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We study tensor powers of rank 1 sign-normalized Drinfeld A-
modules, where A is the coordinate ring of an elliptic curve over
a finite field of size q. Using the theory of vector valued Anderson
generating functions, we give formulas for the coefficients of the log-
arithm and exponential functions associated to these A-modules.
We then show that for n ≤ q there exists an n-dimensional vector
whose bottom coordinate contains a Goss zeta value evaluated at
n, where the evaluation of this vector under the exponential func-
tion is defined over the Hilbert class field. This allows us to prove
the transcendence of these Goss zeta values and periods of Drin-
feld modules as well as the transcendence of certain ratios of these
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1. Introduction

The Carlitz module has been studied extensively since Carlitz introduced it
(see [13]) and we have explicit formulas for many objects related to its arith-
metic. In particular, we have formulas for the coefficients of the exponential
and logarithm functions and many formulas for special values of its zeta
function and L-functions. Many years after Carlitz’s original work, Drinfeld
introduced the notion of Drinfeld modules which serve as important general-
izations of the Carlitz module (see [21] for a thorough account). Since their
introduction, much work has been done to develop an explicit theory for
Drinfeld modules which parallels that for the Carlitz module, notably work
by Anderson in [2] and [3], Thakur in [38] and [39], Dummit and Hayes in
[17], and Hayes in [25].

Further generalizing the Carlitz module, Anderson introduced nth tensor
powers of Drinfeld modules in [1], which serve as n-dimensional analogues
of (1-dimensional) Drinfeld modules (see [11] for a thorough introduction to
tensor powers of Drinfeld modules). In their remarkable paper [5], Anderson
and Thakur develop much of the explicit theory for the arithmetic of the
nth tensor power of the Carlitz module, including recursive formulas for the
coefficients of the exponential and logarithm functions. Notably, their tech-
niques allow them to connect special evaluations of the logarithm function
to function field zeta values, which are defined in the case of the Carlitz
module to be

ζ(n) =
∑

a∈Fq[θ]
a monic

1

an
, n ∈ N,

where q is a prime power. They find ([5, Thm. 3.8.3]) for 1 ≤ n ≤ q − 1 (as
a special case) that

Log⊗nC


0
...
0
1

 =


∗
...
∗

ζ(n)

 ,

where Log⊗nC is the logarithm function associated to the nth tensor power
of the Carlitz module. In recent years, there has been a surge of work us-
ing Drinfeld modules to study zeta functions, L-functions, and their special
values over functions fields (see [6]-[9], [27], [28], [31]-[34], [37]).

To state the results of the present paper, we give a short review of rank
1 sign-normalized Drinfeld modules over affine coordinate rings of elliptic
curves E/Fq with infinite place ∞. Let A = Fq[t, y], where t and y satisfy
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Drinfeld module zeta values 1631

a cubic Weierstrass equation for E. Define an isomorphic copy of A with
variables θ and η satisfying the same cubic Weierstrass equation for E, which
we denote as A = Fq[θ, η]. Let K be the fraction field of A, let K∞ be the
completion of K at the infinite place, and let C∞ be the completion of an
algebraic closure of K∞. Denote H as the Hilbert class field of K, which we
can take to be a subfield of K∞. For an algebraically closed field extension
L/K, if we let L[τ ] denote the ring of twisted polynomials in the qth power
Frobenius endomorphism τ , then a rank 1 sign-normalized Drinfeld module
is a Fq-algebra homomorphism

ρ : A→ L[τ ]

which satisfies certain naturally defined conditions (see §3). There is a point
V := (α, β) ∈ E(H) associated to ρ called the Drinfeld divisor, satisfying
the equation on E

(1) V (1) − V + Ξ =∞,

where Ξ = (θ, η) ∈ E(K) and V (1) = (αq, βq). Following as in [23, §3], we
require that ord∞(α) < 0 and ord∞(β) < 0 so that V is uniquely determined.
By (1), there exists a function f ∈ H(t, y) with divisor

div(f) = (V (1))− (V ) + (Ξ)− (∞),

with suitable normalization, called the shtuka function.
In this paper we continue the study of tensor powers of rank 1 sign-

normalized Drinfeld A-modules which was commenced by the author in [22].
These tensor powers provide a further generalization of the Carlitz module
and are examples of Anderson A-modules. If we define Matn(L)[τ ] to be the
ring of twisted polynomials in the qth power Frobenius endomorphism τ ,
which we extend to matrices entry-wise, then an n-dimensional Anderson
A-module is an A-module homomorphism

ρ : A→ Matn(L)[τ ]

satisfying certain naturally defined conditions (see §3). We will denote the
nth tensor power of the Drinfeld module ρ as ρ⊗n and denote the expo-
nential and logarithm functions connected with it as Exp⊗nρ and Log⊗nρ
respectively, noting that both functions can be represented as power series
in Matn(H)[[z]] for z ∈ Cn∞. The construction and basic properties of tensor
powers of rank 1 Drinfeld modules are studied by the author in [22] and we
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will refer frequently to results from it for our present considerations. In an
effort to make the present paper as self-contained as possible, we recall the
necessary facts from [22] in §3.

The main theorems of the present paper give explicit formulas for the
coefficients of the exponential and the logarithm function associated to ten-
sor powers of rank 1 sign-normalized Drinfeld modules, show that evaluating
the exponential function at a special vector with a zeta value in its bottom
coordinate gives a vector in Hn. As an application of the main theorems we
use techniques of Yu from [42] to show that these zeta values and the periods
connected to the Drinfeld module are transcendental. This generalizes both
the work of Thakur on Drinfeld modules and zeta values in [39] as well as
that of Anderson and Thakur on tensor powers of the Carlitz module in [5].
The methods which Anderson and Thakur apply to obtain formulas for the
coefficients for the exponential and logarithm functions for tensor powers of
the Carlitz module involve recursive matrix calculations, which allow them
to analyze a particular coordinate of those coefficients. In the case of tensor
powers of Drinfeld modules, however, the matrices involved are much more
complicated and do not give clean formulas as they do in the Carlitz case.
We develop new techniques to analyze the coefficients of the logarithm and
exponential function inspired partially by work of Papanikolas and the au-
thor in [23] and partially by ideas of Sinha in [36]. Further, Anderson and
Thakur use special polynomials (called Anderson-Thakur polynomials) in
[5] to relate evaluations of the logarithm function to zeta values. It is not
yet clear how to generalize these Anderson-Thakur polynomials to tensor
powers of Drinfeld modules, and so instead we use a generalization of tech-
niques developed by Papanikolas and the author in [23] to prove formulas
for zeta values. We comment that this technique allows us to study zeta
values only for 1 ≤ n ≤ q − 1; developing techniques to study zeta values for
all n ≥ 1 is a topic of ongoing study (see Remark 6.1).

We begin by setting out the notation and background in §2, then in
§3 we give a brief review of the theory of tensor powers of rank 1 Drin-
feld A-modules and vector-valued Anderson generating functions as laid
out in [22]. In particular, for a fixed dimension n ≥ 1 we recall the func-
tions gi, hi ∈ H(t, y) for 1 ≤ i ≤ n which form convenient bases for the A-
motives M and N defined in [22, §3] and recount some of their properties
(see Proposition 3.1). In section §4 we move on to analyzing the coeffi-
cients of the exponential function Exp⊗nρ associated to tensor powers of
rank 1 Drinfeld A-modules. Define the Frobenius twisting automorphism
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for g =
∑
cj,kt

jyk ∈ L[t, y] to be

(2) g(1) =
∑

cqj,kt
jyk,

and let g(i) denote the ith iteration of twisting. First, we define functions
for 1 ≤ ` ≤ n and i ≥ 1

γi,` = g`/(ff
(1) · · · f (i−1))n

and find that there is a unique expression for γi,` of the form

γi,` = c`,1g
(i)
1 + c`,2g

(i)
2 + · · ·+ c`,ng

(i)
n +

∑
j,k

dj,kαj,k,

for c`,m, dj,k ∈ H, where the functions αj,k ∈ H(t, y) satisfy naturally defined
conditions given in §4. We denote Ci = 〈cj,k〉, and we obtain our first main
theorem about the coefficients of the exponential function.

Theorem 4.1. For dimension n ≥ 2 and z ∈ Cn∞, if we write

Exp⊗nρ (z) =

∞∑
i=0

Qiz
(i),

then for i ≥ 0, the exponential coefficients Qi = Ci and Qi ∈ Matn(H).

We prove this theorem by observing a recursive matrix equation which
uniquely identifies the coefficients of the exponential function (see Lemma
4.3), and then proving that the matrices Ci satisfy the recursive equation.
After a bit more analysis, we obtain more exact formulas for the first column
of Qi.

Corollary 4.4. For z ∈ C∞ we have the expression

Exp⊗nρ


z
0
...
0

 =


z
0
...
0

+

∞∑
i=0

zq
i

g
(i)
1 (ff (1) · · · f (i−1))n

·


g1

g2
...
gn


∣∣∣∣∣
Ξ(i)

.

Next, we transition to studying the coefficients of the logarithm function
in §5. Our main technique in this section involves proving the commutativity
of diagram (51), which is inspired by work of Sinha in [36]. We then define a
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single variable function which, using the machinery from the diagram, allows
us to recover the logarithm function. This gives formulas for the logarithm
coefficients in terms of residues of quotients of the functions gi, hi and f .

Theorem 5.4. For z inside the radius of convegence of Log⊗nρ , if we let

Log⊗nρ (z) =

∞∑
i=0

Piz
(i)

for n ≥ 2 and let λ be the invariant differential on E, then Pi ∈ Matn(H)
for i ≥ 0 and

Pi =

〈
ResΞ

(
gjh

(i)
n−k+1

(ff (1) · · · f (i))n
λ

)〉
1≤j,k≤n

.

With a little further analysis we obtain cleaner formulas for the bottom
row of the logarithm coefficients.

Corollary 5.6. For the coefficients Pi of the function Log⊗nρ , the bottom
row of Pi, for i ≥ 0, can be written as〈

h
(i)
n−k+1

h1(f (1) · · · f (i))n

∣∣∣∣
Ξ

〉
1≤k≤n

.

In section §6 we show that evaluating the exponential function at a
special vector with a Goss zeta value in its bottom coordinate is in Hn. To
state our results, we recall the extension of a rank 1 sign-normalized Drinfeld
module ρ to integral ideals a ⊂ A due to Hayes [25] (see §6), which maps
a 7→ ρa ∈ H[τ ]. We define ∂(ρa) to be the constant term of ρa with respect
to τ and let φa ∈ Gal(H/K) denote the Artin automorphism associated to
a, and let the B be the integral closure of A in H. We define a zeta function
associated to ρ twisted by the parameter b ∈ B with b 6= 0 for n ∈ N to be

ζρ(b;n) :=
∑
a⊆A

bφa

∂(ρa)n
.
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Theorem 6.2. For b ∈ B nonzero and for n ≤ q − 1, there exists a constant
C ∈ H and a vector (∗, . . . , ∗, Cζρ(b;n))> ∈ Cn∞ such that

d := Exp⊗nρ


∗
...
∗

Cζρ(b;n)

 ∈ Hn,

where C ∈ H and d ∈ Hn are explicitly computable as outlined in the proof.

In §7 we discuss the transcendence implications of theorem 6.2. Using
techniques similar to Yu’s [42] we prove the following theorem.

Theorem 7.1. Let ρ be a rank 1 sign-normalized Drinfeld module, let πρ be
a fundamental period of the exponential function associated to ρ and define
ζρ(b;n) as above. Then

dimK SpanK{ζρ(b; 1), . . . , ζρ(b; q − 1), 1, πρ, . . . , π
q−2
ρ } = 2(q − 1).

