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Let X be a smooth projective curve of genus g ≥ 2 over an alge-
braically closed field k of characteristic p > 0, Ms

X
(r, d) the moduli

space of stable vector bundles of rank r and degree d on X. We
study the Frobenius stratification of Ms

X
(3, d) in terms of Harder-

Narasimhan polygons of Frobenius pull-backs of stable vector bun-
dles and obtain the irreducibility and dimension of each non-empty
Frobenius stratum in the case (p, g) = (3, 2) with 3 ∤ d.

1. Introduction

Let k be an algebraically closed field of characteristic p > 0, X a smooth
projective curve of genus g over k. The absolute Frobenius morphism FX :
X → X is induced by OX → OX , f 7→ fp. Let Ms

X(r, d) be the moduli space
of stable vector bundles of rank r and degree d on X.

For any vector bundle E onX, by the Harder-Narasimhan filtration of E ,
we can define the Harder-Narasimhan Polygon HNP(E ), which is a convex
polygon in the coordinate plane of rank-degree (cf. [18, Section 3]).

Fix integers m and n with m > 0. Let ConPgn(m,n) be the set of all
convex polygons in the coordinate plane such that their vertexes have in-
tegral coordinates, start at the origin (0, 0) and end at the point (m,n).
Then there is a natural partial order structure, denoted by ≽, on the set
ConPgn(m,n) (cf. [18, Section 3]).

In general, the semistability of vector bundles is possibly destabilized
under the Frobenius pull-back F ∗

X (cf. [3], [17]). Thus, there is a natural
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set-theoretic map

SsFrob : Ms
X(r, d)(k) → ConPgn(r, pd)

[E ] 7→ HNP(F ∗
X(E ))

For any P ∈ ConPgn(r, pd), we denote

SX(r, d,P) := {[E ] ∈ Ms
X(r, d) | HNP(F

∗
X(E )) = P}.

SX(r, d,P
+) := {[E ] ∈ Ms

X(r, d) | HNP(F
∗
X(E )) ≽ P}.

Then we have a canonical stratification of Ms
X(r, d) in terms of Harder-

Narasimhan polygons of Frobenius pull-backs of stable vector bundles. We
call this the Frobenius stratification (cf. [6]). By [18, Theorem 3], the Frobe-
nius stratum SX(r, d,P

+) is a closed subvariety of Ms
X(r, d) for any P ∈

ConPgn(r, pd).
Some results about Frobenius stratification of moduli spaces of vector

bundles are known in special cases for small values of p, g, r and d. Joshi-
Ramanan-Xia-Yu [6] give a complete description of the Frobenius stratifi-
cation of the moduli space Ms

X(2, d) if p = 2 and g ≥ 2. In [12] the author
obtains the classification of Frobenius strata in Ms

X(3, 0) if p = 3 and g = 2.
It is easy to deduce the Frobenius stratification of Ms

X(3, d) if (p, g) = (3, 2)
and 3|d. The method used in this paper, as well as [12], is a variation of the
idea introduced in [6]. In the higher rank case, Joshi and Pauly [5] study the
properties of the Frobenius stratum consisting of stable vector bundles whose
Frobenius pull-back has maximal Harder-Narasimhan polygon if d = 0 and
p > r(r − 1)(r − 2)(g − 1). The author obtains the geometric properties of
a special Frobenius stratum in Ms

X(r, d) if p|r and g ≥ 2 in [11][13]. Other
results about Frobenius stratification of moduli spaces of vector bundles can
be found in [2][7][8][9][10][16][22] for r = 2 and [11][14][15][22] for r > 2.

In general, it is difficult to determine the HNP(F ∗
X(E )) for some sta-

ble vector bundle E . In the case (p, g, r) = (3, 2, 3), we first show that there
are 4 possible Harder-Narasimhan polygons {P1(d),P2(d),P3(d),P4(d)}
for any Frobenius destabilized stable vector bundles of rank 3 and degree
d (see Figure 1). We show that any Frobenius destabilized stable vector
bundle [E ] ∈ Ms

X(3, d)(k) with HNP(F ∗
X(E )) ∈ {P2(d),P3(d),P4(d)} can

be embedded into FX∗(L ) for some line bundle L of degree d− 1 on
X(Proposition 3.3). Then we can determine HNP(F ∗

X(E )) by analysing the
intersection of F ∗

X(E ) with the canonical filtration of F ∗
XFX∗(L ). This is

the key point of our method. Moreover, we show that any rank 3 and de-
gree d subsheaf E ⊂ FX∗(L ) is stable for any line bundle L of degree
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d− 1 with 3 ∤ d (Proposition 3.4). Therefore we can obtain the geometric
properties of Frobenius strata of Ms

X(3, d) from the geometric properties of
Frobenius strata of QuotX(3, d,Pic

(−1)(X)) (see Section 4) by the morphism
θ : QuotX(3, d,Pic

(d−1)(X)) → Ms
X(3, d) : [E →֒ FX∗(L )] 7→ [E ].

The main goal of the paper is to study the geometric properties of Frobe-
nius strata of Ms

X(3, d) with 3 ∤ d. The main result is the following Theorem.

Theorem 1.1. (Theorem 5.2) Let k be an algebraically closed field of char-

acteristic 3, X a smooth projective curve of genus 2 over k, d an integer with

3 ∤ d. Then SX(3, d,P
+
i (d)) = SX(3, d,Pi(d)), and SX(3, d,P

+
i (d)) (resp.

