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WKB constructions in bidimensional

magnetic wells

Yannick Bonthonneau and Nicolas Raymond

This article establishes, in an analytic framework and in two dimen-
sions, the first WKB constructions describing the eigenfunctions of
the pure magnetic Laplacian with low energy when the magnetic
field has a unique minimum that is positive and non-degenerate.

1. Spectral theory of the magnetic Laplacian

1.1. Motivation and context

1.1.1. Definition of the magnetic Laplacian. Let Ω be a bounded
open set of R2 with (0, 0) ∈ Ω. Let us consider a closed 2-form, analytic in
a neighborhood of Ω, denoted by σ and called magnetic 2-form. We write

σ = Bdx1 ∧ dx2,

and we call B the magnetic field. We first pick a gauge. Let us consider an
analytic and real function φ such that, in a neighborhood of Ω,

∆φ = B, and φ(x1, x2) =
B(0, 0)

4
(x21 + x22) + O(∥x∥3).

Then A = ∇φ⊥ = (−∂x2
φ, ∂x1

φ) is an analytic vector potential associated
with B, that is

B = ∂x1
A2 − ∂x2

A1.

In other words, with π = A1dx1 +A2dx2, we have σ = dπ. With this choice,
we have

∇ ·A = 0.

The magnetic Laplacian Lh under consideration in this article is the self-
adjoint realization on L2(Ω) with Dirichlet boundary condition of the fol-
lowing differential operator

(−ih∇−A)2 = (hDx1
−A1)

2 + (hDx2
−A2)

2, D = −i∂.
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1.1.2. Semiclassical magnetic spectrum. The spectral analysis of the
magnetic Laplacian Lh has undergone recent important developments. For
an introduction to this vast subject, the reader might want to consult the
book by the second author [12]. There are many reasons to consider the spec-
tral theory of Lh. Initially, it was motivated by the study of the Ginzburg-
Landau theory and the estimates of its critical fields which are directly
related to the asymptotic behavior of the first eigenvalue λ0(h) (see the
book [4]). But, it also acquired a life of its own. Among the wide literature
developed in the last ten years, the works by Helffer and Kordyukov [8, 9]
are the most closely related to the subject of the present article (and they
are strong improvements of [10, Theorem 7.2], see the review paper [7]). In
particular, when the magnetic field admits a unique, non-degenerate and
positive, minimum at (0, 0), they prove the following asymptotic expansions
for the eigenvalues at the bottom of the spectrum (see [8, Theorem 1.2]):

(1.1) ∀ℓ ∈ N, λℓ(h) = b0h+

(
2ℓ

√
detH

b0
+

(TrH
1

2 )2

2b0

)
h2 + o(h2),

where H = 1
2Hess(0,0)B. This result is generalized to Riemanian manifolds

and the uniformity of the asymptotics with respect to ℓ is improved thanks
to a pseudo-differential dimensional reduction in [9]. Whereas the proofs
of these results involve various (hypo-)elliptic estimates in the semiclassical
limit, no connection between the semiclassical estimates and the classical dy-
namics is made. In [13] the authors link the eigenvalues expansions (1.1) with
the Hamiltonian dynamics. The argument relies on the use of Birkhoff nor-
mal forms and corresponding quantization via Fourier Integral Operators.
Note that the three-dimensional case has also recently been investigated
thanks to this point of view in [6].

1.1.3. Aim of the article. The aim of the article is to solve the following
open question (mentioned for example in the lecture [5, Section 6.1]), in the
analytic case:

“Are the eigenfunctions associated with the
eigenvalues (1.1) in a WKB form?”

At first, it can be surprising that such a basic question finds no answer in
the existing literature. The only known results of this nature were obtained
recently in a multi-scale framework (see [2]), but the case of the purely

magnetic wells and when no scaling consideration allows to reduce the di-
mension, was still left open. For the sake of comparison, the reader may
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consult [5, Section 6] or [3, Chapter 3] about the WKB constructions in the
purely electric case.

