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On degrees of birational mappings

Serge Cantat and Junyi Xie

We prove that the degrees of the iterates deg(fn) of a birational
map satisfy lim inf(deg(fn)) < +∞ if and only if the sequence
deg(fn) is bounded, and that the growth of deg(fn) cannot be
arbitrarily slow, unless deg(fn) is bounded.

1. Degree sequences

Let k be a field. Consider a projective variety X, a polarization H of X
(given by hyperplane sections of X in some embedding X ⊂ P

N ), and a
birational transformation f of X, all defined over the field k. Let k be the
dimension of X. The degree of f with respect to the polarization H is the
integer

(1.1) degH(f) = (f∗H) ·Hk−1

where f∗H is the total transform of H, and (f∗H) ·Hk−1 is the intersection
product of f∗H with k − 1 copies of H. The degree is a positive integer,
which we shall simply denote by deg(f), even if it depends on H. When
f is a birational transformation of the projective space P

k and the polar-
ization is given by OPk(1) (i.e. by hyperplanes H ⊂ P

k), then deg(f) is the
degree of the homogeneous polynomial formulas defining f in homogeneous
coordinates.

The degrees are submultiplicative, in the following sense:

(1.2) deg(f ◦ g) ≤ cX,H deg(f) deg(g)

for some positive constant cX,H and for every pair of birational transforma-
tions. Also, if the polarization H is changed into another polarization H ′,
there is a positive constant c which depends on X, H and H ′ but not on f ,
such that

(1.3) degH(f) ≤ c degH′(f)

We refer to [11, 16, 18] for these fundamental properties.
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The degree sequence of f is the sequence (deg(fn))n≥0; it plays an im-
portant role in the study of the dynamics and the geometry of f . There are
infinitely, but only countably many degree sequences (see [4, 19]); unfortu-
nately, not much is known on these sequences when dim(X) ≥ 3 (see [3, 10]
for dim(X) = 2). In this article, we obtain the following basic results.

• The sequence (deg(fn))n≥0 is bounded if and only if it is bounded
along an infinite subsequence (see Theorems A and B in § 2 and § 3).

• If the sequence (deg(fn))n≥0 is unbounded, then its growth can not
be arbitrarily slow; for instance, max0≤j≤n deg(f

j) is asymptotically
bounded from below by the inverse of the diagonal Ackermann function
when X = P

k
k (see Theorem C in § 4 for a better result).

We focus on birational transformations because a rational dominant trans-
formation which is not birational has a topological degree δ > 1, and this
forces an exponential growth of the degrees: 1 < δ1/k ≤ limn(deg(f

n)1/n)
where k = dim(X) (see [11] and [6], pages 120–126).

2. Automorphisms of the affine space

We start with the simpler case of automorphisms of the affine space; the goal
of this section is to introduce a p-adic method to study degree sequences.

Theorem A (Urech).– Let f be an automorphism of the affine space A
k
k.

If deg(fn) is bounded along an infinite subsequence, then it is bounded.

2.1. Urech’s proof

In [19], Urech proves a stronger result. Writing his proof in an intrinsic way,
we extend it to affine varieties:

Theorem 2.1. Let X = SpecA be an irreducible affine variety of dimen-
sion k over the field k. Let f : X → X be an automorphism. If (deg(fn))
is unbounded there exists α > 0 such that #{n ≥ 0 | deg(fn) ≤ d} ≤ αdk; in
particular, max0≤j≤n deg(f

j) is bounded from below by (n/α)1/k.

Here, the degree of fn, depends on the choice of a projective compactifi-
cation Y of X and an ample line bundle L on Y . However, by Equation (1.3),
the statement of Theorem 2.1 does not depend on the choice of (Y, L). Since
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automorphisms of X always lift to its normalization, we may assume that
X is normal. To prove this theorem, we shall introduce another equivalent
notion of degree.

2.1.1. Degrees on affine varieties. Consider X as a subvariety X ⊆
A
N ⊆ P

N . Let X̄ be the Zariski closure of X in P
N and H1 := P

N \ AN be
the hyperplane at infinity. Let π : Y → X̄ be its normalization: Y is a normal
projective compactification of X. Since π : Y → X̄ is finite, there exists m ≥
1 such (i) H := π∗(mH1|X̄) is very ample on Y and (ii) H is projectively
normal on Y i.e. for every n ≥ 0, the morphism (H0(Y,H))⊗n → H0(Y, nH)
is surjective.

If P ∈ A is a regular function on X, we extend it as a rational function
on Y , we denote by (P ) = (P )0 − (P )∞ the divisor defined by P on Y , and
we define

∆(P ) = min{d ≥ 0 | (P ) + dH ≥ 0 on Y },(2.1)

Ad = {P ∈ A | ∆(P ) ≤ d}, (∀d ≥ 0).(2.2)

Then A = ∪d≥0Ad. Since Y \X is the support of H, we get an isomorphism
in : H0(Y, nH)→ An ⊆ A for every n ≥ 0. Thus, A1 generates A and the
morphism A⊗n

1 → An is surjective. Now we define

(2.3) degH(f) = min{m ≥ 0 | ∆(f∗P ) ≤ m for every P ∈ A1}.