SX(3, d,Pi(d))) are irreducible projective (resp. irreducible quasi-projective)
varieties for 1 ≤ i ≤ 4,

dimSX(3, d,P
+
i (d)) = dimSX(3, d,Pi(d)) =























5, if i = 1

5, if i = 2

4, if i = 3

2, if i = 4

The method of this paper is similar to [12], and most proofs of [12] in
the case (p, g, r, d) = (3, 2, 3, 0) can be applied to any degree d with little
modification. However, for any line bundle L of degree d− 1 on X and any
rank 3 and degree d subsheaf E ⊂ FX∗(L ), the main difference between
the cases 3|d and 3 ∤ d is that E is stable if 3 ∤ d, while semistable and
possibly not stable if 3|d (see [12, Proposition 3.4] and Proposition 3.4). As a
consequence of this difference, the Frobenius strata SX(3, d,P

+
i (d))(1 ≤ i ≤

4) are irreducible projective varieties if 3 ∤ d, and SX(3, d,P
+
i (d))(1 ≤ i ≤ 4)

are irreducible quasi-projective varieties if 3|d.
In Section 2, we show that there are 4 possible Harder-Narasimhan poly-

gons {P1(d),P2(d),P3(d),P4(d)} for the Frobenius pull-backs of Frobe-
nius destabilized stable vector bundles of rank 3 and degree d in the case
(p, g, r) = (3, 2, 3).

In Section 3, we show that any Frobenius destabilized stable bundle [E ] ∈
Ms

X(3, d)(k) with HNP(F ∗
X(E )) ∈ {P2(d),P3(d),P4(d)} can be embedded

into FX∗(L ) for some line bundle L of degree d− 1 on X. In addition, we
show that for any line bundle L of degree d− 1 on X, each rank 3 and
degree d subsheaf E ⊂ FX∗(L ) is stable if 3 ∤ d.

In Section 4, we study the Frobenius stratification of the Quot scheme
QuotX(3, d,Pic

(d−1)(X)) and obtain the smoothness, irreducibility and di-
mension of each stratum.
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In Section 5, we study the Frobenius stratification of moduli space
Ms

X(3, d) if (p, g) = (3, 2) with 3 ∤ d. By the morphism

θ : QuotX(3, d,Pic
(d−1)(X)) → Ms

X(3, d) : [E →֒ FX∗(L )] 7→ [E ],

we obtain the geometric properties of Frobenius strata of the moduli space
Ms

X(3, d) from the Frobenius stratification structure of

QuotX(3, d,Pic
(d−1)(X)).

2. Classification of Frobenius Harder-Narasimhan polygons

In this section, we will determine all of the possible Harder-Narasimhan
polygons of F ∗

X(E ) for any Frobenius destabilized stable vector bundles
[E ] ∈ Ms

X(3, d)(k), where X is a smooth projective curve of genus 2 over
an algebraically closed field k of characteristic 3.

Theorem 2.1 (N. I. Shepherd-Barron [19] and V. Mehta, C. Pauly
[15]). Let k be an algebraically closed field of characteristic p > 0, X a

smooth projective curve of genus g ≥ 2 over k, E a semistable vector

bundle on X. Let 0 = E0 ⊂ E1 ⊂ · · · ⊂ Em−1 ⊂ Em = F ∗
X(E ) be the Harder-

Narasimhan filtration of F ∗
X(E ). Then µ(Ei/Ei−1)− µ(Ei+1/Ei) ≤ 2g − 2, for

any 1 ≤ i ≤ m− 1.

By Theorem 2.1, there are 4 possible Harder-Narasimhan polygons

{P1(d),P2(d),P3(d),P4(d)}

for Frobenius destabilized stable vector bundles in the case (p, g, r, d) =
(3, 2, 3, d).

3. Construction of stable vector bundles

Definition 3.1. ([6][20]) Let k be an algebraically closed field of charac-
teristic p > 0, X a smooth projective curve over k. For any coherent sheaf
F on X, let

∇can : F ∗
XFX∗(F ) → F ∗

XFX∗(F )⊗OX
Ω1
X
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Figure 1: Classification of Harder-Narasimhan polygons if (p, g, r, d) =
(3, 2, 3, d).

be the canonical connection on F ∗
XFX∗(F ). Set

V1 := ker(F ∗
XFX∗(F ) ↠ F ),

Vl+1 := ker{Vl
∇can−→ F ∗

XFX∗(F )⊗OX
Ω1
X → (F ∗

XFX∗(F )/Vl)⊗OX
Ω1
X}

The filtration Fcan
F • : F

∗
XFX∗(F ) = V0 ⊃ V1 ⊃ V2 ⊃ · · · is called the canon-

ical filtration of F ∗
XFX∗(F ).

Theorem 3.2 (X. Sun [20]). Let k be an algebraically closed field of

characteristic p > 0, X a smooth projective curve of genus g over k, E a

vector bundle on X. Then the canonical filtration of F ∗
XFX∗(E ) is

0 = Vp ⊂ Vp−1 ⊂ · · · ⊂ Vl+1 ⊂ Vl ⊂ · · · ⊂ V1 ⊂ V0 = F ∗
XFX∗(E )

such that

(1) ∇can(Vi+1) ⊂ Vi ⊗OX
Ω1
X for 0 ≤ i ≤ p− 1.

(2) Vl/Vl+1
∇can−→ E ⊗OX

Ω⊗l
X are isomorphic for 0 ≤ l ≤ p− 1.

(3) If g ≥ 1, then FX∗(E ) is semistable whenever E is semistable. If g ≥ 2,
then FX∗(E ) is stable whenever E is stable.

(4) If g ≥ 2 and E is semistable, then the canonical filtration of F ∗
XFX∗(E )

is nothing but the Harder-Narasimhan filtration of F ∗
XFX∗(E ).

Proposition 3.3. Let k be an algebraically closed field of characteristic 3,
X a smooth projective curve of genus 2 over k. Let E be a rank 3 and degree
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d stable vector bundle on X with a non-trivial homomorphism F ∗
X(E ) → L ,

where L is a line bundle of degree d− 1 on X. Then the adjoint homomor-

phism E →֒ FX∗(L ) is an injection.

Proof. By adjunction, there is a non-trivial homomorphism E → FX∗(L ).
Denote the image by G . Suppose that 1 ≤ rk(G ) ≤ 2, then by [21, Corollary
2.4] and the stability of FX∗(L ), we have

µ(G )− µ(FX∗(L )) ≤ −
3− rk(G )

3
.