The motivation to answer our magnetic question, under the generic as-
sumption of Helffer and Kordyukov, comes from the analysis of tunneling
effect when the magnetic field has two symmetric minima. Until now and
contrary to the purely electric situation (see for instance [11]), there is no
result giving the accurate estimate of λ1(h)− λ0(h), called tunneling effect,
and there is not even an explicit conjecture of what it could be (as a compar-
ison, the WKB constructions of [2] were turned into an explicit conjecture
[1, Conjecture 1.4] which is now numerically checked). We only expect it to
be exponentially small when h goes to zero. A necessary step to get such a
result is the approximation of the eigenfunctions, in an appropriate expo-
nentially weighted space, by an explicit (WKB) Ansatz. Our computation
is the first step in this direction.

1.1.4. Heuristics. Nevertheless, it would not be quite accurate to say
that there is no conjecture for the WKB constructions. Let us sketch the
result of [13].

There exist a Fourier Integral Operator Uh, quantizing a canonical trans-
formation, and a smooth function fh such that, locally in space near 0 and
microlocally near the characteristic manifold of Lh,

U∗
hLhUh = Opwhfh(H, z2) + O(h∞).

where H = h2D2
x1

+ x21. Moreover, fh(Z, z2) = ZB̂(z2) + O(h2) + O(Z2),

where B̂ is the magnetic field “seen” on the characteristic manifold. Thus,
if we are interested in the low lying eigenvalues (which are essentially in the
form b0h+ µ1h

2), we can look for a L2-normalized WKB Ansatz expressed
in normal coordinates as

Ψh(x1, x2) = gh(x1)ψh(x2),

where gh is the first normalized eigenfunction of H. We find the effective
eigenvalue equation

Opwh (B̂ − b0)ψh = µ1hψh + O(h2),

in which we insert the Ansatz ψh = e−S/ha. We get

(1.2) B̂(x2,−iS′(x2)) = b0.
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650 Y. Bonthonneau and N. Raymond

Therefore, in canonical coordinates, the phase should be the sum of the phase
of gh and of the phase determined by (1.2). It is then not very difficult to
write the transport equation in the variable x2 to find a and guess that the
amplitude of the WKB construction is the product of the amplitude of gh
and of a(x2).

While FIO’s preserve WKB states, the use of Birkhoff normal forms in
the construction of Uh implies that the remainders are not as good as one
can get by direct constructions. Additionally, Uh is not explicit, so the link
between the coefficients of the states and the original magnetic field is quite
implicit. However we will see that the point of view developed in [13] gives
a reasonable insight of the rigorous WKB constructions.

1.2. WKB construction in a magnetic well

Assumption 1.1. B|Ω has a non-degenerate local and positive minimum
at (0, 0). Moreover, we can write

(1.3) B(x1, x2) = b0 + αx21 + γx22 + O(∥x∥3), with 0 < α ⩽ γ.

Of course, (1.3) is always satisfied up to an appropriate choice of coor-
dinates. The result of this paper is

Theorem. Let ℓ ∈ N. There exist

i. a neighborhood V ⊂ Ω of (0, 0),

ii. an analytic function S on V satisfying

ReS(x) =
b0
2

[ √
α√

α+
√
γ
x21 +

√
γ√

α+
√
γ
x22

]
+ O(∥x∥3),

iii. a sequence of analytic functions (aj)j∈N on V,
iv. a sequence of real numbers (µj)j∈N satisfying

µ0 = b0, µ1 = 2ℓ

√
αγ

b0
+

(
√
α+

√
γ)2

2b0
,

such that, for all J ∈ N, and uniformly in V,

eS/h


(−ih∇−A)2 − h

J∑

j⩾0

µjh
j




e−S/h

J∑

j⩾0

ajh
j


 = O(hJ+2).



