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Variational estimates for operators over

some thin subsets of primes

Bartosz Trojan

We establish ℓp(Z) boundedness of r-variational seminorm for op-
erators of Radon type along subsets of prime numbers of the form
{

p ∈ P : {φ1(p)} < ψ(p)
}

. As an application we obtain the corre-
sponding pointwise ergodic theorems.
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1. Introduction

Given a dynamical system (X,B, µ, T ), that is a σ-finite measure space
(X,B, µ) with an invertible measure preserving transformation T : X → X,
and any polynomial P : Z → Z of degree d ≥ 1 having integer coefficients
and without a constant term, we are interested in the pointwise convergence
for f ∈ Ls(X,µ), s > 1, of the averages

ANf(x) =
1

|P ∩ [1, N ]|
∑

p∈P∩[1,N ]

f
(

TP (p)x
)

where P is a thin subset of prime numbers P, i.e. a subset of P such that

lim
N→∞

|P ∩ [1, N ]|
|P ∩ [1, N ]| = 0.
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Our principle example is the set

P =
{

p ∈ P : p = ⌊h(n)⌋ for some n ∈ N
}

where h is a regularly-varying function of index c ∈ [1, 2), for instance
xc logA(x) for some A > 0. In this context, we also study pointwise con-
vergence of the truncated discrete Hilbert transform with an appropriate
weight function ω,

HNf(x) =
∑

p∈±P∩[1,N ]

f
(

TP (p)x
) ω(|p|)

p
.

The problem we are interested in may be stated as follows: for a subset
A ⊆ N, s ≥ 1 and any polynomial P having integer coefficients and without
a constant term, determine whether for any function f ∈ Ls(X,µ), the limit

(1) lim
N→∞

1

|A ∩ [1, N ]|
∑

n∈A∩[1,N ]

f
(

TP (n)x
)

exists for µ-almost all x.
Pointwise convergence of ergodic averages was initially observed by

Birkhoff in [1] where the author considered A = N, P (n) = n and s ≥ 1.
The higher degree polynomials required a new approach discovered by Bour-
gain in 80’s. In the series of papers, [3–5], Bourgain proved the pointwise
convergence for A = N, any polynomial P having integer coefficients, and
s > 1. The restriction to the range s > 1, in Bourgain’s theorem is essential.
In fact, Buczolich and Mauldin [6], and LaVictoire [16] showed that in the
case of P (n) = nk, k ≥ 2, the pointwise convergence (1) for a function in
L1(X,µ) may fail on a large set.

Considering averages over prime numbers, in [2] Bourgain proved their
pointwise convergence for P (n) = n and functions in L2(X,µ). Later, in [31],
Wierdl extended this result to all s > 1, (see also [5, Section 9]). Again the
restriction s > 1, is essential as LaVictoire showed in [16]. The case of higher
degree polynomials, at least for functions in L2(X,µ), was investigated by
Nair in [24]. In [25], Nair also studied s > 1 but his proof of Lemma 14
contains an error. The general case s > 1, I have covered in the recent paper
[28]. Finally, a subclass of thin subsets of primes discussed in this article
were previously studied by Mirek in [18].

The initial study of pointwise convergence for the truncated discrete
Hilbert transform goes back to Cotlar [8] where A = N and P (n) = n was
considered. The case with a general polynomial P was a more delicate issue
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recently resolved by Mirek, Stein and myself in [20]. On the other hand, the
truncated discrete Hilbert transform along prime numbers was the subject
of the article written by Mirek and myself [21], see also [23]. Ultimately, the
general polynomials I have considered in the recent paper [28].

Classical proofs of pointwise convergence proceeds in two steps: The first,
is to establish the convergence for a class of functions dense in Lp(X,µ). To
extend the result to all functions, one needs Lp-boundedness of the corre-
sponding maximal function. Nevertheless, finding the dense class may be a
difficult task. To overcome this, one can show the r-variational estimates, see
Theorem A and Theorem B for details. This approach to study discrete oper-
ators has already been used in many papers, see [7, 12, 13, 20, 22, 23, 28, 32].

Before stating the results, let us define thin subsets of P we are interested
in.

Definition 1. Let L be a family of slowly varying functions L : [1,∞) →
(0,∞) such that

L(x) = exp

(
∫ x

1

ϑ(t)

t
dt

)

where ϑ ∈ C∞([1,∞)) is a real function satisfying

lim
x→∞

ϑ(x) = 0, and lim
x→∞

xnϑ(n)(x) = 0, for every n ∈ N.

Let us distinguish a subfamily L0 of L.

Definition 2. Let L0 be a family of slowly varying functions L : [1,∞) →
(0,∞) such that limx→∞ L(x) = ∞ and

L(x) = exp

(
∫ x

1

ϑ(t)

t
dt

)

where ϑ ∈ C∞([1,∞)) is positive decreasing real function satisfying

lim
x→∞

ϑ(x) = 0, and lim
x→∞

xnϑ(n)(x)

ϑ(x)
= 0, for every n ∈ N,

and for every ϵ > 0 there is a constant Cϵ > 0 such that 1 ≤ Cϵϑ(x)x
ϵ.

Lastly, we define the subfamily Rc of regularly varying functions.
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Definition 3. For every c ∈ (0, 2), let Rc be a family of increasing convex
regularly-varying functions h : [1,∞) → [1,∞) of the form

h(x) = xcL(x)

where L ∈ L0, if c = 1, and L ∈ L otherwise.

Let us fix two functions h1 ∈ Rc1 and h2 ∈ Rc2 for c1, c2 ∈ [1, 2). In the
whole article it is assumed that γ1 = 1/c1 and γ2 = 1/c2 satisfy

(i) if d = 1,
{

(1− γ1) + 15(1− γ2) < 1,

3(1− γ1) + 12(1− γ2) < 2,

(ii) if d = 2,
{

3(1− γ1) + 62(1− γ2) < 3,

4(1− γ1) + 32(1− γ2) < 3,

(iii) if d ∈ {3, . . . , 9},
{

1
3·2d (1− γ1) +

(

1 + 1
6(2d−1)

)

(1− γ2) <
1

3·2d ,

(1− γ2) <
1

4·2d ,

(iv) if d ≥ 10,

2

3d(d+ 1)2
(1− γ1) +

(

1 +
1

3d(d+ 1)

)

(1− γ2) <
2

3d(d+ 1)2
.

Let φ1 and φ2 be the inverse of h1 and h2, respectively. By [18, Lemma
2.20], if cj = 1 then there is a positive real decreasing function σj satisfying
σj(2x) ≃ σj(x) and σj(x) ≳ x−ϵ for any ϵ > 0, such that for each k ∈ N, 1

(2) φ
(k)
j (x) ≃ φj(x)σj(x)

xk
.

We set σj ≡ 1 whenever cj > 1. In this article, we are interested in sets of
the form

P+ =
{

p ∈ P : {φ1(p)} < ψ(p)
}

,

1We write A ≲ B if there is an absolute constant C > 0 such that A ≤ CB. If
A ≲ B and B ≲ A hold simultaneously then we write A ≃ B.
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and

P− =
{

p ∈ P : {−φ1(p)} < ψ(p)
}

where ψ : [1,∞) → (0,∞) is a positive function such that ψ(x) ≤ 1
2 for all

x ≥ 1, and

lim
x→+∞

ψ(k)(x)

φ
(k+1)
2 (x)

= 1,(3)

for k = 0, . . . , d+ 2 where d ≥ 1 is the degree of the polynomial P . The sets
P− and P+ are intersections with primes numbers of sets studied in [14].

Let us observe that, if h1 = h2 = h is the inverse function to φ and
ψ(x) = φ(x+ 1)− φ(x) then

P− = {p ∈ P : p = ⌊h(n)⌋ for some n ∈ N} .

Indeed, we have the following chain of equivalences

P ∋ p = ⌊h(n)⌋ for some n ∈ N

⇐⇒ h(n)− 1 < p ≤ h(n) < p+ 1

⇐⇒ φ(p) ≤ n < φ(p+ 1), since φ is increasing

⇐⇒ 0 ≤ n− φ(p) < φ(p+ 1)− φ(p) = ψ(p) ≤ 1
2

⇐⇒ 0 ≤ {−φ(p)} < ψ(p)

⇐⇒ p ∈ P−.

In particular, the sets P− are a generalization of those considered by Leit-
mann [17] and Mirek [18].

For any r ≥ 1, the r-variational seminorm Vr of a sequence
(

an : n ∈ N
)

of complex numbers is defined by

Vr
(

an : n ∈ N
)

= sup
k0<···<kJ

(

J
∑

j=1

|akj − akj−1
|r
)1/r

.

