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On Fujita’s conjecture for pseudo-effective

thresholds

Jingjun Han and Zhan Li

We show Fujita’s spectrum conjecture for ϵ-log canonical pairs and
Fujita’s log spectrum conjecture for log canonical pairs. Then, we
generalize the pseudo-effective threshold of a single divisor to mul-
tiple divisors and establish the analogous finiteness and the DCC
properties.

1. Introduction

Let (X,∆) be a log pair with X a normal projective variety over C. Suppose
D is a big R-Cartier divisor, then the pseudo-effective threshold of D with
respect to (X,∆) is defined by

(1.1) τ(X,∆;D) := inf{t ∈ R≥0 | KX +∆+ tD is pseudo-effective}.

Recall that an R-divisor is called pseudo-effective if it is a limit of effective
divisors in N1(X)R.

It is one of Shokurov’s philosophy that the pseudo-effective threshold is
a natural generalization of Fano index when KX +∆ is an R-Cartier divisor
andD is an ample divisor. He introduced the theory of complements when he
studied the ACC for Fano index. The theory of complements is in a central
place of birational geometry, and it plays a crucial role in the proof of BAB
(Borisov-Alexeev-Borisov) conjecture [2]. It is also known that the theory
of complements is related to flips, the minimal log discrepancy, the index
conjecture and log canonical thresholds. Thus, it is interesting to study the
pseudo-effective threshold from this point of view.

In order to study the adjunction theory for polarized varieties, Fujita
made the following two conjectures [8, 9].

Theorem 1.1 (Fujita’s spectrum conjecture, [7] Theorem 1.1). Let

n be a natural number, Sn be the set of pseudo-effective thresholds τ(X,H) :=
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τ(X, ∅;H) of an ample Cartier divisor H with respect to a smooth projective

variety X of dimension n. Then Sn ∩ [ϵ,+∞) is a finite set for any ϵ > 0.

Theorem 1.2 (Fujita’s log spectrum conjecture, [6] Theorem 1.2).
Let Sls

n be the set of pseudo-effective thresholds τ(X,∆;H), where X is a

smooth projective variety of dimension n, ∆ is a reduced divisor with simple

normal crossing support, and H is an ample Cartier divisor on X. Then Sls
n

satisfies the ACC.

Fujita showed that his spectrum conjecture is a consequence of the mini-
mal model program and the BAB (Borisov-Alexeev-Borisov) conjecture, [9].
Recently, Di Cerbo studied these two problems. He proved Fujita’s spectrum
conjecture by using the special BAB conjecture, [7], and proved Fujita’s log
spectrum conjecture by using the ACC for the lc thresholds, [6].

Recall that for a partially ordered set (S,⪰), it is said to satisfy the
DCC (descending chain condition) if any non-increasing sequence a1 ⪰ a2 ⪰
· · · ⪰ ak ⪰ · · · in S stabilizes. It is said to satisfy the ACC (ascending chain

condition) if any non-decreasing sequence in S stabilizes. When S is a set
of real numbers, we consider the usual relation “≤”.

In this paper, we study Fujita’s spectrum conjecture and Fujita’s log
spectrum conjecture in a more general setting, namely we allow the pair
(X,∆) to have singularities, and the coefficients of ∆ and H to vary in some
fixed set.

Fix a positive integer n, a positive real number ϵ, and a subset I ⊂ [0, 1].
We will consider the following set,

Tn,ϵ(I) := {τ(X,∆;H) | dimX = n, (X,∆) is ϵ-lc,∆ ∈ I,

H is a big and nef Q-Cartier Weil divisor}.

Here “∆ ∈ I” means the coefficients of ∆ are in the set I, and we emphasize
that H is an (integral) Weil divisor.

We can now state one of the main results in this paper.

Theorem 1.3. Let n be a natural number, and ϵ be a positive real number.

1) If I ⊂ [0, 1] is a finite set, then Tn,ϵ(I) ∩ [δ,+∞) is a finite set for any

δ > 0.

2) If I ⊂ [0, 1] is a DCC set, then Tn,ϵ(I) satisfies the ACC.
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Roughly speaking, we generalize Di Cerbo’s result from a smooth variety
with an ample divisor H (Theorem 1.2 and Theorem 1.1) to an ϵ-lc pair with
a big and nef divisor. Theorem 1.3 (1) was a question asked by Di Cerbo
(cf. [7] P.244).

Our argument of the above result relies on the minimal model program
and the recent progress on the BAB conjecture [2, 3]. In some sense, the
ϵ-lc condition is the weakest possible condition for Theorem 1.3 to hold. If
we relax the singularities from ϵ-lc to klt, Theorem 1.3 is no longer true,
see Example 3.1 for more details. However, if H is assumed to be an ample
Cartier divisor in Theorem 1.3 (2), then the condition “(X,∆) is lc” is
enough.

Theorem 1.4. Let n be a natural number and I a DCC set of nonnegative

real numbers. Let CT n(I) be the set of pseudo-effective threshold τ(X,∆;H)
which satisfies the following conditions.