By Grothendieck-Riemann-Roch theorem, we have deg(FX∗(L )) = d+ 1
(cf. [20, Lemma 4.2]), so

µ(G ) ≤ −
3− rk(G )

3
+ µ(FX∗(L )) =

rk(G ) + d− 2

3
.

On the other hand, by stability of E , we have µ(G ) > d
3 . This induces a

contradiction. Hence, rk(G ) = 3. Therefore E ∼= G , i.e. the adjoint homo-
morphism E →֒ FX∗(L ) is an injection. □

Proposition 3.4. Let k be an algebraically closed field of characteristic 3,
X a smooth projective curve of genus 2 over k. Let L be a line bundle of

degree d− 1 on X with 3 ∤ d, E ⊂ FX∗(L ) a subsheaf with rk(E ) = 3 and

deg(E ) = d. Then E is a stable vector bundle.

Proof. Let G ⊂ E be a subsheaf of E with rk(G ) < rk(E ) = 3. By [21, Corol-
lary 2.4] and the stability of FX∗(L ), we have

µ(G )− µ(FX∗(L )) ≤ −
3− rk(G )

3
.

It follows that

µ(G ) ≤ −
3− rk(G )

3
+ µ(FX∗(L )) =

rk(G ) + d− 2

3
≤
d

3
= µ(E ).

If rk(G ) = 1, then µ(G ) < µ(E ). If rk(G ) = 2, we have µ(G ) ̸= d
3 , since 3 ∤ d.

Thus E is a stable vector bundle. □

Any Frobenius destabilized stable bundle [E ] ∈ Ms
X(3, d)(k) with

HNP(F ∗
X(E )) ∈ {P2(d),P3(d),P4(d)} can be embedded into FX∗(L ) for
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some line bundle L of degree d− 1 on X. It can be seen from Proposi-
tion 3.3, Proposition 3.4 and the classification of Harder-Narasimhan poly-
gons of the Frobenius pull-backs of Frobenius destabilized stable vector bun-
dles in the case (p, g, r) = (3, 2, 3) with 3 ∤ d (see Figure 1).

4. Geometric properties of quot schemes

Let k be an algebraically closed field of characteristic p > 0, X a smooth
projective curve of genus g over k, FX : X → X the absolute Frobenius
morphism, r and d integers with r > 0. Let Pic(t)(X) be the Picard scheme
parameterizes all line bundles of degree t on X, [L ] ∈ Pic(t)(X)(k) and
P ∈ ConPgn(r, pd). We first recall some notations of Quot schemes in [12,
Section 4], such as QuotX(r, d,Pic

(t)(X)), Quot♯X(r, d,Pic
(t)(X)) and so on.

For simplicity, we describe these Quot schemes in the sense of closed points
as the following

QuotX(r, d,Pic
(t)(X))(k)

:= {[E →֒ FX∗(L )] | rk(E ) = r, deg(E ) = d,L ∈ Pic(t)(X)},

QuotX(r, d,Pic
(t)(X),P)(k)

:= {[E →֒ FX∗(L )] ∈ QuotX(r, d,Pic
(t)(X))(k) | HNP(F ∗

X(E )) = P},

QuotX(r, d,Pic
(t)(X),P+)(k)

:= {[E →֒ FX∗(L )] ∈ QuotX(r, d,Pic
(t)(X))(k) | HNP(F ∗

X(E )) ≽ P},

Quot♯X(r, d,Pic
(t)(X))(k)

:=







[E →֒ FX∗(L )]

∣

∣

∣

∣

∣

rk(E ) = r, deg(E ) = d,L ∈ Pic(t)(X),
adjoint homomorphism F ∗

X(E ) → L

is surjective.







,

QuotX(r, d,L )(k)

:= {[E →֒ FX∗(L )] | rk(E ) = r, deg(E ) = d},

Quot♯X(r, d,L )(k)

:=

{

[E →֒ FX∗(L )] ∈ QuotX(r, d,L )(k)

∣

∣

∣

∣

adjoint homomorphism
F ∗
X(E ) → L is surjective.

}

In this section, we will study the Frobenius stratification of the Quot
scheme QuotX(3, d,Pic

(d−1)(X)) in the case (p, g) = (3, 2) with 3 ∤ d. In this



✐

✐

“7-LiL” — 2020/5/26 — 21:16 — page 508 — #8
✐

✐

✐

✐

✐

✐

508 Lingguang Li

case, the scheme QuotX(3, d,Pic
(d−1)(X)) parameterizes all the rank 3 and

degree d subsheaves of FX∗(L ) for any line bundle L of degree d− 1 on
X. By Proposition 3.3 and Proposition 3.4, we know that these subsheaves
are stable. This induces a natural morphism

θ : QuotX(3, d,Pic
(d−1)(X)) → Ms

X(3, d) : [E →֒ FX∗(L )] 7→ [E ].

Now, we analysis the Frobenius stratification of the Quot scheme
QuotX(3, d,Pic

(d−1)(X)). Let [E →֒ FX∗(L )] be a closed point of
QuotX(3, d,Pic

(d−1)(X)), where [L ] ∈ Pic(d−1)(X)(k). The non-trivial ad-
joint homomorphism F ∗

X(E ) → L implies that

µ(F ∗
X(E )) > µ(L ) ≥ µmin(F

∗
X(E )),

so E is a Frobenius destabilized stable vector bundle.

Theorem 4.1 (S. S. Shatz [18] Theorem 2 and Theorem 3). Let k
be an algebraically closed field, X a smooth projective variety over k, H an

ample divisor on X. Consider the Harder-Narasimhan filtrations of torsion

free sheaves on X in the sense of Mumford’s semistability with respect to H.

Then

(1) For any torsion free sheaf E and any subsheaf F ⊆ E , we have the

point (rk(F ), deg(F )) lies below HNP(E ).

(2) Let E be a flat family of torsion free sheaves of rank r and degree d on

S ×k X parameterized by a scheme S of finite type over k. Then for

any convex polygon P ∈ ConPgn(r, d), the subset

SP = {s ∈ S | HNP(E|{s}×kX) ≽ P}

is a closed scheme of S.