Observe that, if Vr(an : n ∈ N) <∞ for any r ≥ 1, then the sequence (an :
n ∈ N) convergences. Therefore, we can deduce the pointwise ergodic theo-
rems from the following two statements.
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Theorem A. Let P ∈
{

P−,P+

}

. For every s > 1 there is Cs > 0 such that
for all r > 2 and any f ∈ Ls(X,µ),

∥

∥Vr
(

ANf : N ∈ N
)
∥

∥

Ls ≤ Cs
r

r − 2
∥f∥Ls .

Moreover, the constant Cs is independent of coefficients of the polynomial P .

Theorem B. Let P ∈
{

P−,P+

}

. For every s > 1 there is Cs > 0 such that
for all r > 2 and any f ∈ Ls(X,µ),

∥

∥Vr
(

HNf : N ∈ N
)
∥

∥

Ls ≤ Cs
r

r − 2
∥f∥Ls .

Moreover, the constant Cs is independent of coefficients of the polynomial P .

We point out that Theorem B allows us to define ergodic counterpart of
the singular integral operator. Namely, for f ∈ Ls(X,µ), s > 1, we set

H f(x) = lim
N→∞

HNf(x),

for µ-almost all x ∈ X.
In view of the Calderón transference principle while proving Theorem A

and Theorem B we may assume that we deal with the model dynamical
system, namely, the integers Z with the counting measure and the shirt
operator. As usual, r-variations are divided into to two parts: short and
long variations. By choosing long variations to be over the set Zρ =

{

⌊2kρ⌋ :
k ∈ N

}

for some ρ ∈ (0, 1), we make short variations easier to handle. Indeed,
bounding short variations is reduced to estimating ℓ1(Z)-norm of convolution
kernels, which is a consequence of the asymptotic of some exponential sums
over P combined with the prime number theorem or the Mertens theorem.
For long variations, we replace the operators modeled on P by operators
modeled on P. For this step, we need to establish a decay of ℓ2-norm of
the corresponding difference. In view of the Plancherel’s theorem, it is a
consequence of estimates for some exponential sums over P, see Section 2.
Lastly, variational estimates for the operators modeled on P are proved in
[28, Theorem C].

2. Exponential sums

In this section we develop estimates on exponential sums that are essential to
our argument. The main tools is van der Corput’s lemma in the classical form
as well as the one recently obtained by Heath-Brown (see [11, Theorem 1]).
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Lemma 1 ([29], [27, Theorem 5.11, Theorem 5.13]). Suppose that
N ≥ 1 and k ≥ 2 are two integers and a ≤ b ≤ a+N . Let F ∈ Ck(a, b) be a
real-valued function such that

η ≲ |F (k)(x)| ≲ rη, for all x ∈ (a, b),

for some η > 0 and r ≥ 1. Then

∣

∣

∣

∣

∣

∑

a≤n≤b

e2πiF (n)

∣

∣

∣

∣

∣

≲ N
(

η
1

2k−2 +N− 2

2k + (Nkη)−
2

2k

)

.

The implied constant depends only on r.

Lemma 2 ([11]). Suppose that N ≥ 1 and k ≥ 3 are two integers and
a ≤ b ≤ a+N . Let F ∈ Ck(a, b) be a real-valued function such that

η ≲ |F (k)(x)| ≲ rη, for all x ∈ (a, b),

for some η > 0 and r ≥ 1. Then for every ϵ > 0,

∣

∣

∣

∣

∣

∑

a≤n≤b

e2πiF (n)

∣

∣

∣

∣

∣

≲ N1+ϵ
(

η
1

k(k−1) +N
− 1

k(k−1) + (Nkη)
− 2

k2(k−1)

)

where the implied constant depends only on r, k and ϵ.

Notice that the exponents in Lemma 2 are improved for n ≥ 10. In fact,
the second term in the bracket has smaller exponent in Lemma 1 for 2 ≤
n ≤ 5, while the third term for 2 ≤ n ≤ 9. To benefit from this observation,
we take the minimum of both estimates.

We start by investigating some exponential sums over integers in arith-
metic progression.

Proposition 2.1. For m ∈ Z \ {0}, τ ∈ {0, 1} and j ≥ 1, we set

T (K) =
∑

1≤k≤K

exp
(

2πi
(

ξP (jk) +m(φ1(jk)− τψ(jk))
)

)

.

Then 2

2We write A ≲δ B to indicate that the implied constant depends on δ.
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(i) if d ≥ 1 then for each ϵ > 0,

∣

∣T (K)
∣

∣ ≲ϵ |m|
1

2(2d−1) (jK)1+ϵ
(

φ1(jK)σ1(jK)
)− 1

2d ,

(ii) if d ≥ 2 then for each ϵ > 0,

∣

∣T (K)
∣

∣ ≲ϵ |m|
1

d(d+1) (jK)1+ϵ
(

φ1(jK)σ1(jK)
)− 2

d(d+1)2 .

The implied constants are independent of j, m, τ , K and ξ.

Proof. For the proof, let us define F : [1,∞) → R by

F (t) = ξP (jt) +m
(

φ1(jt)− τψ(jt)
)

.

By (2) and (3),

ψ(d+1)(x) ≃ φ
(d+2)
2 (x) ≃ φ2(x)σ2(x)

xd+2
,

and since γ2 ≤ 1 ≤ 1 + γ1, we have

φ2(x)σ2(x)

xφ1(x)σ1(x)
= o(1),

thus

ψ(d+1)(x) = o

(

φ1(x)σ1(x)

xd+1

)

.

Hence, by (2), for t ∈ [X, 2X], we obtain

∣

∣F (d+1)(t)
∣

∣ = jd+1|m| ·
∣

∣φ
(d+1)
1 (jt)− τψ(d+1)(jt)

∣

∣

≃ jd+1|m|φ1(jX)σ1(jX)

(jX)d+1
.

For X < X ′ ≤ 2X, we set

T (X,X ′) =
∑

X<k≤X′

e2πiF (k).

Then

(4)
∣

∣T (K)
∣

∣ ≲ (logK) max
X<X′≤K
X′≤2X

∣

∣T (X,X ′)
∣

∣.

Since for each δ > 0 satisfying δ < γ−1
1 , and δ ≤ 1 if γ1 = 1, a function x 7→

x(φ1(x)σ1(x))
−δ is increasing, see [19, Lemma 2.6], by Lemmas 1 and 2, we
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obtain respectively

∣

∣T (X,X ′)
∣

∣ ≲ X

(

jd+1|m|φ1(jX)σ1(jX)

(jX)d+1

)
1

2(2d−1)

+X1− 1

2d

+X

(

Xd+1 j
d+1|m|φ1(jX)σ1(jX)

(jX)d+1

)− 1

2d

≲ (|m|j)
1

2(2d−1)X
1− d

2(2d−1) +X1− 1

2d +X
(

|m|φ1(jX)σ1(jX)
)− 1

2d

≲ |m|
1

2(2d−1) jX
(

φ1(jX)σ1(jX)
)− 1

2d ,

and

∣

∣T (X,X ′)
∣

∣ ≲ X1+ϵ

(

jd+1|m|φ1(jX)σ1(jX)

(jX)d+1

)
1

d(d+1)

+X
1+ϵ− 1

d(d+1)

+X1+ϵ

(

Xd+1 j
d+1|m|φ1(jX)σ(jX)

(jX)d+1

)− 2

d(d+1)2

≲ (|m|j)
1

d(d+1)X1+ϵ− 1

d+1 +X
1+ϵ− 1

d(d+1)

+X1+ϵ
(

|m|φ1(jX)σ1(jX)
)− 2

d(d+1)2

≲ |m|
1

d(d+1) (jX)1+ϵ
(

φ1(jX)σ1(jX)
)− 2

d(d+1)2 .

Now, using (4) we easily finish the proof. □

Let us turn to estimating the exponential sums over prime numbers. To
regularize them we use von Mangoldt’s function defined as

Λ(n) =

{

log p if n = pm, for some p ∈ P and m ∈ N,

0 otherwise.

The classical way to handle von Mangoldt’s function is to use Vaughan’s
identity (see [30], see also [9, Lemma 4.12]), which states that for any n >
u ≥ 1,

(5) Λ(n) =
∑

j,k>u
jk=n

Λ(k)aj +
∑

j≤u
jk=n

µ(j) log(k)−
∑

j≤u2

jk=n

bj

where

aj =
∑

d>u
dℓ=j

µ(d), bj =
∑

d,ℓ≤u
dℓ=j

µ(d)Λ(ℓ),
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and µ(n) is the Möbius function defined for n = pm1

1 · · · pmk

k where pj are
distinct prime numbers, as

µ(n) =

{

(−1)k if m1 = · · · = mk,

0 otherwise.