For every P ∈ An, we can write P =
∑l

i=1 g1,i · · · g1,n for some gi,j ∈ A1. We

get f∗P =
∑l

i=1 f
∗g1,i · · · f

∗g1,n ∈ AdegH(f)n and

(2.4) ∆(f∗P ) ≤ degH(f)∆(P ).

Since A is generated by A1, we get an embedding

(2.5) End (A) ⊆ Homk(A1, A) = ∪d≥1Homk(A1, Ad).

Set End (A)d = End (A) ∩Homk(A1, Ad). For any automorphism f : X → X,
degH(f) ≤ d if and only if f ∈ End (A)d. By Riemann-Roch theorem, there
exists γ > 0 such that dimAn ≤ γn

k, and this gives the upper bound

(2.6) dimEnd (A)d ≤ Homk(A1, Ad) ≤ (γdk) dimA1.

The following proposition, proved in the Appendix, shows that this new
degree degH(f) is equivalent to the degree degH(f) introduced in Section 1.
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Proposition 2.2. For every automorphism f ∈ Aut(X) we have

degH(f) ≤ degH(f) ≤ (Hk) degH(f).

2.1.2. Proof of Theorem 2.1. By Proposition 2.2, the initial notion
of degree can be replaced by degH . Let γ be as in Equation (2.6). Set
ℓ = (γdk) dimA1 + 1, and assume that degH(fni) ≤ d for some sequence of
positive integers n1 < n2 < · · · < nℓ. Each (f∗)ni is in End (A)d and, because
ℓ > dimEnd (A)d, there is a non-trivial linear relation between the (f∗)ni in
the vector space End (A)d:

(2.7) (f∗)n =

n−1
∑

m=1

am (f∗)m

for some integer n ≤ nℓ and some coefficients am ∈ k. Then, the subalgebra
k[f∗] ⊆ End (A) is of finite dimension and k[f∗] ⊆ EB for some B ≥ 0. This
shows that the sequence (degH(fN ))N≥0 is bounded.

Thus, if we set α = γ dimA1, and if the sequence (degH(fn)) is not
bounded, we obtain #{n ≥ 0 | degH(fn) ≤ d} ≤ αdk. This proves the first
assertion of the theorem; the second follows easily.

2.2. The p-adic argument

Let us give another proof of Theorem A when char(k) = 0, which will be
generalized in § 3 for birational transformations.

2.2.1. Tate diffeomorphisms. Let p be a prime number. Let K be a
field of characteristic 0 which is complete with respect to an absolute value
| · | satisfying |p| = 1/p; such an absolute value is automatically ultrametric
(see [13], Ex. 2 and 3, Chap. I.2). Let R = {x ∈ K; |x| ≤ 1} be the valuation
ring of K; in the vector space Kk, the unit polydisk is the subset U = Rk.

Fix a positive integer k, and consider the ring R[x] = R[x1, . . . ,xk] of
polynomial functions in k variables with coefficients in R. For f in R[x],
define the norm ∥f∥ to be the supremum of the absolute values of the coef-
ficients of f :

(2.8) ∥f∥ = sup
I
|aI |

where f =
∑

I=(i1,...,ik)
aIx

I . By definition, the Tate algebra R⟨x⟩ is the
completion of R[x] with respect to this norm. It coincides with the set of
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formal power series f =
∑

I aIx
I converging (absolutely) on the closed poly-

disk Rk. Moreover, the absolute convergence is equivalent to |aI | → 0 as
length(I)→∞. Every element g in R⟨x⟩k determines a Tate analytic map
g : U → U .

For f and g in R⟨x⟩ and c in R+, the notation f ∈ p
cR⟨x⟩ means ∥f∥ ≤

|p|c and the notation f ≡ g mod (pc) means ∥f − g∥ ≤ |p|c; we then extend
such notations component-wise to (R⟨x⟩)m for all m ≥ 1.

For indeterminates x = (x1, . . . ,xk) and y = (y1, . . . ,ym), the composi-
tion R⟨y⟩ ×R⟨x⟩m → R⟨x⟩ is well defined, and coordinatewise we obtain

(2.9) R⟨y⟩n ×R⟨x⟩m → R⟨x⟩n.

When m = n = k, we get a semigroup R⟨x⟩k. The group of (Tate) analytic
diffeomorphisms of U is the group of invertible elements in this semigroup;
we denote it by Diff

an(U ). Elements of Diffan(U ) are bijective transforma-
tions f : U → U given by f(x) = (f1, . . . , fk)(x) where each fi is in R⟨x⟩
with an inverse f−1 : U → U that is also defined by power series in the Tate
algebra.

The following result is due to Jason Bell and Bjorn Poonen (see [1, 17]).