From Theorem 7.1 we get a corollary which relates to a theorem of Goss
(see [20, Thm. 2.10]).

Corollary 7.4. For 1 ≤ i ≤ q − 1, the quantities ζρ(b; i) are transcendental.

Further, for 0 ≤ j ≤ q − 1 the ratio ζρ(b; i)/π
j
ρ ∈ K if and only if i = j =

q − 1.

Finally in §8 we give examples of the constructions in our main theorems.

2. Background and notation

As this paper builds on the foundation laid out in [22], we require much of
the same notation given there. Let q = pr for a prime p and an integer r > 0.
Define the elliptic curve E over Fq, the finite field of size q, with Weierstrass
equation

(3) E : y2 + c1ty + c3y = t3 + c2t
2 + c4t+ c6, ci ∈ Fq,

and denote the point at infinity as ∞.

Table of Symbols 2.1. We use the following symbols throughout the
paper
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A = Fq[t, y], the affine coordinate ring of E
K = Fq(t, y), the field of fractions of A

λ = dt
2y+c1t+c3

, the invariant differential on E

A = Fq[θ, η], an isomorphic copy of A with variables θ, η
K = Fq(θ, η) an isomorphic copy of K with variable θ, η

ord∞ = the valuation of K (and K) at the infinity place
deg = − ord∞, the degree function on K, normalized with

deg(θ) = 2 and deg(η) = 3

|·| = qdeg(·), an absolute value on K

K∞ = K̂ the completion of K at the infinite place

C∞ = K̂∞ the completion of an algebraic closure of K∞
Ξ = (θ, η), a point on E(K)

Define canonical isomorphisms

(4) ι : K→ K, χ : K → K

such that ι(t) = θ and ι(y) = η and similarly for χ. For ease of notation,
for x ∈ K we will sometimes refer to χ(x) = x, i.e. x denotes the element
x expressed with the variable t and y. We remark that the isomorphisms ι
and χ extend to finite algebraic extensions of K and K, and that ord∞, deg
and |·| extend to K∞ and C∞.

Define a seminorm on matrices M = 〈mi,j〉 ∈ Mat`×m(C∞) which ex-
tends |·| as in [29, §2.2] by defining

|M | = max
i,j

(|mi,j |).

Note that the seminorm is not multiplicative in general, but for matrices
M ∈ Matk×`(C∞) and N ∈ Mat`×m(C∞) we do have

|MN | ≤ |M | · |N |.

Also, for c ∈ C∞ and M,N ∈ Mat`×m(C∞) we have

|cM | = |c| · |M |, |M +N | ≤ |M |+ |N |.

Observe that A has a basis {ti, tjy}, for i, j ≥ 0 and that each term has
unique degree. Thus, when expressed in this basis, an element a ∈ A has a
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leading term which allows us to define a sign function

sgn : A \ {0} → F×q ,

by setting sgn(a) ∈ F×q to be the coefficient of the leading term of a ∈ A \
{0}. We also define sgn on K, A and K in the natural way. We extend sgn
further, for any extension L/Fq using the same notion of leading term for
the field L(t, y), and we denote this extended sign function

s̃gn : L(t, y)× → L×.

If L/Fq is an algebraically closed extension of fields, then we define
τ : L→ L to be the qth power Frobenius map and L[τ ] to be the ring of
twisted polynomials in τ , subject to the relation τc = cqτ for c ∈ L. Define
the Frobenius twisting automorphism for g =

∑
cj,kt

jyk ∈ L[t, y] to be

(5) g(1) =
∑

cqj,kt
jyk,

and let g(i) denote the ith iteration of twisting. We extend twisting to matri-
ces in Mat`×m(L(t, y)) by twisting entry-wise and use this notion of twisting
to define Matn(L)[τ ], the non-commutative ring of polynomials in τ subject
to the relation τM = M (1)τ for M ∈ Matn(L). In the setting of Anderson
A-modules, we let Matn(L)[τ ] act on Ln for n ≥ 1 via twisting, i.e. for
∆ =

∑
Miτ

i, with Mi ∈ Matn(L) and a ∈ Ln,

(6) ∆(a) =
∑

Mia
(i).

Further, for X = (t0, y0) ∈ E(L), we define X(1) = (tq0, y
q
0) and extend twist-

ing to divisors in the obvious way, noting that for g ∈ L(t, y)

div(g(1)) = div(g)(1).

For c ∈ A, define the Tate algebra

(7) Tc =

{ ∞∑
i=0

bit
i ∈ C∞[[t]]

∣∣∣∣ ∣∣cibi∣∣→ 0

}
,

the set of power series which converge on the closed disk of radius |c|. For
convenience, we set T := T1, and we have natural embeddings A ↪→ Tθ[y] ↪→
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T[y]. For a fixed dimension n > 0, define the Gauss norm ‖·‖c for a vector
of functions h =

∑
dit

i ∈ Tnc with di ∈ Cn∞ by setting

‖h‖c = max
i
|cidi|,

where | · | is the matrix seminorm described above. Extend ‖·‖c to Tc[y]n by
setting ‖h1 + yh2‖c = max(‖h1‖c, ‖ηh2‖c) for h1,h2 ∈ Tnc . Note that Tc[y]n

is complete under the Gauss norm. Using the definition given in [19, Chs. 3–
4], we observe that the rings T[y] and Tθ[y] are affinoid algebras correspond-
ing to rigid analytic affinoid subspaces of E/C∞. If we denote E as the rigid
analytic variety associated to E and U ⊂ E as the inverse image under t of
the closed disk in C∞ of radius |θ| centered at 0, then U is the affinoid subva-
riety of E associated to Tθ[y]. Note that Frobenius twisting extends to Tc[y]n

and its fraction field and that T and T[y] have Fq[t] and A, respectively, as
their fixed rings under twisting (see [30, Lem. 3.3.2]). We extend the action
of Matn(L)[τ ] on Ln described in (6) to an action of Matn(T[y])[τ ] on T[y]n

in the natural way.

3. Review of tensor powers of Drinfeld modules and
Anderson generating functions

We recall several facts about rank 1 sign-normalized Drinfeld modules as set
out in [23, §3] (see also [21], [26] or [40] for a thorough account of Drinfeld
modules). First note that we can pick a unique point V in E(H) whose
coordinates have positive degree such that V satisfies the equation on E

(8) (1− Fr)(V ) = V − V (1) = Ξ,

If we set V = (α, β), then deg(α) = 2, deg(β) = 3, sgn(α) = sgn(β) = 1 and
H = K(α, β) (see [23, §3] for details). There is a unique function in H(t, y),
called the shtuka function, with s̃gn(f) = 1 and with divisor

(9) div(f) = (V (1))− (V ) + (Ξ)− (∞).

We can write

(10) f =
ν(t, y)

δ(t)
=
y − η −m(t− θ)

t− α
=
y + β + c1α+ c3 −m(t− α)

t− α
,
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where m ∈ H is the slope on E (in the sense of [35, p. 53]) between the
collinear points V (1),−V and Ξ, and deg(m) = q, and

(11)
div(ν) = (V (1)) + (−V ) + (Ξ)− 3(∞),

div(δ) = (V ) + (−V )− 2(∞).

We note that

(12) m =
η − βq

θ − αq
=
η + β + a1α+ a3

θ − α
=
βq + β + a1α+ a3

αq − α
.

Let L/K be an algebraically closed field.

Definition. A Drinfeld A-module of rank r over L is an Fq-algebra homo-
morphism

ρ : A→ L[τ ],

such that for each a ∈ A,

ρa = ι(a) + b1τ + · · ·+ bnτ
r degt(a), bi ∈ L,

such that ρa 6= ι(a) for at least one a ∈ A. A rank 1 sign-normalized Drinfeld
A-module means that we require r = 1 and that bn = sgn(a).

For a Drinfeld A-module ρ, we denote the exponential and logarithm
function as

expρ(z) =

∞∑
i=0

zq
i

di
, logρ(z) =

∞∑
i=0

zq
i

`i
∈ H[[z]], d0 = `0 = 1.

Formulas for the coefficients of expρ and logρ are given in [23, Thm. 3.4 and
Cor. 3.5] as

expρ(z) =

∞∑
i=0

zq
i

(ff (1) · · · f (i−1))|Ξ(i)

,(13)

logρ(z) =

∞∑
i=0

ResΞ

(
λ̃(i+1)

ff (1) · · · f (i)

)
zq

i

=

∞∑
i=0

(
δ(i+1)

δ(1)f (1) · · · f (i)

∣∣∣∣
Ξ

)
zq

i

,(14)

where λ̃ ∈ Ω1
E/H(−(V ) + 2(∞)) is the unique differential 1-form such that

ResΞ(λ̃(1)/f) = 1.
We now recount the theory of n-dimensional tensor powers of A-motives

and dual A-motives from [22, §3-4]. For n ≥ 1, let U = SpecL[t, y] be the
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affine curve (L×Fq E) \ {∞}. Define the underlying space of the A-motive
M and the dual A-motive N as

(15) M = Γ(U,OE(nV )), N = Γ(U,OE(−nV (1))),

define an L[t, y, τ ]-action on M and an L[t, y, σ]-action on N by letting L[t, y]
act by multiplication and defining the action for a ∈M and b ∈ N as

(16) τa = fna(1) and σb = fnb(−1).

We remark that M and N are the nth tensor powers of an A-motive and a
dual A-motive respectively, and we refer the reader to [22, §3] for details on
this construction.

Define functions gi ∈M for 1 ≤ i ≤ n with divisors

div(gj) = −n(V ) + (n− j)(∞) + (j − 1)(Ξ)(17)

+ ([j − 1]V (1) + [n− (j − 1)]V ),

and functions hi ∈ N with divisors

div(hj) = n(V (1))− (n+ j)(∞) + (j − 1)(Ξ)(18)

+ (−[n− (j − 1)]V (1) − [j − 1]V ),

with s̃gn(gi) = s̃gn(hi) = 1. Recall that a divisor on E is principal if and
only if the sum of the divisor is trivial on E [35, Cor. III.3.5] (we will use
this fact implicitly going forward), and thus the divisors in (17) and (18)
are principal by (8). When it is convenient, we will extend the definitions
of the functions gi and hi for i > n by writing i = jn+ k, where 1 ≤ k ≤ n,
and then denoting,

(19)
gi := τ j(gk) = (ff (1) · · · f (j−1))ng

(j)
k and

hi := σj(hk) = (ff (−1) · · · f (1−j))nh
(−j)
k .

Proposition 3.1. The following facts about the functions gi and hi are
proved in [22, §3-4]:

(a) For n ≥ 2, the set of functions {gi}ni=1 generate M as a free L[τ ]-
module and the set of functions {hi}ni=1 generate N as a free L[σ]-
module.
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(b) For 1 ≤ j ≤ n− 1 we obtain the following identities of functions

g1h
(−1)
1 = t− t([n]V ),

gj+1hn−(j−1) = fn · (t− t([j]V (1) + [n− j]V )).

(c) For 1 ≤ k ≤ n, the quotient functions (gk+1/gk) have divisors

div(gk+1/gk) = (Ξ)− (∞) + ([k]V (1) + [n− k]V )

− ([k − 1]V (1) + [n− (k − 1)]V ).

(d) We can write (gk+1/gk) as a quotient of a linear function of degree 3
and a linear function of degree 2, which we label

νk(t, y)

δk(t)
:=

y − η −mk(t− θ)
t− t([k − 1]V (1) + [n− (k − 1)]V )

=
gk+1

gk
,

for 1 ≤ k ≤ n, where mk is the slope between the points [k]V (1) + [n−
k]V and [−(k − 1)]V (1) − [n− (k − 1)]V .