Let us observe that for any ϵ > 0,

∑

J≤j≤2J

|aj |2 ≲ϵ J
1+ϵ, and

∑

J≤j≤2J

|bj |2 ≲ϵ J
1+ϵ.

Theorem 1. For m ∈ Z \ {0}, τ ∈ {0, 1} and 1 ≤ X ≤ X ′ ≤ 2X, we set

S(X,X ′) =
∑

X<n≤X′

exp
(

2πi
(

ξP (n) +m(φ1(n)− τψ(n))
)

)

Λ(n).

Then for each ϵ > 0,

(i) if d = 1,

∣

∣S(X,X ′)
∣

∣ ≲ϵ X
1+ϵ
(

|m|
1

4X− 1

12 + |m|
1

14

(

φ1(X)σ1(X)
)− 1

14

+X
1

12

(

φ1(X)σ1(X)
)− 1

4

)

,

(ii) if d = 2,

∣

∣S(X,X ′)
∣

∣ ≲ϵ X
1+ϵ
(

|m|
1

12X− 1

16 + |m|
1

30

(

φ1(X)σ1(X)
)− 1

20

+X
1

32

(

φ1(X)σ1(X)
)− 1

8

)

,

(iii) if d ∈ {3, . . . , 9},
∣

∣S(X,X ′)
∣

∣ ≲ϵ X
1+ϵ
(

X− 1

4·2d + |m|
1

4(2d−1)X
− d−1

8(2d−1)

+ |m|
1

6(2d−1)

(

φ1(X)σ1(X)
)− 1

3·2d

)

,

(iv) if d ≥ 10,

∣

∣S(X,X ′)
∣

∣ ≲ϵ X
1+ϵ
(

X
− 1

4d(d+1) + |m|
1

2d(d+1)X
− d−1

4d(d+1)

+ |m|
1

3d(d+1)

(

φ1(X)σ1(X)
)− 2

3d(d+1)2

)

.

The implied constants are independent of m, τ , X, X ′ and ξ.
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Proof. To simplify notation, let F : [1,∞) → R stand for

F (t) = ξP (t) +m(φ1(t)− τψ(t)).

Fix 1 ≤ u ≤ X
1

3 whose value will be determined later. By Vaughan’s iden-
tity (5), we can write

S(X,X ′) = Σ1 − Σ21 − Σ22 +Σ3

where

Σ1 =
∑

j≤u

µ(j)
∑

X/j<k≤X′/j

e2πiF (jk) log(k),

Σ21 =
∑

j≤u

bj
∑

X/j<k≤X′/j

e2πiF (jk),

Σ22 =
∑

u<j≤u2

bj
∑

X/j<k≤X′/j

e2πiF (jk),

Σ3 =
∑

u<j≤X′/u

aj
∑

X/j<k≤X′/j
k>u

e2πiF (jk)Λ(k).

Therefore, our aim is reduced to bounding each term separately.
The estimate for Σ1 and Σ21. For 1 ≤ j ≤ u we set

Tj(K) =
∑

X/j<k≤K

e2πiF (jk).

By the partial summation, we can write

∑

X/j<k≤X′/j

e2πiF (jk) log(k) = Tj(X
′/j) log(X ′/j)−

∫ X′

X
Tj(t/j)

dt

t
,

thus

∣

∣Σ1

∣

∣ ≲ (logX)
∑

j≤u

max
X/j≤K≤X′/j

∣

∣Tj(K)
∣

∣.

Moreover, since

|bj | ≤
∑

ℓ|j

Λ(ℓ) = log(j),
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we have
∣

∣Σ21

∣

∣ ≲ (logX)
∑

j≤u

max
X/j≤K≤X′/j

∣

∣Tj(K)
∣

∣.

Therefore, by Proposition 2.1(i), we obtain

|Σ1|+ |Σ21| ≲ (logX)
∑

j≤u

max
X/j≤K≤X′/j

|m|
1

2(2d−1) (jK)1+ϵ
(

φ1(jK)σ1(jK)
)− 1

2d

≲ u|m|
1

2(2d−1)X1+2ϵ
(

φ1(X)σ1(X)
)− 1

2d .(6)

Similarly, Proposition 2.1(ii) gives

|Σ1|+ |Σ21| ≲ u|m|
1

d(d+1)X1+2ϵ
(

φ1(X)σ1(X)
)− 2

d(d+1)2 .(7)

The estimate for Σ22 and Σ3. Controlling Σ22 and Σ3 requires more work.
First, let us dyadically split the defining sums to get

(8) |Σ22| ≲ (logX)2 max
u≤J<J ′≤2J

J ′≤u2

max
X/u2≤K<K′≤2K

K′≤X′/u

∣

∣

∣

∣

∣

∑

J<j≤J ′

∑

K<k≤K′

X<jk≤X′

e2πiF (jk)bj

∣

∣

∣

∣

∣

,

and
(9)

|Σ3| ≲ (logX)2 max
u≤J<J ′≤2J

J ′≤u2

max
X/u2≤K<K′≤2K

K′≤X′/u

∣

∣

∣

∣

∣

∑

J<j≤J ′

∑

K<k≤K′

X<jk≤X′

e2πiF (jk)Λ(k)aj

∣

∣

∣

∣

∣

.

To be able to deal with both cases simultaneously, let us consider two se-
quences of complex numbers (Aj : j ∈ N) and (Bk : k ∈ N), such that for
each ϵ > 0,

(10)
∑

J≤j≤2J

|Aj |2 ≲ϵ J
1+ϵ, and

∑

K≤k≤2K

|Bk|2 ≲ϵ K
1+ϵ,

and study exponential sums of a form

∑

J<j≤J ′

∑

K<k≤K′

X<jk≤X′

e2πiF (jk)AjBk
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where J < J ′ ≤ 2J and K < K ′ ≤ 2K. Without loss of generality we may
assume that K ≤ J . By Cauchy–Schwarz inequality and (10), we have

∣

∣

∣

∣

∣

∑

J<j≤J ′

∑

K<k≤K′

X<jk≤X′

e2πiF (jk)AjBk

∣

∣

∣

∣

∣

2

≲ J1+ϵ
∑

J<j≤J ′

∣

∣

∣

∣

∣

∑

K<k≤K′

X<jk≤X′

e2πiF (jk)Bk

∣

∣

∣

∣

∣

2

.

To estimate the right-hand side, we expand the square and rearrange terms
to get

∣

∣

∣

∣

∣

∑

K<k≤K′

X<jk≤X′

e2πiF (jk)Bk

∣

∣

∣

∣

∣

2

(11)

=
∑

|r|≤K

∑

K<k,k+r≤K′

X<jk,j(k+r)≤X′

exp
(

2πi
(

F (jk)− F (j(k + r))
)

)

BkBk+r.

Therefore,

∣

∣

∣

∣

∣

∑

J<j≤J ′

∑

K<k≤K′

X<jk≤X′

e2πiF (jk)AjBk

∣

∣

∣

∣

∣

2

(12)

≲ J1+ϵ
∑

|r|≤K

∑

K<k,k+r≤K′

|Bk||Bk+r||Uk,k+r|

where for K < k, k′ < K ′, we have set

Uk,k′ =
∑

j∈Jk,k′

exp
(

2πi
(

F (jk)− F (jk′)
)

)

,

and Jk,k′ =
(

max
{

X/k,X/k′, J
}

,min
{

X ′/k,X ′/k′, J ′
}]

∩ Z. To estimate
Uk,k′ , we are going to apply van der Corput’s lemma. Let us fix k ̸= k′.
Setting G(t) = F (tk)− F (tk′) for t ∈ Jk,k′ , we can write

∣

∣G(d+1)(t)
∣

∣ ≃ |m|
∣

∣

∣

(

φ
(d+1)
1 (tk)kd+1 − φ

(d+1)
1 (tk′)(k′)d+1

)

− τ
(

ψ(d+1)(tk)kd+1 − ψ(d+1)(tk′)(k′)d+1
)

∣

∣

∣
.
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By the mean value theorem, for some x between tk and tk′ we have

φ
(d+1)
1 (tk)(tk)d+1 − φ

(d+1)
1 (tk′)(tk′)d+1

=
(

φ
(d+2)
1 (x)xd+1 + (d+ 1)φ

(d+1)
1 (x)xd

)

(k − k′)t,

thus, by (2), we obtain

∣

∣φ
(d+1)
1 (tk)(tk)d+1 − φ

(d+1)
1 (tk′)(tk′)d+1

∣

∣ ≃ φ1(JK)σ1(JK)

JK
|k − k′|J.

