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Semi-group structure of all

endomorphisms of a projective variety

admitting a polarized endomorphism

Sheng Meng and De-Qi Zhang

Let X be a projective variety admitting a polarized (or more gener-
ally, int-amplified) endomorphism. We show: there are only finitely
many contractible extremal rays; and when X is Q-factorial nor-
mal, every minimal model program is equivariant relative to the
monoid SEnd(X) of all surjective endomorphisms, up to finite in-
dex.

Further, when X is rationally connected and smooth, we show:
there is a finite-index submonoid G of SEnd(X) such that G acts
via pullback as diagonal (and hence commutative) matrices on the
Neron-Severi group; the full automorphisms group Aut(X) has
finitely many connected components; and every amplified endo-
morphism is int-amplified.

1. Introduction

We work over an algebraically closed field k which has characteristic zero
(unless otherwise indicated), and is uncountable (only used to guarantee
the birational invariance of the rational connectedness property). Let f be
a surjective endomorphism of a projective variety X. We say that f is q-
polarized if f∗L ∼ qL (linear equivalence) for some ample Cartier divisor L
and integer q > 1. We say that f is amplified (resp. int-amplified), if f∗L−
L is ample for some Cartier (resp. ample Cartier) divisor L. The notion
of amplified endomorphisms f was first defined by Krieger and Reschke
(cf. [15]). Fakhruddin showed that such f has a countable Zariski-dense
subset of periodic points (cf. [10, Theorem 5.1]).

We refer to [14] for the definitions of log canonical (lc), klt or terminal
singularities. A sequenceX = X1 99K X2 99K · · · of log MMP (= log minimal
model program) consists of the contraction Xi 99K Xi+1 of a (KXi

+∆i)-
negative extremal ray for some log canonical pair (Xi,∆i) with ∆i being
an R-Cartier effective divisor, which is of divisorial, flip or Fano type. An
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MMP is a log MMP with ∆ = 0. We refer to [12, Theorem 1.1] for the cone
theorem of lc pairs and [1, Corollary 1.2] for the existence of lc flips.

A submonoid G of a monoid Γ is said to be of finite-index in Γ if there is
a chain G = G0 ≤ G1 ≤ · · · ≤ Gr = Γ of submonoids and homomorphisms
ρi : Gi → Fi such that Ker(ρi) = Gi−1 and all Fi are finite groups.

Theorem 1.1 below is the most crucial result of the paper. First, an
lc pair (X,∆) may have infinitely many (KX +∆)-negative extremal rays.
Theorem 1.1 below implies that this case will never happen if we assume X
admits a polarized (or int-amplified) endomorphism (see also Theorem 4.5
for a more general result).

Let SEnd(X) be the set of all surjective endomorphisms on X.
Theorem 1.1 below says that every finite sequence of MMP starting

from a Q-factorial normal X is equivariant (cf. Definition 2.1) relative to
SEnd(X), up to finite-index. Note that SEnd(X) is usually a huge infi-
nite set; and also the image h∗(R) of a KX -negative extremal ray R in the
closed effective 1-cycle cone NE(X) under a map h ∈ SEnd(X), may not
be KX -negative anymore. So we have to deal with general (not necessarily
KX -negative) contractible extremal rays R of NE(X) in the sense of Def-
inition 4.1. Our Theorem 1.1 below asserts the finiteness of these rays R,
without even assuming KX being Q-Cartier.

Theorem 1.1. (cf. Theorems 4.5 and 4.7) Let X be a (not necessarily nor-
mal or Q-Gorenstein) projective variety with a polarized (or int-amplified)
endomorphism. Then:

(1) X has only finitely many (not necessarily KX-negative) contractible
extremal rays in the sense of Definition 4.1.

(2) Suppose X is Q-factorial normal. Then any finite sequence of MMP
starting from X is G-equivariant for some finite-index submonoid G
of SEnd(X).

We extend the results in [19] and [18] about equivariant MMP from
being relative to a single polarized or int-amplified endomorphism to the
whole SEnd(X) up to finite-index. When X is a point, every endomorphism
of X is regarded as being polarized. A normal projective variety X is said
to be Q-abelian if there is a finite surjective morphism π : A → X étale in
codimension 1 with A being an abelian variety.

Theorem 1.2. Let f : X → X be an int-amplified endomorphism of a Q-
factorial klt projective variety X. Then there exist a finite-index submonoid
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G of SEnd(X), a Q-abelian variety Y , and a G-equivariant (cf. Defini-
tion 2.1) relative MMP over Y

X = X0 99K · · · 99K Xi 99K · · · 99K Xr = Y

(i.e. g ∈ G = G0 descends to gi ∈ Gi on each Xi), with every Xi 99K Xi+1

a divisorial contraction, a flip or a Fano contraction, of a KXi
-negative

extremal ray, such that:

(1) There is a finite quasi-étale Galois cover A → Y from an abelian va-
riety A such that GY := Gr lifts to a submonoid GA of SEnd(A) ≤
Endvariety(A).

(2) If g in G is polarized (resp. int-amplified), then so are its descending
gi on Xi and the lifting to A of gr on Xr = Y .

(3) If g in G is amplified and its descending gi on Xi is int-amplified for
some i, then g is int-amplified.

(4) If KX is pseudo-effective, then X = Y and it is Q-abelian.

(5) If KX is not pseudo-effective, then for each i, Xi → Y is equi-dimen-
sional holomorphic with every fibre (irreducible) rationally connected.
The Xr−1 → Xr = Y is a Fano contraction.

(6) For any subset H ⊆ G and its descending HY ⊆ SEnd(Y ), H acts via
pullback on NSQ(X) or NSC(X) as commutative diagonal matrices
with respect to a suitable basis if and only if so does HY .

Let Pol(X) be the set of all polarized endomorphisms on X, and let
IAmp(X) be the set of all int-amplified endomorphisms on X. In general,
they are not semigroups, i.e., they may not be closed under composition;
see Example 1.7. When X is rationally connected and smooth, Theorem 1.4
below gives the assertion that if g and h are in Pol(X) (resp. IAmp(X)) then
gM ◦ hM remains in Pol(X) (resp. IAmp(X)) for some M > 0 depending
only on X. For general X, Corollary 1.3 says that the same assertion on X
is reduced to that on the base of the end product Y of the MMP starting
from X, or the quasi-étale abelian variety cover A of Y .

Corollary 1.3. We use the notation and assumption in Theorem 1.2. For
g, h in G ⊆ SEnd(X), let τ = g ◦ h, τY = gY ◦ hY the descending to Y and
τA = gA ◦ hA the lifting to A. Then we have:
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(I) Suppose both g∗, h∗ are diagonalizable on NSC(X) (resp. both g∗, h∗

are diagonalizable on NSQ(X); both g, h are in Pol(X); one of g, h is
in IAmp(X)). Then (Ia) and (Ib) below are equivalent.

(Ia) τ∗ is diagonalizable on NSC(X) (resp. τ∗ is diagonalizable on NSQ(X);
τ ∈ Pol(X); τ ∈ IAmp(X)).

(Ib) τ∗Y is diagonalizable on NSC(Y ) (resp. τ∗Y is diagonalizable on NSQ(Y );
τY ∈ Pol(Y ); τY ∈ IAmp(Y )).

(II) τY is in Pol(Y ) (resp. IAmp(Y )) if and only if τA is in Pol(A) (resp.
IAmp(A)).

(III) Suppose that both g∗ and h∗ are diagonalizable on NSC(X). Then
g∗h∗ = h∗g∗ on NSC(X) if and only if g∗Y h

∗
Y = h∗Y g

∗
Y on NSC(Y ).