Proposition 4.2. Let k be an algebraically closed field of characteristic

3, X a smooth projective curve of genus 2 over k. Let L be a line bundle

of degree d− 1 on X with 3 ∤ d, 0 = E3 ⊂ E2 ⊂ E1 ⊂ E0 = F ∗
XFX∗(L ) the

canonical filtration of F ∗
XFX∗(L ). Let [E →֒ FX∗(L )] ∈ QuotX(3, d,L )(k).

Then

HNP(F ∗
X(E )) ∈ {P2(d),P3(d),P4(d)}.

Moreover, we have
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(1) HNP(F ∗
X(E )) = P4(d) if and only if deg(F ∗

X(E ) ∩ E2) = d+ 2 if and

only if the adjoint homomorphism F ∗
X(E ) → L is not surjective. In

this case, the Harder-Narasimhan filtration of F ∗
X(E ) is

0 ⊂ F ∗
X(E ) ∩ E2 ⊂ F ∗

X(E ) ∩ E1 ⊂ F ∗
X(E ).

(2) HNP(F ∗
X(E )) = P3(d) if and only if deg(F ∗

X(E ) ∩ E2) = d+ 1. In this

case, [E →֒ FX∗(L )]∈Quot♯X(3, d,L )(k), and the Harder-Narasimhan

filtration of F ∗
X(E ) is

0 ⊂ F ∗
X(E ) ∩ E2 ⊂ F ∗

X(E ) ∩ E1 ⊂ F ∗
X(E ).

(3) HNP(F ∗
X(E )) = P2(d) if and only if deg(F ∗

X(E ) ∩ E2) = d. In this

case, [E →֒ FX∗(L )]∈Quot♯X(3, d,L )(k), and the Harder-Narasimhan

filtration of F ∗
X(E ) is

0 ⊂ F ∗
X(E ) ∩ E1 ⊂ F ∗

X(E ).

Proof. For any 1 ≤ i ≤ 2, consider the commutative diagram of abelian
sheaves

Ei+1
∇can //

((

Ei ⊗OX
Ω1
X

++
Ei

∇can // Ei−1 ⊗OX
Ω1
X

F ∗
X(E ) ∩ Ei+1

∇can //

((

?�

OO

(F ∗
X(E ) ∩ Ei)⊗OX

Ω1
X

++

?�

OO

F ∗
X(E ) ∩ Ei

∇can //
?�

OO

(F ∗
X(E ) ∩ Ei−1)⊗OX

Ω1
X

?�

OO

.

we can get the commutative diagram of vector bundles

Ei/Ei+1
∼= // (Ei−1/Ei)⊗OX

Ω1
X

(F ∗
X(E ) ∩ Ei)/(F

∗
X(E ) ∩ Ei+1) //

?�

OO

(F ∗
X(E ) ∩ Ei−1)/(F

∗
X(E ) ∩ Ei)⊗OX

Ω1
X .

?�

OO

Thus (F ∗
X(E ) ∩ Ei)/(F

∗
X(E ) ∩ Ei+1) →֒ (F ∗

X(E ) ∩ Ei−1)/(F
∗
X(E ) ∩ Ei)⊗OX

Ω1
X is injective for any 1 ≤ i ≤ 2. Therefore we have the following inequalities

deg(F ∗
X(E ) ∩ E2) ≤ d+ 3,
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deg

(

F ∗
X(E ) ∩ E1

F ∗
X(E ) ∩ E2

)

≤ d+ 1,

deg

(

F ∗
X(E )

F ∗
X(E ) ∩ E1

)

≤ d− 1,

deg(F ∗
X(E ) ∩ E2) ≤ deg(

F ∗
X(E ) ∩ E1

F ∗
X(E ) ∩ E2

) + 2 ≤ deg(
F ∗
X(E )

F ∗
X(E ) ∩ E1

) + 4,(∗)

deg(F ∗
X(E ) ∩ E2) + deg(

F ∗
X(E ) ∩ E1

F ∗
X(E ) ∩ E2

) + deg(
F ∗
X(E )

F ∗
X(E ) ∩ E1

) = 3d.(∗∗)

By computation, we can get

d ≤ deg(F ∗
X(E ) ∩ E2) ≤ d+ 2.

Suppose that [E →֒ FX∗(L )] ∈ QuotX(3, d,L )(k) such that F ∗
X(E ) is

semistable or HNP(F ∗
X(E )) = P1(d), then we have µmin(F

∗
X(E )) ≥ 2d−1

2 by
Figure 1. This contradicts to the fact deg(F ∗

X(E )/(F ∗
X(E ) ∩ E1)) ≤ d− 1.

Hence

HNP(F ∗
X(E )) ∈ {P2(d),P3(d),P4(d)}.

(1). I. If HNP(F ∗
X(E )) = P4(d), there exists a unique maximal desta-

bilizing sub-line bundle E′ ⊂ F ∗
X(E ) with deg(E′) = d+ 2. Suppose that

E′ ⊈ F ∗
X(E ) ∩ E1, then the composition

E′ →֒ F ∗
X(E ) →֒ F ∗

XFX∗(L ) ↠ F ∗
XFX∗(L )/E1

∼= L

is non-trivial. This induces a contradiction since deg(E′) > deg(L ). Suppose
that E′ ⊂ F ∗

X(E ) ∩ E1 and E′ ⊈ F ∗
X(E ) ∩ E2, then the composition

E′ →֒ F ∗
X(E ) ∩ E1 →֒ E1 ↠ E1/E2

is non-trivial. This induces a contradiction since deg(E′) > deg(E1/E2).
Hence E′ ⊂ F ∗

X(E ) ∩ E2. Thus deg(F ∗
X(E ) ∩ E2) = d+ 2. In fact E′ =

F ∗
X(E ) ∩ E2.