(e) For 1 ≤ i ≤ n, there exist constants ai, bi, yi, zi ∈ H such that we can
write

tgi = θgi + aigi+1 + gi+2,

ygi = ηgi + yigi+1 + zigi+2 + gi+3,

thi = θhi + bihi+1 + hi+2.

(f) For the constants defined in (e) we have aj = bn−j for 1 ≤ j ≤ n− 1
and an = bqn.

(g) The coefficients ai are given by

ai =
2η + c1θ + c3

θ − t([i]V (1) + [n− i]V )

Definition. For n ≥ 2, an n-dimensional Anderson A-module is an Fq-
algebra homomorphism ρ : A→ Matn(L)[τ ], such that for each a ∈ A, there
exists an integer ma ≥ 0 with

ρa = d[a] +A1τ + · · ·+Amτ
ma , Ai ∈ Matn(L)

where d[a] = ι(a)I +N for some nilpotent matrix N ∈ Matn(L).
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We will always label the constant coefficient of ρa as d[a], and we remark
that d : A→ Matn(L) is a ring homomorphism. The map ρ describes an
action of A on the underlying space Ln in the sense defined in (6), allowing
us to view Ln as an A-module. In what follows, for convenience, we fix the
algebraically closed field L to be C∞.

To ease notation throughout the paper, for a fixed dimension n, we define
Ni ∈ Matn(Fq) for an integer i ≥ 1 to be the matrix with 1’s along the ith
super-diagonal and 0’s elsewhere and define Ni for i ≤ −1 to be the matrix
with 1’s along the ith sub-diagonal and 0’s elsewhere. We also define E1 to
be the matrix with a single 1 in the lower left corner and zeros elsewhere
and in general define Ei to be Ni−n. We also define Ni(α1, . . . , αn−i) to be
the matrix with the entries α1, α2, . . . , αn−i along the ith super diagonal and
similarly for Ni−n(α1, . . . , αn−i) and Ei(α1, . . . , αi).

Given A, an affine coordinate ring of an elliptic curve, [23, §3] describes
how to construct ρ, the unique sign-normalized rank 1 Drinfeld module
associated to A. Then [22, §4] describes how to construct the nth tensor
power of ρ by setting

ρ⊗nt := d[θ] + Eθτ := (θI +N1(a1, . . . , an−1) +N2)(20)

+ (E1(an) + E2)τ,

ρ⊗ny := d[η] + Eητ := (θI +N1(y1, . . . , yn−1)(21)

+N2(z1, . . . , zn−2) +N3)

+ (E1(yn) + E2(zn−1, zn) + E3)τ,

where ai, yi and zi are given in Proposition 3.1.
To simplify notation later, we define strictly upper triangular matrices

(22) Nθ = d[θ]− θI and Nη = d[η]− ηI.

With the definitions of ρ⊗nt and ρ⊗ny , we define the Fq-linear map

ρ⊗na : A→ Matn(H)[τ ]

for any a ∈ A by writing a =
∑
cit

i + y
∑
dit

i with ci, di ∈ Fq, and extend-
ing using linearity and the composition of maps ρ⊗nta = (ρ⊗nt )a. A priori, the
map ρ⊗n is just an Fq-linear map, but using ideas from [24] the author proves
in [22] that ρ⊗n is actually an Anderson A-module.
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We will label the exponential and logarithm function associated to ρ⊗n

as

(23)

Exp⊗nρ (z) =

∞∑
i=0

Qiz
(i) ∈ Matn(C∞)[[z]],

Log⊗nρ (z) =

∞∑
i=0

Piz
(i) ∈ Matn(C∞)[[z]],

defined so that Q0 = P0 = I. We note that Log⊗nρ is defined to be the formal
inverse of the power series Exp⊗nρ , and that the exponential and logarithm
functions satisfy functional equations for all a ∈ A and z ∈ Cn∞

(24) Exp⊗nρ (d[a]z) = ρ⊗na (Exp⊗nρ (z)), Logρ(ρ
⊗n
a (z)) = d[a] Logρ(z).

We also note that Exp⊗nρ is an entire function from Cn∞ to Cn∞ and that
Logρ has a finite radius of convergence in Cn∞ which we denote rL.

We now recall facts about the spaces Ω and Ω0 and about vector-valued
Anderson generating functions from [22, §5-6]. For n > 1 define the space of
rigid analytic functions

B := Γ
(
U,OE(−n(V ) + n(Ξ))

)
where U is the inverse image under t of the closed disk in C∞ of radius |θ|
centered at 0 defined in section §2 and define A-modules of functions

(25) Ω = {h ∈ B | h(1) − fnh = g ∈ N}, Ω0 = {h ∈ B | h(1) − fnh = 0},

where we recall the dual A-motive N = Γ(U,OE(−nV (1))). For a function
h(t, y) ∈ Ω, define the map T : Ω→ T[y]n by

(26) T (h(t, y)) = (h(t, y)g1, . . . , h(t, y)gn)>,

where the functions gi are the basis elements defined in Proposition 3.1. For
ease of notation later on, we also define

(27) g := (g1, . . . , gn)>.

Define operators on the space T[y]n which act in the sense defined in §2
by setting

Dt := ρ⊗nt − t, and Dy = ρ⊗ny − y,(28)

G− E1τ := (diag(g2/g1, . . . , gn+1/gn)−N1)− E1τ.(29)



i
i

“4-Green” — 2020/3/6 — 21:37 — page 1644 — #16 i
i

i
i

i
i

1644 Nathan Green

A quick calculation shows that (G− E1τ) (T (h)) = 0 for any h ∈ Ω0, and
thus the operator G− E1τ can be viewed as a vector version of the operator
τ − fn. In fact, the relationship is even stronger, as is proved in the following
lemma.

Lemma 3.2 (Lemma 5.3 of [22]). A vector J(t, y) ∈ T[y]n satisfies (G−
E1τ)(J) = 0 if and only if there exists some function h(t, y) ∈ Ω0 such that
J(t, y) = T (h(t, y)).

Define the operator Mτ := N1 + E1τ, and denote the diagonal matrices

(30)
Mm := diag(z1 − a2, z2 − a3, . . . , zn−1 − an, zn − a(1)

1 ),

Mδ := diag(δ1, δ2, . . . , δn).

where ai, zi and δi are defined in Proposition 3.1. Then for 1 ≤ i ≤ n denote

pi = η − y − (θ − t)(zi − ai+1), ri = yi − (θ − t)− ai(zi − ai+1)

where we understand an+1 to be a
(1)
1 , and define matrices

(31) M ′1 = diag(p1, . . . , pn) +N1(r1, . . . rn−1), M ′2 = E1(rn).

Also define matrices

(32) M1 = M ′1
∣∣
t=0,y=0

and M2 = M ′2
∣∣
t=0,y=0

,

where above we formally evaluate M ′i at t = 0 and y = 0.

Proposition 3.3. We have the following facts from [22, §5] about the above
operators:

(a) (G− E1τ) = M−1
δ (Dy − (Mτ +Mm)Dt)

(b) M ′1g +M ′2f
ng(1) = 0

(c) M1 +M2τ = (ρ⊗ny − (Mτ +Mm)ρ⊗nt )

We now recall the functions ωρ, E
⊗n
u and G⊗nu defined in [23, §4]. Let

(33) ωρ = ξ1/(q−1)
∞∏
i=0

ξq
i

f (i)
, ξ = −mθ − η

α
= −

(
m+

β

α

)
,
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where m, α, and β are given at the beginning of this section and recall that
ωρ ∈ T[y]× and ωnρ ∈ Ω0. For u = (u1, ..., un)> ∈ Cn∞ define

E⊗nu (t) =

∞∑
i=0

Exp⊗nρ
(
d[θ]−i−1u

)
ti,(34)

G⊗nu (t, y) = E⊗nd[η]u(t) + (y + c1t+ c3)E⊗nu (t).(35)

We remark that 1-dimensional Anderson generating functions have proved
useful in studying algebraic relations among logarithm values, periods, quasi-
periods, L-series and motivic Galois groups of Drinfeld modules (e.g., see
[14], [15], [18], [31]–[33], [36]). In this paper we use vector-valued Anderson
generating functions to get formulas for the coefficients of the exponential
and logarithm functions.

Proposition 3.4. We collect the following facts from [22, §5-6] about the
above functions:

(a) The function ωnρ generates Ω0 as a free A-module.

(b) The function E⊗nu ∈ Tn and we have the following identity of functions
in Tn

E⊗nu (t) =

∞∑
j=0

Qj

(
d[θ](j) − tI

)−1
u(j).

where Qi are the coefficients of Exp⊗nρ from (23).

(c) The function G⊗nu extends to a meromorphic function on U = (C∞ ×Fq
E) \ {∞} with poles in each coordinate only at the points Ξ(i) for i ≥ 0.

(d) The operators Dt and Dy acting on G⊗nu give

Dt(G
⊗n
u ) = Exp⊗nρ (d[η]u) + (y + c1t+ c3) Exp⊗nρ (u)

Dy(G
⊗n
u ) = −c1 Exp⊗nρ (d[η]u) + Exp⊗nρ (d[θ2]u) + (t+ c2) Exp⊗nρ (d[θ]u)

+ (t2 + c2t+ c4) Exp⊗nρ (u).

Define M to be the submodule of T[y] consisting of all elements in T[y]
which have a meromorphic continuation to all of U . Now define the map
RESΞ : Mn → Cn∞, for a vector of functions (z1, ..., zn)> ∈Mn as

(36) RESΞ((z1, . . . , zn)>) = (ResΞ(z1λ), . . . ,ResΞ(znλ))>

where λ is the invariant differential of E from (2.1).
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Proposition 3.5. We recall the following facts about the map RESΞ from
[22, §6]:

(a) RESΞ(G⊗nu ) = −(u1, . . . , un)>

(b) If we denote Πn = −RESΞ(T (ωnρ )), then T (ωnρ ) = G⊗nΠn
and the period

lattice of Exp⊗nρ equals Λ⊗nρ = {d[a]Πn | a ∈ A}.

(c) If πρ is a fundamental period of the exponential function expρ from
(13), and if we denote the last coordinate of Πn ∈ Cn∞ as pn, then
pn/π

n
ρ ∈ H.

4. Coefficients of the exponential function

The coefficients of the exponential function for rank 1 sign-normalized Drin-
feld modules are well understood (see (13)). Further, the coefficients for
the exponential function of the nth tensor power of the Carlitz module are
also well understood. These coefficients were first studied by Anderson and
Thakur in [5, §2.2], and have recently been written down explicitly using hy-
per derivatives by Papanikolas in [29, 4.3.6]. In this section we give explicit
formulas for the coefficients of the exponential function for the nth tensor
power of a rank 1 sign-normalized Drinfeld module.

In order to write down a formula for the coefficients of Exp⊗nρ we must
first analyze certain functions which arise when calculating residues of the
vector-valued Anderson generating functions G⊗nu . For a fixed dimension n,
for 1 ≤ ` ≤ n and for i ≥ 0, define the functions

(37) γi,` =
g`

(ff (1) · · · f (i−1))n
,

where for i = 0 we understand γ0,` = g`. Using (9) and (17) we see that the
polar part of the divisor of γi,` equals

−n(V (i))− n(Ξ(i−1))− n(Ξ(i−2))− · · · − (n− (`− 1))(Ξ).