By the results in [19] and [18], we know that the building blocks of polar-
ized (or more generally int-amplified) endomorphisms are those on Abelian
varieties and rationally connected varieties. Indeed, if X has mild singular-
ities, is non-uniruled and admits a polarized (resp. int-amplified) endomor-
phism, then X is a Q-abelian variety: there is a finite Galois cover A → X
étale in codimension one such that f lifts to a polarized (resp. int-amplified)
endomorphism on the abelian variety A; if X is uniruled, then a polarized
(resp. int-amplified) f descends to a polarized (resp. int-amplified) endo-
morphism on the base Y of a special maximal rationally connected fibration
X 99K Y , and Y is non-uniruled, hence it is a Q-abelian variety; see [19,
Proposition 1.6], [20, Corollary 4.20]. Therefore, the essential building blocks
we have to study are those polarized (resp. int-amplifed) endomorphisms on
rationally connected varieties.

Our next Theorem 1.4 gives the structure of the monoid SEnd(X) for
a rationally connected X. The second assertion below says that the surjec-
tive endomorphisms on a rationally connected variety admitting a polarized
(or int-amplifed) endomorphism, act as diagonal (and hence commutative)
matrices on the Neron-Severi group, up to finite-index.

Though Pol(X) and IAmp(X) may not be subsemigroups of SEnd(X),
the third and fourth assertions below say that they are semigroups “up to
finite-index”; it also answers affirmatively [23, Question 4.15], “up to finite-
index”, when X is rationally connected and smooth. By Example 1.7, this
extra “up to finite-index” assumption is necessary.

The fourth assertion below also says that the pullback action of SEnd(X)
on NSQ(X) is determined by that of IAmp(X), up to finite-index (hence the
importance of studying int-amplified endomorphisms). For a subset S of a
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semigroup H and an integer M ≥ 1, denote by ⟨S[M ]⟩ := {sM1 · · · sMr | r ≥
1, si ∈ S}.

Theorem 1.4. (cf. Theorem 6.2) Let X be a rationally connected smooth
projective variety admitting a polarized (or int-amplified) endomorphism f .
We use the notation X = X0 99K · · · 99K Xr = Y and the finite-index sub-
monoid G ≤ SEnd(X) as in Theorem 1.2. Then there is an integer M ≥ 1
depending only on X such that:

(1) The Y in Theorem 1.2 is a point.

(2) G∗|NSQ(X) is a commutative diagonal monoid with respect to a suitable
Q-basis B of NSQ(X). Further, for every g in G, the representation
matrix [g∗|NSQ(X)]B relative to B, is equal to diag[q1, q2, . . .] with inte-
gers qi ≥ 1.

(3) G ∩ Pol(X) is a subsemigroup of G, and consists exactly of those g
in G such that [g∗|NSQ(X)]B = diag[q, . . . , q] for some integer q ≥ 2.
Further,

G ∩ Pol(X) ⊇ ⟨Pol(X)[M ]⟩.

(4) G ∩ IAmp(X) is a subsemigroup of G, and consists exactly of those
g in G such that [g∗|NSQ(X)]B = diag[q1, q2, . . .] with integers qi ≥ 2.
Further,

G (G ∩ IAmp(X)) = G ∩ IAmp(X) ⊇ ⟨IAmp(X)[M ]⟩;

any h in SEnd(X) has (hM )∗ = (g∗1)
−1g∗2 on NSQ(X) for some gi in

G ∩ IAmp(X).

(5) We have hM ∈ G and that h∗|NSC(X) is diagonalizable for every h ∈
SEnd(X).

Let Aut(X) be the group of all automorphisms of X, and Aut0(X) its
neutral connected component. By applying Theorem 1.4, we have the fol-
lowing result.

Theorem 1.5. (cf. Theorem 6.3) Let X be a rationally connected smooth
projective variety admitting a polarized (or int-amplified) endomorphism.
Then we have:

(1) Aut(X)/Aut0(X) is a finite group. More precisely, Aut(X) is a linear
algebraic group (with only finitely many connected components).
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(2) Every amplified endomorphism of X is int-amplified.

(3) X has no automorphism of positive entropy (nor amplified automor-
phism).

Remark 1.6.

(1) The assumption of X being rationally connected smooth in Theo-
rems 1.4 and 1.5 can be weakened as in Theorems 6.2 and 6.3.

(2) Let X be a projective variety with f ∈ IAmp(X) and g ∈ SEnd(X).
Then both f i ◦ g and g ◦ f i are in IAmp(X) when i ≥ N for some
N > 0; see [18, Proposition 1.4]. However, this N may depend on f
and g.

Example 1.7. Let X := P1 × P1. We define endomorphisms f, g on X as:

f([a1 : b1], [a2 : b2]) = ([a2 : b2], [a
4
1 : b

4
1]),

g([a1 : b1], [a2 : b2]) = ([a42 : b
4
2], [a1 : b1]).

Denote by h = g ◦ f . Then

h([a1 : b1], [a2 : b2]) = ([a161 : b161 ], [a2 : b2]).

Note that f2([a1 : b1], [a2 : b2]) = g2([a1 : b1], [a2 : b2]) = ([a41 : b
4
1], [a

4
2 : b

4
2]).

Clearly, f and g are then 2-polarized, but h is not int-amplified. Note also
that the set of preperiodic points of f and g are the same.

The difference with early papers. In [19] for polarized f ∈ SEnd(X)
and [18] for int-amplified f , it was proved that the single f , replaced by a
power, fixes a KX -negative extremal ray. In this paper, we prove that there
are only finitely many (not necessarily KX -negative) contractible extremal
rays. This guarantees the MMP is SEnd(X)-equivariant; and even the whole
monoid SEnd(X) (all up to finite-index) is diagonalizable (and hence com-
mutative) over NSQ(X) when X is smooth rationally connected.

Even when X has Picard number one, the following question is still open
when n ≥ 4.

Question 1.8. Let X be a rationally connected smooth projective variety
of dimension n ≥ 1 which admits a polarized endomorphism. Is X (close to
be) a toric variety?
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2. Preliminaries

Throughout this section, we work over an arbitrary algebraically closed
field k.

Terminology and notation. Let X be a projective variety. A Cartier
divisor is always integral, unless otherwise indicated.

Let n := dim(X). We can regard N1(X) := NS(X)⊗Z R as the space of
numerically equivalent classes of R-Cartier divisors. Denote by Nr(X) the
space of weakly numerically equivalent classes of r-cycles with R-coefficients
(cf. [19, Definition 2.2]). Denote by NE(X) the cone of the closure of effective
real 1-cycles in N1(X). When X is normal, we also call Nn−1(X) the space of
weakly numerically equivalent classes of Weil R-divisors. In this case, N1(X)
can be regarded as a subspace of Nn−1(X) (cf. [25, Lemma 3.2]). For K := Q,
R, or C, denote by NSK(X) := NS(X)⊗Z K.

Definition 2.1. Let

(∗) : X1 99K X2 99K · · · 99K Xr

be a finite sequence of dominant rational maps of projective varieties. Let
f : X1 → X1 be a surjective endomorphism. We say the sequence (∗) is f -
equivariant if the following diagram is commutative

X1
//

f1
��

X2
//

f2
��

· · · // Xr

fr
��

X1
// X2

// · · · // Xr

where f1 = f and all fi are surjective endomorphisms. Let G be a subset of
SEnd(X1). We say the sequence (∗) is G-equivariant if (∗) is g-equivariant
for any g ∈ G.

Definition 2.2. Let f : X → X be a surjective endomorphism of a projec-
tive variety X.

(1) f is q-polarized if f∗L ∼ qL for some ample Cartier divisor L and
integer q > 1.

(2) f is amplified if f∗L− L = H for some Cartier divisor L and ample
divisor H.
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(3) f is int-amplified if f∗L− L = H for some ample Cartier divisors L
and H.

(4) f is separable if the induced field extension f∗ : k(X) → k(X) is sepa-
rable where k(X) is the function field of X.