Theorem 2.3. Let f be an element of R⟨x⟩k with f ≡ id mod (pc) for
some real number c > 1/(p− 1). Then f is a Tate diffeomorphism of U = Rk

and there exists a unique Tate analytic map Φ: R× U → U such that

1) Φ(n,x) = fn(x) for all n ∈ Z;

2) Φ(s+ t,x) = Φ(s,Φ(t,x)) for all t, s in R.

2.2.2. Second proof of Theorem A. Denote by S the finite set of all
the coefficients that appear in the polynomial formulas defining f and f−1.
Let RS ⊂ k be the ring generated by S over Z, and let KS be its fraction
field:

(2.10) Z ⊂ RS ⊂ KS ⊂ k.

Since char(k) = 0, there exists a prime p > 2 such that RS embeds into Zp

(see [15], §4 and 5, and [1], Lemma 3.1). We apply this embedding to the
coefficients of f and get an automorphism of Ak

Qp
which is defined by poly-

nomial formulas in Zp[x1, . . . ,xk]; for simplicilty, we keep the same notation
f for this automorphism (embedding RS in Zp does not change the value
of the degrees deg(fn)). Since f and f−1 are polynomial automorphisms



✐

✐

“1-Xie” — 2020/5/19 — 22:08 — page 324 — #6
✐

✐

✐

✐

✐

✐

324 S. Cantat and J. Xie

with coefficients in Zp, they determine elements of Diffan(U ), the group of
analytic diffeomorphisms of the polydisk U = Zk

p.
Reducing the coefficients of f and f−1 modulo p2Zp, one gets two per-

mutations of the finite set A
k(Zp/p

2Z) (equivalently, f and f−1 permute
the balls of U = Zk

p of radius p−2, and these balls are parametrized by

A
k(Zp/p

2Z); see [7]). Thus, there exists a positive integer m such that
fm(0) ≡ 0 mod (p2). Taking some further iterate, we may also assume that
the differential Dfm0 satisfies Dfm0 ≡ Id mod (p). We fix such an integer m
and replace f by fm. The following lemma follows from the submultiplica-
tivity of degrees (see Equation (1.2) in Section 1). It shows that replacing f
by fm is harmless if one wants to bound the degrees of the iterates of f .

Lemma 2.4. If the sequence deg(fmn) is bounded for some m > 0, then
the sequence deg(fn) is bounded too.

Denote by x = (x1, . . . ,xk) the coordinate system of A
k, and by mp

the multiplication by p: mp(x) = px. Change f into g := m−1
p ◦ f ◦mp; then

g ≡ Id mod (p) in the sense of Section 2.2.1. Since p ≥ 3, Theorem 2.3 gives
a Tate analytic flow Φ: Zp × A

k(Zp)→ A
k(Zp) which extends the action of

g: Φ(n,x) = gn(x) for every integer n ∈ Z. Since Φ is analytic, one can write

(2.11) Φ(t,x) =
∑

J

AJ(t)x
J

where J runs over all multi-indices (j1, . . . , jk) ∈ (Z≥0)
k and each AJ de-

fines a p-adic analytic curve Zp → A
k(Qp). By submultiplicativity of the

degrees, there is a constant C > 0 such that deg(gni) ≤ CBm. Thus, we ob-
tain AJ(ni) = 0 for all indices i and all multi-indices J of length |J | > CBm.
The AJ being analytic functions of t ∈ Zp, the principle of isolated zeros im-
plies that

(2.12) AJ = 0 in Zp⟨t⟩, ∀J with |J | > CBm.

Thus, Φ(t,x) is a polynomial automorphism of degree ≤ CBm for all t ∈ Zp,
and gn(x) = Φ(n,x) has degree at most CBm for all n. By Lemma 2.4, this
proves that deg(fn) is a bounded sequence.

3. Birational transformations

Theorem B.– Let k be a field of characteristic 0. Let X be a projective
variety and f : X 99K X be a birational transformation of X, both defined
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over k. If the sequence (deg(fn))n≥0 is not bounded, then it goes to +∞
with n:

lim inf
n→+∞

deg(fn) = +∞.

This extends Theorem A to birational transformations. With a theorem
of Weil, we get: if f is a birational transformation of the projective variety

X, over an algebraically closed field of characteristic 0, and if the degrees

of its iterates are bounded along an infinite subsequence fni , then there

exist a birational map ψ : Y 99K X and an integer m > 0 such that fY :=
ψ−1 ◦ f ◦ ψ is in Aut(Y ), and fmY is in the connected component Aut(Y )0

(see [5] and references therein).
Urech’s argument does not apply to this context; the basic obstruction is

that rational transformations of Ak
k of degree≤ B generate an infinite dimen-

sional k-vector space for every B ≥ 1 (the maps z ∈ A
1
k 7→ (z − a)−1 with

a ∈ k are linearly independent); looking back at the proof in Section 2.1.2,
the problem is that the field of rational functions on an affine variety X
is not finitely generated as a k-algebra. We shall adapt the p-adic method
described in Section 2.2.2. In what follows, f and X are as in Theorem B; we
assume, without loss of generality, that k = C and X is smooth. We suppose
that there is an infinite sequence of integers n1 < · · · < nj < · · · and a num-
ber B such that deg(fnj ) ≤ B for all j. We fix a finite subset S ⊂ C such
that X, f and f−1 are defined by equations and formulas with coefficients
in S, and we embed the ring RS ⊂ C generated by S in some Zp, for some
prime number p > 2. According to [7, Section 3], we may assume that X
and f have good reduction modulo p.