We temporarily fix an index `. Using the Riemann-Roch theorem, we observe
that we can find unique functions αj,k with s̃gn(αj,k) = 1 in each of the
following 1-dimensional spaces, for 1 ≤ j ≤ i and 1 ≤ k ≤ n,

αj,k ∈ L(n(V (i))− n(Ξ(i)) + k(Ξ(j−1)) + n(Ξ(j−2)) + · · ·
+ n(Ξ(1)) + n(Ξ)− (n(j − 1) + k − 1)(∞)).
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Then, for appropriate constants dj,k ∈ H we subtract off the principal part
of the power series expansion of g`/(ff

(1) . . . f (i−1))n at Ξ(m), for 1 ≤ m ≤
j − 1, to find that

γi,` −
∑
j,k

dj,kαj,k ∈ L
(
n(V (i))

)
= SpanH(g

(i)
1 , g

(i)
2 , . . . , g(i)

n ).

So for further constants c`,1, . . . , c`,n ∈ H we can write

(38) γi,` = c`,1g
(i)
1 + c`,2g

(i)
2 + · · · c`,ng(i)

n +
∑
j,k

dj,kαj,k,

where we note that each of the functions αj,k vanishes with order n at (Ξ(i))
and that the coefficients c`,k are implicitly dependent on i. To ease notation,
for each 1 ≤ ` ≤ n we will write α` :=

∑
j,k dj,kαj,k and denote

(39) γi = (γi,1, γi,2, . . . , γi,n)>, Ci = 〈cj,k〉, and αi = (α1, α2, . . . , αn)>,

so that we can write equation (38) for 1 ≤ ` ≤ n as γi = Cig
(i) + αi.

Theorem 4.1. With the notation as above, for dimension n ≥ 2 and z ∈
Cn∞, if we write

Exp⊗nρ (z) =

∞∑
i=0

Qiz
(i),

then for i ≥ 0, the exponential coefficients Qi = Ci and Qi ∈ Matn(H).

Remark 4.2. We remark that in the case for n = 1, if one interprets the
empty divisors in (17) correctly, then Theorem 4.1 still holds. However, for
clarity of exposition, we restrict to n ≥ 2.

Before giving the proof of Theorem 4.1, we require a lemma about the
coefficients of the exponential function.

Lemma 4.3. Given a sequence of matrices Qi ∈ Matn(H) for i ≥ 0 with
Q0 = I, then the Qi are the coefficients of Exp⊗nρ if and only if they satisfy
the recurrence relation for i ≥ 1

(40) M2Q
(1)
i−1 + E1Q

(1)
i−1d[θ](i) = Qid[η](i) − (N1 +Mm)Qid[θ](i) −M1Qi.

where M1 and M2 are defined in (32) and Mm is defined in (30). Further,
the coefficients Qi ∈ Matn(H).



i
i

“4-Green” — 2020/3/6 — 21:37 — page 1648 — #20 i
i

i
i

i
i

1648 Nathan Green

Proof. First note that by (24)

(ρ⊗ny − (Mτ +Mm)ρ⊗nt )(Exp⊗nρ (z))

= Exp⊗nρ (d[η]z)− (Mτ +Mm) Exp⊗nρ (d[θ]z).

Then, using Proposition 3.3(c),

(M1 +M2τ)(Exp⊗nρ (z)) = Exp⊗nρ (d[η]z)− (Mτ +Mm) Exp⊗nρ (d[θ]z),

and expanding Exp⊗nρ on both sides in terms of its coefficients Qi and equat-
ing like terms gives the equality

M2Q
(1)
i−1 + E1Q

(1)
i−1d[θ](i) = Qid[η](i) − (N1 +Mm)Qid[θ](i) −M1Qi.

Thus the coefficients of the exponential function satisfy the recurrence re-
lation (40). Next, for j ≥ 0, let {Q′j} ⊂ Matn(H) be a sequence of matrices
satisfying recurrence relation (40). We will show that {Q′j} is uniquely de-
termined by Q0, and thus if we fix Q0 = I, the matrices {Q′j} will be the

coefficients of Exp⊗nρ . Given a term Q′i−1 of the sequence {Q′j} for i ≥ 1,
define

Wi = M2(Q′i−1)(1) + E1(Q′i−1)(1)d[θ](i),

so that by (40)

(41) Wi = Q′id[η](i) − (Mm +N1)Q′id[θ](i) −M1Q
′
i.

Then, denote M1 = Md +Mn, where Md is the diagonal part of M1 and
Mn is the nilpotent (super-diagonal) part. Then collect the diagonal and
off-diagonal terms of (41) to obtain

Wi = (ηq
i

I − θqiMm −Md)Q
′
i +Q′iN

(i)
η(42)

− θqiN1Q
′
i −MmQ

′
iN

(i)
θ −N1Q

′
iN

(i)
θ −MnQ

′
i,

where we recall the definition of Nθ and Nη from (22). Next, we denote the
matrix MD = ηq

i

I − θqiMm −Md, and note that it is diagonal and invert-
ible. Define

βi : Matn(H)→ Matn(H)

to be the Fq-linear map given for Y ∈ Matn(H) by

(43) Y 7→M−1
D (Y N (i)

η − θq
i

N1Y −MmY N
(i)
θ −N1Y N

(i)
θ −MnY ).
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Note that βi is a nilpotent map with order at most 2n− 1, since each matrix
in definition (43), exceptMD, is strictly upper triangular, and thus each term
of β2n−1

i will have at least n strictly upper triangular matrices on either the
left or the right of each matrix Y . Then, using the map βi and rearranging
slightly we can rewrite (42) as

(44) Q′i + βi(Q
′
i) = M−1

D Wi.

Applying βji to (44), multiplying by (−1)j , then adding these together for
j ≥ 1 gives a telescoping sum. Since βi is nilpotent with order at most 2n− 1,
we find

(45) Q′i =

2n−1∑
j=0

(−1)jβji (M
−1
D Wi).

Thus we have determined Q′i uniquely in terms of Q′i−1, and so each element
in the sequence {Q′j} is determined by Q0. If we require that Q0 = I, then

the matrices {Q′j} are the coefficients of Exp⊗nρ . Further, since MD and each
matrix in the definition of βi is in Matn(H), we see that the exponential
function coefficients Qi ∈ Matn(H). �

We now return to the proof of Theorem (4.1).

Proof of Theorem (4.1). We first recall that γ0,` = g` and hence by (38) we
have C0 = I = Q0, so that the theorem is true trivially for i = 0. We then
show that the sequence of matrices {Ci} satisfies the recurrence in Lemma
4.3 for i ≥ 1. First observe that by Proposition 3.1(e)

(46) d[θ]g = tg − fnEθg(1) and d[η]g = yg − fnEηg(1),

with g defined as in (27). Using (46), we write(
M2C

(1)
i−1 + E1C

(1)
i−1d[θ](i) − Cid[η](i) + (N1 +Mm)Cid[θ](i) +M1Ci

)
g(i)

=
(
M2C

(1)
i−1 + tE1C

(1)
i−1 − yCi + t(N1 +Mm)Ci +M1Ci

)
g(i)

−
(
E1C

(1)
i−1E

(i)
θ − CiE

(i)
η + (N1 +Mm)CiE

(i)
θ

)
fng(i).

We examine the first term in the right hand side of the above equation,
which we denote

(47) T1 =
(
M2C

(1)
i−1 + tE1C

(1)
i−1 − yCi + t(N1 +Mm)Ci +M1Ci

)
g(i),
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and the second term, which we denote

(48) T2 =
(
E1C

(1)
i−1E

(i)
θ − CiE

(i)
η + (N1 +Mm)CiE

(i)
θ

)
fng(i),

separately. By the discussion immediately following (39) we see that (47)
equals

T1 = (M2 + tE1)γ
(1)
i−1 + (−yI + t(Mm +N1) +M1)γi + α

(1)
i−1 + αi

= M ′2γ
(1)
i−1 +M ′1γi + α

(1)
i−1 + αi,

with M ′1 and M ′2 as given in (31). Then, writing out the coordinates of γ
using the functions γi,` from (37) and finding a common denominator gives

T1 =
1

(ff (1) · · · f (i−1))n

(
M ′1g +M ′2f

ng(1) + α
(1)
i−1 + αi

)
=

1

(ff (1) · · · f (i−1))n

(
α

(1)
i−1 + αi

)
,

since M ′1g +M ′2f
ng(1) = 0 by Proposition 3.3(b). Thus T1 vanishes

coordinate-wise with order at least n at Ξ(i), because the functions α` from
(39) each vanish with order at least n at Ξ(i). Further, the presence of the
factored-out fng(i) shows that T2 from (48) also vanishes coordinate-wise
with order at least n at Ξ(i). Thus we see that(

M2C
(1)
i−1 + E1C

(1)
i−1d[θ](i) − Cid[η](i) + (N1 +Mm)Cid[θ](i) +M1Ci

)
g(i)

consists of a constant matrix in Matn(H) multiplied by g(i), and equals a
vector of functions which vanishes coordinate-wise with order at least n at
Ξ(i). However, recall from (17) that ordΞ(i)(g

(i)
j ) = j − 1, and thus(

M2C
(1)
i−1 + E1C

(1)
i−1d[θ](i) − Cid[η](i) + (N1 +Mm)Cid[θ](i) +M1Ci

)
= 0

identically, which proves that {Ci} satisfies the recursion equation (40) and
proves the proposition. �

Corollary 4.4. For z ∈ C∞ we have the formal expression

Exp⊗nρ


z
0
...
0

 =


z
0
...
0

+

∞∑
i=0

zq
i

g
(i)
1 (ff (1) · · · f (i−1))n

·


g1

g2
...
gn


∣∣∣∣∣
Ξ(i)

.
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Proof. This follows from Theorem 4.1 by evaluating (38) at Ξ(i), noticing

that g
(i)
j (Ξ(i)) vanishes for j ≥ 2, then solving for c`,1. �

Remark 4.5. Theorem 4.1 and Corollary 4.4 should be considered gener-
alizations Proposition 2.2.5 of [5] and of the remark that follow it.

5. Coefficients of the logarithm function

The coefficients for the logarithm function associated to a rank 1 sign-
normalized Drinfeld module were first studied by Anderson (see [39, Prop.
0.3.8]) and are described in (14). The coefficients for the logarithm associated
to the nth tensor power of the Carlitz module were studied by Anderson and
Thakur, who give formulas for the lower right entry of these matrix coeffi-
cients in [5, §2.1]. Recently, Papanikolas has written down explicit formulas
using hyperderivatives in [29, 4.3.1 and Prop. 4.3.6(a)]. In this section we
develop new techniques to write down explicit formulas for the coefficients
of the logarithm function Log⊗nρ associated to the nth tensor power of rank
1 sign-normalized Drinfeld modules. Our method was inspired by ideas of
Sinha from [36] (see in particular his “main diagram” in section 4.2.3). How-
ever, where Sinha uses homological constructions to prove the commutativity
of his diagram, we take a more direct approach using Anderson generating
functions for ours.

For g ∈ N = Γ(U,OE(−nV (1))) with deg(g) = mn+ b with 0 ≤ b ≤ q −
1, define the map

ε : N → Cn∞,

by writing g in the σ-basis for N described in Proposition 3.1(a),

(49) g =

m∑
i=0

n∑
j=1

b
(−i)
j,i (ff (−1) · · · f (1−i))nh

(−i)
n−j+1,

where we denote bi = (b1,i, b2,i, . . . , bn,i)
>, and set

(50) ε(g) = b0 + b1 + · · ·+ bm.
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We define the following diagram of maps, where we recall the definition
of M from §3 and of Ω from (25)

(51)

Ω
τ−fn

> N
ε
> Cn∞

Mn

T
∨ −RESΞ

> Cn∞
Exp⊗n

ρ

>

and where the maps T and RESΞ are defined in (26) and (36) respectively.
We remark that using the operator τ − fn one quickly sees that Ω ⊂M.