Similarly, we get

∣

∣ψ(d+1)(tk)(tk)d+1 − ψ(d+1)(tk′)(tk′)d+1
∣

∣ ≃ φ2(JK)σ2(JK)

(JK)2
|k − k′|J.

Since
φ2(JK)σ2(JK)

JKφ1(JK)σ1(JK)
= o(1),

we conclude that for t ∈ Jk,k′ ,

∣

∣G(d+1)(t)
∣

∣ ≃ |m| · |k − k′|φ1(JK)σ1(JK)

JK
J−d.

Now, by Lemma 1, we get

∣

∣Uk,k′

∣

∣ ≲ J

(

|m| · |k − k′|φ1(JK)σ1(JK)

JK
J−d

)
1

2(2d−1)

+ J1− 1

2d

+ J

(

Jd+1|m| · |k − k′|φ1(JK)σ1(JK)

JK
J−d

)− 1

2d

≲ J
1− d

2(2d−1)

(

|m| · |k − k′|
)

1

2(2d−1) + J1− 1

2d

+ JK
1

2d
(

|m| · |k − k′|
)− 1

2d
(

φ1(JK)σ1(JK)
)− 1

2d .
(13)

By Cauchy–Schwarz inequality and (10), we obtain

∑

1≤|r|≤K

∑

K<k,k+r≤K′

|Bk||Bk+r|J1− d

2(2d−1) |mr|
1

2(2d−1)

≲ J
1− d

2(2d−1) |m|
1

2(2d−1)

∑

1≤|r|≤K

|r|
1

2(2d−1)

∑

K<k≤K′

|Bk|2

≲ J
1− d

2(2d−1) |m|
1

2(2d−1)K
1+ 1

2(2d−1)K1+ϵ.
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Analogously, we show that

∑

1≤|r|≤K

∑

K<k,k+r≤K′

|Bk||Bk+r|J1− 1

2d ≲ J1− 1

2dK2+ϵ,

and

∑

1≤|r|≤K

∑

K<k,k+r≤K′

|Bk||Bk+r|JK
1

2d |mr|−
1

2d
(

φ1(JK)σ1(JK)
)− 1

2d

≲ J |m|−
1

2dK2+ϵ
(

φ1(JK)σ1(JK)
)− 1

2d .

Therefore,

∑

1≤|r|≤K

∑

K<k,k+r≤K′

|Bk||Bk+r||Uk,k′ |

≲ JK2+ϵ
(

|m|
1

2(2d−1)J
− d

2(2d−1)K
1

2(2d−1)

+ J− 1

2d + |m|−
1

2d
(

φ1(JK)σ1(JK)
)− 1

2d

)

.

Since for r = 0, we have

∑

K<k≤K′

|Bk|2|Uk,k| ≲ JK1+ϵ,

by (12), we can estimate

∣

∣

∣

∣

∣

∑

J<j≤J ′

∑

K<k≤K′

X<jk≤X′

e2πiF (jk)AjBk

∣

∣

∣

∣

∣

2

(14)

≲ J2+ϵK2+ϵ
(

K−1 + |m|
1

2(2d−1)J
− d

2(2d−1)K
1

2(2d−1)

+ J− 1

2d +
(

φ1(JK)σ1(JK)
)− 1

2d

)

,

provided thatK ≤ J . We are now going to apply (14) to derive the estimates
for Σ22 and Σ3. Let us recall that u ≤ J ≤ u2, X/u2 ≤ K ≤ X ′/u, u3 < X
and X < JK ≤ 2X, thus

u ≤ min{J,K} ≤
√
3X ≤

√
3max{J,K}.
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Hence, (14) applied to (8) and (9) results in

|Σ22|+ |Σ3| ≲ X1+ϵ
(

u−
1

2 + |m|
1

4(2d−1)X
− d−1

8(2d−1)(15)

+X− 1

2d+2 +
(

φ1(X)σ1(X)
)− 1

2d+1

)

.

For d ∈ {1, 2}, we improve the estimate (15), by applying to (11) the Weyl–
van der Corput’s inequality, see [9, Lemma 2.5]. For each 1 ≤ R ≤ K, we
have

∑

J<j≤J ′

∣

∣

∣

∣

∣

∑

K<k≤K′

X<jk≤X′

e2πiF (jk)Bk

∣

∣

∣

∣

∣

2

≤
(

1 +
K

R

)

∑

|r|≤R

(

1− |r|
R

)

∑

K≤k,k+r≤K′

|Bk||Bk+r||Uk,k′ |.

For d = 1, we take R = K
1

3 . Then, by (13), we get

∑

J<j≤J ′

∣

∣

∣

∣

∣

∑

K<k≤K′

X<jk≤X′

e2πiF (jk)Bk

∣

∣

∣

∣

∣

2

≲ JK1+ϵ(K +R)
(

R−1 + |m|
1

2J− 1

2R
1

2 +K
1

2R− 1

2

(

φ1(JK)σ1(JK)
)− 1

2

)

≲ JK2+ϵ
(

K− 1

3 + |m|
1

2J− 1

2K
1

6 +K
1

3

(

φ1(JK)σ1(JK)
)− 1

2

)

.

Therefore,

(16) |Σ22|+ |Σ3| ≲ X1+ϵ
(

u−
1

6 + |m|
1

4X− 1

12 +X
1

12

(

φ1(X)σ1(X)
)− 1

4

)

.

Similarly, for d = 2; we set R = K
1

2 which entails that

∑

J<j≤J ′

∣

∣

∣

∣

∣

∑

K<k≤K′

X<jk≤X′

e2πiF (jk)Bk

∣

∣

∣

∣

∣

2

≲ JK1+ϵ(K +R)
(

R−1 + |m|
1

6J− 1

3R
1

6 + J− 1

4

+ |m|−
1

4K
1

4R− 1

4

(

φ1(JK)σ1(JK)
)− 1

4

)

≲ JK2+ϵ
(

K− 1

2 + |m|
1

6J− 1

3K
1

12 + |m|−
1

4K
1

8

(

φ1(JK)σ1(JK)
)− 1

4

)

,
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and hence

(17) |Σ22|+ |Σ3| ≲ X1+ϵ
(

u−
1

4 + |m|
1

12X− 1

16 +X
1

32

(

φ1(X)σ1(X)
)− 1

8

)

.

Next, let us observe that for d ≥ 2, while estimating Uk,k′ , instead of
Lemma 1 we can use Lemma 2. This leads to

∣

∣Uk,k′

∣

∣ ≲ J1+ϵ− 1

d+1

(

|m| · |k − k′|
)

1

d(d+1) + J
1+ϵ− 1

d(d+1)

+ J1+ϵK
2

d(d+1)2
(

|m| · |k − k′|
)− 2

d(d+1)2
(

φ1(JK)σ1(JK)
)− 2

d(d+1)2 ,

and

∑

J<j≤J ′

∣

∣

∣

∣

∣

∑

K<k≤K′

X<jk≤X′

e2πiF (jk)Bk

∣

∣

∣

∣

∣

2

≲ J1+ϵK2+ϵ
(

K−1 + |m|
1

d(d+1)J− 1

d+1K
1

d(d+1)

+ J
− 1

d(d+1) +
(

φ1(JK)σ1(JK)
)− 2

d(d+1)2

)

,

which entails that

|Σ22|+ |Σ3| ≲ X1+ϵ
(

u−
1

2 + |m|
1

2d(d+1)X
− d−1

4d(d+1)(18)

+X
− 1

4d(d+1) +
(

φ1(X)σ1(X)
)− 1

d(d+1)2

)

.

Conclusion. In view of the estimates (6) and (15), by selecting

u = |m|−
2

6(2d−1)

(

φ1(X)σ1(X)
)

2

3
· 1

2d ,

we obtain

∣

∣S(X,X ′)
∣

∣ ≲ X1+ϵ
(

u|m|
1

2(2d−1)

(

φ1(X)σ1(X)
)− 1

2d

+ u−
1

2 + |m|
1

4(2d−1)X
− d−1

8(2d−1)

+X− 1

2d+2 +
(

φ1(X)σ1(X)
)− 1

2d+1

)

≲ X1+ϵ
(

|m|
1

6(2d−1)

(

φ1(X)σ1(X)
)− 1

3·2d

+ |m|
1

4(2d−1)X
− d−1

8(2d−1) +X− 1

2d+2

)

.
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Analogously, setting

u = |m|−
2

3d(d+1)

(

φ1(X)σ1(X)
)

4

3d(d+1)2 ,

from (7) and (18), we get

∣

∣S(X,X ′)
∣

∣ ≲ X1+ϵ
(

|m|
1

3d(d+1)

(

φ1(X)σ1(X)
)− 2

3d(d+1)2

+ |m|
1

2d(d+1)X
− d−1

4d(d+1) +X
− 1

4d(d+1)

)

.