1) X is a normal projective variety of dimension n,

2) (X,∆) is lc and the coefficients of ∆ are in I, and

3) H =
∑

µiHi, where Hi is a nef Cartier divisor for each i, µi ∈ I, and
H is big.

Then CT n(I) satisfies the ACC.

The version where (X,∆) is log smooth, ∆ is reduced, and H itself is an
ample divisor (Theorem 1.2) was proven by Di Cerbo by the ACC for the log
canonical thresholds and Global ACC for the lc pairs. Roughly speaking, the
main difficulty in our setting comes from the fact that (X,∆+ τ(X,∆;H)H)
may not be log canonical, and we can not apply Global ACC directly. In-
stead, we use Global ACC for generalized polarized pairs, [4], which gen-
eralizes Global ACC for the lc pairs, [13], to the generalized lc pairs. The
notation and the theory of generalized polarized pairs were introduced and
developed in [2, 4]. Furthermore, we can show a slightly stronger version of
Theorem 1.4 by using an effective birationality result for generalized polar-
ized pairs of general type established in [4], see Theorem 3.2.

It is natural to generalize the pseudo-effective threshold of a single di-
visor to multiple divisors. Let (X,∆) be a log pair and D1, . . . , Dm be big
R-Cartier divisors on X. The pseudo-effective polytope (PE-polytope) of
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D1, . . . , Dm with respect to X is defined as

(1.2) P (X,∆;D1, . . . , Dm) := {(t1, . . . , tm) ∈ Rm
≥0 |

(KX +∆+ t1D1 + · · ·+ tmDm) is pseudo-effective}.

We will show in Proposition 4.2 that P (X,∆;D1, . . . , Dm) is indeed an
unbounded polytope if (X,∆) has klt singularities and Di is a big and nef
Q-Weil divisor for each i. For convenience, we include all (t1, . . . , tm) ∈ Rm

≥0

such that KX +∆+
∑m

i=1 tiDi is pseudo-effective in P (X,∆;D1, . . . , Dm),
though the thresholds only happen on the boundary. In particular, by com-
paring with (1.1), we see that P (X,∆;D) is the interval [τ(X,∆;D),+∞).

Fix two positive integers n,m, a subset I ⊂ [0, 1], a positive real number
ϵ, and a nonnegative real number δ, we consider the following set of truncated
PE-polytopes.

Pn,m,I,ϵ,δ := {P (X,∆;H1, . . . , Hm) ∩ [δ,+∞)m | dimX = n, (X,∆) is ϵ-lc,

∆ ∈ I, Hi is a big and nef Q-Cartier Weil divisor for each i}.

For simplicity, if δ = 0, we denote Pn,m,I,ϵ := Pn,m,I,ϵ,δ. We will show the
following results for PE-polytopes.

Theorem 1.5. Let n,m be two natural numbers and ϵ, δ be two positive real

numbers, and I ⊆ [0, 1] be a finite set. Then the set of truncated PE-polytope

Pn,m,I,ϵ,δ is finite.

Letting m = 1 in Theorem 1.5, we get Theorem 1.3 (1).

Theorem 1.6. Let n,m be two natural numbers ,ϵ be a positive real number,

and I ⊆ [0, 1] a DCC set.

Then the set of PE-polytopes Pn,m,I,ϵ is a DCC set under the inclusion

relation “⊇”.

Letting m = 1 in Theorem 1.6, we get Theorem 1.3 (2).

We note that we can not apply Theorem 1.3 to prove Theorem 1.5 and
Theorem 1.6 directly. For example, suppose we consider two testing divisors,
and thus P := P (X,∆;H1, H2) is a two dimensional polytope (suppose it is
non-degenerate). It is possible to construct a sequence of strictly decreasing
sequence of convex polytopes {Pi}i∈N, such that {Pi}i∈N stabilizes along any
vertical line, any horizontal line, and any line passing through the origin.
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For example, in Figure 1, the sequence of polytopes {Pi}i∈N is not stable
near the point τ . It is our hope that Theorem 1.5 and Theorem 1.6 would
give more information on the testing divisors.

P3

P2

P1

τ

Figure 1.

As a corollary of Theorem 1.3 (1), by the same argument of [11], we
can improve their main result for big and nef divisors (rather than big and
semiample). This corollary was firstly proven by [17] assuming a weak version
of the BAB conjecture.

Recall that for smooth varietyX, and a big R-Cartier divisor L onX, the
a-constant is defined by a(X,L) := τ(X,L). For a singular projective variety
X, the a-constant is defined by a(X,L) := a(Y, π∗L), where π : Y → X is
any log resolution of (X,L).

Corollary 1.7 ([17] Theorem 1.3). Let X be a smooth uniruled projective

variety and L a big and nef Q-divisor on X. Then there exists a proper closed

subset W ⊂ X such that every subvariety Y satisfying a(Y, L) > a(X,L) is

contained in W .

