+1 = Ql+Yl. Put cαl = vαr (R−PlQl)−ri−vα(Ri),
so that cα0 > 0. Suppose that

vαr (Pl − 1) ≥ cα0 ,(3)

vαr (Ql −RiT i) ≥ cα0 + ri+ vα(Ri),(4)

cαl ≥ cα0 .(5)

The assumption r < rα0 implies that vαr (fg) = vαr (f) + vαr (g) for f , g ∈ F{T}
by [Ked09, Lemma 3.1.5]. Hence, we have

vαr (R− PlQl) = inf {vαr (XlRiT
i), vαr (Yl)}

= inf {vαr (Xl) + ri+ vα(Ri), v
α
r (Yl)},

in particular,

vαr (Xl) ≥ vαr (R− PlQl)− ri− vα(Ri) = cαl ,(6)

vαr (Yl) ≥ vαr (R− PlQl) = cαl + ri+ vα(Ri).(7)

We will check (3), (4), and (5) for l + 1.
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We have, by (3), (5), and (7),

vαr (Pl+1 − 1) ≥ inf {vαr (Pl − 1), vαr (Xl)} ≥ inf {cα0 , cαl } = cα0 ,

by (4), (5), and (7),

vαr (Ql+1 −RiT i) ≥ inf {vαr (Ql −RiT i), vαr (Yl)}
≥ inf {cα0 + ri+ vα(Ri), c

α
l + ri+ vα(Ri)}

= cα0 + ri+ vα(Ri).

Since

R− Pl+1Ql+1 = Xl(RiT
i −Ql) + (1− Pl)Yl −XlYl,

we have, by (3), (4), (6), and (7),

cαl+1 ≥ inf {cαl + cα0 + ri+ vα(Ri), c
α
0 + cαl + ri+ vα(Ri)} − ri− vα(Ri)

= cαl + cα0 .

By induction on l, we deduce that cαl ≥ (l + 1)cα0 . Moreover, each Pl has
degree at most deg (R)− i, and each Ql −RiT i has degree at most i− 1.
For each j ∈ {0, . . . ,deg (R)− i}, let Pl,j ∈ F denote the coefficient of T j in
Pl. Then, the sequence {Pl,j}l∈N is Cauchy, hence, converges to some element
Pj ∈ F . Thus, we obtain the twisted polynomial P =

∑
0≤j≤deg (R)−i PjT

j ∈
F{T}. Similarly, by starting with the sequence {Ql}, we obtain a twisted
polynomial Q ∈ F{T} of degree at most i. By construction, P and Q satisfy
the desired properties.

We next check the uniqueness. Let R = P̃ Q̃ be another factorization
satisfying the condition. Let X = R− PQ̃ and suppose that X 6= 0. Fix
some α ∈ I and write vr for vαr . For any f ∈ F{T}, the map s 7→ vs(f) is
piecewise affine with slopes non-negative integers. Hence, we may assume
that

vr′(Q−RiT i) > vr′(RiT
i), vr′(P̃ − 1) > 0

for r′ in some left neighborhood of r. Then, for any r′ ≤ r sufficiently close
to r, we have

(8) vr′(X) = vr′(Q̃−Q+ (P̃ − 1)(Q̃−Q)) = vr′(Q̃−Q)

and

vr′(X) = vr′((P − P̃ )RiT
i + (P − P̃ )(Q−RiT i))(9)

= vr′((P − P̃ )RiT
i) = vr′(P − P̃ ) + r′i+ v(Ri).
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The left derivative of the function r′ 7→ vr′(X) at r′ = r is less than or equal
to i− 1 by (8), and is greater than or equal to i by (9), which is a contra-
diction. �

Proof of Key Lemma

We first prove in the case fi(M, 0) > − logω. We may freely replace α by α′ ∈
[α, 1). Since E† = ∪α∈(0,1)K〈α/t, t]]0 is a field by [Ked10, Definition 15.1.2]

(recall that K is discretely valued), M ⊗K〈α/t,t]]0 E† admits a cyclic vector
([Ked10, Theorem 5.4.2]). Hence, we may assume that M admits a cyclic
vector, in particular, there exists an isomorphism