For d = 1, we take

u = |m|−
3

7

(

φ1(X)σ1(X)
)

3

7 ,

and use (6) together with (16), to get

∣

∣S(X,X ′)
∣

∣ ≲ X1+ϵ
(

|m|
1

14

(

φ1(X)σ1(X)
)− 1

14

+ |m|
1

4X− 1

12 +X
1

12

(

φ1(X)σ1(X)
)− 1

4

)

.

Lastly, for d = 2 and

u = |m|−
2

15

(

φ1(X)σ1(X)
)

1

5 ,

by (6) and (17), we obtain

∣

∣S(X,X ′)
∣

∣ ≲ X1+ϵ
(

|m|
1

30

(

φ1(X)σ1(X)
)− 1

20

+ |m|
1

12X− 1

16 +X
1

32

(

φ1(X)σ1(X)
)− 1

8

)

,

which concludes the proof of theorem. □

The reasoning for P+ and P− are similar, therefore to simplify the notation
we are going to write

P = P+ =
{

p ∈ P : {φ1(p)} < ψ(p)
}

.

For N ∈ N we set PN = P ∩ [1, N ] and PN = P ∩ [1, N ]. In what follows, we
need a characterization of the sets P. The proof follows a line parallel to
[14, Lemma 2.2].

Lemma 3. p ∈ P if and only if p ∈ P and ⌊φ1(p)⌋ − ⌊φ1(p)− ψ(p)⌋ = 1.
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Proof. We begin with the forward implication; it suffices to show that if
p ∈ P, then the integer

⌊φ1(p)⌋ − ⌊φ1(p)− ψ(p)⌋,

belongs to
(

0, 32
)

. By definition, if p ∈ P then 0 ≤ φ1(p)− ⌊φ1(p)⌋ < ψ(p),
thus

−φ1(p) ≤ −⌊φ1(p)⌋ < ψ(p)− φ1(p),

if and only if

φ1(p) ≥ ⌊φ1(p)⌋ > φ1(p)− ψ(p),

from where it follows that

⌊φ1(p)⌋ − ⌊φ1(p)− ψ(p)⌋ > {φ1(p)− ψ(p)} ≥ 0.

In view of ⌊φ1(p)− ψ(p)⌋ ≥ φ1(p)− ψ(p)− 1, we obtain

⌊φ1(p)⌋ − ⌊φ1(p)− ψ(p)⌋ ≤ ⌊φ1(p)⌋ − φ1(p) + ψ(p) + 1

≤ ψ(p) + 1 < 3
2 .

We now turn to the reverse implication; if p ∈ P and ⌊φ1(p)⌋ = 1 + ⌊φ1(p)−
ψ(p)⌋, then we have

0 ≤ φ1(p)− ⌊φ1(p)⌋ = φ1(p)− 1− ⌊φ1(p)− ψ(p)⌋
< φ1(p)− 1 + 1 + ψ(p)− φ1(p) = ψ(p).

Consequently, we get {φ1(p)} < ψ(p), as desired. □

We are now ready to prove the main theorem of this section.

Theorem 2. For each ϵ > 0, satisfying

(i) if d = 1,
{

(1− γ1) + 15(1− γ2) + 84ϵ < 1,

3(1− γ1) + 12(1− γ2) + 60ϵ < 2

(ii) if d = 2,

{

3(1− γ1) + 62(1− γ2) + 360ϵ < 3,

4(1− γ1) + 32(1− γ2) + 160ϵ < 3
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(iii) if d ∈ {3, . . . , 9},
{

1
3·2d (1− γ1) +

(

1 + 1
6(2d−1)

)

(1− γ2) + 6ϵ < 1
3·2d ,

(1− γ2) + 4ϵ < 1
4·2d ,

(iv) if d ≥ 10,

(19)
2

3d(d+ 1)2
(1− γ1) +

(

1 +
1

3d(d+ 1)

)

(1− γ2) + 6ϵ <
2

3d(d+ 1)2
,

we have

∑

p∈PN

e2πiξP (p) log(p) =
∑

p∈PN

e2πiξP (p) log(p)ψ(p) +O
(

φ2(N)N−ϵ
)

.

Proof. We treat d ≥ 10 only since similar arguments apply to the other cases.
Let us introduce the “sawtooth” function Φ(x) = {x} − 1/2. Notice that, in
view of Lemma 3 we have

⌊φ1(n)⌋ − ⌊φ1(n)− ψ(n)⌋ = ψ(n) + Φ
(

φ1(n)− ψ(n)
)

− Φ
(

φ1(n)
)

.

Hence, we may write

∑

p∈PN

e2πiξP (p) log(p) =
∑

p∈PN

e2πiξP (p) log(p)ψ(p)

+
∑

p∈PN

e2πiξP (p) log(p)
(

Φ
(

φ1(p)− ψ(p)
)

− Φ
(

φ1(p)
))

.

Since
1

2
− γ2 + 2ϵ = (1− γ2)−

1

2
+ 2ϵ < 0,

by the prime number theorem we get

∑

p∈PN

e2πiξP (p) log(p)
(

Φ
(

φ1(p)− ψ(p)
)

− Φ
(

φ1(p)
))

=

N
∑

n=1

e2πiξP (n)Λ(n)
(

Φ
(

φ1(n)− ψ(n)
)

− Φ
(

φ1(n)
))

+O
(

φ2(N)N−ϵ
)

.

Next, we claim that

N
∑

n=1

e2πiξP (n)Λ(n)
(

Φ
(

φ1(n)− ψ(n)
)

− Φ
(

φ1(n)
))

= O
(

φ2(N)N−ϵ
)

.



✐

✐

“11-Trojan” — 2020/6/1 — 17:45 — page 611 — #21
✐

✐

✐

✐

✐

✐

Variational estimates 611

To see this, let us expand Φ into its Fourier series, i.e.,

Φ(x) =
∑

0<|m|≤M

1

2πim
e−2πimx +O

(

min

{

1,
1

M∥x∥

})

,

for some M > 0 where ∥x∥ = min{|x− n| : n ∈ Z} is the distance of x ∈ R

to the nearest integer. Next, we split the resulting sum into three parts,

I1 =
∑

0<|m|≤M

1

2πim

N
∑

n=1

e2πi(ξP (n)−mφ1(n))
(

e2πimψ(n) − 1
)

Λ(n),

and

I2 = O
(

N
∑

n=1

min

{

1,
1

M∥φ1(n)− ψ(n)∥

}

Λ(n)

)

,

I3 = O
(

N
∑

n=1

min

{

1,
1

M∥φ1(n)∥

}

Λ(n)

)

.

In this way, our aim is reduced to showing that each term I1, I2 and I3
belongs to O

(

φ2(N)N−ϵ
)

.

The estimate for I1. Let ϕm(x) = e2πimψ(x) − 1. Using (3), we easily see
that

(20) |ϕm(x)| ≲
|m|φ2(x)

x
, and |ϕ′m(x)| ≲

|m|φ2(x)

x2
.

Let us first estimate the inner sum in I1. By dyadic splitting we get

(21)

∣

∣

∣

∣

∣

N
∑

n=1

exp
(

2πi
(

ξP (n)−mφ1(n)
)

)

ϕm(n)Λ(n)

∣

∣

∣

∣

∣

≲ (logN) max
X<X′≤2X
X′≤N

∣

∣

∣

∣

∣

∑

X<n≤X′

exp
(

2πi
(

ξP (n)−mφ1(n)
)

)

ϕm(n)Λ(n)

∣

∣

∣

∣

∣

.

Now, by the partial summation, we have
∣

∣

∣

∣

∣

∑

X<n≤X′

exp
(

2πi
(

ξP (n)−mφ1(n)
)

)

ϕm(n)Λ(n)

∣

∣

∣

∣

∣

≤ |S(X,X ′)| · |ϕm(X ′)|+
∫ X′

X
|S(X,x)| · |ϕ′m(x)| dx
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where

S(X,x) =
∑

X<n≤x

exp
(

2πi
(

ξP (n)−mφ1(n)
)

)

Λ(n).