The above corollary was used to study the Manin’s Conjecture [17], [15],
[16].

Finally, it is reasonable to propose the following conjecture for PE-
polytopes, which was proven in Theorem 1.4 for a single divisor.

DCC for PE-polytopes. Let n,m be two natural numbers, I be a
DCC set of nonnegative real numbers. Then the set of PE-polytopes

Pn,m,I := {P (X,∆;H1, . . . , Hm) | dimX = n, (X,∆) is lc,

∆ ∈ I, Hi is a big and nef Cartier divisor for each i}

satisfies the DCC under the inclusion of polytopes.
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2. Preliminaries

2.1. Singularities

For basic definitions of log discrepancies and log canonical (lc), divisorially
log terminal (dlt), kawamata log terminal (klt) singularities, we refer to
[14]. Recall that a log pair (X,∆) is ϵ-lc for some ϵ ≥ 0, if its minimal log
discrepancy is greater or equal to ϵ.

For reader’s convenience, we state the following lemma which is known
as dlt modifications.

Lemma 2.1 (dlt modifications, c.f. [13] Proposition 3.3.1). Let (X,∆)
be a lc pair. There is a proper birational morphism f : X ′ → X with reduced

exceptional divisors Ei, such that

1) (X ′,∆′) := (X ′, f−1
∗ ∆+

∑

Ei) is dlt,

2) X ′ is Q-factorial,

3) KX′ +∆′ = f∗(KX +∆).

In particular, if (X,∆) is klt, then f is small.

We can apply dlt modifications to reduce the study of PE-polytopes
from lc (resp. klt) pairs to Q-factorial dlt (resp. klt) pairs.

Lemma 2.2. Let (X,∆) be a lc pair, and Hi be a big R-Cartier divisor

for any 1 ≤ i ≤ m. If f : (X ′,∆′) → (X,∆) is a dlt modification of (X,∆),
then

P (X,∆;H1, . . . , Hm) = P (X ′,∆′;H ′
1, . . . , H

′
m),

where H ′
i = f∗Hi.

Proof. On one hand, let (t1, . . . , tm) ∈ P (X,∆;H1, . . . , Hm), thenKX +∆+
∑m

i=1 tiHi is pseudo-effective. We have KX′ +∆′ +
∑m

i=1 tiH
′
i = f∗(KX +

∆+
∑m

i=1 tiHi) is also pseudo-effective.
On the other hand, let (t1, . . . , tm) ∈ P (X ′,∆′;H ′

1, . . . , H
′
m),KX′ +∆′ +

∑m
i=1 tiH

′
i is pseudo-effective. We have KX +∆+

∑m
i=1 tiHi = f∗(KX′ +

∆′ +
∑m

i=1 tiH
′
i) is pseudo-effective. □



✐

✐

“3-Han” — 2020/6/4 — 15:07 — page 383 — #7
✐

✐

✐

✐

✐

✐

On Fujita’s conjecture for pseudo-effective thresholds 383

2.2. Boundedness of Fano varieties

A set of varieties X is said to form a bounded family if there is a projective
morphism of schemes g : W → T , with T of finite type, such that for every
X ∈ X , there is a closed point t ∈ T and an isomorphism Wt ≃ X, where
Wt is the fibre of g at t. A variety X is called Fano if it is lc and −KX is
ample. The following result is a variant of the conjecture of Borisov-Alexeev-
Borisov.

Theorem 2.3 ([3] Corollary 1.2). Let n be a natural number and ϵ a

positive real number. Then the projective varieties X such that

1) (X,∆) is ϵ-lc of dimension n for some boundary ∆, and

2) KX +∆ ≡R 0 and ∆ is big,

form a bounded family.

2.3. Generalized polarized pairs

The theory of generalized pair was developed in [4].

Definition 2.4 (generalized polarized pairs). A generalized polarized
pair consists of a normal variety X equipped with projective morphisms

W
f
−→ X → Z

where f is birational, W is normal, an R-boundary ∆ ≥ 0, and an R-Cartier
divisor HW on W which is nef over Z such that KX +∆+H is R-Cartier
with H = f∗HW . We call ∆ the boundary part and HW the nef part. We
usually refer to the pair by saying (X,∆+H) is a generalized pair with

data W
f

// X // Z and HW .

In this paper, we only need to use the case that Z is a point. Thus,
we will drop Z, and say the pair is projective. Note that if W ′ → W is a
projective birational morphism from a normal variety, then there is no harm
in replacing W with W ′ and replacing HW with its pullback to W ′.

Definition 2.5 (generalized lc). Let (X,∆+H) be a generalized polar-

ized pair, which comes with the data W
f

// X // Z , and replacing W , we
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may assume that f is a log resolution of (X,∆). We can write

KW +∆W +HW = f∗(KX +∆+H)

for some uniquely determined ∆W .
We say (X,∆+H) is generalized lc if every coefficient of ∆W is less

than or equal to 1.