Let f : X → X be a surjective endomorphism of a projective variety X
of dimension n ≥ 1. Let L be a Cartier divisor of X. Then

(f s)∗L− L = f∗L′ − L′ =

s−1∑

i=0

(f i)∗(f∗L− L)

where L′ =
s−1∑
i=0

(f i)∗L. Therefore, f is amplified (resp. int-amplified) if and

only if so is f s for some (or all) s > 0. Suppose further q := (deg f)
1

n is
rational (and hence an integer). If (f s)∗L ∼ q′L for some ample Cartier
divisor L and q′ > 0, then q′ = (deg f s)

1

n = qs and f∗L′′ ∼ qL′′ where L′′ =
s−1∑
i=0

qs−i(f i)∗L. Therefore, f is polarized if and only if so is f s for some (or

all) s > 0.

Definition 2.3. Let X be a projective variety.

(1) SEnd(X) is the monoid of surjective endomorphisms of X.

(2) Pol(X) is the set of polarized endomorphisms of X.

(3) IAmp(X) is the set of int-amplified endomorphisms of X.

We thank the referee to point out that the assumption of normality in
the below two lemmas is necesssary and give the reference.

Lemma 2.4. (cf. [5, Theorem, Page 220]) Let f : X → Y be a finite sur-
jective morphism of two varieties with Y being normal. Then f is an open
map.

By the above lemma, one easily gets the following result.

Lemma 2.5. (cf. [4, Lemma 7.2]) Let f : X → Y be a finite surjective
morphism of two varieties with Y being normal. Let S be a subset of Y .
Then f−1(S) = f−1(S).

Next we prepare some useful lemmas about (int-)amplified endomor-
phisms.
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Lemma 2.6. Let f : X → X be an int-amplified endomorphism of a normal
projective variety X of dimension n. Suppose f∗Z ≡w aZ (weakly numerical
equivalence) for some real number a and effective r-cycle Z ∈ Nr(X) with
r < n. Then either Z = 0 or a > 1.

Proof. Let H be any ample Cartier divisor. By [18, Lemma 3.11],

0 = lim
i→+∞

Z ·
(f i)∗(Hr)

(deg f)i
= lim

i→+∞

1

ai
(f i)∗Z ·

(f i)∗(Hr)

(deg f)i
= lim

i→+∞

1

ai
Z ·Hr.

Suppose Z ̸= 0. Since Z is effective, Z ·Hr > 0 and a > 0. Therefore,
a > 1. □

Lemma 2.7. Let π : X 99K Y be a dominant map of projective varieties.
Let f : X → X and g : Y → Y be two surjective endomorphisms such that
g ◦ π = π ◦ f . Suppose f is amplified. Then Per(g) is Zariski dense in Y .

Proof. Let U be an open dense subset of X such that π|U is well defined. By
[10, Theorem 5.1], Per(f) ∩ U is Zariski dense in X and hence π(Per(f) ∩ U)
is Zariski dense in Y . Note that π(Per(f) ∩ U) ⊆ Per(g). So the lemma is
proved. □

Lemma 2.8. Let π : X 99K Y be a dominant map of projective varieties.
Let f : X → X be an amplified endomorphisms such that π = π ◦ f . Then
dim(Y ) = 0.

Proof. We may assume X is over the field k which is uncountable by tak-
ing the base change. Let U be an open dense subset of X such that π|U is
well-defined. Let W be the graph of π and p1 : W → X and p2 : W → Y the
two projections. For any closed point y ∈ Y , denote by Xy := p1(p

−1
2 (y)) and

Uy := U ∩Xy. Note that Uy1
∩ Uy2

= ∅ if y1 ̸= y2. By assumption, f−1(Xy) =
Xy. Then for some sy > 0, f−sy(Xi

y) = Xi
y for every irreducible compo-

nent Xi
y of Xy, and f sy |Xi

y
is amplified (cf. [18, Lemma 2.3]). If Uy ̸= ∅,

then Per(f) ∩ Uy = Per(f |Xy
) ∩ Uy =

⋃
i Per(f

sy |Xi
y
) ∩ Uy ̸= ∅ by [10, The-

orem 5.1]. Suppose dim(Y ) > 0. There are uncountably many y ∈ Y such
that Uy ̸= ∅ and Per(f) ⊇

⋃
y∈Y (Per(f) ∩ Uy). In particular, Per(f) is un-

countable, a contradiction to [18, Lemma 2.4]. □

We don’t know whether the “amplified” property is preserved via an
equivariant descending. Nevertherless, the following result is enough during
the proof of Theorem 1.2.
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Lemma 2.9. Let π : X 99K Y be a dominant map of projective varieties,
f : X → X and g : Y → Y two surjective endomorphisms such that g ◦ π =
π ◦ f , and Z a closed subvariety of Y such that g(Z) = Z. Suppose f is
amplified, dim(Z) > 0 and π is well defined over an open dense subset U ⊆ X
such that π|−1

U (Z) ̸= ∅. Then g|Z ̸∈ Aut0(Z).

Proof. Let W be the graph of π and p1 : W → X and p2 : W → Y the two
projections. Denote byX ′ := p1(p

−1
2 (Z)). Then f(X ′) ⊆ X ′. Since π|−1

U (Z) ̸=
∅, there exists at least one irreducible component X ′

i of X ′ dominating Z
via π. If X ′

i dominates Z, then f(X ′
i) dominates Z. Replacing f by some

positive power, we may assume f(X ′
i) = X ′

i for some X ′
i dominating Z. Note

that f |X′

i
is still amplified (cf. [18, Lemma 2.3]). Therefore, it suffices for us

to consider the case when Z = Y .
Suppose the contrary that g ∈ Aut0(Y ). Let G be the closure of the

group generated by g in Aut0(Y ). Let τ : Y 99K Y ′ := Y/G. Then τ = τ ◦ g.
By Lemma 2.8, Y ′ is a point. Then the orbit Gy is open dense in Y for some
y ∈ Y . By Lemma 2.7, we may assume y ∈ Per(g). Then Gy is a finite set
and hence dim(Y ) = 0, a contradiction. □

3. Totally periodic subvarieties

Throughout this section, we work over an arbitrary algebraically closed
field k.

Let f : X → X be a surjective endomorphism of a normal projective
variety X and S a subset of X. Here, a subset S of X is always a set of closed
points. We say S is f -invariant (resp. f -periodic) if f(S) = S (resp. f r(S) =
S for some r ≥ 1). We say S is f−1-invariant (resp. f−1-periodic) if f−1(S) =
S (resp. f−r(S) = S for some r ≥ 1).

Lemma 3.1. Let f : X → X be a surjective endomorphism of a projective
variety X and Z a Zariski closed subset of X. Then Z is f−1-periodic if and
only if so is any irreducible component of Z.

Proof. Let Z =
⋃

1≤i≤n Zi be the irreducible decomposition of Z. If f−si(Zi)
= Zi for some si > 0, then f−s(Z) = Z with s =

∏n
i=1 si.

Suppose f−s(Z) = Z for some s > 0. Then f−s induces a permutation
on the finite set {Zi}

n
i=1. Therefore, f

−sn!(Zi) = Zi for each i. □

Definition 3.2. Let f : X → Y be a separable finite surjective morphism
of two normal projective varieties. Denote by Rf the ramification divisor of
f (cf. [22, Lemma 4.4]), and Σf the union of the prime divisors in Rf .
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Lemma 3.3. Let f : X → X be an int-amplified separable endomorphism
of a normal projective variety X. Let Z be an f−1-periodic irreducible closed
subvariety such that Z ⊊ X. Then f−i(Z) ⊆ Sing(X) ∪ Σf for some i ≥ 0.