II. If deg(F ∗
X(E ) ∩ E2) = d+ 2, then by (∗) and (∗∗), we have

deg(
F ∗
X(E ) ∩ E1

F ∗
X(E ) ∩ E2

) ≥ d, deg(
F ∗
X(E )

F ∗
X(E ) ∩ E1

) ≤ d− 2 < deg(L ).

Hence the composition F ∗
X(E )↠F ∗

X(E )/(F ∗
X(E )∩E1) →֒F ∗

XFX∗(L )/E1
∼=

L is not surjective.
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III. If F ∗
X(E ) → L is not surjective, then µmin(F

∗
X(E )) ≤ d− 2. Then

we must have HNP(F ∗
X(E )) = P4(d) by Figure 1.

Combining the proofs of I, II and III, we have HNP(F ∗
X(E )) = P4(d)

if and only if deg(F ∗
X(E ) ∩ E2) = d+ 2 if and only if the adjoint homomor-

phism F ∗
X(E ) → L is not surjective. In this case, we have deg((F ∗

X(E ) ∩
E1)/(F

∗
X(E ) ∩ E2)) = d and deg(F ∗

X(E )/(F ∗
X(E ) ∩ E1)) = d− 2 by (∗) and

(∗∗). Hence, the Harder-Narasimhan filtration of F ∗
X(E ) is

0 ⊂ F ∗
X(E ) ∩ E2 ⊂ F ∗

X(E ) ∩ E1 ⊂ F ∗
X(E ).

(2). I. If HNP(F ∗
X(E )) = P3(d), then there exists a unique maximal

destabilizing sub-line bundle E′ ⊂ F ∗
X(E ) ∩ E1 with deg(E′) = d+ 1. Sup-

pose that E′ ⊈ F ∗
X(E ) ∩ E2, then the composition

E′ →֒ F ∗
X(E ) ∩ E1 →֒ E1 ↠ E1/E2

is non-trivial. This implies E′ ∼= E1/E2 since E′ and E1/E2 are line bundles
with same degree. Then E1 = E′ ⊕ E′′ for some line bundle E′′ of degree
d+ 3. This induces a contradiction by Lemma 4.3. Hence E′ ⊆ F ∗

X(E ) ∩ E2.
Thus deg(F ∗

X(E ) ∩ E2) = d+ 1. In fact E′ = F ∗
X(E ) ∩ E2.

II. If deg(F ∗
X(E ) ∩ E2) = d+ 1, then the adjoint homomorphism

F ∗
X(E ) → L is surjective by (1), i.e. [E →֒ FX∗(L )] ∈ Quot♯X(3, d,L )(k).

Moreover, by (∗) and (∗∗), we have

µ(F ∗
X(E ) ∩ E2) = d+ 1, µ(

F ∗
X(E ) ∩ E1

F ∗
X(E ) ∩ E2

) = d, deg(
F ∗
X(E )

F ∗
X(E ) ∩ E1

) = d− 1.

Hence, HNP(F ∗
X(E )) = P3(d) by Figure 1.

Combining the proofs of I and II, we have HNP(F ∗
X(E )) = P3(d) if

and only if deg(F ∗
X(E ) ∩ E2) = d+ 1. In this case, the Harder-Narasimhan

filtration of F ∗
X(E ) is

0 ⊂ F ∗
X(E ) ∩ E2 ⊂ F ∗

X(E ) ∩ E1 ⊂ F ∗
X(E ).

(3). By the proofs of (1) and (2), we can conclude that HNP(F ∗
X(E )) =

P2(d) if and only if deg(F ∗
X(E ) ∩ E2) = d. In this case, the adjoint homo-

morphism F ∗
X(E ) → L is surjective by (1), i.e.

[E →֒ FX∗(L )] ∈ Quot♯X(3, d,L )(k),

and the Harder-Narasimhan filtration of F ∗
X(E ) is

0 ⊂ F ∗
X(E ) ∩ E1 ⊂ F ∗

X(E ). □
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Lemma 4.3 (A. Grothendieck, M. Raynaud). Let k be an algebraically

closed field of characteristic p > 2, X a smooth projective curve of genus

g ≥ 2 over k and L a line bundle on X. If p ∤ (g − 1), we have

F ∗
XFX∗(L ) ≇ (Ω⊗p−1

X ⊗ L )⊕ (Ω⊗p−2
X ⊗ L )⊕ · · · ⊕ (Ω1

X ⊗ L )⊕ L .

In particular, in the case p = 3 and g = 2, we have

F ∗
XFX∗(L ) ≇ (Ω⊗2

X ⊗ L )⊕ (Ω1
X ⊗ L )⊕ L .

Proof. Suppose that

F ∗
XFX∗(L ) ∼= (Ω⊗p−1

X ⊗ L )⊕ (Ω⊗p−2
X ⊗ L )⊕ · · · ⊕ (Ω1

X ⊗ L )⊕ L .

For any 0 ≤ i ≤ p− 1, the composition

∇|Ω⊗i
X ⊗L

: Ω⊗i
X ⊗ L →֒ F ∗

XFX∗(L )

∇can→ F ∗
XFX∗(L )⊗ Ω1

X ↠ (Ω⊗i
X ⊗ L )⊗ Ω1

X

induces a connection on Ω⊗i
X ⊗ L , whose p-curveture is zero. Then by Katz’s

theorem, we know that Ω⊗i
X ⊗ L ∼= F ∗

X(Li) for some line bundle Li on X,
for any 0 ≤ i ≤ p− 1. Hence p| deg(Ω⊗i

X ⊗ L ), i.e. p|i(2g − 2) + deg(L ), 0 ≤
i ≤ p− 1.

On the other hand, if p>2 and p ∤ (g − 1), there exists some i∈{1, 2, . . . ,
p− 1} such that p ∤ i(2g − 2) + deg(L ). This contradicts to the assumption.

Therefore, p > 2 and p ∤ (g − 1) imply

F ∗
XFX∗(L ) ≇ (Ω⊗p−1

X ⊗ L )⊕ (Ω⊗p−2
X ⊗ L )⊕ · · · ⊕ (Ω1

X ⊗ L )⊕ L .