✐

✐

“2-Raymond” — 2020/8/20 — 18:10 — page 651 — #5
✐

✐

✐

✐

✐

✐

WKB constructions 651

Remark 1.2. Considering a convenient cutoff function supported near the
origin and using the local exponential decay of e−S/h, our Ansatz can be used
as a quasimode for Lh. Therefore, if we assume that the minimum of B|Ω is
unique, thanks to the spectral theorem and (1.1), we get the expansion of the
first eigenvalues (1.1) at any order. Due to their asymptotic simplicity, this
also proves that our WKB expansion are approximations, in the L2-sense,
of the corresponding eigenfunctions.

1.3. Organization and methods

Section 2 is devoted to convenient lemmas which will allow to lighten the
presentation of the proof of the theorem when determining the phase S. In
Section 3, we prove the theorem. We will see that the eikonal equation will
not be enough to determine the phase of the Ansatz contrary to the purely
electric case. The holomorphic part of the phase will only be determined
when solving the first complexified transport equation on a0. The transport
equation on a1 will then be necessary to find the full expression of a0. The
two complex transport equations on aj and aj+1 are the keys to construct
the Ansatz and they reflect the classical dynamics in a magnetic field. Their
characteristic curves are related to the cyclotron and center guide motions.
These dynamical properties appear, in our presentation, in terms of division
arguments in the ring of analytic functions of two variables.

2. Analytic preliminaries about the magnetic phase

Notation 2.1. If a : R2 → C is an analytic function near (0, 0) ∈ R2, one
denotes by ã the function defined near (0, 0) ∈ C2 by

ã(z, w) = a

(
z + w

2
,
z − w

2i

)
.

We have ã(z, z) = a(Re z, Im z).

Lemma 2.2. There exists an analytic and real-valued function φ, in a

neighborhood of Ω, such that

∆φ = B, φ(x1, x2) =
B(0, 0)

4
(x21 + x22) + O(∥x∥3).
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Proof. If we write

B̃(z, w) =
∑

(α,β)∈N2

aα,βz
αwβ (with aα,β = aβ,α),

we let

φ̃(z, w) =
1

4

∑

(α,β)∈N2

aα,β
(α+ 1)(β + 1)

zα+1wβ+1.

and we get

4∂z∂wφ̃(z, w) = B̃(z, w).

The function z 7→ φ̃(z, z) satisfies the required properties. □

Lemma 2.3. There exists a holomorphic function w defined in a neighbor-

hood of 0 satisfying

(2.1) B̃(z, w(z)) = b0.

and such that

w(0) = 0, w′(0) =

√
γ −√

α
√
γ +

√
α
.

Proof. Let us use the Taylor formula:

B(x1, x2)− b0 = α(x1, x2)x
2
1 + 2β(x1, x2)x1x2 + γ(x1, x2)x

2
2,

where α, β and γ are analytic functions such that α(0, 0) = α, β(0, 0) = 0
and γ(0, 0) = γ. We get

B(x1, x2)− b0 = α

[(
x1 +

β

α
x2

)2

+

(
αγ − β2

α2

)
x22

]
.

Thus, we consider the equations

√
α

(
x1 +

β

α
x2

)
± i

√
αγ − β2

α
x2 = 0.

We replace x1 by z+w
2 and x2 by z−w

2i . Equation (2.1) becomes

[
α̃+ iβ̃ ∓

√
α̃γ̃ − β̃2

]
w +

[
α̃− iβ̃ ±

√
α̃γ̃ − β̃2

]
z = 0.

Let us choose the + in the first bracket so that, at (0, 0) it is equal to
α+

√
αγ > 0. By using the analytic implicit function theorem, we find a
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holomorphic solution w. By a straightforward computation, one gets

[α+
√
αγ]w′(0) + [α−√

αγ] = 0,

and the conclusion follows. □

Lemma 2.4. Consider a holomorphic function F defined in a neighborhood

of 0 with F (0) = 0. Then, there exist two neighborhoods of 0, V1 and V2 such

that, for all z ∈ V1, there exists a unique w(z) ∈ V2 such that

∂zφ̃(z, w(z)) = F (z).