It follows from Theorem 1(iv) and estimates (20) that

∣

∣

∣

∣

∣

∑

X<n≤X′

exp
(

2πi
(

ξP (n)−mφ1(n)
)

)

ϕm(n)Λ(n)

∣

∣

∣

∣

∣

≲ |m| max
X∈[1,N ]

X
ϵ− 1

4d(d+1)φ2(X) + |m|1+
1

2d(d+1) max
X∈[1,N ]

X
ϵ− d−1

4d(d+1)φ2(X)

+ |m|1+
1

3d(d+1) max
X∈[1,N ]

Xϵφ2(X)
(

φ1(X)σ1(X)
)− 2

3d(d+1)2

≲ |m|N ϵφ2(N)
(

N
− 1

4d(d+1) + |m|
1

2d(d+1)N
− d−1

4d(d+1)

+ |m|
1

3d(d+1)

(

φ1(N)σ1(N)
)− 2

3d(d+1)2

)

,

and hence by (21), for each ϵ > 0,

1

|m|

∣

∣

∣

∣

∣

N
∑

n=1

exp
(

2πi
(

ξP (n)−mφ1(n)
)

)

ϕm(n)Λ(n)

∣

∣

∣

∣

∣

≲ N ϵφ2(N)
(

N
− 1

4d(d+1) + |m|
1

2d(d+1)N
− d−1

4d(d+1)

+ |m|
1

3d(d+1)

(

φ1(N)σ1(N)
)− 2

3d(d+1)2

)

.

Now, by summing up over m ∈ {1, . . . ,M} we arrive at the conclusion that

|I1| ≲MN ϵφ2(N)
(

N
− 1

4d(d+1) +M
1

2d(d+1)N
− d−1

4d(d+1)(22)

+M
1

3d(d+1)

(

φ1(N)σ1(N)
)− 2

3d(d+1)2

)

.

The estimates for I2 and I3. Let us consider I2. Since (see [10, Section 2])

min

{

1,
1

M∥x∥

}

=
∑

m∈Z

cme
2πimx(23)

where

|cm| ≲ min

{

logM

M
,

1

|m| ,
M

|m|2
}

,(24)
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we have

N
∑

n=1

min

{

1,
1

M∥φ1(n)− ψ(n)∥

}

Λ(n)

≤ (logN)
∑

m∈Z

|cm|
∣

∣

∣

∣

∣

N
∑

n=1

e2πim(φ1(n)−ψ(n))

∣

∣

∣

∣

∣

≲
logM

M
N(logN)

+ (logN)

(

∑

0<|m|<M

1

|m| +
∑

|m|>M

M

|m|2

)
∣

∣

∣

∣

∣

N
∑

n=1

e2πim(φ1(n)−ψ(n))

∣

∣

∣

∣

∣

.

By Proposition 2.1(i), we get

∣

∣

∣

∣

∣

N
∑

n=1

e2πim(φ1(n)−ψ(n))

∣

∣

∣

∣

∣

≲ |m|
1

2 sup
X∈[1,N ]

X1+ 1

2
ϵ
(

φ1(X)σ1(X)
)− 1

2

≲ |m|
1

2N1+ 1

2
ϵ
(

φ1(N)σ1(N)
)− 1

2 ,

thus

(25) |I2| ≲M−1(logM)N1+ 1

2
ϵ +M

1

2N1+ϵ
(

φ1(N)σ1(N)
)− 1

2 .

Arguments similar to the above leads to the same bounds for I3.

Conclusion. From estimates (22) and (25), we conclude that

|I1|+ |I2|+ |I3| ≲MN ϵφ2(N)
(

N
− 1

4d(d+1) +M
1

2d(d+1)N
− d−1

4d(d+1)

+M
1

3d(d+1)

(

φ1(N)σ1(N)
)− 2

3d(d+1)2

)

+M−1(logM)N1+ 1

2
ϵ +M

1

2N1+ϵ
(

φ1(N)σ1(N)
)− 1

2 .

Take M = N1+2ϵφ2(N)−1. As it may be easily verified, if ϵ satisfies (19)
then

1

2
(1 + 2ϵ− γ2) + 1 + ϵ− 1

2
γ1 +

1

2
ϵ− γ2 + ϵ

≤ 3

2
(1− γ2) +

1

2
(1− γ1)−

1

2
+ 4ϵ ≤ 0,

thus

M
1

2N1+ϵ
(

φ1(N)σ1(N)
)− 1

2 = O
(

φ2(N)N−ϵ
)

.
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Since
(

2

3d(d+ 1)2
− 6ϵ

)

3d(d+ 1)

3d(d+ 1) + 1

<
1

4d(d+ 1)
− 5ϵ <

(

d− 1

4d(d+ 1)
− 5ϵ

)

2d(d+ 1)

2d(d+ 1) + 1
,

for the other terms, we obtain

(1 + 2ϵ− γ2) + ϵ− 1

4d(d+ 1)
+ ϵ ≤ (1− γ2)−

1

4d(d+ 1)
+ 5ϵ ≤ 0,

and
(

1 +
1

2d(d+ 1)

)

(1 + 2ϵ− γ2) + ϵ− d− 1

4d(d+ 1)
+ ϵ

≤
(

1 +
1

2d(d+ 1)

)

(1− γ2)−
d− 1

4d(d+ 1)
+ 5ϵ ≤ 0.

Finally,

(

1 +
1

3d(d+ 1)

)

(1 + 2ϵ− γ2) + ϵ− 2

3d(d+ 1)2
γ1 +

2

3d(d+ 1)2
ϵ+ ϵ

≤
(

1 +
1

3d(d+ 1)

)

(1− γ2) +
2

3d(d+ 1)2
(1− γ1)−

2

3d(d+ 1)2
+ 6ϵ ≤ 0.

Consequently,

|I1|+ |I2|+ |I3| ≲ φ2(N)N−ϵ,

which completes the proof. □

Theorem 3. For each ϵ > 0, satisfying

(i) if d = 1,

{

(1− γ1) + 15(1− γ2) + 164ϵ < 1,

3(1− γ1) + 12(1− γ2) + 120ϵ < 2

(ii) if d = 2,

{

3(1− γ1) + 52(1− γ2) + 720ϵ < 3,

4(1− γ1) + 32(1− γ2) + 320ϵ < 3
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(iii) if d ∈ {3, . . . , 9},

{

1
3·2d (1− γ1) +

(

1 + 1
6(2d−1)

)

(1− γ2) + 12ϵ < 1
3·2d ,

(1− γ2) + 8ϵ < 1
4·2d ,

(iv) if d ≥ 10,

2

3d(d+ 1)2
(1− γ1) +

(

1 +
1

3d(d+ 1)

)

(1− γ2) + 12ϵ <
2

3d(d+ 1)2
,

we have

(26)
∑

p∈PN

e2πiξP (p) log(p)

pψ(p)
=
∑

p∈PN

e2πiξP (p) log(p)

p
+O

(

N−ϵ
)

,

and

(27)
∑

p∈PN

e2πiξP (p) log(p)

ψ(p)
=
∑

p∈PN

e2πiξP (p) log(p) +O
(

N1−ϵ
)

.

Proof. Set

S(N) =
∑

p∈PN

e2πiξP (p) log(p), and U(N) =
∑

p∈PN

e2πiξP (p) log(p)ψ(p).

In view of Theorem 2,

(28)
∣

∣S(N)− U(N)
∣

∣ ≲ Cφ2(N)N−2ϵ.

Notice that by the partial summation we have

∑

p∈PN

e2πiξP (p) log(p)

pψ(p)
=

N
∑

n=2

1

nψ(n)
(S(n)− S(n− 1))

=
S(N)

Nψ(N)
+

N−1
∑

n=2

(

1

nψ(n)
− 1

(n+ 1)ψ(n+ 1)

)

S(n).(29)
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Similarly, we get

∑

p∈PN

e2πiξP (p) log(p)

p
=

N
∑

n=2

1

nψ(n)

(

U(n)− U(n− 1)
)

=
U(N)

Nψ(N)
+

N−1
∑

n=2

(

1

nψ(n)
− 1

(n+ 1)ψ(n+ 1)

)

U(n).(30)

Therefore, by subtracting (30) from (29), we arrive at the conclusion that

∣

∣

∣

∣

∣

∑

p∈PN

e2πiξP (p) log(p)

pψ(p)
−
∑

p∈PN

e2πiξP (p) log(p)

p

∣

∣

∣

∣

∣

≲
|S(N)− U(N)|

Nψ(N)
+

N−1
∑

n=2

∣

∣

∣

∣

1

nψ(n)
− 1

(n+ 1)ψ(n+ 1)

∣

∣

∣

∣

· |S(n)− U(n)|.