M ∼= K〈α/t, t]]0{T}/K〈α/t, t]]0{T}R

for some twisted polynomial R ∈ K〈α/t, t]]0{T} of degree m. We may also
assume that each non-zero coefficient of R is invertible in K〈α/t, t]]0. We
apply Proposition 5.10 to R with F = K〈α/t, t]]0, then we construct M ′′ by
using the resulting decomposition of R. Let IR(M, 0) = {s1 ≤ · · · ≤ sm}.
The assumptions fi(M, 0) > − logω and fi(M, 0) > fi+1(M, 0) imply that
si < ω and si < si+1 respectively. For a while, we regard R as a twisted
polynomial over E . Recall that Newton polygon of R in the sense of [Ked10,
Definition 6.4.3] is obtained from Newton polygon of R in the sense of this
paper by omitting all slopes greater than or equal to 0. Hence, by [Ked10,
Corollary 6.5.4], the multiset {log (sj/ω); sj < ω} coincides with the one
obtained from the slope multiset of Newton polygon of R by omitting all
elements greater than or equal to 0. Hence, Newton polygon of R has a ver-
tex whose x-coordinate is equal to −m+ i. In particular, we have Rm−i 6= 0,
hence, Rm−i ∈ (K〈α/t, t]]0)× by assumption. Moreover, if r is any real num-
ber satisfying − log (ω/si) < r < − log (ω/si+1), then v1

r (R−Rm−iTm−i) >
v1
r (Rm−iT

m−i), where vρ(·) = − log | · |ρ, with the notation as in the previous
subsection. We fix r satisfying

− log (ω/si) < r < inf {logα,− log (ω/si+1)}

by choosing α sufficiently close to 1 if necessary (note that − log (ω/si) < 0
by assumption). By the continuity of ρ 7→ vρ(·), we may assume that vρr (R−
Rm−iT

m−i) > vρr (Rm−iT
m−i) for ρ ∈ [α, 1]. By applying Proposition 5.10 to

R, we obtain a decomposition R = Q′P ′, where P ′ (resp. Q′) as a twisted
polynomial over E is of degree i (resp. m− i) with slopes strictly less than r
(resp. strictly greater than r). Let M ′′ = K〈α/t, t]]0{T}P ′/K〈α/t, t]]0{T}R
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be the differential submodule of M of rank m− i. Then,

M ′′ ∼= K〈α/t, t]]0{T}/K〈α/t, t]]0{T}Q′,
M/M ′′ ∼= K〈α/t, t]]0{T}/K〈α/t, t]]0{T}P ′.

By [Ked10, Theorem 6.5.3] again, the intrinsic generic subsidiary radii of
M ′′ ⊗K〈α/t,t]]0 E (resp. M/M ′′ ⊗K〈α/t,t]]0 E) are strictly less than ωer (resp.
strictly greater than ωer). Therefore, we have fi+j(M, 0) = fj(M

′′, 0) for
j = 1, . . . ,m− i.

We next prove in the case fi(M, 0) > −p−j logω for j ∈ N by induction
on j. The case j = 0 is already proved. We assume that the case j − 1 is done.
We use the notation in Example 5.3. Let D′ := (ptp−1)−1D so that (M,D′) ∈
Mod(K〈α/t, t]]0, d′). Since φ(IR(H∗M,H∗D)) = IR(Φ∗(H

∗M,H∗D′)) =
IR(h∗(ϕ∗M,ϕ∗D

′)) by Lemma 5.7 (i), there exists i′ ∈ N such that

fi′(ϕ∗M, 0) > fi′+1(ϕ∗M, 0),(10)

φ(exp (−fi(M, 0))) = exp (−fi′(ϕ∗M, 0)).(11)

Indeed, let IR(H∗M,H∗D) = {s1, . . . , sm}, IR(h∗ϕ∗M,h∗ϕ∗D
′) = {s′1, . . . ,

s′pm}. Then, i′ is determined by the conditions s′i < s′i+1 and φ(si) = s′i′ . Let
s := exp (−fi(M, 0)) and s′ := φ(s) = exp (−fi′(ϕ∗M, 0)). Then, (10) im-
plies that the number of elements of IR(h∗ϕ∗M,h∗ϕ∗D

′) strictly greater
than s′ is pm− i′, and (11) implies that

fi′(ϕ∗M, 0) ≥ pfi(M, 0) > −p−j+1 logω.