3.1. The Hrushovski’s theorem and p-adic polydisks

According to a theorem of Hrushovski (see [12]), there is a periodic point
z0 of f in X(F) for some finite field extension F of the residue field Fp, the
orbit of which does not intersect the indeterminacy points of f and f−1. If
ℓ is the period of z0, then f

ℓ(z0) = z0 and Df ℓz0 is an element of the finite
group GL ((TXFq

)z0) ≃ GL (k,Fq). Thus, there is an integer m > 0 such that
fm(z0) = z0 and Dfmz0 = Id.

Replace f by its iterate g = fm. Then, g fixes z0 in X(F), g is an iso-
morphism in a neighborhood of z0, and Dgz0 = Id. According to [2] and [7,
Section 3], this implies that there is

• a finite extension K of Qp, with valuation ring R ⊂ K;
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• a point z in X(K) and a polydisk V z≃R
k⊂X(K) which is g-invariant

and such that g|Vz
≡ Id mod (p) (in the coordinate system (x1, . . . ,xk)

of the polydisk).

When the point z0 is in X(Fp) and is the reduction of a point z ∈ X(Zp), the
polydisk V z is the set of points w ∈ X(Zp) with |z − w| < 1; one identifies
this polydisk to U = (Zp)

k via some p-adic analytic diffeomorphism φ : U →
V z; changing φ into φ ◦mp if necessary, we obtain gVz

≡ Id mod (p) (see
Section 2.2.2 and [7], Section 3.2.1). In full generality, a finite extension K
of Qp is needed because z0 is a point in X(F) for some extension F of Fp.

3.2. Controling the degrees

As in Section 2.2.1, denote by U the polydisk Rk ≃ V z; thus, U is viewed
as the polydisk Rk and also as a subset of X(K). Applying Theorem 2.3 to
g, we obtain a p-adic analytic flow

(3.1) Φ: R× U → U , (t,x) 7→ Φ(t,x)

such that Φ(n,x) = gn(x) for every integer n. In other words, the action of
g on U extends to an analytic action of the additive compact group (R,+).

Let π1 : X ×X → X denote the projection onto the first factor. Denote
by BirD(X) the set of birational transformations of X of degree D; once
birational transformations are identified to their graphs, this set becomes
naturally a finite union of irreducible, locally closed algebraic subsets in the
Hilbert scheme ofX ×X (see [5], Section 2.2, and references therein). Taking
a subsequence, there is a positive integer D, an irreducible component BD

of BirD(X), and a strictly increasing, infinite sequence of integers (nj) such
that

(3.2) gnj ∈ BD

for all j. Denote by BD the Zariski closure of BD in the Hilbert scheme of
X ×X. To every element h ∈ BD corresponds a unique algebraic subset Gh
of X ×X (the graph of h, when h is in BD). Our goal is to show that, for
every t ∈ R, the graph of Φ(t, ·) is the intersection Ght

∩ U 2 for some element
ht ∈ BD; this will conclude the proof because gn(x) = Φ(n,x) for all n ≥ 0.

We start with a simple remark, which we encapsulate in the following
lemma.
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Lemma 3.1. There is a finite subset E ⊂ U ⊂ X(K) with the following
property. Given any subset Ẽ of U × U with π1(Ẽ) = E, there is at most
one element h ∈ BD such that Ẽ ⊂ Gh.

Fix such a set E, and order it to get a finite list E = (x1, . . . , xℓ0) of
elements of U . Let E′ = (x1, . . . , xℓ0 , xℓ0+1, . . . , xℓ) be any list of elements of
U which extends E. For every element h in BD, the variety Gh determines
a correspondance Gh ⊂ X ×X. The subset of elements (h, (xi, yi)1≤i≤ℓ) in
BD × (X ×X)ℓ defined by the incidence relation

(3.3) (xi, yi) ∈ Gh

for every 1 ≤ i ≤ ℓ is an algebraic subset of BD × (X ×X)ℓ. Add one con-
straint, namely that the first projection (xi)1≤i≤ℓ coincides with E′, and
project the resulting subset on (X ×X)ℓ: we get a subsetG(E′) of (X ×X)ℓ.
Then, define a p-adic analytic curve Λ: R→ (X ×X)ℓ by

(3.4) Λ(t) = (xi,Φ(t, xi))1≤i≤ℓ.