In particular, in the case p = 3 and g = 2, we have

F ∗
XFX∗(L ) ≇ (Ω⊗2

X ⊗ L )⊕ (Ω1
X ⊗ L )⊕ L .

□

Proposition 4.4. Let k be an algebraically closed field of characteristic 3,
X a smooth projective curve of genus 2 over k. Then

QuotX(3, d,Pic
(d−1)(X),P+

i (d))
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are smooth irreducible projective varieties for 2 ≤ i ≤ 4, and

dimQuotX(3, d,Pic
(d−1)(X),P+

i (d))

= dimQuotX(3, d,Pic
(d−1)(X),Pi(d)) =











5, if i = 2

4, if i = 3

3, if i = 4

Proof. By [4], there is a morphism

Π : QuotX(3, d,Pic
(d−1)(X)) → X × Pic(d−1)(X)

[E →֒ FX∗(L )] 7→ (Supp(FX∗(L )/E ),L ).

For any point x ∈ X(k) and any [L ] ∈ Pic(d−1)(X)(k), we denote the fiber of
Π over (x, [L ]) by QuotX(3, d, x,L ). Then there is a one to one correspon-
dence between the set of closed points [E →֒FX∗(L )] of QuotX(3, d, x,L )(k)
and the set of Ox-submodules V of the stalk FX∗(L )x such that

FX∗(L )x/V ∼= k,

the latter has a natural structure of algebraic variety which is isomorphic
to projective space P2

k. Hence Π is surjective and QuotX(3, d,Pic
(d−1)(X))

is a smooth irreducible projective variety of dimension 5. Without loss of
generality, we can assume that Ox

∼= k[[t3]], then FX∗(L )x ∼= k[[t]] endows
with k[[t3]]-module structure induced by injection k[[t3]] →֒ k[[t]] and

F ∗
XFX∗(L )x ∼= k[[t]]⊗k[[t3]] k[[t]].

Suppose that the Ox-submodule Ex of FX∗(L )x corresponds to the
k[[t3]]-submodule VE of k[[t]], then the Ox-submodule F ∗

X(E )x of F
∗
XFX∗(L )x

corresponds to the k[[t]]-submodule VE ⊗k[[t3]] k[[t]] of k[[t]]⊗k[[t3]] k[[t]].
Consider the decomposition of k[[t]] = k[[t3]]⊕ k[[t3]] · t⊕ k[[t3]] · t2 as

a k[[t3]]-module. Then the k[[t3]]-submodule VE ⊂ k[[t]] with k[[t]]/VE
∼= k

implies that

k[[t3]] · t3 ⊕ k[[t3]] · t4 ⊕ k[[t3]] · t5 ⊂ VE .

Now, we investigate the intersection of F ∗
X(E ) with the canonical filtra-

tion

0 ⊂ E2 ⊂ E1 ⊂ F ∗
XFX∗(L ).
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Locally, the stalk E1x has a basis {t⊗ 1− 1⊗ t, (t⊗ 1− 1⊗ t)2} and E2x

has a basis {(t⊗ 1− 1⊗ t)2} as k[[t]]-submodules of

F ∗
XFX∗(L )x ∼= k[[t]]⊗k[[t3]] k[[t]]

by [20, Lemma 3.2]. Let [E →֒ FX∗(L )] ∈ QuotX(3, d, x,L )(k), we claim
that

(a) (t⊗ 1− 1⊗ t)2 /∈ VE ⊗k[[t3]] k[[t]]

(b) (t⊗ 1− 1⊗ t)2t ∈ VE ⊗k[[t3]] k[[t]] if and only if {t, t2} ⊂ VE .

(c) (t⊗ 1− 1⊗ t)2t2 ∈ VE ⊗k[[t3]] k[[t]] if and only if t2 ∈ VE .

(d) (t⊗ 1− 1⊗ t)2t3 ∈ VE ⊗k[[t3]] k[[t]].

Suppose that (t⊗ 1− 1⊗ t)2 ∈ VE ⊗k[[t3]] k[[t]], then we have F ∗
X(E ) ∩

E2 = E2 as F ∗
X(E )x ∩ E2x = E2x. So deg(F ∗

X(E ) ∩ E2) = d+ 3, and it con-
tradicts to Proposition 4.2. Therefore the claim of (a) is proved.

Since

(t⊗ 1− 1⊗ t)2t = t2 ⊗ t− 2t⊗ t2 + 1⊗ t3

= t2 ⊗ t− 2t⊗ t2 + t3 ⊗ 1

and {t3} ⊂ VE by k[[t3]] · t3 ⊕ k[[t3]] · t4 ⊕ k[[t3]] · t5 ⊂ VE , then we have

(t⊗ 1− 1⊗ t)2t ∈ VE ⊗k[[t3]] k[[t]] iff t2 ⊗ t− 2t⊗ t2 ∈ VE ⊗k[[t3]] k[[t]],

which is equivalent to {t, t2} ⊂ VE . Therefore the claim of (b) is proved.
Since

(t⊗ 1− 1⊗ t)2t2 = t2 ⊗ t2 − 2t⊗ t3 + 1⊗ t4

= t2 ⊗ t2 − 2t4 ⊗ 1 + t3 ⊗ t

and {t3, t4} ⊂ VE by k[[t3]] · t3 ⊕ k[[t3]] · t4 ⊕ k[[t3]] · t5 ⊂ VE , then we have

(t⊗ 1− 1⊗ t)2t2 ∈ VE ⊗k[[t3]] k[[t]] iff t2 ⊗ t2 ∈ VE ⊗k[[t3]] k[[t]],

which is equivalent to t2 ∈ VE . Therefore the claim of (c) is proved.
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Since

(t⊗ 1− 1⊗ t)2t3 = t2 ⊗ t3 − 2t⊗ t4 + 1⊗ t5

= t5 ⊗ 1− 2t4 ⊗ t+ t3 ⊗ t2

and {t3, t4, t5} ⊂ VE by k[[t3]] · t3 ⊕ k[[t3]] · t4 ⊕ k[[t3]] · t5 ⊂ VE , then we have

(t⊗ 1− 1⊗ t)2t3 ∈ VE ⊗k[[t3]] k[[t]].