One of the main goals of this section is to prove that the diagram com-
mutes. Before we prove this, however, observe that if u ∈ Cn∞ is not a period
of Exp⊗nρ , then G⊗nu ∈Mn is not in the image of T in diagram 51. We require
a preliminary result which allows us to modify G⊗nu to be in the image of T .
For u ∈ Cn∞, write the coordinates of G⊗nu from (35) as

G⊗nu (t, y) = (k1(t, y), k2(t, y), . . . , kn(t, y))>,

and then define the vector

k = (k1([n]V ), k2(V (1) + [n− 1]V ),

k3([2]V (1) + [n− 2]V ), . . . , kn([n− 1]V (1) + V ))>.

Next we define the vector valued function

(52) J⊗nu := (j1(t, y), j2(t, y), . . . , jn(t, y))> := G⊗nu − k,

and note that jk vanishes at the point [k − 1]V (1) + [n− k + 1]V . Also de-
note

w := (w1(t, y), w2(t, y), . . . , wn(t, y))> := (G− E1τ)(J⊗nu ) ∈ T(y)n,

where G− E1τ is the operator defined in (29), and let z := Exp⊗nρ (u) and

denote its coordinates z := (z1, z2, . . . , zn)>.

Proposition 5.1. The vector w is in H[t, y]n and equals

w =


z1 · (t− t(V (1) + [n− 1]V ))

z2 · (t− t([2]V (1) + [n− 2]V ))
...

zn−1 · (t− t([n− 1]V (1) + [1]V ))

zn · (t− t([n]V (1)))

 .



i
i

“4-Green” — 2020/3/6 — 21:37 — page 1653 — #25 i
i

i
i

i
i

Drinfeld module zeta values 1653

Proof. By Proposition 3.3(a), Proposition 3.4(d) and (24) we write

w′ := (w′1(t, y), w′2(t, y), . . . , w′n(t, y))> := (G− E1τ)(G⊗nu )(53)

= M−1
δ

[
− c1ρ

⊗n
y (z) + ρ⊗nt2 (z) + (t+ c2)ρ⊗nt (z)

+ (t2 + c2t+ c4)z− (Mτ +Mm)(ρ⊗ny (z) + (y + c1t+ c3)z)
]
.

In particular, from the last line of the above equation we see that w′ is a
vector of rational functions in the space H(t, y). Further, for each rational
function w′i, the highest degree term in the numerator is zkt

2 and the highest
degree term in the denominator is t (coming from the matrix M−1

δ ). Thus
each w′i is a rational function in H(t, y) of degree 2 (recall the deg(t) = 2)
with s̃gn(w′i) = zk. We also observe that

(G− E1τ)(k) ∈ H(t, y)

and that each coordinate has degree 1. This implies that each wi is in H(t, y)
and has degree 2 with s̃gn(wi) = zk. Writing out the action of G− E1τ on
the coordinates of J⊗nu we obtain equations for 1 ≤ m ≤ n

(54) jm
gm+1

gm
− jm+1 = wm.

From (29), Proposition 3.1(d) and (53) we see that the only points at which
wk might have poles are the zeros of δk, namely the points

[k − 1]V (1) + [n− k + 1]V and [−(k − 1)]V (1) − [n− k + 1]V.

We remark that this shows that the coordinates of w are regular at Ξ(i)

for i ≥ 0, even though the coordinates of J⊗nu themselves have poles at Ξ(i).
Recall from Proposition 3.4(c) that the only poles of jk occur at ∞ and
Ξ(i) for i ≥ 0 and from (52) that jk vanishes at [k − 1]V (1) + [n− k + 1]V ,
while from Proposition 3.1(c) we observe that gk+1/gk is regular away from
infinity except for a simple pole at [k − 1]V (1) + [n− k + 1]V . Therefore,
the equations in (54) show that each coordinate wk is regular at the points
[k − 1]V (1) + [n− k + 1]V and [−(k − 1)]V (1) − [n− k + 1]V . Thus, the co-
ordinates wk, being rational functions of degree 2 in H(t, y), which are regu-
lar away from∞, are actually in H[t, y]. Further, we see from (54) that each
function wk vanishes at the point [k]V (1) + [n− k]V . Since we know that
s̃gn(wi) = zk, and since we’ve identified one of the zeros of wi, we find using
the Riemann-Roch theorem that wk = zk(t− t([k]V (1) + [n− k]V ). �
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Theorem 5.2. Diagram (51) commutes. In other words, for h ∈ Ω, if we
let

(τ − fn)(h) = g ∈ N

and let −RESΞ(T (h)) = u, then we have ε(g) = Exp⊗nρ (u).

Proof. First observe that the case for n = 1 is proved in Theorem 5.1 of
[23]. For the rest of the proof, assume n ≥ 2. Write deg(g) = mn+ b with
0 ≤ b ≤ q − 1, and for 0 ≤ i ≤ m let ui be any element in C∞ such that

(55) Exp⊗nρ (ui) = bi,

where bi is defined for g ∈ H in (49). The main method for the proof of
Theorem 5.2 is to write T (h) in terms of Anderson generating functions. To
do this we compare the result of T (h) under the G− E1τ operator with the
result of J⊗nui under G− E1τ for 0 ≤ i ≤ m.

By the definition (29) we see that for any γ ∈ C∞(t, y)

(56) (G− E1τ)(T (γ)) = (0, . . . , 0, g
(1)
1 (fnγ − γ(1)))>.

Since fnh− h(1) = g, using the notation of (49) we can write
(57)

(G− E1τ)(T (h)) = (0, . . . , 0, g
(1)
1

m∑
i=0

n∑
j=1

b
(−i)
j,n−i+1(ff (−1) · · · f (1−j))nh

(−j)
i )>.

Next, we analyze (G− E1τ)(Jui) for 0 ≤ i ≤ m. For the equations in
(54), if we set i = 1, then we can solve for j2. We then substitute that into
the equation for i = 2, then solve that for j3, and so on to get equations for
2 ≤ m ≤ n

(58) j1
gm+1

g1
− jm+1 = wm + wm−1

gm+1

gn
+ wn−2

gm+1

gn−1
+ · · ·+ w1

gm+1

g2
,

where we understand jn+1 = j
(1)
1 . We note that the functions jk and wk

depend implicitly on ui. Using these equations we find that
(59)

J⊗nui +

(
0, w1, w2+w1

g3

g2
, . . . , wn−1+wn−2

gn
g2

+· · ·+w1
gn
gn−1

)>
=T (j1/g1) .
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In general we will call I⊗nui := T (j1/g1), noting the implicit dependence on
ui. Then by (56) and by (58) with m = n we find

(G− E1τ)(I⊗nui )(60)

=

(
0, . . . , 0, wn + wn−1

g
(1)
1 fn

gn
+ wn−2

g
(1)
1 fn

gn−1
+ · · ·+ w1

g
(1)
1 fn

g2

)>
.

Denote the entry in the nth coordinate of the last equation as

`ui := wn + wn−1
g

(1)
1 fn

gn
+ wn−2

g
(1)
1 fn

gn−1
+ · · ·+ w1

g
(1)
1 fn

g2
,

so that we can restate (58) with m = n as

(61)
j1g

(1)
1 fn

g1
= j

(1)
1 + `ui .

Observe then by Proposition 3.1(b) and by Proposition 5.1 for 1 ≤ k ≤ n
that

wn−k+1
g

(1)
1 fn

gn−k+2
= bn−k+1,ig

(1)
1 hk,

so (60) becomes

(G− E1τ)(I⊗nui ) =
(

0, . . . , 0, g
(1)
1 (bn,ih1 + bn−1,ih2 + · · ·+ b1,ihn)

)>
For the vector ui from (55), denote

(62) hui = bn,ih1 + bn−1,ih2 + · · ·+ b1,ihn,

and notice that `ui = g
(1)
1 hui . Specializing the above discussion to i = 0, we

see that the nth coordinate of (G− E1τ)(I⊗nu0
) matches up with the first n

terms of the nth coordinate of (G− E1τ)(T (h)) from (57).
In general for i > 0 we find that

(f (−1)f (−2) · · · f (−k))ndiag

(
g1

g
(−k)
1

, . . . ,
gn

g
(−k)
n

)
(I⊗nui )(−k)

= T

((
(ff (1) · · · f (k−1))nj1

g1

)(−k)
)
,
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and to ease notation, for k ≥ 1 let us denote the matrix

Rk := (f (−1)f (−2) · · · f (−k))ndiag

(
g1

g
(−k)
1

, . . . ,
gn

g
(−k)
n

)
.

Then we use (61) k times and apply the fact that T is linear to obtain

Rk(I
⊗n
ui )(−k) = T

((
(ff (1) · · · f (k))nj1

g1

)(−k)
)

= I⊗nui + T

(
`
(−1)
ui

g1

)
+ · · ·+ T

(
(f (2−k) · · · f (−1))n`

(1−k)
ui

g
(2−k)
1

)

+ T

(
(f (1) · · · f (−1))n`

(−k)
ui

g
(1−k)
1

)
.(63)

Then, if we let the operator (G− E1τ) act on Rk(I
⊗n
ui )(−k), applying (56)

to the last line of (63) we obtain a telescoping sum, and find that

(G− E1τ)(Rk(I
⊗n
ui )(−k)) =

(
0, . . . , 0, g

(1)
1 (ff (−1) · · · f (1−k))nh

(−k)
ui

)>
,

for hui defined in (62). Note again that the terms in the last coordinate of
the above vector are exactly the in+ 1 through (i+ 1)n terms of the last
coordinate of (57).

Also, note that each term in the last line in (63) is coordinate-wise
regular at Ξ except I⊗nui , so

RESΞ(Rk(I
⊗n
ui )(−k)) = RESΞ(I⊗nui ).

Then, recalling that each function wk and each quotient jk+m/jk for 1 ≤
k,m ≤ n is regular at Ξ, using definitions (52) and (59) together with Propo-
sition 3.5(a) we see that

(64) RESΞ(I⊗nui ) = RESΞ(J⊗nui ) = RESΞ(G⊗nui ) = −ui.

Next, define

I = I⊗nu0
+R1I

⊗n
u1

+ · · ·+RmI
⊗n
um ,

and observe by the above discussion that

(G− E1τ)(T (h)− I) = 0.
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Further, for h′ ∈ Ω, by Lemma 3.2 (G− E1τ)(T (h′)) = 0 if and only if
h′ ∈ Ω0. Since I is the sum of elements in the image of the map T , we
see that T (h)− I is itself in the image of the map T . Thus there is some
h′ ∈ Ω0 such that T (h′) = T (h)− I. Then, Proposition 3.4(a) together with
Proposition 3.5(b) implies that for some b ∈ Fq[t, y]

T (h)− I = T (h′) = bG⊗nΠn
.

Finally, by (64), we calculate that

u = −RESΞ(T (h)) = −RESΞ(I + bG⊗nΠn
) = u0 + · · ·+ um + bΠn,

and thus by (50) and (55) we obtain

Exp⊗nρ (u) = Exp⊗nρ (u0 + · · ·+ um + bΠn) = b0 + · · ·+ bm = ε(g).

�

Having proven that diagram (51) commutes, we now apply the maps
from the diagram to write down formulas for the coefficients of Log⊗nρ . First,
for dj ∈ C∞ define the function

(65) c(t, y) = dnh1 + · · ·+ d1hn ∈ N ⊂ A,

where hj are from Proposition 3.1(a). Then define the formal sum

(66) B(t, y; d) = −
∞∑
i=0

c(i)

(ff (1)f (2) · · · f (i))n

for the vector d = (d1, . . . , dn)> ∈ Cn∞. We remark that B(t, y; d) is similar
to the function Lα(t) defined by Papanikolas in [30, §6.1].