If t = nj , g
nj is an element of BD and Λ(nj) is contained in the graph of

gnj ; hence, Λ(nj) is an element of G(E′). By the principle of isolated zeros,
the analytic curve t 7→ Λ(t) ⊂ (X ×X)ℓ is contained in G(E′) for all t ∈ R.
Thus, for every t there is an element ht ∈ BD such that Λ(t) is contained in
the subset Gℓht

of (X ×X)ℓ. From the choice of E and the inclusion E ⊂ E′,
we know that ht does not depend on E′. Thus, the graph of Φ(t, ·) coincides
with the intersection of Ght

with U × U . This implies that the graph of
gn(·) = Φ(n, ·) coincides with Ghn

, and that the degree of gn is at most D
for all values of n.

4. Lower bounds on degree growth

We now prove that the growth of (deg(fn)) can not be arbitrarily slow unless
(deg(fn)) is bounded. For simplicity, we focus on birational transformations
of the projective space; there is no restriction on the characteristic of k.

4.1. A family of integer sequences

Fix two positive integers k and d; k will be the dimension of Pk
k, and d will

be the degree of f : Pk
99K P

k. Set

(4.1) m = (d− 1)(k + 1).
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Then, consider an auxiliary integer D ≥ 1, which will play the role of the
degree of an effective divisor in the next paragraphs, and define

(4.2) q = (dD + 1)m.

Thus, q depends on k, d and D because m depends on k and d. Then, set

(4.3) a0 =

(

k +D
k

)

− 1, b0 = 1, c0 = D + 1.

Starting from the triple (a0, b0, c0), we define a sequence ((aj , bj , cj))j≥0

inductively by

(4.4) (aj+1, bj+1, cj+1) = (aj , bj − 1, qc2j )

if bj ≥ 2, and by

(4.5) (aj+1, bj+1, cj+1) = (aj − 1, qc2j , qc
2
j ) = (aj − 1, cj+1, cj+1)

if bj = 1. By construction, (a1, b1, c1) = (a0 − 1, qc20, qc
2
0).

Define Φ: Z+ → Z+ by

(4.6) Φ(c) = qc2.

Lemma 4.1. Define the sequence of integers (Fi)i≥1 recursively by F1 =
q(D + 1)2 and Fi+1 = ΦFi(Fi) for i ≥ 1 (where ΦFi is the Fi-iterate of Φ).
Then

(a1+F1+···+Fi
, b1+F1+···+Fi

, c1+F1+···+Fi
) = (a0 − i− 1, Fi+1, Fi+1).

The proof is straightforward. Now, define S : Z+ → Z+ as the sum

(4.7) S(j) = 1 + F1 + F2 + · · ·+ Fj

for all j ≥ 1; it is increasing and goes to +∞ extremely fast with j. Then,
set

(4.8) χd,k(n) = max

{

D ≥ 0 | S(

(

k +D
k

)

− 2) < n

}

.

Lemma 4.2. The function χd,k : Z
+ → Z+ is non-decreasing and goes to

+∞ with n.
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Remark 4.3. The function S is primitive recursive (see [9], Chapters 3
and 13). In other words, S is obtained from the basic functions (the zero
function, the successor s(x) = x+ 1, and the projections (xi)1≤i≤m → xi)
by a finite sequence of compositions and recursions. Equivalently, there
is a program computing S, all of whose instructions are limited to (1)
the zero initialization V ← 0, (2) the increment V ← V + 1, (3) the as-
signement V ← V ′, and (4) loops of definite length. Writing such a pro-
gram is an easy exercise. Now, consider the diagonal Ackermann function
A(n) (see [9], Section 13.3). It grows asymptotically faster than any primi-
tive recursive function; hence, the inverse of the Ackermann diagonal func-
tion α(n) = max{D ≥ 0 | Ack(D) ≤ n} is, asymptotically, a lower bound for
χd,k(n). Showing that χd,k is in the L6 hierarchy of [9], Chapter 13, one gets
an asymptotic lower bound by the inverse of the function f7 of [9], indepen-
dent of the values of d and k.

4.2. Statement of the lower bound

We can now state the result that will be proved in the next paragraphs.

Theorem C.– Let f be a birational transformation of the complex projective
space P

k
k of degree d. If the sequence (max0≤j≤n(deg(f

j)))n≥0 is unbounded,
then it is bounded from below by the sequence of integers (χd,k(n))n≥0.

Remark 4.4. There are infinitely, but only countably many sequences of
degrees (deg(fn))n≥0 (see [4, 19]). Consider the countably many sequences

(4.9)

(

max
0≤j≤n

(deg(f j))

)

n≥0

restricted to the family of birational maps for which (deg(fn)) is unbounded.
We get a countable family of non-decreasing, unbounded sequences of inte-

gers. Let (ui)i∈Z≥0
be any countable family of such sequences of integers

(ui(n)). Define w(n) as follows. First, set vj = min{u0, u1, . . . , uj}; this de-
fines a new family of sequences, with the same limit +∞, but now vj(n) ≥
vj+1(n) for every pair (j, n). Then, set m0 = 0, and define mn+1 recursively
to be the first positive integer such that vn+1(mn+1) ≥ vn(mn) + 1. We have
mn+1 ≥ mn + 1 for all n ∈ Z≥0. Set w(n) := vrn(mrn) where rn is the unique
non-negative integer satisfyingmrn ≤ n ≤ mrn+1 − 1. By construction, w(n)
goes to +∞ with n and ui(n) is asymptotically bounded from below by w(n).
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In Theorem C, the result is more explicit. Firstly, the lower bound is ex-
plicitely given by the sequence (χd,k(n))n≥0. Secondly, the lower bound is not
asymptotic: it works for every value of n. In particular, if deg(f j) < χd,k(n)
for 0 ≤ j ≤ n and deg(f) = d, then the sequence (deg(fn)) is bounded.