Remark 2.6 ([4] Remark 4.2(6)). Let (X,∆+H) be a generalized pro-

jective pair with data W
f

// X and HW . We may assume that f is a log
resolution of (X,∆). Assume that there is a contraction X → Y . Let F be a
general fibre of W → Y , T the corresponding fibre of X → Y , and g : F → T

the induced morphism. Let

∆F = ∆W |F , HF = HW |F ,∆T = g∗(∆F ), HT = g∗HF .

Then (T,∆T +HT ) is a generalized polarized projective pair with the data

F
g
// T and HF . Moreover,

KT +∆T +HT = (KX +∆+H)|T .

In addition, ∆T = ∆|T and HT = H|T .

For more properties of generalized polarized pairs, we refer to [2, 4]. We
will need the following result to prove Theorem 1.4.

Theorem 2.7 (global ACC for generalized pairs, [4] Theorem 1.6).
Let I be a DCC set of nonnegative real numbers and n a natural number.

Then there is a finite subset I0 ⊆ I depending only on I, n such that

1) X is a normal projective variety of dimension n,

2) (X,∆+H) is generalized lc with data W
f

// X and HW ,

3) HW =
∑

µjHj,W , where Hj,W are nef Cartier divisors and µj ∈ I,

4) µj = 0 if Hj,W ≡ 0,

5) the coefficients of ∆ belong to I, and

6) KX +∆+H ≡R 0,

then the coefficients of ∆ and µj belong to I0.
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3. Fujita’s spectrum conjecture and Fujita’s log spectrum

conjecture

Proof of Theorem 1.3. By Lemma 2.2, we can assume that X is Q-factorial.
Let τ = τ(X,∆;H), then KX +∆+ τH is pseudo-effective but not big. We
can assume that KX is not pseudo-effective.

Since H is big and nef, there is an effective divisor E, and ample Q-
divisors Ak such that H ∼Q Ak +

E
k
, for any k ≫ 1. Let N be a natural

number such that (X,∆+ τ E
N
) is ϵ

2 -lc, and N ′ a natural numbers such that
N ′AN is a very ample divisor. Let A′ ∈ |N ′AN | be a general very ample
divisor, and H ′ := 1

N ′
A′ + E

N
∼Q H, then

(X,Γ) := (X,∆+ τH ′)

is still ϵ
2 -lc.

According to [1], we may run a (KX + Γ)-MMP, ϕ : X 99K Y , such that
ϕ is a birational map, KY + ϕ∗Γ is semiample and (Y, ϕ∗Γ) is still

ϵ
2 -lc. As

ϕ is (KX + Γ)-negative, KY + ϕ∗Γ is not big as well.

Now KY + ϕ∗Γ defines a contraction f : Y → Z. Let F be a general fiber
of f , we have dim(F ) > 0. Restricting to F , we get

(3.1) KF + ϕ∗Γ|F = KF + ϕ∗∆|F + τHY |F ≡R 0,

where HY is the strict transform of H ′ on Y . We note that HY is big, and
HY |F is also big since it is the restriction of a big divisor on a general fiber.

Since KF + ϕ∗Γ|F is ϵ
2 -lc, according to Theorem 2.3, F belongs to a

bounded family. We may find a very ample Cartier divisor MF on F , so
that −KF ·MdimF−1

F is bounded. Besides, as H ′ ∼Q H, we have ϕ∗(H
′) ≡Q

ϕ∗(H). Recall that H is a Weil divisor, hence ϕ∗(H) is again a Weil divisor,
and the intersection number d := HY |F ·MdimF−1

F = ϕ∗(H)|F ·MdimF−1
F is

a positive integer. Let ϕ∗∆|F =
∑

j aj∆F,j , where aj ∈ I, and ∆F,j is a Weil

divisor. By intersecting (3.1) with MdimF−1
F , we obtain an equation for τ ,

(3.2) τd+
∑

j

ajbj = c,

where c = −KF ·MdimF−1
F is a nonnegative integral with only finite possi-

bilities, bj = ∆F,j ·M
dimF−1
F are nonnegative integers.
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First, we prove Theorem 1.3 (1). By assumption τ ≥ δ > 0 and I is finite,
d, bj are bounded above and thus only have finite possibilities. Hence there
are only finite possibilities for the τ in equation (3.2).

Next, we prove Theorem 1.3 (2). Recall that aj ∈ I which is a DCC set,
and bj ∈ N, then the finite summations

∑

j ajbj ∈
∑

I still form a DCC set.
Now

(3.3) τ =
1

d



c−
∑

j

ajbj



 .

The right hand side of the equation (3.3) belongs to an ACC set, and Tn,ϵ(I)
satisfies the ACC. □

Proof of Corollary 1.7. Replacing Theorem 1.1 by Theorem 1.3 in the proof
of [11], we get Corollary 1.7. □

In the following example, we see that Theorem 1.3 (1) is no longer true
even for an ample Cartier divisor if we relax the singularities from ϵ-lc to
klt, and Theorem 1.3 (2) is no longer true even for an ample Q-Cartier Weil
divisor if we relax the singularities from ϵ-lc to klt. We thank Chen Jiang
for providing us this example.