Applying the induction hypothesis to (ϕ∗M,ϕ∗D
′) ∈ Mod(K〈αp/tp, tp]]0, d′),

we obtain a subobject (M ′, ϕ∗D
′) ⊂ (ϕ∗M,ϕ∗D

′) such that

fi′+j(ϕ∗M, 0) = fj(M
′, 0) for j = 1, . . . , pm− i′.

This implies that

(h∗M ′, h∗ϕ∗D
′) = ((h∗ϕ∗M)>φ(s), h

∗ϕ∗D
′) = ((Φ∗H

∗M)>φ(s),Φ∗H
∗D′).

Let Gϕ(M ′, ϕ∗D
′) ⊂ (ϕ∗M,ϕ∗D

′) be the subobject defined in Definition 5.5
and (M ′′, D′) ⊂ (M,D′) the unique subobject such that (ϕ∗M

′′, ϕ∗D
′) =
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Gϕ(M ′, ϕ∗D
′). By pulling-back via h, we have

h∗(ϕ∗M
′′, ϕ∗D

′) ∼= Φ∗(H
∗M ′′, H∗D′),

h∗Gϕ(M ′, ϕ∗D
′) ∼= GΦ(h∗M ′, h∗ϕ∗D

′) = GΦ((h∗ϕ∗M)>φ(s), h
∗ϕ∗D

′)

= GΦ((Φ∗H
∗M)>φ(s),Φ∗H

∗D′) = Φ∗((H
∗M)>s, H

∗D′),

where the first isomorphism follows from Lemma 5.6 and the last equality
follows from Lemma 5.8. By Lemma 5.7 (ii), we have IR(H∗M ′′, H∗D) =
IR((H∗M)>s, H

∗D) (note that H∗(D′) = (H∗D)′). Since the cardinality of
IR((H∗M)>s, H

∗D) is m− i by assumption, M ′′ is of rank m− i and

fi+j(M, 0) = fj(M
′′, 0) for j = 1, . . . ,m− i,

which implies the assertion.

6. Appendix 2: An example of rank two

Throughout this section, assume that p 6= 2 and K is discretely valued. In
this section, we construct a differential module M over K[[t]]0 of rank two,
which corresponds to the ordinary differential equation d2f/dt2 − tdf/dt =
0, then we explain Main Theorem and Theorem 3.5 by using M . Pre-
cisely speaking, we will explicitly describe the decomposition of M ⊗K[[t]]0

K〈α/t, t]]0 for some α ∈ (0, 1) given by Theorem 3.5. We also prove that such
a decomposition does not extends to M . Secondly, we will prove without
assuming Main Theorem that dimK(M ⊗K[[t]]0 K{t})∇=0 = 1 and M∇=0 =
(M ⊗K[[t]]0 K{t})∇=0, while we have (M∨ ⊗K[[t]]0 K{t})∇=0 = 0. We first de-
fine M , then prove the above results by assuming some calculations verified
in the last subsection.

Notation. In addition to the notation in Appendix 1, we use the following
notation.

(1) For x ∈ R, denote by bxc the maximum integer less than or equal
to x. For n ∈ N≥1, we put n!! =

∏
i=0,...,bn/2c(2i+ 1) if n is odd, and

n!! =
∏
i=1,...,bn/2c 2i if n is even. For simplicity, we put 0!! = 1 and

(−1)!! = −1. Note that

(2n− 1)!! = (2n− 1)!!(2n)!!/(2n)!! = (2n)!/2nn! =

(
2n

n

)
n!/2n
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for n ∈ N≥1.

(2) For a formal power series f =
∑

i∈N ait
i ∈ K[[t]] with ai ∈ K, we define

the radius of convergence R(f) ∈ R ∪ {∞} of f as sup{ρ ∈ R≥0; |ai|ρi
→ 0 (i→ +∞)}. By definition, f ∈ K{t} if and only if R(f) ≥ 1.