Proof. We may assume dim(X) > 0. Suppose f−m(Z) = Z for some m >
0. Let Zi = f−i(Z), which is irreducible. If Zi ̸⊂ Sing(X) ∪ Σf for each i,
then Zi = f∗Zi−1 by the purity of branch loci and hence (fm)∗Z = Z. By
Lemma 2.6, Z = 0, a contradiction. □

Following the proof of [19, Lemma 6.1], [4, Lemma 6.2] and [18, Lemma
8.1], we have the key lemma below. As shown in [4, Remark 6.3], the following
condition (2) is necessary.

Lemma 3.4. Let f : X → X be an int-amplified separable endomorphism
of a projective variety X over the field k of characteristic p ≥ 0. Assume
A ⊆ X is an irreducible closed subvariety with f−if i(A) = A for all i ≥ 0.
Assume further either one of the following conditions.

(1) A is a prime divisor of X.

(2) p > 0 and co-prime with deg f .

(3) p = 0.

Then M(A) := {f i(A) | i ∈ Z} is a finite set.

Proof. The proof follows from the proof of [19, Lemma 6.1], [4, Lemma 6.2]
and [18, Lemma 8.1]. The only thing we need to check is that if condition (2)
holds and Z is an f−1-invariant closed subvariety of X, then p and deg f |Z
are co-prime. Let d1 = deg f and d2 = deg f |Z . Then f∗Z = d2Z. Suppose
f∗Z = aZ for some integer a > 0. By the projection formula, ad2 = d1. Then
p and d2 are co-prime. □

Lemma 3.5. Let f : X → X be an int-amplified separable endomorphism
of a projective variety X over the field k of characteristic p ≥ 0. Assume
A ⊆ X is a Zariski closed subset with f−if i(A) = A for all i ≥ 0. Assume
further either one of the following conditions.

(1) A is a reduced divisor of X.

(2) p > 0 and co-prime with deg f .

(3) p = 0.
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Then each irreducible component Ak of A is f−1-periodic. In particular, A
is f−1-periodic.

Proof. Choose i0 ≥ 0 such that A′ := f i0(A), f(A′), f2(A′), . . . all have the
same number of irreducible components. Then f−if i(A′

k) = A′
k for every

irreducible component A′
k of A′. Now the lemma follows from Lemmas 3.4

and 3.1. □

We use Proposition 3.6 below in proving the results in the introduction.
As kindly informed by Professors Dinh and Sibony, when k = C, this kind
of result (with a complete proof) first appeared in [8, Section 3.4]; [7, The-
orem 3.2] is a more general form including Proposition 3.6 below, requiring
a weaker condition and dealing with also dominant meromorphic self-maps
of Kähler manifolds; see comments in [9, page 615] for the history of these
results.

Here we offer a slightly more algebraic proof and it works also over any
algebraically closed field k with p = char k co-prime to deg f (so that the
usual ramification divisor formula is applicable to f and its restrictions to
subvarieties stable under the action of the powers of f). The assumption
that p = char k and deg f are co-prime is necessary; see Example 3.7.

Proposition 3.6. (see [8, Section 3.4], [7, Theorem 3.2] and comments in
[9, page 15]; see also [2]) Let f : X → X be an int-amplified endomorphism
of a projective variety X over the field k of characteristic p ≥ 0. Suppose
either p = 0, or p and deg f are co-prime. Then there are only finitely many
f−1-periodic Zariski closed subsets.

Proof. By taking normalization, we may assume X is normal. If S is an
f−1-periodic Zariski closed subsets, then each irreducible component of S is
f−1-periodic by Lemma 3.1. So it suffices to show that X has only finitely
many f−1-periodic irreducible closed subvarieties.

We prove by induction on dim(X). It is trivial if dim(X) = 0. Suppose
the contrary that there are infinitely many f−1-periodic proper closed sub-
varieties of the same dimension d. Then we may find an infinite sequence
of f−1-periodic proper closed subvarieties Si of the same dimension d with
Si ⊆ Sing(X) ∪ Σf by Lemma 3.3. Let Y be the closure of the union of Si.
Then Y ⊆ Sing(X) ∪ Σf . By Lemma 2.5, for any j ≥ 0,

f−jf j(Y ) = f−jf j(
⋃

Si) = f−j(f j(
⋃

Si))

= f−j(
⋃

f j(Si)) = f−j(
⋃

f j(Si)) =
⋃

f−jf j(Si) =
⋃

Si = Y.
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Let Yk be the irreducible component of Y . By Lemma 3.5, we may assume
f−1(Yk) = Yk after replacing f by some positive power. Note that f |Yk

is
int-amplified and dim(Yk) < dim(X). Then for each k, Yk contains finitely
many Si by induction. This is a contradiction. □

Example 3.7. Let X := P3
k with p = char k = 3. Let f : X → X via

f([a : b : c : d]) = [a3 + acd : b3 + bcd : c3 + c2d : d3 − cd2].

Then f is 3-polarized and separable. Let X1 := {c = 0, d = 0} ∼= P1. Then
f−1(X1) = X1 and f |X1

([a : b]) = [a3 : b3] which is a geometric Frobenius of
P1. Note that f |X1

is polarized and bijective. When a is a (3m− 1)-th root
of unity for some m > 0 and b is a (3n− 1)-th root of unity for some n > 0,
the point [a : b : 0 : 0] is f -periodic and hence f−1-periodic. In particular,
there are infinitely many f−1-periodic closed points in X.

A Zariski-open subset of Zariski-closed subvariety of X is called a sub-
variety of X.

Corollary 3.8. Let f : X → X be an int-amplified separable endomorphism
of a projective variety X over the field k of characteristic p ≥ 0. Suppose
either p = 0, or p and deg f are co-prime. Then X has only finitely many
(not necessarily closed) f−1-periodic subvarieties.

Proof. By taking normalization, we may assume X is normal. If A is f−1-
periodic, then so are A and A−A by Lemma 2.5. Note that A−A is a
Zariski closed subset of X. If X has infinitely many f−1-periodic subva-
rieties Si, then we may assume Si − Si ̸= ∅ with Si = Sj for any i, j by
Proposition 3.6. If Si − Si = Sj − Sj , then Si = Sj . Hence, X has infinitely
many f−1-periodic Zariski closed subsets Si − Si, a contradiction to Propo-
sition 3.6. □

4. Equivariant MMP and proof of Theorem 1.1

In this section, we work over an algebraically closed field k of characteristic
0. We prove Theorems 4.5 and 4.7 which include Theorem 1.1.

Let X be a projective variety and let C be a curve. Denote by RC :=
R≥0[C] the ray generated by [C] in NE(X). Denote by ΣC the union of
curves whose classes are in RC .
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Definition 4.1. Let X be a projective variety. Let C be a curve such that
RC is an extremal ray in NE(X). We say C or RC is contractible if there
is a surjective morphism π : X → Y to a projective variety Y such that the
following hold.

(1) π∗OX = OY .

(2) Let C ′ be a curve in X. Then π(C ′) is a point if and only if [C ′] ∈ RC .

(3) Let D be a Q-Cartier divisor of X. Then D · C = 0 if and only if D ≡
π∗DY (numerical equivalence) for some Q-Cartier divisor DY of Y .

If RC is an extremal ray contracted by π, then ΣC equals Exc(π) which
is Zariski closed in X; here Exc(π) is the exceptional locus of π (i.e. the
subset of X along which π is not an isomorphism).

When (X,∆) is lc, every (KX +∆)-negative extremal ray RC is con-
tractible.

Lemma 4.2. (cf. [24, Lemma 2.11]) Let X be a projective variety and let
RC be a ray of NE(X) generated by some curve C. Let h ∈ SEnd(X). Then
we have:

(1) h∗(RC) = Rh(C) and h∗(RC) = RC′ for any curve C ′ with h(C ′) = C.

(2) h(ΣC) = Σh(C) and h−1(ΣC) = ΣC′ for any curve C ′ with h(C ′) = C.

(3) RC is extremal if and only if so is Rh(C) for some h ∈ SEnd(X), if
and only if so is Rh(C) for any h ∈ SEnd(X).