Example 3.1. Let n be a natural number and P(1, 1, n) be the weighted
projective space. It is a toric variety with the lattice N spanned by {(1, 0),
( 1
n
, 1
n
)}. Let v1 = (1, 0), v2 = (0, 1) and v3 = (− 1

n
,− 1

n
), then the fan is gen-

erated by maximal cones σ1 = ⟨v1, v2⟩, σ2 = ⟨v2, v3⟩ and σ3 = ⟨v1, v3⟩ (c.f.
[10] P.35). Let Di be the toric invariant divisor corresponding to vi. By
choosing (n, 0) and (0, n) in the dual lattice N∨, we see that nD1 ∼ D3 and
nD2 ∼ D3. Thus

−KP(1,1,n) ∼Q D1 +D2 +D3 ∼Q

(

1 +
2

n

)

D3.

Moreover D3 is an ample Cartier divisor as it is associated to the lattice
(0, 0) ∈ N∨ for σ1, (n, 0) ∈ N∨ for σ2 and (0, n) ∈ N∨ for σ3. As P(1, 1, n)
has Picard number one, (1 + 2

n
) is the pseudo-effective threshold of D3. This

gives a set of varieties whose pseudo-effective spectrum is infinite away from
0. Notice that the minimal log discrepancy of P(1, 1, n) is 2

n
(c.f. [5]). Hence,

it is a counterexample for Theorem 1.3 (1) if we replace ϵ-lc by klt in the
statement.



✐

✐

“3-Han” — 2020/6/4 — 15:07 — page 387 — #11
✐

✐

✐

✐

✐

✐

On Fujita’s conjecture for pseudo-effective thresholds 387

Besides, D1 is an integral divisor and

−KP(1,1,n) ∼Q D1 +D2 +D3 ∼Q (n+ 2)D1.

Hence the pseudo-effective threshold of D1 is n+ 2. Thus we get a family
whose pseudo-effective thresholds (with respect to D1) are strictly increas-
ing. This gives a counterexample if we replace ϵ-lc by klt in Theorem 1.3
(2).

Proof of Theorem 1.4. Let τ = τ(X,∆, H). We first prove the theorem for
the case that (X,∆) is Q-factorial klt.

By assumption, H is big and nef, as in the proof of Theorem 1.3, we
can run a (KX +∆+ τH)-MMP, ϕ : X 99K Y , and reach a minimal model
(Y, ϕ∗(∆ + τH)), on which KY + ϕ∗(∆ + τH) is semiample defining a con-
traction Y → Z.

Taking a common log resolution p : W → (X,∆), q : W → (Y, ϕ∗∆),
let HW = p∗H. Then (X,∆+ τH) is generalized lc, as (X,∆) is lc. Since
p∗(KX +∆+ τH) ≥ q∗(KY + ϕ∗(∆ + τH)), (Y, ϕ∗(∆ + τH)) is also gener-
alized lc. Let F be a general fiber of W → Z, and T be the corresponding
fiber of Y → Z. Again, we have dim(T ) > 0. By restricting to the general
fiber T , (T, ϕ∗(∆ + τH)|T ) is generalized lc, and KT + ϕ∗(∆ + τH)|T ≡ 0.
Since HW is big, HW |F is not numerically trivial, and there exists some
component q∗(Hj)|F of HW |F which is not numerically trivial. If {τ} forms
a strictly increasing sequence, then {µjτ} belongs to a DCC set. According
to Theorem 2.7, {µjτ} belongs to a finite set, a contradiction. Therefore,
{τ} belongs to an ACC set.

For the general case, according to Lemma 2.2, we may assume that
(X,∆) is Q-factorial dlt. If the statement were not true, then there exists a
sequence of lc pairs (X(i),∆(i)), and a big R-Cartier H(i) on X(i) satisfying
the assumption of Theorem 1.4, but τi := τ(X(i),∆(i), H(i)) is strictly in-
creasing. For any 1 ≥ ϵ ≥ 0, let τi,ϵ := τ(X(i), (1− ϵ)∆(i);H(i)). It is clear
that τi,ϵ ≥ τi, and there exists a decreasing sequence, ϵi → 0, such that
τi+1 > τi,ϵi ≥ τi. Let J = {1− ϵi}. Now (X(i), (1− ϵi)∆

(i)) is Q-factorial klt,
the coefficients of (1− ϵi)∆

(i) belong to IJ , which is a DCC set. However,
the sequence {τi,ϵi}i∈N is strictly increasing. This contradicts to the above
Q-factorial case. □

Inspired by a private communication with Di Cerbo, we can prove a
slightly stronger version of Theorem 1.4 by using an effective birationality
result for generalized polarized pairs of general type established in [4].
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Theorem 3.2. Let n be a natural number and I a DCC set of nonnegative

real numbers. Let Dn(I) be the set of pseudo-effective threshold τ(X,∆;M)
which satisfies the following conditions.