Moreover, the function w is holomorphic on V1.

Proof. We recall that φ is analytic and that 4∂w∂zφ̃(0, 0) = B̃(0, 0) ̸= 0. The
conclusion follows then from the (holomorphic) local inversion theorem. □

Lemma 2.5. Consider a function w as in Lemma 2.3 and, in a neighbor-

hood of 0, the holomorphic function defined by

f(z) = −2

∫

[0,z]
∂zφ̃(ζ, w(ζ))dζ.

We have

f(0) = 0, f ′(0) = 0, f ′′(0) =
b0
2

√
α−√

γ
√
γ +

√
α
.

In particular, letting S = φ+ f , we have

ReS(x) =
b0
2

[ √
α√

α+
√
γ
x21 +

√
γ√

α+
√
γ
x22

]
+ O(∥x∥3).

Proof. A straightforward computation gives

f ′′(0) = −2∂2z φ̃(0, 0)− 2∂z∂wφ̃(0, 0)w
′(0).

Noticing that, by our choice of φ, ∂2z φ̃(0, 0) = 0, we get the announced value
of f ′′(0). It remains to write that

ReS(x) =
b0
4
(x21 + x22) + q

b0
4
Re
(
(x1 + ix2)

2
)
+ O(∥x∥3), q =

√
α−√

γ
√
γ +

√
α
,

and we get

ReS(x) =
b0
4

(
(1 + q)x21 + (1− q)x22)

)
+ O(∥x∥3). □
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3. Proof of the theorem

Let us consider an analytic and complex-valued function S, defined in a
neighborhood of the origin. We consider the conjugated operator acting
locally as

L
S
h = eS/hLhe

−S/h = (hDx1
−A1 + i∂x1

S)2 + (hDx2
−A2 + i∂x2

S)2.

We have

L
S
h = (−A1 + i∂x1

S)2 + (−A2 + i∂x2
S)2 + ih∇ ·A

− h2∆+ h∆S + 2h(∇S + iA) · ∇.

We seek to determine S so that there exist a family of functions (aj)j∈N
defined in a neighborhood of (0, 0) and a sequence of real numbers (µj)j∈N
such that, in the sense of asymptotic series,

(3.1) L
S
h


∑

j⩾0

hjaj


 ∼ h


∑

j⩾0

µjh
j




∑

j⩾0

hjaj


 .

From (3.1), we get an infinite system of partial differential equations.

3.1. Eikonal equation

Collecting the terms of order 1 in (3.1), we get

(−A1 + i∂x1
S)2 + (−A2 + i∂x2

S)2 = 0,

and thus

(−A1 + i∂x1
S + i(−A2 + i∂x2

S))(−A1 + i∂x1
S − i(−A2 + i∂x2

S)) = 0.

Let us consider an S such that

−A1 + i∂x1
S + i(−A2 + i∂x2

S) = 0.

It satisfies

2∂zS = −iA1 +A2, ∂z =
1

2
(∂x1

+ i∂x2
) .

We have 2∂zφ = −iA1 +A2 and thus S is in the form

S = φ+ f(z),
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where f is a holomorphic function near (0, 0). Note that ∆ = 4∂z∂z and thus

∆S = B − i∇ ·A = B.

With this choice of S, we have

L
S
h = −h2∆+ hB + 2h(∇S + iA) · ∇.

We have

(∇S + iA) · ∇ = (∂1S + iA1)∂1 + (∂2S + iA2)∂2

so that

(∇S + iA) · ∇ = (∂1φ− i∂2φ+ f ′(z))∂1 + (∂2φ+ i∂1φ+ if ′(z))∂2.