Since, by (3) and (2),

1

Nψ(N)
≲

1

φ2(N)σ2(N)
,

and
∣

∣

∣

∣

1

(n+ 1)ψ(n+ 1)
− 1

nψ(n)

∣

∣

∣

∣

≤ sup
x∈[n,n+1]

∣

∣

∣

∣

1

x2ψ(x)
+

ψ′(x)

xψ(x)2

∣

∣

∣

∣

≲
1

nφ2(n)σ2(n)
,

the estimate (28) gives

|S(N)− U(N)|
Nψ(N)

≲ N−ϵ,

and
∣

∣

∣

∣

1

nψ(n)
− 1

(n+ 1)ψ(n+ 1)

∣

∣

∣

∣

· |S(n)− U(n)| ≲ n−1−ϵ.

Hence,

∣

∣

∣

∣

∑

p∈PN

e2πiξP (p) log(p)

pψ(p)
−
∑

p∈PN

e2πiξP (p) log(p)

p

∣

∣

∣

∣

≲ N−ϵ +

N−1
∑

n=2

n−1−ϵ ≲ N−ϵ,

which concludes the proof of (26). Similar considerations apply to (27). □
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The following theorem generalizes the results obtained in [17, 26] and
[19].

Theorem 4.

|PN | =
(
∫ N

2

ψ(x)

log(x)
dx

)

(

1 + o(1)
)

.

Proof. Set

WN =
∑

p∈PN

log(p), and VN =
∑

p∈PN

log(p)ψ(p).

Let ϵ satisfy hypotheses of Theorem 2, then

(31) WN = VN +O
(

φ2(N)N−ϵ
)

.

By the partial summation we have

|PN | =
N
∑

n=2

(

Wn −Wn−1

) 1

log(n)

=WN
1

logN
+

N−1
∑

n=2

Wn

(

1

log(n)
− 1

log(n+ 1)

)

,

and
∑

p∈PN

ψ(p) = VN
1

logN
+

N−1
∑

n=2

Vn

(

1

log(n)
− 1

log(n+ 1)

)

.

Therefore, by (31), we obtain

∣

∣

∣

∣

|PN | −
∑

p∈PN

ψ(p)

∣

∣

∣

∣

≤
∣

∣WN − VN
∣

∣

1

logN

+

N−1
∑

n=2

∣

∣Wn − Vn
∣

∣

(

1

log(n)
− 1

log(n+ 1)

)

≲ φ2(N)N−ϵ +

N−1
∑

n=2

φ2(n)n
−1−ϵ,

and thus

|PN | =
∑

p∈PN

ψ(p) +O
(

φ2(N)N−ϵ
)

.
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Setting

ϑ(N) =
∑

p∈PN

log(p),

by the summation by parts, we obtain

∑

p∈PN

ψ(p) =

N
∑

n=2

(

ϑ(n)− ϑ(n− 1)
) ψ(n)

log(n)

= ϑ(N)
ψ(N)

logN
− ϑ(2)

2

log 2
+

N−1
∑

n=2

ϑ(n)

(

ψ(n)

log n
− ψ(n+ 1)

log(n+ 1)

)

,

and

N
∑

n=2

ψ(n)

log n
= N

ψ(N)

logN
− 2

ψ(2)

log 2
+

N−1
∑

n=2

n

(

ψ(n)

log n
− ψ(n+ 1)

log(n+ 1)

)

.

The prime number theorem implies that

(32) ϑ(N) = N
(

1 +O
(

N−2ϵ
)

)

.

Moreover, by (3) and (2),

∣

∣

∣

∣

ψ(n)

log(n)
− ψ(n+ 1)

log(n+ 1)

∣

∣

∣

∣

≤ sup
x∈[n,n+1]

∣

∣

∣

∣

ψ′(x) log(x)− ψ(x)x−1

(log(n))2

∣

∣

∣

∣

≲ φ2(n)n
−2+ϵ.

Hence,

∣

∣

∣

∣

∑

p∈PN

ψ(p)−
N
∑

n=2

ψ(n)

log n

∣

∣

∣

∣

≤
∣

∣ϑ(N)−N
∣

∣

ψ(N)

logN

+

N−1
∑

n=2

∣

∣ϑ(n)− n
∣

∣

∣

∣

∣

∣

ψ(n)

log(n)
− ψ(n+ 1)

log(n+ 1)

∣

∣

∣

∣

≲ φ2(N)N−ϵ.
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Finally,

∣

∣

∣

∣

∣

N−1
∑

n=2

ψ(n)

log(n)
−
∫ N

2

ψ(x)

log(x)
dx

∣

∣

∣

∣

∣

≲

N−1
∑

n=2

∫ 1

0

∣

∣

∣

∣

ψ(n)

log n
− ψ(n+ t)

log(n+ t)

∣

∣

∣

∣

dt

≲

N−1
∑

n=2

φ2(n)n
−2+ϵ

Thus
N
∑

n=2

ψ(n)

log(n)
=

∫ N

2

ψ(x)

log(x)
dx+O

(

φ2(N)N−1+ϵ
)

Now, using (3), we get

∫ N

2

ψ(x)

log(x)
dx ≥ 1

logN

∫ N

2
ψ(x) dx

≳
1

logN

∫ N

2
φ′
2(x) dx

≳
φ2(N)

log(N)
,

which completes the proof. □

3. Variational estimates

To deal with r-variational estimates for averaging operators and truncated
discrete Hilbert transform, we apply the method used in [32] and [23, Sec-
tion 4]. For ρ ∈ (0, 1) we set Zρ =

{

⌊2kρ⌋ : k ∈ N
}

and define long r-variations
by

V L
r (an : n ∈ N) = Vr(an : n ∈ Zρ).

Then the corresponding short variations are given by

V S
r (an : n ∈ N) =

(

∑

k≥1

Vr
(

an : n ∈ [Nk−1, Nk)
)r

)
1

r

where Nk = ⌊2kρ⌋. Observe that

Vr(an : n ∈ N) ≲ V L
r (an : n ∈ N) + V S

r (an : n ∈ N).
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3.1. Averaging operators

In this section we prove Theorem A for the model dynamical system.
Given a function f on Z we set

ANf(x) =
1

|PN |
∑

p∈PN

f
(

x− P (p)
)

.

While studying r-variations we may replace the operators AN by the
weighted averages MN ,

MNf(x) =
1

ΨN

∑

p∈PN

f
(

x− P (p)
) log p

ψ(p)

where

ΨN =
∑

p∈PN

log(p)

ψ(p)
.

Indeed, since ψ is decreasing the ratio of weights in AN and MN is mono-
tonically decreasing, thus by [23, Proposition 5.2], there is C > 0 such that
for all r > 2,

Vr(ANf(x) : N ∈ N) ≤ C · Vr(MNf(x) : N ∈ N)

where the constant C is independent of f , x and r. Therefore, it is enough
to show the following theorem.

Theorem 5. For each s > 1 there is Cs > 0 such that for all r > 2 and
f ∈ ℓs(Z),

∥

∥Vr(MNf : N ∈ N)
∥

∥

ℓs
≤ Cs

r

r − 2
∥f∥ℓs .

Proof. We start with short variations. Let us denote by mn the convolution
kernel corresponding to Mn. Then for each x ∈ PNk−1

,

Nk−1
∑

n=Nk−1

|mn+1(x)−mn(x)| =
(

Ψ−1
Nk−1

−Ψ−1
Nk

) log x

ψ(x)
.

On the other hand, for x ∈ PNk
\PNk−1

,

Nk−1
∑

n=Nk−1

|mn+1(x)−mn(x)| ≤ 2Ψ−1
Nk−1

log x

ψ(x)
.
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Therefore,

∥

∥

∥

∥

∥

Nk−1
∑

n=Nk−1

|mn+1 −mn|
∥

∥

∥

∥

∥

ℓ1

≤
(

Ψ−1
Nk−1

−Ψ−1
Nk

)

ΨNk−1
+ 2Ψ−1

Nk−1

(

ΨNk−1
−ΨNk

)

.

Let ϵ > 0 satisfy the hypotheses of Theorem 3. By (32) and (27), we get

ΨN = ϑ(N) +O
(

N1−ϵ
)

= N +O
(

N1−ϵ
)

,

and thus

ΨNk
−ΨNk−1

≲ Nk −Nk−1 +N1−ϵ
k−1 ≲ kρ−1Nk−1 ≲ kρ−1ΨNk−1

.