Lemma 5.3. There exists a constant C0 > 0 such that for |dj | ≤ C0, the
function B is a rigid analytic function in Γ(U,OE(n(Ξ))), the space of rigid
analytic functions on U with at most a pole of order n at Ξ.

Proof. Using (10) together with the facts that deg(θ) = deg(α) = 2, deg(η) =
3 and deg(m) = q, for k ≥ 1 we find that f (k) ∈ Tθ[y] and∥∥∥f (k)

∥∥∥
θ

= qq
k+1

.
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This implies that

(67)

∥∥∥∥ c(t, y)(i)

f (1) · · · f (i)

∥∥∥∥
θ

= ‖c(t, y)‖q
i

θ · q
(−n(qi+2−q2)/(q−1)).

Since each hi ∈ A, we see that ‖hi‖θ is finite, and thus we can choose C0 > 0
small enough such that for all dj ∈ C∞ with |dj | ≤ C0 the norm∥∥∥∥ c(t, y)(i)

f (1) · · · f (i)

∥∥∥∥
θ

→ 0

as i→∞. This guarantees that for such dj , the function

∞∑
i=0

c(i)

(f (1)f (2) · · · f (i))n
∈ Tθ[y].

To finish the proof, we simply note that

B = − 1

fn
·
∞∑
i=0

c(i)

(f (1)f (2) · · · f (i))n
.

�

Theorem 5.4. For z ∈ Cn∞ inside the radius of convegence of Log⊗nρ , if we
write

Log⊗nρ (z) =

∞∑
i=0

Piz
(i),

for n ≥ 2, then for λ the invariant differential defined in (2.1)

(68) Pi =

〈
ResΞ

(
gjh

(i)
n−k+1

(ff (1) · · · f (i))n
λ

)〉
1≤j,k≤n

and Pi ∈ Matn(H) for i ≥ 0.

Remark 5.5. As for Theorem 4.1, we remark that the above theorem holds
for n = 1, but again for ease of exposition in the proof we restrict to the case
of n ≥ 2.

Proof. One quickly observes from the definition of B, that (τ − fn)(B) =
c(t, y), and thus B ∈ Ω. Denote u := −RESΞ(T (B)), so that by Theorem 5.2
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combined with the definition of the map ε in (50) and (65)

Exp⊗nρ (u) = ε(c(t, y)) = (d1, d2, . . . , dn)>.

We wish to switch our viewpoint to thinking about −RESΞ(T (B)) as a
vector-valued function with input (d1, . . . , dn)> , |di| < C0, where C0 is the
constant defined in Lemma 5.3. For D0 the hyper-disk in Cn∞ of radius C0,
we define B̃ : D0 → Cn∞, for d ∈ D0, as

B̃(d) = −RESΞ(T (B(t, y; d)).

From the above discussion, we find that

Exp⊗nρ ◦ B̃ : D0 → Cn∞

is the identity function. Writing out the definition for B̃ gives

(69) B̃ = −

ResΞ(Bg1λ)
...

ResΞ(Bgnλ)

 =


ResΞ(

∑∞
i=0

∑n
j=1

(djhn−j+1)(i)

(ff (1)f (2)···f (i))n g1λ)
...

ResΞ(
∑∞

i=0

∑n
j=1

(djhn−j+1)(i)

(ff (1)f (2)···f (i))n gnλ)

 ,

which we can express as an Fq-linear power series with matrix coefficients

B̃ =

∞∑
i=0

〈
ResΞ

(
gjh

(i)
n−k+1

(ff (1) · · · f (i))n
λ

)〉
1≤j,k≤n

d1
...
dn


(i)

.

We conclude that Exp⊗nρ ◦ B̃ is an Fq-linear power series which as a function
on D0 is the identity. Recall that Log⊗nρ is the functional inverse of Exp⊗nρ
on the disk with radius rL. Thus, on the disk with radius min(C0, rL) we
have the functional identity

B̃ = Log⊗nρ .

Comparing the coefficients of the above expression, and recalling that f , gi
and hi are defined over H finishes the proof. �
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Corollary 5.6. For the coefficients Pi for i ≥ 0 of the function Log⊗nρ , the
bottom row of Pi can be written as

(70)

〈
h

(i)
n−k+1

h1(f (1) · · · f (i))n

∣∣∣∣
Ξ

〉
1≤k≤n

.

Proof. Recall from (17) and (18) that ordΞ(gj) = ordΞ(hj) = j − 1 and from
(9) that ordΞ(f) = 1. This implies that, for i = 0, each coordinate of the
bottom row of the matrix (68) is regular at Ξ except the last coordinate,
which equals

Res

(
gnh1

fn
λ

)
= h1(Ξ) · ResΞ

(
gn
fn
λ

)
.

Using various facts from Proposition 3.1, and observing that h1 is regular
at Ξ and that t− θ is a uniformizer at Ξ, a short calculation gives

ResΞ

(
gn
fn
λ

)
= ResΞ

(
δn
h2
λ

)
= ResΞ

(
− νn ◦ [−1]

h1(t− θ)
λ

)
= −νn(−Ξ)

h1(Ξ)
· 1

2η + c1θ + c3
,

where [−1] : E → E denotes negation on E. Finally, one calculates from
the definition of νn from Proposition 3.1(d) that νn(−Ξ) = −2η − c1θ − c3,
which implies that

(71) ResΞ

(
gn
fn
λ

)
=

1

h1(Ξ)
.

Thus, for i = 0, the bottom row of (68) equals (0, . . . , 0, 1), which is the
bottom row of Q0 = I.

Then, for i ≥ 1 note that the only functions in the bottom row of (68)
which have zeros or poles at Ξ are gn and fn, and that the quotient gn/f

n

has a simple pole at Ξ, thus

ResΞ

(
gnh

(i)
n−k+1

(ff (1) · · · f (i))n
λ

)
=

h
(i)
n−k+1

(f (1) · · · f (i))n

∣∣∣∣
Ξ

ResΞ

(
gn
fn
λ

)
,

which completes the proof using (71). �

Remark 5.7. Theorem 5.4 and Corollary 5.6 should be compared with the
middle and last equalities in (14), respectively.
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6. Zeta values

In [5], Anderson and Thakur analyze the lower right coordinate of the coef-
ficient Pi of the logarithm function for tensor powers of the Carlitz module
to obtain formulas similar to the ones we have provided in §5. They then
define a polylogarithm function and use their formulas to relate this to zeta
values,

ζ(n) =
∑

a∈Fq[θ]
sgn(a)=1

1

an
,

for all n ≥ 1. In this section, we prove a similar theorem for tensor powers
of Drinfeld A-modules, but at the present it is unclear how to generalize
the special polynomials which Anderson and Thakur used in their proof
(the now eponymous Anderson-Thakur polynomials) to tensor powers of A-
modules, and so we developed new techniques. Presently, we only consider
values of n ≤ q − 1 because these allow us to appeal to formulas from [23].

Remark 6.1. We remark that Pellarin, Angles, Ribeiro and Perkins de-
velope a multivariable version of L-series in [7]-[8], [32], [33] and that it is
possible that such considerations could enable one to obtain formulas for all
zeta values; this is an area of ongoing study.

To define a zeta function for a rank 1 sign-normalized Drinfeld module
ρ : A→ H[τ ], we first define the left ideal of H[τ ] for an ideal a ⊆ A by

Ja = 〈ρa | a ∈ a〉 ⊆ H[τ ],

where we recall that a = χ(a) from §2. Since H[τ ] is a left principal ideal
domain [21, Cor. 1.6.3], there is a unique monic generator ρa ∈ Ja, and we
define ∂(ρa) to be the constant term of ρa with respect to τ . Let φa ∈
Gal(H/K) denote the Artin automorphism associated to a, and let the B
be the integral closure of A in H. We define the zeta function associated to
ρ twisted by the parameter b ∈ B to be

(72) ζρ(b;n) :=
∑
a⊆A

bφa

∂(ρa)n
,
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Theorem 6.2. For b ∈ B nonzero and for n ≤ q − 1, there exists a vector
(∗, . . . , ∗, Cζρ(b;n))> ∈ Cn∞ such that

d := Exp⊗nρ


∗
...
∗

Cζρ(b;n)

 ∈ Hn,

where C = (−1)n+1h1(−Ξ)
θ−t([n]V (1)) ∈ H.

Remark 6.3. We remark that the vector d is explicitly computable as
outlined in the proof of Theorem 6.2.

Remark 6.4. One would like to be able to express the above theorem in
terms of evaluating Log⊗nρ at a special point and then getting a vector with
ζρ(n) as its bottom coordinate, as is done in [5]. However, one discovers that
d is not necessarily within the radius of convergence of Log⊗nρ , and in fact
d can be quite large (see Example 8.3)! One could use Thakur’s idea from
[38, Thm. VI] to decompose d into small pieces which are each individually
inside the radius of convergence of the logarithm for specific examples and
one could likely develop a general theory of how to do this. We do not pursue
this idea here because of space considerations and because it does not seem
fundamental to the theory.

Before giving the proof of Theorem 6.2 we require several additional
definitions and preliminary results. First, we denote H as the Hilbert class
field of K (which is the fraction field of A), and denote Gal(H/K) as the
Galois group of H over K. Then we observe that elements φ ∈ Gal(H/K)
act on elements in the compositum field HH by applying φ to elements of
H and ignoring elements of H. We also define the (isomorphic) Galois group
Gal(H/K) and observe that elements φ ∈ Gal(H/K) act on the compositum
field HH by applying φ to elements of H and ignoring elements of H. Let
p ⊆ A be a degree 1 prime ideal, to which there is an associated point P =
(t0, y0) ∈ E(Fq) such that p = (θ − t0, η − y0), and let φ = φp ∈ Gal(H/K)
denote the Artin automorphism associated to p via class field theory. Define
the reciprocal power sums

(73) Si(n) =
∑
a∈Ai+

1

an
, Sp,i(n) =

∑
a∈pi+

1

an
,
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where A+ is the set of monic elements of A, where Ai+ is the set of monic,
degree i elements of A, where p+ is the set of monic elements of the ideal p
and where pi+ is the set of monic, degree i elements of p. Then define the
sums

(74)

Z(1)(b;n) = b
∑
i≥0

Si(n) = b
∑
A+

1

an
,

Zp(b;n) = bφ
−1

(−f(P )φ
−1

)n
∑
a∈p+

1

an
.

We next prove a proposition which allows us to connect ζρ(b;n) to the
sums given above. Much of our analysis follows similarly to that in [23, §7-8],
and we will appeal to it frequently throughout the remainder of the section.

Proposition 6.5. Let pk for 2 ≤ k ≤ h be the degree 1 prime ideals as
described above which represent the non-trivial ideal classes of A where h is
the class number of A and set p1 = (1). Then, for n ∈ N we can write the
zeta function

ζρ(b;n) = Zp1
(b;n) + · · ·+ Zph(b;n).

Proof. Define the sum

Z̃pk(b;n) =
∑
a∼pk

bφa

∂(ρa)n
,

where the sum is over integral ideals a equivalent to pk in the class group of
A, and observe

ζρ =

h∑
k=1

Z̃pk .