4.3. Divisors and strict transforms

To prove Theorem C, we consider the action of f by strict transform on
effective divisors. As above, d = deg(f) and m = (d− 1)(k + 1) (see Sec-
tion 4.1).

4.3.1. Exceptional locus. Let X be a smooth projective variety and π1
and π2 : X → P

k be two birational morphisms such that f = π2 ◦ π
−1
1 ; then,

consider the exceptional locus Exc(π2) ⊂ X, project it by π1 into P
k, and

list its irreducible components of codimension 1: we obtain a finite number

(4.10) E1, . . . , Em(f)

of irreducible hypersurfaces, contained in the zero locus of the jacobian de-
terminant of f . Since this critical locus has degree m, we obtain:

(4.11) m(f) ≤ m, and deg(Ei) ≤ m (∀i ≥ 1).

4.3.2. Effective divisors. Denote by M the semigroup of effective divi-
sors of Pk

k. There is a partial ordering ≤ on M , which is defined by E ≤ E′

if and only if the divisor E′ − E is effective.
We denote by deg : M → Z≥0 the degree function. For every degree

D ≥ 0, we denote by MD the set P(H0(Pk
k,OP

k
k

(D))) of effective divisors of
degree D; thus,M is the disjoint union of all theMD, and each of these com-
ponents will be endowed with the Zariski topology of P(H0(Pk

k,OP
k
k

(D))).
The dimension ofMD is equal to the integer a0 = a0(D, k) from Section 4.1:

(4.12) dim(MD) =

(

k +D
k

)

− 1.

Let G ⊂M be the semigroup generated by the Ei:

(4.13) G =

m(f)
⊕

i=1

Z≥0Ei.

The elements of G are the effective divisors which are supported by the
exceptional locus of f . For every E ∈ G, there is a translation operator
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TE : M →M , defined by TE : E′ 7→ E + E′; it restricts to a linear projective
embedding of the projective space MD into the projective space MD+deg(E).
We define

(4.14) M◦
D =MD \

⋃

E∈G\{0},deg(E)≤D

TE(MD−deg(E)).

Thus,M◦
D is the complement inMD of finitely many proper linear projective

subspaces. Also, M◦
0 =M0 is a point and M◦

1 is obtained from M1 = (Pk
k)

∨

by removing finitely many points, corresponding to the Ei of degree 1 (the
hyperplanes contracted by f). Set M◦ =

⋃

D≥0 M◦
D. This is the set of ef-

fective divisors without any component in the exceptional locus of f . The
inclusion of M◦ in M will be denoted by ι : M◦ →M . There is a natu-
ral projection πG : M → G; namely, πG(E) is the maximal element such
that E − πG(E) is effective. We denote by π◦ : M →M◦ the projection
π◦ = Id− πG; this homomorphism removes the part of an effective divisor E
which is supported on the exceptional locus of f .

Remark 4.5. The restriction of the map π◦ to the projective space MD is
piecewise linear, in the following sense. Consider the subsets UE,D of MD

which are defined for every E ∈ G with deg(E) ≤ D by

UE,D = TE(MD−deg(E)) \
⋃

E′>E, E′∈G, deg(E′)≤D

TE′(MD−deg(E′)).

They define a stratification of MD by (open subsets of) linear subspaces,
and π◦ coincides with the linear map inverse of TE on each UE,D. Moreover,
π◦(Z) is closed for any closed subset Z ⊆MD.

We say that a scheme theoritic point x ∈M (resp. M◦) is irreducible
if the divisor of Pk corresponding to x is irreducible. In other words, x is
irreducible, if a general closed point y ∈ {x} ⊆M is irreducible.

4.3.3. Strict transform. First, we consider the total transform f∗ : M →
M , which is defined by f∗(E) = (π1)∗π

∗
2(E) for every divisor E ∈M . This

is a homomorphism of semigroups; it is injective on non-closed irreducible
points. Let [x0, . . . , xk] be homogeneous coordinates on P

k. If E is defined
by the homogeneous equation P = 0, then f∗(E) is defined by P ◦ f = 0;
thus, f∗ induces a linear projective embedding ofMD intoMdD for every D.
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Then, we denote by f◦ : M◦ →M◦ the strict transform. It is defined by

(4.15) f◦(E) = (π◦ ◦ f
∗ ◦ ι)(E).