1) X is a normal projective variety of dimension n,

2) (X,∆) is lc and the coefficients of ∆ are in I,

3) M =
∑

µiMi, where Mi is a nef Cartier divisor for each i, µi ∈ I,
and

4) KX +∆+M is big.

Then Dn(I) satisfies the ACC.

Proof. Otherwise, there exists a sequence {(X(i),∆(i),M (i))}, such that αi =
τ(X(i),∆(i);M (i)) is strictly increasing and limi→+∞ αi = α ≤ 1. Then,

τ(X(i),∆(i);αM (i)) =
αi

α
→ 1,

and K
(i)
X +∆(i) + αM (i) is big. Since the coefficients of αM i belong to the

DCC set I ∪ αI, by Theorem 8.2 in [4], there exists a natural number m

depending only on n and I ∪ αI, such that the linear system |⌊m(KX +
∆)⌋+

∑

⌊mαµj⌋Mj | defines a birational map. By Lemma 2.3.4 in [12],KX +
∆+ (2n+ 1)(m(KX +∆+ αM)) is big. Since

KX +∆+ (2n+ 1)(m(KX +∆+ αM))

∼R ((2n+ 1)m+ 1)

(

KX +∆+
(2n+ 1)mα

(2n+ 1)m+ 1
M

)

,

we have αi = τ(X(i),∆(i);M (i)) ≤ (2n+1)m
(2n+1)m+1α. This implies that

lim
i→+∞

αi ≤
(2n+ 1)m

(2n+ 1)m+ 1
α < α,

a contradiction. □

Remark 3.3. In Theorem 3.2, we do not require that M to be big, and
Theorem 3.2 implies Theorem 1.4 . In fact, let I be a DCC set, (X,∆) be
a projective Q-factorial dlt pair of dimension n, H =

∑

µiHi be a big and
nef R-Cartier divisor. Set δ = min{I>0}, where ∆, µj ∈ I. One can show

that KX +∆+ (2n+1)
δ

H is also big (see, for example, [2] Lemma 2.30). Let

M = (2n+1)
δ

H, Theorem 1.4 follows from Lemma 2.2 and Theorem 3.2.
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4. The Finiteness and the DCC property for

pseudo-effective polytopes

In this section, we prove Theorem 1.5 and Theorem 1.6, which generalize
Theorem 1.3 from a single divisor to multiple divisors. The proofs are simi-
lar.

4.1. Pseudo-effective polytopes

Let X be a normal projective variety, and V be a finite dimensional affine
subspace of the real vector space WDivR(X) of Weil divisors on X. Fix an
R-divisor A ≥ 0 and define (see [1] Definition 1.1.4)

EA(V ) = {∆ = A+B | B ∈ V,B ≥ 0,KX +∆ is lc and pseudo-effective}.

Notice that EA(V ) is a compact set by the lc requirement. Under this
notation, we have the following result.

Theorem 4.1 ([1] Corollary 1.1.5). Let X be a normal projective vari-

ety, V be a finite dimensional affine subspace of WDivR(X) which is defined

over rationals. Suppose there is a divisor ∆0 ∈ V such that KX +∆0 is klt.

Let A be a general ample Q-divisor, which has no components in common

with any element of V . Then EA(V ) is a rational polytope.

We can deduce that PE-polytopes are indeed polytopes under suitable
assumptions from Theorem 4.1. Notice that there are no lc restrictions for
PE-polytopes. See Figure 2 for a PE-polytope of two divisors.

t1

t2

P (X,∆;D1, D2)

Figure 2: A PE-polytope of two divisors.

Proposition 4.2. Let (X,∆) be a klt pair and H1, . . . , Hm be big and nef

Q-Weil divisors. Then P (X,∆;H1, . . . , Hm) is an unbounded polytope.
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Proof. By definition (see (1.2)), P (X,∆;H1, . . . , Hm) is convex. If KX is
pseudo-effective, then P (X,∆;H1, . . . , Hm) = Rm

≥0, hence we can assume
that KX is not pseudo-effective. Then there exists a rational number a > 0
such that KX + a(H1 + · · ·+Hm) is also not pseudo-effective.

Because Hi are big divisors, there exists constant τ > 0, such that KX +
∆+

∑m
i=1 tiHi is pseudo-effective when ti ≥ τ for some i. In other words,

Rm
≥0\[0, τ ]

m is contained in P (X,∆;H1, . . . , Hm). Thus, it suffices to show
that P (X,∆;H1, . . . , Hm) ∩ [0, τ ]m is a polytope.