Suppose RC is extremal.

(4) If Rh(C) is contractible, then so is RC .

Proof. Let h ∈ SEnd(X). Note that h∗ and h∗ are invertible linear self-
maps of N1(X) and h±∗ (NE(X)) = h∗±(NE(X)) = NE(X). Note that h∗C =
(deg h|C)h(C). So h∗(RC) = Rh(C). Since

(h∗ ◦ h
∗)|N1(X) = (deg h) id, h∗(RC′) = Rh(C′) = Rh(C)

implies h∗(RC) = RC′ for any curve C ′ with h(C ′) = C. So (1) is proved.
For any curve E with [E] ∈ RC , [h(E)] ∈ Rh(C). Then

h(ΣC) = h




⋃

[E]∈RC

E


 =

⋃

[E]∈RC

h(E) ⊆ Σh(C).
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For any curve F with [F ] ∈ Rh(C), there is some curve F1 such that h(F1) =
F . Note that RF1

= h∗(RF ) = h∗(Rh(C)) = RC by (1). So [F1] ∈ RC and
hence h(ΣC) = Σh(C). Similarly, h−1(ΣC) = ΣC′ . So (2) is proved.

By (1), Rh(C) = h∗(RC). Note that the set of extremal rays are stable
under the actions h∗ and h∗. So (3) is straightforward.

For (4), suppose Rh(C) is extremal and contractible by π : X → Y . Tak-
ing the Stein factorization of π ◦ h, we have π′ : X → Y ′ and τ : Y ′ → Y such
that π′

∗OX = OY and τ is a finite surjective morphism. We claim that π′ is
the contraction of RC . For any curve C ′ on X, π′(C ′) is a point if and only if
π(h(C ′)) is a point; if and only if [h(C ′)] ∈ Rh(C); if and only if [C ′] ∈ RC by
(1). Let D′ be a Q-Cartier divisor of X such that D′ · C = 0. Since h∗|NSQ(X)

is invertible, D′ ≡ h∗D for some Q-Cartier divisor D. By the projection for-
mula, D · h(C) = 0. Since π is the contraction of h(C), D ≡ π∗DY for some
Q-Cartier divisor DY of Y . Then D′ ≡ h∗(π∗DY ) = π′∗(τ∗DY ). So the claim
is proved. □

Lemma 4.3. Let f : X → X be an int-amplified endomorphism of a pro-
jective variety. Let h ∈ SEnd(X). Let RC be a contractible extremal ray of
NE(X) and F an irreduicble component of ΣC . Then we have:

(1) hi(ΣC) and hi(F ) are f−1-periodic for any i ∈ Z.

(2) ΣC and F are h−1-periodic.

Proof. Let h ∈ SEnd(X), C ′ = h(C) and C = h(C̃) for some curve C̃. Since
RC is contractible, ΣC is Zariski closed in X. By Lemma 4.2, h(ΣC) = ΣC′

and h−1(ΣC) = ΣC̃ are Zariski closed in X; and for any j ≥ 0, f−jf j(ΣC′) =
ΣC′ and f−jf j(ΣC̃) = ΣC̃ . By Lemma 3.5, h(ΣC) and h−1(ΣC) are both
f−1-periodic. By Lemma 3.1, h(F ) and h−1(F ) are then f−1-periodic. So
(1) is proved.

Note that there are only finitely many f−1-periodic Zariski closed subsets
in X by Proposition 3.6. We have hm(F ) = hn(F ) for some m < n < 0. So
hm−n(F ) = F and ΣC is h−1-periodic by Lemma 3.1. So (2) is proved. □

Following [19, Lemma 6.2], we may further have the following stronger
result.

Lemma 4.4. Let f : X → X be an int-amplified endomorphism of a pro-
jective variety X. Let E ⊆ X be a Zariski closed subset and let RE be the
set of all contractible extremal rays RC with ΣC = E. Then we have

(1) RE is a finite set with ♯RE ≤ dim(E).
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(2) Let F be an irreducible component of E. Then

RF
E := {Rh(C) |RC ∈ RE , h ∈ SEnd(X), h−1(F ) = F}

is a finite set with ♯RF
E ≤ dim(F ).

Proof. We assume that RE is non-empty. Let RC ∈ RE (we may assume
C ⊆ F ). We have a contraction πC : X → YC and a linear exact sequence

0 → NSC(YC)
π∗

C−−→ NSC(X)
·C
−→ C → 0.

So π∗
C NSC(YC) is a subspace in NSC(X) of codimension 1. Let F be an

irreducible component of E. Let j : F →֒ X be the inclusion map. For any
C-Cartier divisor D of X, denote by D|F := j∗D ∈ NSC(F ) the pullback.
Let

NSC(X)|F := j∗(NSC(X))

which is a subspace of NSC(F ). Denote by

LC := {D|F : D ∈ NSC(X), D · C = 0}.

Then LC = j∗π∗
C(NSC(YC)) is a subspace in NSC(X)|F of codimension at

most 1. Note that for an ample divisor H in X, H|F · C = H · C ̸= 0. There-
fore, H|F ̸∈ LC and hence LC has codimension 1 in NSC(X)|F . Denote by

S := {D|F ∈ NSC(X)|F : (D|F )
dim(F ) = 0}.

We claim that S is a hypersurface (an algebraic set defined by a non-
zero polynomial) in the complex affine space NSC(X)|F and each LC is
an irreducible component of S in the sense of Zariski topology. Indeed, let
{e1, . . . , ek} be a fixed basis of NSC(X)|F . Then

S =



(x1, . . . , xk) :

(
k∑

i=1

xiei

)dim(F )

= 0





is determined by a homogeneous polynomial of degree dim(F ) and the coeffi-
cient of the term

∏
i x

ℓi
i is the intersection number eℓ11 · · · eℓkk . Note that for an

ample divisorH inX,H|F ∈ NSC(X)|F and (H|F )
dim(F ) = Hdim(F ) · F > 0.

So eℓ11 · · · eℓkk ̸= 0 for some ℓi. In particular, S is determined by a non-zero
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polynomial. Since dim(πC(F )) < dim(F ), πC∗F = 0. For any P ∈ NSC(Y ),
we have

(π∗
CP |F )

dim(F ) = (π∗
CP )dim(F ) · F = P dim(F ) · πC∗F = 0

by the projection formula. So π∗
CP |F ∈ S. Hence LC ⊆ S. Since LC and S

have the same dimension, each LC is an irreducible component of S. The
claim is proved.

Let h ∈ SEnd(X) such that h−1(F ) = F . The pullback h∗ induces an
automorphism of NSC(X)|F . Note that h

∗F = aF (as cycles) for some a > 0,
and (h∗D)dim(F ) · F = deg h

a Ddim(F ) · F . Hence, D ∈ S if and only if h∗D ∈
S. This implies that S is h∗-invariant. By the projection formula, Lh(C) =
(h∗)−1(LC) is also an irreducible component of S. Note that S has at most
dim(F ) irreducible components. So (2) follows from the claim below. Clearly,
(1) follows from (2) directly.

Let g, g′ ∈ SEnd(X) such that g−1(F ) = g′−1(F ) = F . Let RC ∈ RE and
let C ′ ⊆ F be another (not necessarily contractible or extremal) curve. We
claim that Rg(C) = Rg′(C′) if and only if Lg(C) = Lg′(C′). Suppose Lg(C) =
Lg′(C′). Let C1 be some curve such that g(C1) = g′(C ′). By the projection
formula, Lg(C) = (g∗)−1(LC) and Lg′(C′) = (g∗)−1(LC1

). Then LC = LC1
.

Let H be an ample Cartier divisor of Y . Then π∗
CH · C1 = 0 implies that

πC(C1) is a point and hence RC = RC1
. Therefore, Rg(C) = Rg(C1) = Rg′(C′)

by Lemma 4.2. Another direction is trivial. So the claim is proved. □

Theorem 4.5. Let f : X → X be an int-amplified endomorphism of a pro-
jective variety X. Let Rcontr be the set of all contractible extremal rays RC .
Then we have:

(1) Rcontr is a finite set.