(3) For a formal sum f =
∑

i∈Z ait
i with ai ∈ K, we put f ′ =

∑
i∈Z iait

i−1.

(4) Let λ∈K[[t]]0. We define the rank one differential module Vλ=K[[t]]0eλ
over K[[t]]0 by D(eλ) = λeλ.

(5) For an abelian group M with a quotient Q, we denote the image of
m ∈M in Q by m again if no confusion arises.

Definition

Let M = K[[t]]0e1 ⊕K[[t]]0e2 be the differential module over K[[t]]0 defined
by

D(e1) = e2, D(e2) = −e1 − te2.

Then, e1 is a cyclic vector of M ([Ked10, Definition 5.4.1]), and we have the
isomorphism of differential modules over K[[t]]0

(12) M ∼= K[[t]]0{T}/K[[t]]0{T}(T 2 + tT + 1); (e1, D(e1)) 7→ (1, T ).

Note that we have T 2 + tT + 1 = T · (T + t) in K[[t]]0{T}. Hence, N =
K[[t]]0(te1 + e2) is a differential submodule of M , which is isomorphic to V0.
Moreover, M/N is isomorphic to V−t. Thus, we obtain an exact sequence of
differential modules over K[[t]]0

(13) 0→ V0 →M → V−t → 0.

We will describe M∨. Let {e∨1 , e∨2 } ⊂M∨ be the dual basis of {e1, e2} ⊂
M . Then, we have D(e∨1 ) = e∨2 , D(e∨2 ) = −e∨1 + te∨2 by definition, and
D2(e∨2 ) = tD(e∨2 ). Hence, e∨2 is a cyclic vector of M∨, and we have the iso-
morphism of differential modules over K[[t]]0

(14) M∨ ∼= K[[t]]0{T}/K[[t]]0{T}(T 2 − tT ); (e∨2 , D(e∨2 )) 7→ (1, T ).

Thus, we may regard M as the differential module corresponding to the
differential equation d2f/dt2 − tdf/dt = 0 (see [Ked10, §5.6]).
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Decomposition

We have IR(M ⊗K[[t]]0 E)={IR(V−t ⊗K[[t]]0 E), IR(V0 ⊗K[[t]]0 E)}={ω, 1} by
(13) and Example 2.5. Hence, f1(M, 0) = − logω > f2(M, 0) = 0. Therefore,
Theorem 3.5 is applicable to M ⊗K[[t]]0 K〈α/t, t]]0 for any α ∈ (0, 1). We will
describe the resulting decomposition explicitly.

We identify M as K[[t]]0{T}/K[[t]]0{T}(T 2 + tT + 1) via the isomor-
phism (12). Fix α ∈ (ω1/2, 1). We assume Lemma 6.2 below: let a =∑∞

i=0(2i− 1)!!/t2i+1 ∈ K〈α/t, t]]0. Then, {T + t, aT − a′} is a basis of
M ⊗K[[t]]0 K〈α/t, t]]0 since we have

det

(
t −a′
1 a

)
= at+ a′ = −1.

Moreover, we have

D(T + t, aT − a′) = (T + t, aT − a′)
(

0 0
0 −t

)
in M ⊗K[[t]]0 K〈α/t, t]]0. Hence, we obtain the decomposition of differential
modules over K〈α/t, t]]0

M ⊗K[[t]]0 K〈α/t, t]]0 = K〈α/t, t]]0(T + a)⊕K〈α/t, t]]0(aT − a′)

with isomorphisms

K〈α/t, t]]0(T + a) ∼= V0 ⊗K[[t]]0 K〈α/t, t]]0

and

K〈α/t, t]]0(aT − a′) ∼= V−t ⊗K[[t]]0 K〈α/t, t]]0.