Recall that a divisor is pseudo-effective if and only if the divisor which
is numerical to it is also pseudo-effective, thus,

(4.1) P (X,∆;H1, . . . , Hm) = P (X,∆;H ′
1, . . . , H

′
m)

for any Hi ≡Q H ′
i. Since Hi is big and nef, there is an effective divisors Ei,

and ample Q-divisor Ai,k such that Hi ≡ Ai,k +
Ei

k
, for any k ≫ 1. Let N

be a natural number such that (X,∆+ τ
∑m

i=1
Ei

N
) is klt, and Ni > τ be a

natural number such that NiAiN is a very ample divisor. Let A′
i ∈ |NiAiN |

be a general very ample divisor, and H ′
i =

1
Ni

A′
i +

Ei

N
, (X,∆+ τ

∑m
i=1H

′
i)

is also klt. Now, we only need to show that P (X,∆;H ′
1, . . . , H

′
m) ∩ [0, τ ]m

is a polytope.

For each i, let M ′
i ∈ |A′

i| be another general very ample divisor, and
let Mi =

a
Ni

M ′
i . Let Vi be the affine space ∆ + a

N
Ei +

∑m
i=1RH

′
i. By Theo-

rem 4.1, EMi
(Vi) is a rational polytope.

Let

Ei :=

{

(t1, . . . , ti−1, ti + a, ti+1, . . . , tm) |

∆+Mi +
a

N
Ei +

m
∑

i=1

tiH
′
i ∈ EMi

(Vi)

}

.

It is clear that Ei ∩ [0, τ ]m ⊆ P (X,∆;H ′
1, . . . , H

′
m) ∩ [0, τ ]m for each i. Now

if (t1, . . . , tm) ∈ P (X,∆;H ′
1, . . . , H

′
m) ∩ [0, τ ]m, there exists at least one k

such that tk ≥ a (recall that we chose a such that KX + a(H1 + · · ·+Hm)
is not pseudo-effective). This implies that ∆ +Mk +

a
N
Ek +

∑m
i=1 tiH

′
i −

aH ′
k ∈ EMk

(Vk), and (t1, . . . , tm) ∈ Ek. Thus,

m
⋃

i=1

Ei ∩ [0, τ ]m = P (X,∆;H ′
1, . . . , H

′
m) ∩ [0, τ ]m.

In particular, P (X,∆;H ′
1, . . . , H

′
m) ∩ [0, τ ]m is a polytope by convexity. □
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4.2. Proofs of Theorem 1.5 and Theorem 1.6

•

τ

t1

t2
P (X;H1, H2) ∩ [δ,+∞)2

Figure 3: A truncated PE-polytope.

Proof of Theorem 1.5. By Lemma 2.2, we can assume that X is Q-factorial.
Choose arbitrary τ = (τ1, . . . , τm) on the boundary of the truncated PE-
polytope P (X,∆;H1, . . . , Hm) ∩ [δ,+∞)m and in the interior of [δ,+∞)m,
then KX +∆+ τ1H1 + · · · τmHm is pseudo-effective but not big. If KX is
pseudo-effective, then P (X,∆;H1, . . . , Hm) ∩ [δ,+∞)m = [δ,+∞)m, we can
assume that KX is not pseudo-effective.

Since Hi is big and nef, by the same argument in the proof of Theo-
rem 1.3, we can find Q-divisors H ′

i ∼Q Hi, such that

(X,Γ) :=

(

X,∆+

m
∑

i=1

τiH
′
i

)

is ϵ
2 -lc, and we may run a (KX + Γ)-MMP, ϕ : X 99K Y , such that ϕ is a

birational map, KY + ϕ∗Γ is semiample and (Y, ϕ∗Γ) is still
ϵ
2 -lc.

Now KY + ϕ∗Γ defines a contraction f : Y → Z. Let F be a general fiber
of f , we have dim(F ) > 0. By restricting to F , we get

(4.2) KF + ϕ∗Γ|F = KF + ϕ∗∆F +

m
∑

i=1

τiHY,i|F ≡ 0,

where HY,i is the strict transform of H ′
i on Y for each i.

Since KF + ϕ∗∆+
∑m

i=1 τiHY,i|F is ϵ
2 -lc, according to Theorem 2.3, F

belongs to a bounded family. Hence, we may find a very ample Cartier divisor
M on F , so that −KF ·MdimF−1 is bounded. Besides, as H ′

i ∼Q Hi, we have
ϕ∗(H

′
i) ≡Q ϕ∗(Hi), and the intersection numbers di := HY,i|F ·MdimF−1 =
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ϕ∗(Hi)|F ·MdimF−1 is a positive integer. Let ϕ∗∆|F =
∑

j aj∆F,j , where

aj ∈ I, and ∆F,j are Weil divisors. By intersecting (4.2) with MdimF−1, we
obtain an equation for τi,

(4.3)
∑

j

ajbj +

m
∑

i=1

τidi = c,

where c = −KF ·MdimF−1 is a nonnegative integer with only finite possibil-
ities, bj = ∆F,j ·M

dimF−1 is a positive integer. Since τi ≥ δ for all i, and I is
finite, di, bi are bounded above and thus only have finite possibilities. Hence
there are only finite possibilities for the equations (4.3). In other words,
(τ1, . . . , τm) can only lie on finitely many hyperplanes Lk ⊆ Rm, k ∈ I. By
Proposition 4.2, P (X,∆;H1, . . . , Hm) ∩ [ϵ,+∞)m is a polytope. If Θ is a
facet of P (X;H1, . . . , Hm) ∩ [ϵ,+∞)m (i.e. an (m− 1)-dimensional face),
then

Θ ⊆ (∪k∈ILk) ∪ (∪m
i=1{ti = δ}).