Then, for 1 ≤ k ≤ h, the fact that Z̃pk(b;n) = Zpk(b;n) follows from slight
modifications to equations (98)-(100) and Lemma 7.10 from [23]. �

Now, we let {wi}∞i=2 (the reader should not confuse these with the coor-
dinates wi of w from §5) be the sequence of linear functions with s̃gn(wi) = 1
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and divisor

(75) div(wi) = (V (i−1) − V ) + (−V (i−1)) + (V )− 3(∞)

and let {wp,i}∞i=2 be the sequence of functions with s̃gn(wp,i) = 1 and divisor

(76) div(wp,i) = (V (i−2) − V − P ) + (−V (i−2)) + (V ) + (P )− 4(∞).

We now extend Theorem 6.5 from [23] to values 1 ≤ n ≤ q − 1, where we
recall the definition of ν(t, y) from (11).

Proposition 6.6. For 1 ≤ n ≤ q − 1 we find

Si(n) =

(
ν(i)

w
(1)
i · f (1) · · · f (i)

)n ∣∣∣∣∣
Ξ

, Sp,i(n) =

(
ν(i−1)

w
(1)
p,i · f (1) · · · f (i−1)

)n ∣∣∣∣∣
Ξ

.

Proof. The proof of this proposition involves a minor alteration to the proof
given for Proposition 6.5 in [23]. Namely, for the deformation Ri,s(t, y) one
sets s = q − n (rather than s = q − 1 as is done in [23]) then one solves for
Si(n) as is done in the original proof. The proof for Sp,i(n) is similar. �

Using equations (82) and (117) from [23] we see that

(77)
δ(1)

w
(1)
i

∣∣∣∣
Ξ

=
f

t− θ

∣∣∣∣
V (i)

=
f(V (i))

−δ(i)(Ξ)
,

which inspires the definition

(78) G :=
β + β + c1α+ c3

α− α
− β

q
+ β + c1α+ c3

αq − α
.

Recall that V = (α, β) from (8), that ci ∈ Fq are from (3) and for x ∈ H
that x = χ(x) as in (4). Observe by (10) and (12) that G(i)(Ξ) = f(V (i))
and combining this with (77) that

(79)
δ(1)

w
(1)
i

∣∣∣∣
Ξ

= −
(
G

δ

)(i) ∣∣∣∣
Ξ

.

Finally, we define

G̃b =
∑

φ∈Gal(H/K)

b
φ
(Gφ)n.
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Proposition 6.7. We have fnG̃b ∈ N ∩H[t, y], where N is the dual A-
motive from (15).

Proof. Our function G equals the function F from [23, (125)] (there they
set φ = α and ψ = β), and so our function G̃b differs from the function gb
from [23, (126)] only by the nth power in our definition. The proof of this
theorem follows as in the proof of Theorem 8.7 from [23], replacing F by Gn

and multiplying the divisors by a factor of n where appropriate. We arrive at
the statement that the polar divisor of G̃b equals −n(Ξ)− (nq − deg(b))(∞),
and that G̃b vanishes with degree at least n at V so that fn · G̃ ∈ N as
desired. Finally, since the coefficients of f and G are all in H, we conclude
that fnG̃b ∈ H[t, y]. �

We are now equipped to give the proof of Theorem 6.2.

Proof of Theorem 6.2. Our starting point is Proposition 6.5,

(80) ζρ(b;n) = Zp1
(b;n) + · · ·+ Zph(b;n)

where we recall that for a degree 1 prime ideal p and its associated Galois
automorphism φ

(81) Zp(b;n) = bφ
−1

(−f(P )φ
−1

)n
∑
a∈p+

1

an
= bφ

−1

(−f(P )φ
−1

)n
∞∑
i=0

Sp,i(n).

If we let [−1] denote the negation isogeny on E, by comparing divisors and
leading terms of the functions in (11) and (18) we find

(82) (δ(1))n =
(−1)n+1(h1)(h1 ◦ [−1])

t− t([n]V (1))
.

We will denote C = (−1)n+1(h1◦[−1])
t−t([n]V (1))

∣∣∣∣
Ξ

∈ H. Note that we also have C =

(δ(1))n

h1

∣∣∣∣
Ξ

. So by (11) we find that (Ξ) is not contained in the support of

the divisor of (δ(1))n. Further, by setting j = 1 in (18) we see that (Ξ) is not
contained in the support of the divisor of h1 (if Ξ = −[n]V (1) this quickly
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leads to a contradiction) and so consequently C 6= 0. Combining (74), Propo-
sition 6.6, (79) and (82) we find

(83) Z(1)(b;n) =

∞∑
i=0

b
(

(−fG)(i)
)n

C · h1

(
f (1) · · · f (i)

)n
∣∣∣∣∣
Ξ

.

Next, we temporarily fix a prime p = pk for 2 ≤ k ≤ h. The combination
of equations (86) and (118) and Lemma 7.12 from [23] gives

1

w
(1)
p,i+1

= − f
φ−1

t− θ

∣∣∣∣
V (i)

· 1

δ(1)(Ξ)
· 1

f(P )φ−1(84)

= fφ
−1

∣∣∣∣
V (i)

· 1

δ(1)(Ξ)δ(i)(Ξ)
· 1

f(P )φ−1 ,

since t− θ(V (i)) = −δ(i)(Ξ). Then, (81) and Proposition 6.6 together with
(84) and the fact that Sp,0 = 0 gives

(85) Zp(b;n) = (−1)nbφ
−1

∞∑
i=0

(
f (i)

δ(1)f (1) · · · f (i)

)n ∣∣∣∣∣
Ξ

·
(
fφ

−1
)n ∣∣∣∣

V (i)

We observe by (10) and (78) that fφ
−1(

V (i)
)

=
(
Gφ

−1)(i)
(Ξ) and so by (82)

this gives

(86) Zp(b;n) =

∞∑
i=0

b
φ

−1 (
(−fGφ

−1

)n
)(i)

Ch1

(
f (1) · · · f (i)

)n
∣∣∣∣∣
Ξ

.

Therefore, returning to (80) we see by (83) and (86) that
(87)

ζρ(b;n) =

∞∑
i=0

∑
φ∈Gal(H/K)

b
φ
(

(−fGφ)n
)(i)

Ch1

(
f (1) · · · f (i)

)n
∣∣∣∣∣
Ξ

=

∞∑
i=0

(
(−1)nfnG̃b

)(i)

Ch1

(
f (1) · · · f (i)

)n
∣∣∣∣∣
Ξ

.

From the proof of Proposition 6.7 we see that deg(fnG̃b) = n(q + 1) + deg(b)
and from (19) that deg(σj(hk)) = n(j + 1) + k. Let us write deg(b) =
en+ b′ where 0 ≤ b′ ≤ n− 1 so that deg(fnG̃b) = n(q + e+ 1) + b′. Since
(−1)n(f G̃b)

n ∈ N by Proposition 6.7, we can express it in terms of the basis
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from Proposition 3.1(a) with coefficients dk,j ∈ K,

(−1)nfnG̃b =

q+e∑
j=0

n∑
k=1

dk,jσ
j(hn−k+1)(88)

=

q+e∑
j=0

n∑
k=1

dk,j(ff
(−1) · · · f (1−j))nh

(−j)
n−k+1,

where we comment that dk,q+e = 0 for k > b′. Since (−1)nfnG̃b ∈ H[t, y] by
Proposition 6.7, a short calculation involving evaluating (88) at Ξ(k) for

0 ≤ k ≤ q + e shows that d
(j)
k,j ∈ H. Substituting formula (88) into (87) and

recalling that f(Ξ) = 0 gives

ζρ(b;n) =

∞∑
i=0

∑min(i,q+e)
j=0

∑n
k=1 d

(i)
k,jh

(i−j)
n−k+1

C · h1

(
f (1) · · · f (i−j)

)n
∣∣∣∣∣
Ξ

.

We observe that the terms of the above sum are the bottom row of the
coefficients Pi for i ≥ 0 of Log⊗nρ from Corollary 5.6 up to the factor of

d
(i)
k,j/C. Then, since Log⊗nρ is the inverse power series of Exp⊗nρ , if we label

dj = (d1,j , . . . , dn,j)
> ∈ Kn

for 0 ≤ j ≤ q + e and sum over i ≥ 0, then we
find that there exists some vector (∗, . . . , ∗, Cζρ(b;n))>) such that

(
d0 + d

(1)
1 + · · ·+ d

(q+e)
q+e

)
= Exp⊗nρ


∗
...
∗

Cζρ(b;n)

 ∈ Hn.

�

7. Transcendence implications

In this section we examine some of the transcendence applications of The-
orem 6.2. This is in line with Yu’s results on transcendence in [41] for the
Carlitz module, where he proves that the ratio ζρ(n)/π̃n is transcenden-
tal if q − 1 - n and rational otherwise. Yu’s work builds on Anderson’s and
Thakur’s theorem in [5], where they express Carlitz zeta values as the last
coordinate of the logarithm of a special vector in An similarly to how we
have done in Theorem 6.2. In the last couple decades, there has been a surge
of research answering transcendence questions about arithmetic quantities
in function fields, notably [4], [10], [14]-[16], [30] and [42].
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Theorem 7.1. Let ρ be a rank 1 sign-normalized Drinfeld A-module, let
πρ be a fundamental period of expρ and define ζρ(b;n) as in (72) for nonzero
b ∈ B, the integral closure of A in the Hilbert class field of K. Then

dimK SpanK{ζρ(b; 1), . . . , ζρ(b; q − 1), 1, πρ, . . . , π
q−2
ρ } = 2(q − 1).

Our main strategy for proving Theorem 7.1 is to appeal to techniques
Yu develops in [42], where he proves an analogue of Wüstholz’s analytic sub-
group theorem for function fields. Yu’s theorem applies to Anderson Fq[t]-
modules (called t-modules), whereas up till now in this paper we have dealt
only with A-modules. Thus, we switch our perspective slightly by forgetting
the y-action of ρ⊗n in order to view ρ⊗n as an Fq[t]-module with extra en-
domorphisms provided by the y-action. We will denote this Fq[t]-module by
ρ̂⊗n. Under the construction given in §3, the Fq[t]-module ρ̂⊗n corresponds
to the dual t-motive N when viewed as a C∞[t, σ]-module (we have forgot-
ten the y-action on N), which we denote by N ′. Before giving the proof of
Theorem 7.1 we require a couple of lemmas which ensure that ρ̂⊗n satisfies
the necessary properties as a t-module to apply Yu’s theorem.

Lemma 7.2. The Anderson Fq[t]-module ρ̂⊗n is simple.

Proof. We recall the explicit functor between t-modules and dual t-motives
as given in [24, §5.2]. For a t-module φ′ with underlying algebraic group J ⊂
Cn∞, define the dual t-motive N(φ′) (note that this is denoted as M̌(E) in [24,
§5.2]) as HomFq(Ga, J), the C∞[t, σ]-module of all Fq-linear homomorphisms
of algebraic groups over C∞. One defines the C∞[t, σ]-module structure on
N(φ′) by having C∞ act by pre-composition with scalar multiplication, σ act
as pre-composition with the qth-power Frobenius and t acting by t ·m = φ′tm
for m ∈ N(φ′). Note that N(ρ̂⊗n) = HomFq(Ga,Gn

a) is naturally isomorphic
to C∞[τ ]n where σ acts for p(τ) ∈ C∞[τ ]n by σ · p(τ) = p(τ) · τ and C∞
acts by scalar multiplication on the right. To maintain clarity, when we
mean C∞ with the action described above we will denote it as a C′∞. Also
note that N(ρ̂⊗n) is isomorphic to N ′ = Γ(U,OE(nV )) as C∞[t, σ]-modules.