This is a homomorphism of semigroups. If x ∈M is an irreducible point, its
total transform f∗(x) is not necessarily irreducible, but f◦(x) is irreducible.

In general, (f◦)n ̸= (fn)◦, but for non-closed irreducible point x ∈M , we
have (f◦)n(x) = (fn)◦(x) for n ≥ 0. Indeed, a non-closed irreducible point
x ∈M can be viewed as an irreducible hypersurface on X which is defined
over some transcendental extension of k, but not over k. Then f◦(x) is
the unique irreducible component E of f∗(x), on which f |E is birational to
its image. (Note that when k is uncountable, one can also work with very
general points of MD for every D ≥ 1, instead of irreducible, non-closed
points).

4.4. Proof of Theorem C

Let η be the generic point of M◦
1 (η corresponds to a generic hyperplane of

P
k
k). Note that η is non-closed and irreducible. The degree of f∗(η) is equal

to the degree of f , and since η is generic, f∗(η) coincides with f◦(η). Thus,
deg(f) = deg(f◦(η)) and more generally

(4.16) deg(fn) = deg((f◦)nη) (∀n ≥ 1).

Fix an integer D ≥ 0. WriteM◦
≤D for the disjoint union of theM◦

D′ with
D′ ≤ D, and define recursively ZD(0) =M◦

≤D and

(4.17) ZD(i+ 1) = {E ∈ ZD(i) | f
◦(E) ∈ ZD(i)}

for i ≥ 0. A divisor E ∈M◦
≤D is in ZD(i) if its strict transform f◦(E) is of

degree ≤ D, and f◦(f◦(E)) is also of degree ≤ D, up to (f◦)i(E) which is
also of degree at most D.

Let us describe ZD(i+ 1) more precisely. For each i, and each E ∈ G
of degree deg(E) ≤ dD consider the subset TE(ι(ZD(i))) ∩MdD; this is a
subset of MdD which is made of divisors W such that π◦(W ) is contained in
ZD(i), and the union of all these subsets when E varies is exactly the set of
points W in MdD with a projection π◦(W ) in ZD(i). Thus, we consider

(4.18) (f∗)−1(TE(ι(ZD(i)))) = {V ∈M≤D | f
∗(V ) ∈ TE(ι(ZD(i)))}.
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These sets are closed subsets of M≤D, and

(4.19) ZD(i+ 1) = ZD(i)
⋂ ⋃

E∈G,deg(E)≤dD

π◦

(

(f∗)−1(TE(ι(ZD(i)))
)

.

Since ZD(0) is closed inM◦
≤D and π◦ is closed onM≤D, by induction, ZD(i) is

closed for all i ≥ 0. The subsets ZD(i) form a decreasing sequence of Zariski
closed subsets (in the disjoint union M◦

≤D of the M◦
D′ , D′ ≤ D). The strict

transform f◦ maps ZD(i+ 1) into ZD(i). By Noetherianity, there exists a
minimal integer ℓ(D) ≥ 0 such that

(4.20) ZD(ℓ(D)) =
⋂

i≥0

ZD(i);

we denote this subset by ZD(∞) = ZD(ℓ(D)). By construction, ZD(∞) is
stable under the operator f◦; more precisely,

f◦(ZD(∞)) = ZD(∞) = (f◦)−1(ZD(∞)).

Let τ : Z≥0 → Z≥0 be a lower bound for the inverse function of ℓ:

(4.21) ℓ(τ(n)) ≤ n (∀n ≥ 0).

Assume that max{deg(fm) | 0 ≤ m ≤ n0} ≤ τ(n0) for some n0 ≥ 1. Then
deg((f◦)i(η)) ≤ τ(n0) for every integer i between 0 and n0; this implies that
η is in the set Zτ(n0)(ℓ(τ(n0))) = Zτ(n0)(∞), so that the degree of (f◦)m(η)
is bounded from above by τ(n0) for all m ≥ 0. From Equation (4.16) we de-
duce that the sequence (deg(fm))m≥0 is bounded. This proves the following
lemma.

Lemma 4.6. Let τ be a lower bound for the inverse function of ℓ. If

max{deg(fm) | 0 ≤ m ≤ n0} ≤ τ(n0)

for some n0 ≥ 1, then the sequence (deg(fn))n≥0 is bounded by τ(n0).

So, to conclude, we need to compare ℓ : Z≥0 → Z+ to the function S :
Z≥0 → Z+ of paragraph 4.1 (recall that S depends on the parameters k =
dim(Pk

k) and d = deg(f) and that ℓ depends on f). Now, write Z ′
D(i) =

ZD(i) \ ZD(∞), and note that it is a strictly decreasing sequence of open
subsets of ZD(i) with Z

′
D(j) = ∅ for all j ≥ ℓ(D). We shall say that a closed

subset of M◦
≤D \ ZD(∞) for the Zariski topology is piecewise linear if
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all its irreducible components are equal to the intersection ofM◦
≤D \ ZD(∞)

with a linear projective subspace of someMD′ , D′ ≤ D. We note that the in-
tersection of two irreducible linear projective subspaces is still an irreducible
linear projective subspace.