By irreducibility, Θ ⊆ Lk or Θ ⊆ {ti = δ}, and hence finite possibilities. This
shows that the set Pn,m,I,ϵ,δ is finite. □

Θ1

Θ2

Θ3

··
·

P1 P2 P3

t1

t2

Figure 4: A decreasing sequence of PE-polytopes.

Proof of Theorem 1.6. By Lemma 2.2, we can assume that X is Q-factorial.
Without loss of generality, we can assume that KX is not pseudo-effective.

Choose arbitrary τ = (τ1, . . . , τm) on the boundary of the PE-polytope
P (X,∆;H1, . . . , Hm) which is in the interior of Rm

≥0. We then proceed the
same way as in the proof of Theorem 1.3. We can find Q-divisors H ′

i ∼Q Hi,
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such that

(X,Γ) :=

(

X,∆+

m
∑

i=1

τiH
′
i

)

is ϵ
2 -lc, and we may run a (KX + Γ)-MMP, ϕ : X 99K Y , such that KY + ϕ∗Γ

is semiample. KY + ϕ∗Γ defines a contraction f : Y → Z. By restricting to
a general fiber F , we get a similar equation as (4.2)

(4.4) KF + ϕ∗Γ|F = KF +
∑

j

aj∆F,j +

m
∑

i=1

τiHY,i|F ≡ 0.

Here we write ϕ∗∆|F =
∑

j aj∆F,j , where ∆F,j is a Weil divisor. As (F, ϕ∗Γ|F )
is ϵ

2 -lc, it belongs to a bounded family by Theorem 2.3. By taking a very
ample divisor M , and intersecting MdimF−1 with (4.4), we get

(4.5)
∑

j

ajbj +

m
∑

i=1

τidi = c,

where c = −KF ·MdimF−1 is a nonnegative integer with only finite possibil-
ities, bj = ∆Y,j ·M

dimF−1, di = HY,i|F ·MdimF−1 are nonnegative integers.

Now, all ajbj form a DCC set, and the finite summations
∑

j ajbj ∈
∑

I
also form a DCC set.

Set P (k) = P (X(k),∆(k);H
(k)
1 , . . . , H

(k)
m ). Suppose P (1) ⊋ P (2) ⊋ · · · ⊋

P (k) ⊋ · · · is a sequence of decreasing polytopes. Then there are countably

many linear equations {L(s)}s∈N, where

(4.6) L(s) :=

m
∑

i=1

tid
(s)
i +

∑

j

a
(s)
j b

(s)
j − c(s),

where d
(s)
i , b

(s)
j ∈ N, a

(s)
j ∈ I, and c(s) belongs to a finite set. If Θ(k) is a facet

of P (k), then Θ(k) must lie on the countably union of hyperplanes

(∪s∈N{L
(s) = 0}) ∪ (∪m

i=1{ti = 0}),

where {ti = 0} is the i-th coordinate hyperplane. If Θ(k) is not contained in
any of {L(s) = 0} nor {ti = 0}, then their intersections on Θ(k) are measure
zero sets. Thus, their countable unions is still of measure zero. This is im-
possible and hence Θ(k) must be contained in one of {L(s) = 0} or {ti = 0}.
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Since {P (k)}k∈N is a strictly decreasing sequence, there must exist a se-
quence {Θ(k)}k∈N such that Θ(k)⊆P (k) is a facet, Θ(k)⊆{t∈Rm

≥0 | L
(k)(t) =

0}, and

{t ∈ Rm
≥0 | L

(k)(t) = 0}k∈N

are different sets (c.f. Figure 4).
Using the DCC property, by passing to a subsequence, we can assume

that, in (4.6), c(k) = c is fixed for all k, the sequence {
∑

j a
(k)
j b

(k)
j }k∈N is

non-decreasing, and the sequence {n
(k)
i }k∈N is non-decreasing for each i.

Now, the set

(4.7) {t ∈ Rm
≥0 | L

(k)(t) ≥ 0}k∈N

is strictly increasing. However, by assumption, we have

{t ∈ Rm
≥0 | L

(k)(t) ≥ 0} ⊇ P (k) ⊋ P (k+1) ⊇ Θ(k+1).

This is impossible as there exists θ ∈ Θ(k+1) lies on L(k+1) = 0 which is not
contained in {t ∈ Rm

≥0 | L
(k)(t) ≥ 0} by (4.7). □
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