(2) The set

R̃contr := {(h∗)
i(RC) |RC ∈ Rcontr, h ∈ SEnd(X), i ∈ Z}

is finite.

(3) There is a finite-index submonoid H of SEnd(X) such that h∗(R) =
h∗(R) = R for any R ∈ R̃contr and h ∈ H.

Proof. We use the notation in Lemma 4.4. Let Pf be the set of f−1-periodic
Zariski closed subsets, which is finite by Proposition 3.6. For any RC ∈
Rcontr, ΣC ∈ Pf by Lemma 4.3. ThenRcontr =

⋃
E∈Pf

RE is finite by Lemma
4.4. So (1) is proved.
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Let R̃0
contr := {h∗(RC) |RC ∈ Rcontr, h ∈ SEnd(X)}. We first claim that

R̃0
contr is finite. Suppose the contrary that R̃0

contr is infinite. SinceRcontr is fi-
nite by (1), there exist some RC ∈ Rcontr and infinitely many hj ∈ SEnd(X)
with j > 0 such that the set {hj∗(RC)}

∞
j=1 is infinite. Let F be an irreducible

component of ΣC . By Lemma 4.3, h−1
j (F ) ∈ Pf and h−s

1 (F ) = F for some

s > 0. Note that Pf is finite. So we may assume h−1
j (F ) = h−1

1 (F ) for any

j > 0. Let h̃j := hj ◦ h
s−1
1 . Then h̃−1

j (F ) = h−s
1 (F ) = F . For any j1, j2 > 0,

(h̃j1)∗(RC) = (h̃j2)∗(RC) implies (hj1)∗(RC) = (hj2)∗(RC) by Lemma 4.2.

In particular, the set {(h̃j)∗(RC)}
∞
j=1 is infinite. However, this contradicts

Lemma 4.4.
Since R̃0

contr is finite, for any h ∈ SEnd(X) and RC ∈ R, (hm)∗(RC) =
(hn)∗(RC) for some 0 < m < n. By Lemma 4.2, for any i > 0, (h∗)

−i(RC) =
(h∗)

k(n−m)−i(RC) = (hk(n−m)−i)∗(RC) ∈ R̃0
contr for k ≫ 1. Then R̃ = R̃0

contr

is finite. So (2) is proved.
Note that the monoid action of SEnd(X) on R̃contr via (h′, h∗(RC)) →

(h′ ◦ h)∗(RC) is well defined. So (3) is proved. □

Theorem 4.6. Let (X,∆) be an lc pair. Let f : X → X be an int-amplified
endomorphism. Then we have:

(1) The set Rneg of (KX +∆)-negative extremal rays in NE(X) is finite.

(2) The set

R̃neg := {(h∗)
i(R) |R ∈ Rneg, h ∈ SEnd(X), i ∈ Z}

is finite.

(3) There is a finite-index submonoid H of SEnd(X) such that h∗(R) =
h∗(R) = R for any R ∈ R̃neg and h ∈ H.

Proof. Let R ∈ Rneg. Since (X,∆) is lc, R = RC for some curve C and R is
contractible by the Cone theorem in [12, Theorem 1.1]. Then we are done
by Theorem 4.5. □

Theorem 4.7. Let f : X → X be an int-amplified endomorphism of a Q-
factorial normal projective variety X. Then any finite sequence of MMP
starting from X is G-equivariant for some finite-index submonoid G of
SEnd(X).

Proof. By [18, Theorem 1.6] (see also [3, Corollary 1.3]), X is lc. Let X :=
X1 99K · · · 99K Xs be a sequence of MMP. By [18, Theorem 8.2], replacing
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f by a positive power, we may assume the above sequence is f -equivariant
and fi := f |Xi

is int-amplified.
We show the theorem by induction on s. Suppose X := X1 99K · · · 99K

Xs−1 is G-equivariant. By Theorem 4.6, replacing G by its finite-index sub-
monoid, we may assume h∗(R) = R for any h ∈ G|Xs−1

and any KXs−1
-

negative extremal ray R. If πs−1 : Xs−1 99K Xs is a divisorial contraction or
a Fano contraction, then πs−1 is G|Xs−1

-equivariant. If πs−1 is a flip, then
πs−1 is G|Xs−1

-equivariant by further applying [24, Lemma 3.6] (cf. [19,
Lemma 6.6]). □

5. Proof of Theorem 1.2 and Corollary 1.3

Throughout this section, we work over characteristic 0. First, we prepare
the following lemmas which are frequently used in the proof of our main
theorems.

Lemma 5.1. Let f : X → X be a surjective endomorphism of a projective
variety. Then all the eigenvalues of f∗|NSC(X) are algebraic integers.

Proof. The action f∗|NSC(X) is induced by f∗|NS(X). Note that NS(X) is a
Z-module of finite rank. The lemma follows. □

Lemma 5.2. Let π : X → Y be a surjective morphism of two projective va-
rieties such that π is not a finite morphism and π∗NSQ(Y ) is a codimension-
1 subspace of NSQ(X). Let f : X → X and g : Y → Y be surjective endo-
morphisms such that π ◦ f = g ◦ π. Then f∗|NSQ(X)/NSQ(Y ) = q id for some
integer q > 0.

Proof. Note that NSQ(X)/NSQ(Y ) is 1-dimensional. Then f∗|NSQ(X)/NSQ(Y )

= q id for some q ∈ Q. By Lemma 5.1, q is then an integer. Let H be an
ample Cartier divisor on X. Then f∗H − qH ∈ π∗NSQ(Y ). Suppose q ≤ 0.
Then f∗H − qH is ample on X. Since π is not finite, there is no ample class
in π∗NSQ(Y ). So we get a contradiction. □

Lemma 5.3. Let (X,∆) be a Q-factorial lc pair. Let π : X 99K Y be either
a divisorial contraction, a flip, or a Fano contraction of a KX +∆-negative
extremal ray. Let f : X → X and g : Y → Y be surjective endomorphisms
such that g ◦ π = π ◦ f . Suppose there are a dominant map τ : W 99K X and
an amplified endomorphism h : W → W such that f ◦ τ = τ ◦ h. Suppose
further g is int-amplified. Then f is int-amplified.
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Proof. During the proof, we may always replacing f, g and h by suitable
positive powers. If π is birational, then f is int-amplified by [18, Lemma 3.6].
Suppose π is a Fano contraction and f is not int-amplified. Then f∗D ≡ D
for some D ∈ NSQ(X)\π∗NSQ(Y ) by [18, Proposition 3.3] and Lemma 5.2.
We may assumeD is π-ample. Since g is int-amplified, Per(g) is Zariski dense
in Y by [10, Theorem 5.1]. Let y ∈ Per(g) be general and we may assume
g(y) = y. Then F := π−1(y) is irreducible. Also f(F ) = F . Suppose τ is well
defined over an open dense subset U ⊆ W . Since F is over general point,
τ |−1

U (F ) ̸= ∅. Note that dim(F ) > 0, D|F is ample and (f |F )
∗(D|F ) ≡ D|F .

Then we may assume f |F ∈ Aut0(F ) (cf. [19, Theorem 1.2], [16, Proposition
2.2], [11, Theorem 4.8]). However, this contradicts Lemma 2.9. □

We recall [18, Lemma 9.2] about the diagonalizable criterion for the
pullback action.

Lemma 5.4. Let (X,∆) be a Q-factorial lc pair. Let π : X 99K Y be either a
divisorial contraction, a flip, or a Fano contraction of a KX +∆-negative ex-
tremal ray. Let f : X → X and g : Y → Y be surjective endomorphisms such
that g ◦ π = π ◦ f . Suppose g∗|NSC(Y ) is diagonalizable. Then so is f∗|NSC(X).