To conclude the above decomposition satisfies the condition in Theorem 3.5,
it suffices to check IR(V−t ⊗K[[t]]0 Fρ)<IR(V0 ⊗K[[t]]0 Fρ) for any ρ∈(ω1/2, 1).
Since V0 is trivial, we have IR(V0 ⊗K[[t]]0 Fρ) = 1 by definition. We have

(V−t ⊗K[[t]]0 K[[t]])∇=0 = K(e−t ⊗ exp (t2/2)), and R(exp (t2/2)) = ω1/2 by a
similar proof as in Lemma 6.3 (i). Hence, the radius of convergence R(V−t)
of V−t in the sense of [Ked10, Definition 9.3.1] is equal to ω1/2. We define
the generic radius of convergence of V−t ⊗K[[t]]0 Fρ as R(V−t ⊗K[[t]]0 Fρ) =
ρ−1 · IR(V−t ⊗K[[t]]0 Fρ) ([Ked10, Definitions 9.4.4, 9.4.7]). Then, we have
R(V−t ⊗K[[t]]0 Fρ) ≤ R(V−t) by Dwork’s transfer theorem ([Ked10, Theorem

9.6.1]). Hence, we have IR(V−t ⊗K[[t]]0 Fρ) ≤ ρ ·R(V−t) = ρ · ω1/2 < 1, which
implies the assertion.
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We finally prove that M is indecomposable in the category of differential
modules over K[[t]]0 by assuming Lemma 6.3 below. In particular, M is not
isomorphic to V0 ⊕ V−t. Suppose not, that is, there exists an isomorphism
of differential modules over K[[t]]0

M ∼= M1 ⊕M2

such thatM1,M2 are of rank one. By considering Jordan-Hölder constituents
of M in the category of differential modules over K[[t]]0, either M1 or M2

is isomorphic to V−t. In particular, there exists a non-zero element v ∈M
such that D(v) = −tv. Write v = g + hT with g, h ∈ K[[t]]0. Then, we have
g′ − h = −tg and g + h′ − th = −th. Hence, g = −h′ and h′′ + th′ + h = 0.
Since R(h) ≥ 1 by h ∈ K[[t]]0, we have h = 0 by Lemma 6.3 (iii). Hence,
v = 0, which is a contradiction.

Horizontal sections

We will prove (M ⊗K[[t]]0 K{t})∇=0 = M∇=0 = K(te1 + e2). By the exact
sequence (13), we obtain an exact sequence

0→ (V0 ⊗K[[t]]0 K{t})
∇=0 → (M ⊗K[[t]]0 K{t})

∇=0 → (V−t ⊗K[[t]]0 K{t})
∇=0.

Since (V−t ⊗K[[t]]0 K[[t]])∇=0 = K(e−t ⊗ exp (t2/2)) and R(exp (t2/2)) =

ω1/2 < 1, we have (V−t ⊗K[[t]]0 K{t})∇=0 = 0. Hence, we obtain a canonical
isomorphism (M ⊗K[[t]]0 K{t})∇=0 ∼= (V0 ⊗K[[t]]0 K{t})∇=0. Obviously, we
have (V0 ⊗K[[t]]0 K{t})∇=0 = K(e0 ⊗ 1), which implies the assertion.

We will prove (M∨ ⊗K[[t]]0 K{t})∇=0 = 0 by assuming Lemma 6.3. We
identify M∨ as K[[t]]0{T}/K[[t]]0{T}(T 2 − tT ) via the isomorphism (14).
We claim that the K-vector space (M∨ ⊗K[[t]]0 K[[t]])∇=0 admits the basis
{bT,−1 + cT}, where

b = exp (−t2/2), c =

∞∑
i=0

((−1)i/(2i+ 1)!!)t2i+1.

By Lemma 6.3 (iii), bT,−1 + cT ∈M∨ are linearly independent over K.
If g + hT ∈M∨ ⊗K[[t]]0 K[[t]] with g, h ∈ K[[t]] satisfies D(g + hT ) = 0, then
we have g′ = 0 and g + th+ h′ = 0. Hence, we have g ∈ K, and, by dif-
ferentiating the second equation, we have h′′ + th′ + h = 0. Therefore, we
have h ∈ Kb+Kc by Lemma 6.3 (iii). If we write h = d1b+ d2c, then we
have g = −(th+ h′) = −d2 by Lemma 6.3 (ii), which implies the claim.
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Let v = g + hT ∈ (M∨ ⊗K[[t]]0 K{t})∇=0 with g, h ∈ K{t}. Then, R(h) ≥ 1
by h ∈ K[[t]]0. By the above claim, we can write v = d1bT + d2(−1 + cT )
for some d1, d2 ∈ K. Then, we have h = d1b+ d2c. If h 6= 0, then R(h) =
ω1/2 < 1 by Lemma 6.3 (iii), which is a contradiction. Hence, h = 0. By
Lemma 6.3 (iii), d1 = d2 = 0, which implies the assertion.