Therefore the claim of (d) is proved.
In summary, by above claims, we have

1 ≤ dimE2x/((VE ⊗k[[t3]] k[[t]]) ∩ E2x) ≤ 3,

dimE2x/((VE ⊗k[[t3]] k[[t]]) ∩ E2x) =











1 if ond only if {t, t2} ⊂ VE

2 if ond only if t /∈ VE and t2 ∈ VE

3 if ond only if t2 /∈ VE .

Consider the exact sequence of OX -modules

0 → F ∗
X(E ) ∩ E2 → E2 →

E2

F ∗
X(E ) ∩ E2

→ 0.

Notice that E2/(F
∗
X(E ) ∩ E2) ∼= E2x/((VE ⊗k[[t3]] k[[t]]) ∩ E2x). Therefore, by

Proposition 4.2, we have

HNP(F ∗
X(E )) = P2(d) ⇔ deg(F ∗

X(E ) ∩ E2) = d

⇔ deg(E2x/((VE ⊗k[[t3]] k[[t]]) ∩ E2x)) = 3

⇔ t2 /∈ VE .

HNP(F ∗
X(E )) = P3(d) ⇔ deg(F ∗

X(E ) ∩ E2) = d+ 1

⇔ deg(E2x/((VE ⊗k[[t3]] k[[t]]) ∩ E2x)) = 2

⇔ t /∈ VE and t2 ∈ VE .

HNP(F ∗
X(E )) = P4(d) ⇔ deg(F ∗

X(E ) ∩ E2) = d+ 2

⇔ deg(E2x/((VE ⊗k[[t3]] k[[t]]) ∩ E2x)) = 1

⇔ {t, t2} ⊂ VE .
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For i = 2, 3, 4, we denote the closed subschemes QuotX(3, d, x,L ,P+
i (d))

of QuotX(3, d, x,L ) consisting of closed points

QuotX(3, d, x,L ,P+
i (d))(k)

= {[E →֒ FX∗(L )] ∈ QuotX(3, d, x,L )(k) | HNP(F ∗
X(E )) ≽ Pi(d)}

Then

QuotX(3, d, x,L ,P+
2 (d))

∼= {V | k[[t3]]-submodule V ⊂ k[[t]], k[[t]]/V ∼= k} ∼= P2
k,

QuotX(3, d, x,L ,P+
3 (d))

∼= {V | k[[t3]]-submodule V ⊂ k[[t]], k[[t]]/V ∼= k, t2 ∈ VE } ∼= P1
k,

QuotX(3, d, x,L ,P+
4 (d))

∼= {V | k[[t3]]-submodule V ⊂ k[[t]], k[[t]]/V ∼= k, {t, t2} ⊂ VE } ∼= {pt}.

So QuotX(3, d,Pic
(d−1)(X),P+

i (d)) are smooth irreducible projective vari-
eties for 2 ≤ i ≤ 4, and

dimQuotX(3, d,Pic
(d−1)(X),P+

i (d)) =











5, if i = 2

4, if i = 3

3, if i = 4.

By Theorem 4.1(2), it is easy to see that QuotX(3, d,Pic
(d−1)(X),Pi(d))

is an open subvariety of QuotX(3, d,Pic
(d−1)(X),P+

i (d)) for any 2 ≤ i ≤ 4.
Therefore, for any 2 ≤ i ≤ 4, we have

QuotX(3, d,Pic
(d−1)(X),P+

i (d))

= QuotX(3, d,Pic
(d−1)(X),Pi(d)),

dimQuotX(3, d,Pic
(d−1)(X),P+

i (d))

= dimQuotX(3, d,Pic
(d−1)(X),Pi(d)).

□

5. Geometric properties of Frobenius strata

We now study the geometric properties of Frobenius strata in the moduli
space Ms

X(3, d) with 3 ∤ d, where X is a smooth projective curve of genus 2
over an algebraically closed field k of characteristic 3.
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Proposition 5.1. Let k be an algebraically closed field of characteristic 3,
X a smooth projective curve of genus 2 over k. Let d be an integer with 3 ∤ d.
Then the image of the morphism

θ : QuotX(3, d,Pic
(d−1)(X)) → Ms

X(3, d)

[E →֒ FX∗(L )] 7→ [E ]

is the subset

{[E ] ∈ Ms
X(3, d)(k) | HNP(F

∗
X(E )) ∈ {P2(d),P3(d),P4(d)}}.

Moreover, the restriction θ|Quot♯X(3,d,Pic(d−1)(X)) is an injective morphism and

the image of θ|Quot♯X(3,d,Pic(d−1)(X)) is the subset

{[E ] ∈ Ms
X(3, d)(k) | HNP(F

∗
X(E )) ∈ {P2(d),P3(d)}}.

Proof. Let [E →֒ FX∗(L )] ∈ QuotX(3, d,Pic
(d−1)(X))(k), then we have

HNP(F ∗
X(E )) ∈ {P2(d),P3(d),P4(d)}

by Proposition 4.2. It follows that the image of θ lies in the following subset

{[E ] ∈ Ms
X(3, d)(k) | HNP(F

∗
X(E )) ∈ {P2(d),P3(d),P4(d)}}.

On the other hand, let [E ] ∈ Ms
X(3, d)(k) such that HNP(F ∗

X(E )) =
Pi(d) for some 2 ≤ i ≤ 4. Then F ∗

X(E ) has a quotient line bundle L ′ of
deg(L ′) ≤ d− 1. Embedding L ′ into some line bundle L of deg(L ) =
d− 1, we can get the non-trivial homomorphism

F ∗
X(E ) ↠ L

′ →֒ L .

Then the adjunction E →֒ FX∗(L ) is an injection by Proposition 3.3. Hence,
the image of θ is just the subset

{[E ] ∈ Ms
X(3, d)(k) | HNP(F

∗
X(E )) ∈ {P2(d),P3(d),P4(d)}}.