Proof. If π is a flip, then NSC(X) = π∗NSC(Y ) and hence f∗|NSC(X) is di-
agonalizable. If π is a divisorial contraction with E being the π-exceptional
prime divisor, then f∗E = λE for some integer λ ≥ 1. Note that −E is π-
ample by [14, Lemma 2.62]. Its class [E] ∈ NSC(X)\π∗NSC(Y ). Note that
π∗NSC(Y ) is a codimension-1 subspace of NSC(X). Then f∗|NSC(X) is diag-
onalizable. If π is a Fano contraction, then f∗|NSC(X) is diagonalizable by
[18, Lemma 9.2]. □

Lemma 5.5. Let (X,∆) be an lc pair and let π : X → Y be a Fano contrac-
tion of a (KX +∆)-negative extremal ray. Let m := dim(X), n := dim(Y )
and d := dim(X)− dim(Y ). Let D ∈ NSC(X) and H1, . . . , Hn ∈ NSC(Y )
such that Dd · π∗H1 · · ·π

∗Hn = 0. Then either D ∈ π∗NSC(Y ) or H1 · · ·Hn

= 0.

Proof. Let C be some curve contracted by π. Suppose D ̸∈ π∗NSC(Y ).
This is equivalent to saying D · C ̸= 0. Let A be a very ample Cartier
divisor of X. Then (D − aA) · C = 0 for some a ̸= 0 and E := D − aA ∈
π∗NSC(Y ). Let Z := A1 ∩ · · · ∩Ad where A1, . . . , Ad are general members
in the linear system |A|. Note that Z is pure n-dimensional and every irre-
ducible component of Z dominates Y . In particular, π∗(A

d) = bY for some
b > 0. By the projection formula, we have 0 = Dd · π∗H1 · · ·π

∗Hn = (E +
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aA)d · π∗H1 · · ·π
∗Hn = (ad)Ad · π∗H1 · · ·π

∗Hn = (adb)H1 · · ·Hn. Therefore,
H1 · · ·Hn = 0. □

Next, we provide a submonoid version of Lemma 5.4.

Lemma 5.6. Let X be a Q-factorial lc projective variety and let (X,∆) be
lc. Let π : X 99K Y be either a divisorial contraction, a flip, or a Fano con-
traction of a KX +∆-negative extremal ray. Let G be a subset of SEnd(X)
such that π is G-equivariant. Suppose (G|Y )

∗|NSC(Y ) is diagonalizable. Then
so is G∗|NSC(X).

Proof. If π is a flip, the lemma is trivial. If π is a divisorial contraction with
E being the π-exceptional prime divisor, then [E] ∈ NSC(X)\π∗NSC(Y )
is a common eigenvector of h∗|NSC(X) for any h ∈ G, and the lemma also
holds. Next we assume π is a Fano contraction and regard NSC(Y ) as a
1-codimensional subspace of NSC(X). Note that for any h ∈ G, h∗|NSC(X) is
diagonalizable by Lemma 5.4.

Let f, g ∈ G. Suppose f∗x1 = ax1 for some x1 ∈ NSC(X)\NSC(Y ) and
a ̸= 0. Let x2, . . . , xk be a basis of NSC(Y ) such that x2, . . . , xk are eigenvec-
tors of h∗|NSC(Y ) for any h ∈ G. Suppose f∗xi = aixi with ai ̸= 0. We may
assume that ai = a if and only if i ≤ r for some r ≥ 1. Let g∗x1 = bx1 + y
for some b ̸= 0 and y ∈ NSC(Y ). Write y =

∑k
i=2 sixi where si ∈ C. Since

g∗|NSC(X) is diagonalizable, si ̸= 0 implies g∗xi ̸= bxi. Then for each i ≤ r
such that si ̸= 0, we may replace x1 by x1 + tixi for some suitable ti, such
that, finally f∗x1 = ax1 and g∗x1 = bx1 +

∑k
i=r+1 sixi.

Next we claim y = 0. Set m := dim(X), n := dim(Y ) and d := m− n.
Suppose y ̸= 0. Then y · C ̸= 0 on Y for some C = xℓ22 · · ·xℓkk with

∑k
i=2 ℓi =

n− 1. So xj · C ̸= 0 on Y for some j > r and hence xd1 · y · C ̸= 0 and xd1 · xj ·
C ̸= 0 on X by Lemma 5.5. Let f∗C = eC and g∗C = e′C for some non-zero
e and e′. By the projection formula,

(deg g)xd+1
1 · C = (g∗x1)

d+1 · g∗C

= (bd+1e′)xd+1
1 · C + ((d+ 1)bde′)xd1 · y · C.

Since xd1 · y · C ̸= 0, we have xd+1
1 · C ̸= 0. On the other hand, by the pro-

jection formula,

(deg f)xd1 · xj · C = (f∗x1)
d · f∗xj · f

∗C = (adaje)x
d
1 · xj · C.

Since xd1 · xj · C ̸= 0, we have deg f = adaje. By the projection formula again,

(deg f)xd+1
1 · C = (f∗x1)

d+1 · f∗C = (ad+1e)xd+1
1 · C.
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Since aj ̸= a, deg f = adaje ̸= ad+1e. Hence xd+1
1 · C = 0, a contradiction.

So y = 0 as claimed.
Now y = 0 implies f∗|NSC(X) ◦ g

∗|NSC(X) = g∗|NSC(X) ◦ f
∗|NSC(X). So

G∗|NSC(X) is a commutative set. Since G∗|NSC(X) consists of diagonalizable
elements, G∗|NSC(X) is diagonalizable by [13, Section 15.4]. □

Proof of Theorem 1.2. By [18, Theorem 1.10], we have an f -equivariant rel-
ative MMP

X = X0 99K · · · 99K Xi 99K · · · 99K Xr = Y

over Y , with Y being Q-abelian.
By Theorem 4.7, this MMP is also G-equivaraint for some finite-index

submonoid G of SEnd(X). Since Y is Q-abelian, any surjective endomor-
phism gr ∈ SEnd(Y ) is quasi-étale. By [21, Lemma 2.12] or [4, Lemma 8.1
and Corollary 8.2],Gr lifts to a subsemigroupGA of SEnd(A) ≤ Endvariety(A).
So (1) is proved.

(2) follows from [19, Theorem 3.11 and Corollary 3.12] and [18, Lemmas
3.5 and 3.6]. (3) follows from Lemma 5.3. (4) and (5) follow directly from
[18, Theorem 1.10].

For (6), one direction is trivial and the case over C has been shown
by Lemma 5.6. Suppose H∗

Y |NSQ(Y ) is diagonalizable. Then H∗|NSC(X) is
diagonalizable by Lemma 5.6 and hence H∗|NSQ(X) is commutative. Let h ∈
H and λ be an eigenvalue of h∗|NSC(X). Then λ is either an eigenvalue of
h∗i |NSQ(Xi)/NSQ(Xi+1) or an eigenvalue of h∗r |NSQ(Y ). In particular, λ ∈ Q. So
h∗|NSQ(X) is diagonalizable for any h ∈ G. By [13, Section 15.4], H∗|NSQ(X)

is diagonalizable. □

Proof of Corollary 1.3. For (I), we see that (Ia) implies (Ib) by [19, Theorem
3.11] and [18, Lemma 3.5]. Conversely, the diagonalizable case has been
shown by Lemma 5.4. Suppose g is qg-polarized, h is qh-polarized and τY is
q-polarized for some integers qg ≥ 2, qh ≥ 2, q ≥ 2. For each i, gi := g|Xi

is
qg-polarized and hi := h|Xi

is qh-polarized by [19, Lemma 3.10 and Theorem
3.11]. Since τ∗Y |NSC(Y ) is diagonalizable by [19, Proposition 2.9], τ∗|NSC(X) is
diagonalizable by Lemma 5.4. Let λ be an eigenvalue of τ∗|NSC(X). Then λ
is either an eigenvalue of τ∗i |NSC(Xi)/NSC(Xi+1) for some i or an eigenvalue of
τ∗Y |NSC(Y ). Suppose that λ is an eigenvalue of τ∗Y |NSC(Y ) with dim(Y ) > 0.
Note that

deg τY = qdim(Y ) = (deg hY ) · (deg gY ) = q
dim(Y )
h · qdim(Y )

g .
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So |λ| = q = qh · qg by [21, Lemma 2.1]. Suppose that λ is an eigenvalue of
τ∗i |NSC(Xi)/NSC(Xi+1). By Lemma 5.2,

τ∗i |NSC(Xi)/NSC(Xi+1) = (h∗i ◦ g
∗
i )|NSC(Xi)/NSC(Xi+1) = (qh id) ◦ (qg id) = q id .