Let Lin(a, b, c) be the family of closed piecewise linear subsets of M◦
≤D \

ZD(∞) of dimension a, with at most c irreducible components, and at most
b irreducible components of maximal dimension a. Then,

1)

Z ′
D(i+ 1) = {F ∈ Z ′

D(i) | f
◦(F ) ∈ Z ′

D(i)} = π◦(f
∗Z ′

D(i)
⋂

∪ETE(Z
′
D(i))),

where E runs over the elements of G of degree deg(E) ≤ dD;

2) in this union, each irreducible component of TE(Z
′
D(i)) is piecewise

linear.

Recall that q = (dD + 1)m (see Section 4.1). If Z is any closed piecewise lin-
ear subset ofM◦

≤D \ ZD(∞) that contains exactly c irreducible components,
the set

π◦(f
∗Z

⋂ ⋃

E∈G, deg(E)≤dD

TE(Z)) =
⋃

E∈G, deg(E)≤dD

π◦(f
∗Z

⋂

TE(Z))

=
⋃

E∈G, deg(E)≤dD

T−1
E |TE(Z)(f

∗Z
⋂

TE(Z))

has at most qc2 = (dD + 1)mc2 irreducible components (this is a crude es-
timate: f∗Z

⋂

TE(Z) has at most c2 irreducible components, T−1
E |TE(Z) is

injective and the factor (dD + 1)m comes from the fact that G contains at
most (dD + 1)m elements of degree ≤ dD). Let us now use that the sequence
Z ′
D(i) decreases strictly as i varies from 0 to ℓ(D), with Z ′

D(ℓ(D)) = ∅. If
0 ≤ i ≤ ℓ(D)− 1, and if Z ′

D(i) is contained in Lin(a, b, c), we obtain

1) if b ≥ 2, then Z ′
D(i+ 1) is contained in Lin(a, b− 1, qc2);

2) if b = 1, then Z ′
D(i+ 1) is contained in Lin(a− 1, qc2, qc2).

This shows that

(4.22) ℓ(D) ≤ S

((

k +D
k

)

− 2

)

+ 1

where S is the function introduced in the Equation (4.7) of Section 4.1. Since
χd,k satisfies ℓ(χd,k(n)) ≤ n for every n ≥ 1, the conclusion follows.
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5. Appendix: Proof of Proposition 2.2

We keep the notation from Section 2.1.1. Let f be an automorphism of X.
There exist a normal projective irreducible variety Z and two birational mor-
phisms π1 : Z → Y and π2 : Z → Y such that π1 and π2 are isomorphisms
over X, and f = π2 ◦ π

−1
1 .

Lemma 5.1. We have ∆(f∗P ) ≤ ∆(P ) degH(f) for every P ∈ A.

Proof of Lemma 5.1. Let E1, . . . , Es be the irreducible components of the
divisor Y \X, and set D =

∑s
i=1Ei; by construction H ≥ D. By definition

(P ) + ∆(P )H ≥ 0, thus

(5.1) (f∗P ) + ∆(P )f∗(H) ≥ 0.

Since f is an automorphism of X, f∗H =
∑r

i=1 aiEi for some ai ≥ 0. We
have degH(f) = (f∗H ·Hk−1) ≥ ai(Ei ·H

k−1) ≥ ai for every index i. Thus,

(5.2) f∗(H) ≤ degH(f)D ≤ degH(f)H.

From Equations (5.1) and (5.2) we infer (f∗P ) + ∆(P ) degH(f)H ≥ 0; thus
∆(f∗P ) ≤ degH(f)∆(P ) by definition of ∆(f). □

Lemma 5.1 shows that degH(f) ≤ degH(f). We now prove the reverse
direction: degH(f) ≤ (Hk) degH(f).

Since H is very ample, Bertini’s theorem gives an irreducible divisor
D ∈ |H| such that π2(E) ̸⊆ D for every prime divisor E of Z in Z \ π∗2(X);
hence, π∗2D is equal to the strict transform π◦2D. By definition, D = (P ) +
H for some P ∈ A1. Thus, (π1)∗π

∗
2H is linearly equivalent to (π1)∗π

∗
2D =

(π1)∗π
◦
2D, and this irreducible divisor (π1)∗π

◦
2D is the closure Df∗P of

{f∗P = 0} ⊆ X in Y. Writing (f∗P ) = Df∗P − F where F is supported
on Y \X we also get that (π1)∗π

∗
2H is linearly equivalent to F . Since

∆(f∗P ) ≤ degH(f)∆(P ) = degH(f), the definition of ∆ gives

(5.3) Df∗P − F + degH(f)H = (f∗P ) + degH(f)H ≥ 0.

Thus, F ≤ degH(f)H because Df∗P is irreducible and is not supported on
Y \X. Altogether, this gives degH(f) = ((π1)∗π

∗
2H ·H

k−1) = (F ·Hk−1) ≤
degH(f)(Hk).
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