Therefore, we can write

L
S
h = −4h2∂z∂z + hB + 4h(2∂zφ+ f ′(z))∂z,

and consider its complexified extension

L
S
h = hv(z, w)∂w + hB̃ − 4h2∂z∂w, v(z, w) = 8∂zφ̃(z, w) + 4f ′(z),

acting on analytic functions of (z, w) ∈ C2.

3.2. Study of the transport operator

The PDE’s solved by the family (aj)j∈N take the form of a family of transport
equations. We will need the following lemma.

Lemma 3.1. Let V and F be two holomorphic functions defined around 0.
Assume that V (0) = 0 and V ′(0) ̸= 0, and consider the transport equation

(V (z)∂z + F (z))f(z) = g(z).

i. The homogeneous equation, i.e. when g = 0, has holomorphic solutions

around 0 if and only if there exists ℓ ∈ N such that F (0) = −ℓV ′(0). In
this case, the solutions vanish at the order ℓ at 0.

ii. Under the previous condition, there exist complex numbers (ck)k=0...ℓ

such that the inhomogeneous equation has holomorphic solutions if and
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only if

(3.2) cℓg(0) + cℓ−1g
′(0) + · · ·+ c0g

(ℓ)(0) = 0.

The coefficients are determined by the Taylor expansion to order ℓ+ 1 of

F and V , and c0 = 1/V ′(0). When ℓ = 0, provided the condition (3.2) is
satisfied, the inhomogeneous equation has exactly one solution vanishing

at 0.

Proof. Let us start with the homogeneous case. Consider a non-zero solution
f . We can always write f(z) = zℓf̂(z), where f̂(0) ̸= 0. Then we find

(ℓV ′(0) + F (0))f̂(0) = 0,

so that ℓV ′(0) + F (0) = 0. Now, if ℓV ′(0) + F (0) = 0, we write the equation
in the form

ℓ

z
+
f̂ ′

f̂
= −F

V
,

and, since V ′(0) does not vanish, we can write

F

V
= − ℓ

z
+G,

where G is a holomorphic function. We deduce that there are solutions, and
they take the form

(3.3) f(z) = f (ℓ)(0)
zℓ

ℓ!
exp

{
−
∫ z

0
G(z′)dz′

}
.

Now, we turn to the inhomogeneous case. We can always write the solutions
in the form

f(z) = f̂(z) exp

{
−
∫ z

0
G(z′)dz′

}
.

The equation for f̂ is

(z∂z − ℓ)f̂ =
zg

V
exp

{∫ z

0
G(z′)dz′

}
.

By considering the Taylor expansions at 0, we deduce that a necessary and
sufficient condition to have holomorphic solutions is

∂(ℓ)z

[
zg

V
exp

{∫ z

0
G(z′)dz′

}]
= 0.
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This relation is in the form (3.2).
When ℓ = 0, we can divide the equation by z and obtain a usual non-

singular ODE for f . There is a unique solution that vanishes at 0. □

3.3. First transport equation

The first transport equation, obtained by gathering the terms of order h, is

(3.4) (ṽ(z, w)∂w + B̃(z, w)− µ0)ã0 = 0.

The fact that this equation needs to have solutions will determine f .

3.3.1. Choosing f . Let us for now assume that f is given and let w be,
by Lemma 2.4, the unique (holomorphic and local) solution of

(3.5) 8∂zφ̃(z, w(z)) + 4f ′(z) = 0.

By freezing the variable z, and after a translation by −w in the w variable,
we can apply Lemma 3.1. We deduce that (3.4) has solutions if and only if
the exists ℓ ∈ N such that

B̃(z, w(z))− µ0 = −ℓ∂wṽ(z, w(z)).

But, from the definition of ṽ, this means

µ0 = (2ℓ+ 1)B̃(z, w(z)).

Since µ0 is a constant, we deduce that µ0 = (2ℓ+ 1)b0 and

(3.6) B̃(z, w(z)) = b0.

Locally, there may be more than one solution to (3.6), but we impose that
w(z) = w(z), where w(z) is given by Lemma 2.2. This in turn implies that

(3.7) f ′(z) = −2∂zφ(z, w(z)).