Now, we will prove θ|Quot♯X(3,d,Pic(d−1)(X)) is an injective morphism. Let

ei := [Ei →֒ FX∗(Li)] ∈ Quot♯X(3, d,Pic
(d−1)(X))(k),

where [Li] ∈ Pic(d−1)(X)(k), i = 1, 2. Suppose that

θ(e1) = θ(e2) ∈ Ms
X(3, d)(k)
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, i.e. E1
∼= E2. Since HNP(F ∗

X(Ei)) ∈ {P2(d),P3(d)}, we have

µmin(F
∗
X(Ei)) = d− 1, i = 1, 2.

So the surjection F ∗
X(Ei) → Li implies that Li is the quotient line bundle of

F ∗
X(Ei) with minimal slope in the Harder-Narasimhan filtration of F ∗

X(Ei).
By the uniqueness of Harder-Narasimhan filtration, there exists an isomor-
phism ψ : L1 → L2 making the following diagram

F ∗
X(E1) //

ϕ ∼=
��

L1
//

ψ ∼=

��

0

F ∗
X(E2) // L2

// 0

commutative, where the isomorphism ϕ is induced from an isomorphism

E1
∼=
→ E2. By adjunction, we have commutative diagram

0 // E1
//

∼=
��

FX∗(L1)

FX∗(ψ) ∼=
��

0 // E2
// FX∗(L2)

where the horizontal homomorphisms is the isomorphism

FX∗(ψ) : FX∗(L1)
∼=
→ FX∗(L2).

This implies E1 = E2 as subsheaves of FX∗(L ), where [L ] = [L1] = [L2] ∈
Pic(d−1)(X)(k). Thus, e1 and e2 are the same point in the

Quot♯X(3, d,Pic
(d−1)(X))(k).

Hence the morphism θ|Quot♯X(3,d,Pic(d−1)(X)) is injective.

Let [E ]∈Ms
X(3, d)(k) and HNP(F ∗

X(E ))∈{P2(d),P3(d)}. Then F
∗
X(E )

has a quotient line bundle L of degree d− 1. Then by Proposition 3.3,
the adjoint homomorphism E →֒ FX∗(L ) is an injective homomorphism.
Therefore

e := [E →֒ FX∗(L )] ∈ Quot♯X(3, d,Pic
(d−1)(X))(k)

and θ(e) = [E ]. Hence the image of θ|Quot♯X(3,d,Pic(d−1)(X)) is just the subset

{[E ] ∈ Ms
X(3, d)(k) | HNP(F

∗
X(E )) ∈ {P2(d),P3(d)}}. □
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Theorem 5.2. Let k be an algebraically closed field of characteristic 3, X
a smooth projective curve of genus 2 over k, d an integer with 3 ∤ d. Then

SX(3, d,P
+
i (d)) = SX(3, d,Pi(d)),

and SX(3, d,P
+
i (d)) (resp. SX(3, d,Pi(d))) are irreducible projective (resp.

irreducible quasi-projective) varieties for 1 ≤ i ≤ 4,

dimSX(3, d,P
+
i (d)) = dimSX(3, d,Pi(d)) =























5, if i = 1

5, if i = 2

4, if i = 3

2, if i = 4

Proof. The morphism

θ : QuotX(3, d,Pic
(d−1)(X)) → Ms

X(3, d)

[E →֒ FX∗(L )] 7→ [E ]

maps QuotX(3, d,Pic
(d−1)(X),P+

i (d)) onto SX(3, d,P
+
i (d)) for 2 ≤ i ≤ 4.

Then by Proposition 4.4, SX(3, d,P
+
i (d)) are irreducible projective varieties

and

SX(3, d,Pi(d)) = SX(3, d,P
+
i (d))

for 2 ≤ i ≤ 4, since SX(3, d,Pi(d)) is an open subvariety of SX(3, d,P
+
i (d))

by Thm. 4.1(2). Moreover, by Prop. 5.1, the injection θ|Quot♯X(3,d,Pic(d−1)(X))

maps Quot♯X(3, d,Pic
(d−1)(X),Pi(d)) onto SX(3, d,Pi(d)) for i = 2, 3. Then

by Proposition 4.4, we have

dimSX(3, d,P
+
i (d)) = dimSX(3, d,Pi(d))

= dimQuot♯X(3, d,Pic
(d−1)(X),Pi(d))

=

{

5, if i = 2.

4, if i = 3.

The isomorphism

ι : Ms
X(3, d) → Ms

X(3,−d) : [E ] 7→ [E ∨]

maps SX(3, d,P1(d)) (resp. SX(3, d,P
+
1 (d))) onto SX(3,−d,P2(−d)) (resp.

SX(3,−d,P
+
2 (−d))). So we have SX(3, d,P1(d)) = SX(3, d,P

+
1 (d)) is an
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irreducible projective variety and

dimSX(3, d,P
+
1 (d)) = dimSX(3, d,P1(d)) = 5.

Now we study the properties of subvariety SX(3, d,P4(d)). By [11,
Lemma 3.1], we know that any vector bundle [E ] ∈ SX(3, d,P4(d))(k) has
the form FX∗(L

′) for some line bundle L ′ of degree d− 2 on X. Moreover,
by [11, Theorem 2.5], the morphism

P sFrob : Ms
X(1, d− 2) → Ms

X(3, d)

[L ′] 7→ [FX∗(L
′)]

is a closed immersion and the image of P sFrob is just the SX(3, d,P4(d)).
Thus SX(3, d,P4(d)) = SX(3, d,P

+
4 (d)) is isomorphic to Jacobian variety

JacX of X which is a smooth irreducible projective variety of dimension
2. □

By Theorem 5.2, we know that the subvariety Z of Frobenius desta-
bilized stable vector bundles is a reducible closed subvariety consisting two
irreducible closed subvarieties of dimension 5 in Ms

X(3, d). Notice that
dimMs

X(3, d) = 10, we have codimZM
s
X(3, d) = 5.
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