Some power series

Lemma 6.1. For any integer i ≥ 1, we have

i/(p− 1)− (1 + logp i) ≤ vp(i!) ≤ i/(p− 1).

In other words, ωi ≤ |i!| ≤ iωi−(p−1).

Proof. We have vp(i!) = bi/pkc ≤
∑∞

k=1(i/pk) = i/(p− 1). We choose r ∈ N
such that pr ≤ i < pr+1. It suffices to prove i/(p− 1)− vp(i!) ≤ r + 1. We
obtain the assertion by

i/(p− 1)− vp(i!) =

r∑
k=1

{(i/pk)− bi/pkc}+

∞∑
k=r+1

i/pk

≤
r∑

k=1

((p− 1) + · · ·+ (p− 1)pk−1)/pk +

∞∑
k=r+1

i/pk

= r − (pr − 1)/pr(p− 1) + i/pr(p− 1)

≤ r − (pr − 1)/pr(p− 1) + (pr+1 − 1)/pr(p− 1)

= r + 1.
�

Lemma 6.2. We consider the following formal sum with coefficients in Zp

a =

∞∑
i=0

(2i− 1)!!t−(2i+1) = −1/t+ 1/t3 + · · · .

Then, for any α ∈ (ω1/2, 1), we have a ∈ K〈α/t, t]]0. Moreover, we have

a′ + ta+ 1 = 0, a′′ + ta′ + a = 0,

and, in K〈α/t, t]]0{T},

a(T 2 + tT + 1) = (T + t)(aT − a′).
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Proof. Since we have

|(2i− 1)!!|α−(2i+1) =

∣∣∣∣(2i

i

)
i!/2i

∣∣∣∣α−(2i+1)

≤ |i!|α−(2i+1) ≤ i(ω/α2)iω−(p−1)α−1

by Lemma 6.1, we have |(2i− 1)!!|α−(2i+1) → 0 as i→ +∞. Hence, a ∈
K〈α/t, t]]0. The rest of the assertion follows by a direct calculation. �

Lemma 6.3. We consider the following formal power series over Qp

b = exp (−t2/2) =

∞∑
i=0

((−1)i/2ii!)t2i = 1− t2/2 + · · · ,

c =

∞∑
i=0

((−1)i/(2i+ 1)!!)t2i+1 = t− t3/3 + · · · .

(i) We have R(b) = R(c) = ω1/2.

(ii) We have b′ + tb = 0 and c′ + tc = 1.

(iii) We consider the K-vector space

W = {h ∈ K[[t]];h′′ + th′ + h = 0}.

Then, b, c ∈W , and, {b, c} forms a basis of W . Moreover, for any
non-zero h ∈W , we have R(h) = ω1/2.

Proof.

(i) Let ρ ∈ (0, ω1/2). By Lemma 6.1, we have i−1ω−i+(p−1) ≤ |(−1)i/2ii!| ≤
ω−i. Since for ρ ∈ (0, ω1/2), we have ω−iρ2i → 0 as i→ +∞, and, for
ρ ∈ (ω1/2,∞), we have i−1ω−i+(p−1)ρ2i →∞ as i→ +∞, we obtain
R(b) = ω1/2. We have 1/(2i+ 1)!! = 2ii!/(2i+ 1)!, and,

|1/(2i+ 1)!!| ≤ iωi−(p−1)/ω2i+1 = iω−i−p,

|1/(2i+ 1)!!| ≥ ωi/((2i+ 1)ω2i+1−(p−1)) = ω−i+p−2/(2i+ 1)

by Lemma 6.1. Similarly as in the case of b, we obtain R(c) = ω1/2.

(ii) It follows from a direct calculation.
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(iii) By differentiating the equations in (ii), we have b, c ∈W . The rest of
the assertion follows by noting that dimKW = 2, and, all coefficients
of odd (resp. even) powers of t in b (resp. c) are 0. �
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