The value at 0 of f has to vanish, so f is determined.
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3.3.2. Solving the transport equation. We notice that

B̃(z, w)− b0
8∂zφ(z, w) + 4f ′(z)

defines a holomorphic function near (0, 0). Considering Lemma 3.1, and
particularly (3.3), the solutions of (3.4) have to take the form

ã0(z, w) = ∂(ℓ)w ã0(z, w(z))
(w − w(z))ℓ

ℓ!

× exp

[
−
∫ w

w(z)

(
B̃ − µ0
ṽ

+
ℓ

w′ − w(z)

)
dw′

]
.

We denote

(3.8) Jℓ(z, w) := exp

[
−
∫ w

w(z)

B̃ − µ0
ṽ

(z, w′) +
ℓ

w′ − w(z)
dw′

]
,

and then, the function

ã0(z, w) = A0(z)(w − w(z))ℓJℓ(z, w),

solves (3.4) with µ0 = (2ℓ+ 1)b0. The function A0 is a holomorphic function
to be determined.

We are chiefly interested in the low-lying eigenvalues, so we will consider
the smallest value possible for µ0, and thus restrict our attention to the case
ℓ = 0. We write J0 = J .

3.4. Second transport equation

The equation obtained by gathering the terms in h2 can be written as

(3.9) (ṽ(z, w)∂w + B̃(z, w)− µ0)ã1 = (µ1 + 4∂z∂w) ã0.

This equation will determine A0 and µ1. Indeed, applying Lemma 3.1, this
time for the inhomogeneous case, we deduce that this equation has solutions
if and only if

(µ1 + 4∂z∂w) ã0(z, w(z)) = 0.

This means that

(3.10) 4A ′
0(z)∂wJ(z, w(z)) + [µ1 + 4∂w∂zJ(z, w(z))]A0(z) = 0.
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This is also a transport equation, but in the z variable this time. We want
to apply Lemma 3.1, so we compute the coefficients of the equation, at least
at 0. Observe that

(3.11) ∂wJ(z, w) = J(z, w)
B̃(z, w(z))− B̃(z, w)

8 [∂zφ̃(z, w)− ∂zφ̃(z, w(z))]
.

We get

∂wJ(z, w(z)) = −∂wB̃(z, w(z))

2B̃(z, w(z))
,

so that

4∂wJ(z, w(z)) ∼
z→0

−4∂z∂wB̃(0, 0) + 4∂2wB̃(0, 0)w′(0)

2b0
z.

We have

4∂z∂wB̃(0, 0) = 2(α+ γ), 4∂2wB̃(0, 0) = 2(α− γ),

and thus

(3.12) 4∂wJ(z, w(z)) ∼
z→0

−
[
α+ γ + (α− γ)

√
γ −√

α√
α+

√
γ

]
z

b0
= −2

√
αγ

z

b0
.

Additionally, we notice that

− 2

b0

√
αγ = 4∂w∂zJ(0, 0) + 4∂2wJ(0, 0)w

′(0),

and, thanks to (3.11) and the Taylor formula, we get that

∂2wJ(0, 0) =
γ − α

8b0
.

Thus,

(3.13) 4∂w∂zJ(0, 0) = − 2

b0

√
αγ − γ − α

2b0

√
γ −√

α
√
γ +

√
α

= −(
√
α+

√
γ)2

2b0
.

We now apply Lemma 3.1 to Equation (3.10). With (3.12) and (3.13), we
get that there exists ℓ ∈ N such that

(3.14) µ1 = 2ℓ

√
αγ

b0
+

(
√
α+

√
γ)2

2b0
.
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Then, by using (3.3), we can write A0(z) = czℓÂ0(z), where Â0(z) is de-

termined with Â0(0) = 1. The constant c is a normalization constant, we
choose c = 1.