Then λ = q. Therefore, τ∗|NSC(X) is diagonalizable with all the eigenvalues
being of the same modulus. Applying [19, Proposition 2.9] and [21, Lemma
2.3], τ is q-polarized.

Suppose either g or h is int-amplified. Suppose τY is int-amplified. Let λ
be an eigenvalue of τ∗|NSC(X). If λ is an eigenvalue of τ∗Y |NSC(Y ), then |λ| > 1
by [18, Proposition 3.3]. Suppose λ is an eigenvalue of τ∗i |NSC(Xi)/NSC(Xi+1)

for some i. By Lemma 5.2, g∗i |NSC(Xi)/NSC(Xi+1) = a id for some integer a ≥ 1
and h∗i |NSC(Xi)/NSC(Xi+1) = b id for some integer b ≥ 1. Since either g or h is
int-amplified, either a > 1 or b > 1 by [18, Proposition 3.3]. In particular,
λ = ab > 1. By [18, Proposition 3.3] again, τ is int-amplified.

(II) follows from [19, Corollary 3.12] and [18, Lemma 3.6].
(III) follows from Theorem 1.2 by applying H := {f, g}. □

6. Proof of Theorems 1.4 and 1.5

In this section, we work over characteristic 0. We prove Theorems 6.2
and 6.3 which include Theorems 1.4 and 1.5 as special cases.

Definition 6.1. Let X be a normal projective variety.

(1) q(X) := h1(X,OX) = dimH1(X,OX) (the irregularity).

(2) q̃(X) := q(X̃) with X̃ a smooth projective model of X.

(3) q♮(X) := sup{q̃(Y ) |Y → X is finite surjective and étale in
codimension 1}.

(4) πalg
1 (Xreg) is the algebraic fundamental group of the smooth locus Xreg

of X.

Theorem 6.2. Let X be a Q-factorial klt projective variety admitting an
int-amplified endomorphism f . We use the notation X = X0 99K · · · 99K Xr

= Y and the finite-index submonoid G ≤ SEnd(X) as in Theorem 1.2. Sup-
pose futher either q♮(X) = 0 or πalg

1 (Xreg) is finite. Then there is an integer
M ≥ 1 depending only on X such that:

(1) The Y in Theorem 1.2 is a point.
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(2) G∗|NSQ(X) is a commutative diagonal monoid with respect to a suitable
Q-basis B of NSQ(X). Further, for every g in G, the representation
matrix [g∗|NSQ(X)]B relative to B, is equal to diag[q1, q2, . . .] with inte-
gers qi ≥ 1.

(3) G ∩ Pol(X) is a subsemigroup of G, and consists exactly of those g
in G such that [g∗|NSQ(X)]B = diag[q, . . . , q] for some integer q ≥ 2.
Further,

G ∩ Pol(X) ⊇ ⟨Pol(X)[M ]⟩.

(4) G ∩ IAmp(X) is a subsemigroup of G, and consists exactly of those
g in G such that [g∗|NSQ(X)]B = diag[q1, q2, . . .] with integers qi ≥ 2.
Further,

G (G ∩ IAmp(X)) = G ∩ IAmp(X) ⊇ ⟨IAmp(X)[M ]⟩;

any h in SEnd(X) has (hM )∗ = (g∗1)
−1g∗2 on NSQ(X) for some gi in

G ∩ IAmp(X).

(5) We have hM ∈ G and that h∗|NSC(X) is diagonalizable for every h ∈
SEnd(X).

Proof. We apply Theorem 1.2 and use the notation there. Note that π : X →
Y is equi-dimensional and π has irreducible fibres. So (1) follows from [4,
Lemma 11.1] and the proof of [19, Lemma 9.1].

The first half of (2) has been shown in Theorem 1.2. For any g ∈ G, let λ
be an eigenvalue of g∗|NSQ(X). Then λ is an eigenvalue of g∗j |NSQ(Xj)/NSQ(Xj+1)

for some j. By Lemma 5.2, λ is a positive integer. So (2) is proved.
By Corollary 1.3, G ∩ Pol(X) and G ∩ IAmp(X) are both semigroups.

For any g ∈ G ∩ Pol(X), [g∗|NSQ(X)]B = diag[q, . . . , q] for some integer q ≥
2 by (2) and [21, Lemma 2.1]. For any g ∈ G ∩ IAmp(X), [g∗|NSQ(X)]B =
diag[q1, q2, . . .] with integers qi ≥ 2 by (2) and [18, Proposition 3.3]. Note
that ⟨SEnd(X)[M ]⟩ ⊆ G for some M > 0. So G ∩ Pol(X) ⊇ ⟨Pol(X)[M ]⟩ and
G ∩ IAmp(X) ⊇ ⟨IAmp(X)[M ]⟩. Since G is a monoid, G (G ∩ IAmp(X)) =
G ∩ IAmp(X) by Corollary 1.3. For any h ∈ SEnd(X), g2 := hM ◦ fM ∈ G ∩
IAmp(X). Let g1 := fM , which is in G ∩ IAmp(X). Then (hM )∗ = (g∗1)

−1 ◦
g∗2 on NSQ(X). So (3) and (4) are proved. (5) is clear. □

Theorem 6.3. Let X be a Q-factorial klt projective variety admitting an
int-amplified endomorphism f . Suppose futher either q♮(X) = 0 or πalg

1 (Xreg)
is finite. Then we have:
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(1) Aut(X)/Aut0(X) is a finite group. Further, Aut0(X) is a linear alge-
braic group.

(2) Every amplified endomorphism of X is int-amplified.

(3) X has no automorphism of positive entropy (nor amplified automor-
phism).

Proof. By Theorem 6.2, we may run MMPX = X0 99K · · · 99K Xr = Y as in
Theorem 1.2, with Y being a point. Moreover, for someM > 0, (gM )∗|NSQ(X)

= id for any g ∈ Aut(X) since g has inverse. Let H be an ample Cartier
divisor of X and let Hg :=

∑M−1
i=0 (gi)∗H. Then Hg is ample and g∗Hg ≡ Hg.

Thus [Aut(X) : Aut0(X)] < ∞ (cf. [19, Theorem 1.2], [16, Proposition 2.2],
[11, Theorem 4.8]).

Let X ′→X be an Aut(X)-equivariant resolution of X. By Theorems 1.2
and 6.2, X and hence X ′ are rationally connected. So X ′ has trivial Alb(X ′).
In particular, Aut0(X

′) and hence Aut0(X) are linear (cf. [17]). Therefore,
(1) is proved.

(2) follows from Lemma 5.3; see also Theorem 1.2. (3) follows from (1)
and (2); see also [18, Lemma 3.10]. □

Proof of Theorems 1.4 and 1.5. By [6, Corollary 4.18], πalg
1 (Xreg) is trivial

when X is a rationally connected smooth projective variety. Then Theo-
rem 1.4 follows from Theorem 6.2 and Theorem 1.5 follows from Theo-
rem 6.3. □
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