Therefore, by Young’s inequality,

∥

∥

∥

∥

∥

Nk−1
∑

n=Nk−1

∣

∣Mn+1f −Mnf
∣

∣

∥

∥

∥

∥

∥

ℓs

≤
∥

∥

∥

∥

∥

Nk−1
∑

n=Nk−1

|mn+1 −mn|
∥

∥

∥

∥

∥

ℓ1

∥f∥ℓs

≲ kρ−1∥f∥ℓs .(33)

Let u = min{2, s}. By monotonicity and Minkowski’s inequality, we get

∥

∥

∥

∥

∥

(

∑

k≥1

Vr
(

Mnf : n ∈ [Nk−1, Nk)
)r
)

1

r

∥

∥

∥

∥

∥

ℓs

≤
∥

∥

∥

∥

∥

(

∑

k≥1

(

Nk−1
∑

n=Nk−1

∣

∣Mn+1f −Mnf
∣

∣

)u) 1

u

∥

∥

∥

∥

∥

ℓs

≤
(

∑

k≥1

∥

∥

∥

∥

∥

Nk−1
∑

n=Nk−1

∣

∣Mn+1f −Mnf
∣

∣

∥

∥

∥

∥

∥

u

ℓs

)
1

u

,

which together with (33) gives

∥

∥

∥

∥

∥

(

∑

k≥1

Vr
(

Mnf : n ∈ [Nk−1, Nk)
)r

)
1

r

∥

∥

∥

∥

∥

ℓs

≲

(

∑

k≥1

k−u(1−ρ)

)
1

u

∥f∥ℓs .

We notice that the last sum is finite whenever 0 < ρ < u−1
u .
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To control long r-variations over the set Zρ, for any ρ ∈ (0, 1), we replace
MN by a weighted average over prime numbers

MNf(x) =
1

ϑ(N)

∑

p∈PN

f
(

x− P (p)
)

log(p).

Since both MN and MN are averaging operators, we have

(34)
∥

∥MNf −MNf
∥

∥

ℓs
≤
∥

∥MNf∥ℓs +
∥

∥MNf
∥

∥

ℓs
≤ 2∥f∥ℓs .

On the other hand, by Plancherel’s Theorem

∥

∥MNf −MNf
∥

∥

ℓ2

≤ sup
ξ∈[0,1]

∣

∣

∣

∣

∣

1

ΨN

∑

p∈PN

e2πiξP (p) log(p)

ψ(p)
− 1

ϑ(N)

∑

p∈PN

e2πiξP (p) log(p)

∣

∣

∣

∣

∣

· ∥f∥ℓ2 ,

which together with (27) and (32), implies that there is δ > 0, such that

(35)
∥

∥MNf −MNf
∥

∥

ℓ2
≲ N−δ∥f∥ℓ2 .

Now, interpolating between (34) and (35), one can find δs > 0 such that

∥

∥MNf −MNf
∥

∥

ℓs
≲ N−δs∥f∥ℓs .

Hence,

∥

∥Vr
(

MNf −MNf : N ∈ Zρ
)
∥

∥

ℓs
≲
∑

N∈Zρ

∥

∥MNf −MNf
∥

∥

ℓs

≲

(

∑

N∈Zρ

N−δs

)

∥f∥ℓs ,

which is bounded. Finally, by [28, Theorem C],

∥

∥Vr
(

MNf : N ∈ N
)
∥

∥

ℓs
≲

r

r − 2
∥f∥ℓs ,

and the theorem follows. □
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3.2. Variational Hilbert transform

In this section we show Theorem B for the model dynamical system and the
truncated discrete Hilbert transform defined as

HNf(x) =
∑

p∈±PN

f
(

x− P (p)
) log(|p|)
pψ(|p|) .

Theorem 6. For each s > 1 there is Cs > 0 such that for all r > 2, and
f ∈ ℓs(Z),

∥

∥Vr(Hnf : n ∈ N)
∥

∥

ℓs
≤ Cs

r

r − 2
∥f∥ℓs .

Proof. Let hn denote the convolution kernel corresponding to Hn. Then for
each x ∈ PNk

\PNk−1
,

Nk−1
∑

n=Nk−1

|hn+1(x)− hn(x)| ≤
log(x)

xψ(x)
,

otherwise the sum equals zero. Let us recall that the Mertens theorem says
(see [15, §55])

(36)
∑

p∈PN

log(p)

p
= log(N)−B3 +O

(

exp
(

− 14
√

log(N)
)

)

where B3 is the Mertens constant. Hence, by taking in (26), ξ = 0, we get

∑

p∈PNk
\PNk−1

log(p)

pψ(p)
=

∑

p∈PNk
\PNk−1

log(p)

p
+O

(

N−δ
k−1

)

= logNk − logNk−1 +O
(

N−δ
k−1

)

.

Therefore, by the mean value theorem,

∑

p∈PNk
\PNk−1

log(p)

pψ(p)
≲ k−1+ρ,

and hence, we can estimate

∥

∥

∥

∥

∥

Nk−1
∑

n=Nk−1

|hn − hn−1|
∥

∥

∥

∥

∥

ℓ1

≲
∑

p∈PNk
\PNk−1

log(p)

pψ(p)
≲ kρ−1.
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Now, by Young’s inequality, we conclude that

∥

∥

∥

∥

∥

Nk−1
∑

n=Nk−1

∣

∣Hn+1f −Hnf
∣

∣

∥

∥

∥

∥

∥

ℓs

≤
∥

∥

∥

∥

∥

Nk−1
∑

n=Nk−1

|hn+1 − hn|
∥

∥

∥

∥

∥

ℓ1

· ∥f∥ℓs

≲ k−1+ρ∥f∥ℓs .(37)

Taking u = min{2, s}, by monotonicity and Minkowski’s inequality, we get

∥

∥

∥

∥

∥

(

∑

k≥1

Vr
(

Hnf : n ∈ [Nk−1, Nk)
)r

)
1

r

∥

∥

∥

∥

∥

ℓs

≤
∥

∥

∥

∥

∥

(

∑

k≥1

(

Nk−1
∑

n=Nk−1

∣

∣Hn+1f −Hnf
∣

∣

)u) 1

u

∥

∥

∥

∥

∥

ℓs

≤
(

∑

k≥1

∥

∥

∥

∥

∥

Nk−1
∑

n=Nk−1

∣

∣Hn+1f −Hnf
∣

∣

∥

∥

∥

∥

∥

u

ℓs

)
1

u

,

which together with (37), for 0 < ρ < u−1
u , entails that

∥

∥

∥

∥

∥

(

∑

k≥1

Vr
(

Hnf : n ∈ [Nk−1, Nk)
)r

)
1

r

∥

∥

∥

∥

∥

ℓs

≲

(

∑

k≥1

k−(1−ρ)u

)
1

u

∥f∥ℓs ≲ ∥f∥ℓs .

Let us now turn to estimating the long r-variations. Let ϵ > 0 satisfy the
hypotheses of Theorem 3. We are going to replace the operators HN , by

HNf(x) =
∑

p∈±PN

f
(

x− P (p)
) log(|p|)

p
.

To do so, let us observe that Theorem 3 implies that

∑

p∈PN

log(p)

pψ(p)
≲
∑

p∈PN

log(p)

p
+N−ϵ ≲ logN

where the last estimate follows from (36). Hence, by Young’s inequality we
obtain
(38)
∥

∥HNf −HNf
∥

∥

ℓs
≲

(

∑

p∈PN

log(p)

pψ(p)
+
∑

p∈PN

log(p)

p

)

· ∥f∥ℓs ≲ (logN)∥f∥ℓs .
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For s = 2, by the Plancherel’s theorem and Theorem 3,

∥

∥HNf −HNf
∥

∥

ℓ2
≤ sup

ξ∈[0,1]

∣

∣

∣

∣

∣

∑

p∈±PN

e2πiξP (p) log(|p|)
pψ(|p|)(39)

−
∑

p∈±PN

e2πiξP (p) log(|p|)
p

∣

∣

∣

∣

∣

· ∥f∥ℓ2

≲ N−ϵ∥f∥ℓ2 .

Hence, by interpolation between (38) and (39), we obtain

∥

∥HNf −HNf
∥

∥

ℓs
≲ N−δs∥f∥ℓs ,

for some δs > 0. Therefore,

∥

∥Vr
(

HNf −HNf : N ∈ Zρ
)∥

∥

ℓs
≤
∑

N∈Zρ

∥

∥HNf −HNf
∥

∥

ℓs

≲

(

∑

N∈Zρ

N−δs

)

∥f∥ℓs ,

which is bounded. Finally, the estimate

∥

∥Vr(HNf(x) : N ∈ N)
∥

∥

ℓs
≤ Cs

r

r − 2
∥f∥ℓs

follows by [28, Theorem C]. □
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