The solutions of Equation (3.9) take the form

ã1(z, w) = â1(z, w) + A1(z)J(z, w),

where A1 remains to be determined and â1 is the particular solution that
vanishes for w = w(z).

Remark 3.2. If we write the characteristics of (3.10), the obtained dy-
namics reflects the center guide motion whose approximate Hamiltonian is
B̃(z, w(z)).

3.5. Induction

Let n ∈ N \ {0}. We assume that the (µj)0⩽j⩽n and the (ãj)0⩽j⩽n−1 are
determined and that the (ãj)0⩽j⩽n−1 are analytic functions. Let us also
assume that the ãj ’s, j = 1 . . . n, are in the form

ãj(z, w) = âj(z, w) + Aj(z)J(z, w),

where âj are determined analytic functions vanishing on {w = w(z)},
(Aj)j=1...n−1 are determined and satisfy A

(ℓ)
j (0) = 0. Only An is still to

be determined. Let us now consider the equation satisfied by ãn+1:

(3.15)
(
v∂z + B̃ − b0

)
ãn+1 = µn+1ã0 + µ1ãn + 4∂z∂wãn +

n∑

j=2

µj ãn+1−j .

As before, the need to have solutions to this equation will fix the value of
µn+1 and determine An. Indeed, by Lemma 3.1, the existence of solutions
to (3.15), is equivalent to

µ1ãn(z, w(z)) + 4∂z∂wãn(z, w(z))

= −µn+1ã0(z, w(z))−
n∑

j=2

µj ãn+1−j(z, w(z)).
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This can be rewritten as

4∂wJ(z, w(z))A
′
n(z) + (µ1J(z, w(z)) + 4∂z∂wJ(z, w(z)))An(z)(3.16)

= −µn+1z
ℓ
Â0(z)−

n∑

j=2

µjAn+1−j(z)

︸ ︷︷ ︸
:=F (z)

,

We are in the inhomogeneous case of Equation (3.10). We already know
that Lemma 3.1 applies. The function F is entirely determined already and
F (ℓ)(0) = 0. In particular, there are coefficients cℓ, . . . , c0 depending on the
Taylor expansion to order ℓ+ 1 of ∂wJ(z, w(z)) and ∂z∂wJ(z, w(z)), with
c0 ̸= 0 — we can even compute it to be −b0/

√
4αγ — such that there are

solutions to (3.16) if and only if

µn+1c0ℓ! + c1F
(ℓ−1)(0) + · · ·+ cℓF (0) = 0.

This determines µn+1. However, An is now determined up to a solution of
the homogeneous equation (3.10). That is to say that An takes the form

A
0
n + czℓÂ0.

where A 0
n is a particular solution. There is only one such solution with

A
(ℓ)
n (0) = 0, and that is the one we pick.
Coming back to ãn+1, with this choice of µn+1 and An, there are solutions

to Equation (3.15) and they can be written as:

ãn+1(z, w) = ân+1(z, w) + An+1(z)J(z, w),

where ân+1 is a determined analytic function vanishing on {w = w(z)} and
An+1 is a function to determine. By induction, we can thus build the desired
holomorphic functions, and the proof of the theorem is complete. □

Remark 3.3. It may seem arbitrary to have imposed that A
(ℓ)
n (0) = 0

when n ̸= 0. However, consider that the whole quasimode writes out formally
as

ũℓ := e−
S

h J(z, w) [Ah(z) + hâh(z, w)] ,

with

Ah ∼ zℓÂ0 + hA1 + h2A2 + · · ·



✐

✐

“2-Raymond” — 2020/8/20 — 18:10 — page 662 — #16
✐

✐

✐

✐

✐

✐

662 Y. Bonthonneau and N. Raymond

and

âh ∼ â1 + hâ2 + · · · .
The condition we have imposed is equivalent to the normalization condition
that if U (z) is the restriction of eS/hũℓ to {w = w(z)}, U (ℓ)(0) = ℓ!.
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