Now suppose that J ⊂ Cn∞ is a non-trivial algebraic subgroup of Cn∞
invariant under ρ̂⊗n(Fq[t]) defined by non-zero Fq-linear polynomials
pj(x1, . . . , xn) ∈ K[x1, . . . , xn] for 1 ≤ j ≤ m. We may assume that one of
the polynomials, which we will denote as p(x1, . . . , xn) has a non-zero term
in x1. Then note that we have the injection of C′∞[t, σ]-modules given by
inclusion

HomFq(Ga, J) ↪→ HomFq(Ga,Gn
a),
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which allows us to view HomFq(Ga, J) as a C′∞[t, σ]-submodule of C′∞[τ ]n,
where the σ-action is given by right multiplication by τ as descrived above.
Then observe that the map given by

p∗ : HomFq(Ga,Gn
a)→ HomFq(Ga,Ga)

is a C′∞-vector space map, that HomFq(Ga,Ga) ∼= C′∞[τ ] and that
HomFq(Ga, J) ⊂ ker(p∗). By considering degrees in τ , we see that the C′∞-
vector subspace (C′∞[τ ], 0, . . . , 0) ⊂ C′∞[τ ]n maps to an infinite dimensional
C′∞-vector subspace of C′∞[τ ] under p∗. This implies that

HomFq(Ga,Gn
a)/HomFq(Ga, J)

also has infinite dimension over C∞.
On the other hand, recall that N ′ = Γ(U,OE(−nV (1))) is isomorphic to

N(ρ̂⊗n) as C∞[t, σ]-modules and that N ′ is an ideal of the ring C∞[t, y].
Given a C∞[t, σ]-submodule J ′ ⊂ N ′ we may choose a non-zero element
h ∈ J ′, and we claim that σ(h) is linearly independent from h over Fq[t]. If
not, then we would have

(89) βh = fnh(−1)

for some β ∈ Fq(t). However, this implies that the rational function fnh(−1)/h
is fixed under the negation isogeny [−1] on E, and in particular, for i 6= 0
we have

(90) ordΞ(i+1)(h)− ord−Ξ(i+1)(h) + ord−Ξ(i)(h)− ordΞ(i)(h) = 0.

Since h is a polynomial in t and y, we see that ordΞ(i)(h)− ord−Ξ(i)(h) = 0
for |i| � 0, thus (90) shows that ordΞ(i)(h)− ord−Ξ(i)(h) = 0 for all i. But
from (89) we see that

ordΞ(fn) + ordΞ(1)(h)− ord−Ξ(1)(h) + ord−Ξ(h)− ordΞ(h) = 0,

which is a contradiction, since ordΞ(fn) = n. So J ′ contains a rank 2 C∞[t]-
submodule and thus J ′ has finite index in N ′ as a C∞-vector space. We
conclude that all the C∞[t, σ]-submodules of N ′ have finite index over C∞
which contradicts our observation in the preceding paragraph, thus ρ̂⊗n must
be simple as a t-module. �

Lemma 7.3. The Anderson Fq[t]-module ρ̂⊗n has endomorphism algebra
equal to A.
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Proof. Recall that endomorphisms of ρ̂⊗n are Fq-linear endomorphisms α
of Cn∞ such that αρ̂⊗na = ρ̂⊗na α for all a ∈ Fq[t]. Thus A is certainly con-
tained in End(ρ̂⊗n). On the other hand, the t-module ρ̂⊗n and the A-module
ρ⊗n both have the same exponential function Exp⊗nρ and same period lat-
tice Λ⊗nρ (given in Proposition 3.5(b)) associated to them. We note, how-
ever, that whereas Λ⊗nρ is a rank 1 A-module, when viewed as an Fq[t]-
module it is rank 2. If we let End0(ρ̂⊗n) = End(ρ̂⊗n)⊗Fq[t] Fq(t) as an Fq(t)-
vector space, then [12, Prop. 2.4.3] implies that [End0(ρ̂⊗n) : Fq(t)] ≤ 2.
Since A ⊂ End(ρ̂⊗n) is a rank 2 Fq[t]-module, we see that [End0(ρ̂⊗n) :
Fq(t)] = 2, and thus End(ρ̂⊗n) is a rank 2 Fq[t]-module containing A. Fur-
ther, A⊗Fq[t] Fq(t) = K, and thus End0(ρ̂⊗n) = K as an Fq(t)-vector space.
Since End(ρ̂⊗n) is finitely generated over A, it is also integrally closed over
A and thus End(ρ̂⊗n) = A. �

Proof of Theorem 7.1. This proof follows nearly identically to the proof of
[42, Thm. 4.1]. First, assume by way of contradiction that

dimK SpanK{ζρ(b; 1), . . . , ζρ(b; q − 1), 1, πρ, . . . , π
q−2
ρ } < 2(q − 1),

so that there is a K-linear relation among the ζρ(b; i) and πjρ for 1 ≤ i ≤ q − 1
and 0 ≤ j ≤ q − 2. Then, let GL be the 1-dimensional trivial t-module and
set

G = GL ×

(
q−1∏
i=1

ρ̂⊗i

)
×

q−2∏
j=1

ρ̂⊗j

 .

For 1 ≤ i ≤ q − 1 set zi = (∗, . . . , ∗, Cζρ(b; i))> ∈ Ci∞ to be the vector from
Theorem 6.2 such that Exp⊗iρ (zi) ∈ H i, where H is the Hilbert class field of

K. For 1 ≤ j ≤ q − 2, let Πj ∈ Cj∞ be a fundamental period of Exp⊗jρ such

that the bottom coordinate of Πj is an H multiple of πjρ as described in
Proposition 3.5(c). Define the vector

u = 1×

(
q−1∏
i=1

zi

)
×

q−2∏
j=1

Πj

 ∈ G(C∞),

and note ExpG(u) ∈ G(H), where ExpG is the exponential function on G.
Our assumption that there is a K-linear relation among the ζρ(b; i) and

πjρ implies that u is contained in a d [Fq[t]]-invariant hyperplane of G(C∞)
defined over K. This allows us to apply [42, Thm. 3.3], which says that
u lies in the tangent space to the origin of a proper t-submodule H ⊂ G.
Then, Lemmas 7.2 and 7.3 together with [42, Thm 1.3] imply that there
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exists a linear relation of the form aζρ(b; j) + bπjρ = 0 for some a, b ∈ H and

1 ≤ j ≤ q − 2. Since ζρ(b; j) ∈ K∞ and since H ⊂ K∞, this implies that πjρ ∈
K∞. However, we see from the product expansion for πρ in [23, Thm. 4.6

and Rmk. 4.7] that πjρ ∈ K∞ if and only if q − 1|j, which cannot happen
because j ≤ q − 2. This provides a contradiction, and proves the theorem.

�

Corollary 7.4. For 1 ≤ i ≤ q − 1, the quantities ζρ(b; i) are transcenden-

tal. Further, the ratio ζρ(b; i)/π
j
ρ ∈ K for 0 ≤ j ≤ q − 1 if and only if i =

j = q − 1.

Proof. The transcendence of ζρ(b; i), as well as the statement that

ζρ(b; i)/π
j
ρ /∈ K for i, j 6= q − 1

follows directly from Theorem 7.1. On the other had, if i = j = q − 1, then
[20, Thm. 2.10] guarantees that ζρ(b; i)/π

j
ρ ∈ K. �

Remark 7.5. We comment that the statement in Corollary 7.4 that ζρ(b; i)
for i = 1 is transcendental can be recovered from Anderson’s theorem on
log-algebraicity from [2, Thm. 5.1.1] together with Yu’s analytic subspace
theorem [42].

8. Examples

Example 8.1. In the case of tensor powers of the Carlitz module (see [29]
for a detailed account on tensor powers of the Carlitz module), the formulas
in Theorems 4.1 and 5.4 for the coefficients of Exp⊗nC and Log⊗nC can be
worked out completely explicitly using hyper-derivatives. For instance, we
find that gi = (t− θ)i−1 and that the shtuka function is f = (t− θ), so the
left hand side of (37) is

γ`,i =
1

(t− θ)n−`(t− θq)n · · · (t− θqi)n
.

We can expand γ`,i in terms of powers of (t− θ) by using hyper-derivatives,
as described in [29, §2.3], namely

γ`,i =

∞∑
j=0

∂jt (γ`,i)

∣∣∣∣
t=θ

· (t− θ)j .
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Using this we recover the coefficients of Exp⊗nC as given in formula (4.3.2) and
Proposition 4.3.6(b) from [29]. The formulas for coefficients of the logarithm
given in (4.3.4) and Proposition 4.3.6(a) from [29] can be derived similarly
using Theorem 5.4.

Example 8.2. Let E : y2 = t3 − t− 1 be defined over F3, and note that
A = Fq[t, y] has class number 1. Then from [39] we find that

f =
y − η − η(t− θ)

t− θ − 1
.

The Drinfeld module ρ associated to the coordinate ring of E is detailed in
Example 9.1 in [23]. Further, the 2-dimensional Anderson A-module ρ⊗2 is
discussed in Example 7.1 of [22], where formulas are given for the functions gi
and hi from Proposition 3.1(a). We calculate that the function G from (78) is
G = (η + y)/(θ − t)− y and that for b = 1 we can express (−1)2f2G̃b = (fG)2

in the form given in (88) as

(fG)2 =
−η3

η2 + 1
h1 + h2 +

η5/3

η2/3 + 1
h

(−1)
1 f2 + h

(−1)
2 f2

+
−η5/9 + η1/3

η2/9 + 1
h

(−2)
1 (ff (−1))2 + h

(−2)
1 (ff (−1))2.

This allows us to write the formulas in Theorem 6.2 as(
1
−η3

η2+1

)
+

(
1
η5

η2+1

)
+

(
1

−η5+η3

η2+1

)
=

(
0
0

)
= Exp⊗nρ

(
∗

− η3

η2+1ζ(2)

)
.

Thus the special vector z = (∗,−η3/(η2 + 1)ζ(2))> is in the period lattice
for Exp⊗nρ which by [22, Thm. 6.7] implies that the bottom coordinate of
z is a K-multiple of π2

ρ, the fundamental period associated to ρ. Hence
ζ(2)/π2

ρ ∈ K as implied by Goss’s [20, Thm. 2.10].

Example 8.3. Now let q = 4 and let E/Fq be defined by y2 + y = t3 + c,
where c ∈ F4 is a root of the polynomial c2 + c+ 1 = 0. Then we know from
[39, §2.3] that A = Fq[θ, η] has class number 1, that V = (θ, η + 1) and that

f =
y + η + θ4(t+ θ)

t+ θ
.
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Setting the dimension n = 2 and the parameter b = 1, from (78) we find that

G =
η + y + 1

θ + t
+
y4 + y + 1

t4 + t

and that G̃1 = G2. Then we compute the expansion from (88) as

f2G̃1 = (θ4 + θ)−1h1 + h2 + (θ4 + θ)1/4h
(−1)
1 f2 + (θ4 + θ)1/2h

(−1)
2 f2

+ (θ4 + θ)3/16h
(−2)
1 (ff (−1))2 + (θ4 + θ)1/4h

(−2)
2 (ff (−1))2

+ (θ4 + θ)−1/64h
(−3)
1 (ff (−1)f (−2))2 + h

(−3)
2 (ff (−1)f (−2))2,

whereupon Theorem 6.2 gives(
1

(θ4 + θ)−1

)
+

(
(θ4 + θ)2

(θ4 + θ)

)
+

(
(θ4 + θ)4

(θ4 + θ)3

)
+

(
1

(θ4 + θ)−1

)
=

(
(θ4 + θ)2 + (θ4 + θ)4

(θ4 + θ) + (θ4 + θ)3

)
= Exp⊗nρ

(
∗

(θ4 + θ)−1ζ(2)

)
.
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