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Lower bounds for estimates of the

Schrödinger maximal function

Xiumin Du, Jongchon Kim, Hong Wang, and Ruixiang Zhang

We give new lower bounds for Lp estimates of the Schrödinger
maximal function by generalizing an example of Bourgain.

1. Introduction

Let

eit∆f(x) = (2π)−n/2

∫
ei(x·ξ+t|ξ|2)f̂(ξ) dξ

denote the solution to the free Schrödinger equation

{
iut −∆u = 0, (x, t) ∈ R

n × R

u(x, 0) = f(x), x ∈ R
n.

We are interested in the value of γ̄n,p, the infimum of the numbers γn,p such
that the following Schrödinger maximal estimate holds:

(1.1)

∥∥∥∥ sup
0<t≤R

|eit∆f |

∥∥∥∥
Lp(Bn(0,R))

⪅ Rγn,p∥f∥L2 , ∀f : suppf̂ ⊂ Bn(0, 1) .

Here A ⪅ B denotes A ≤ CεR
εB for some constant Cϵ > 0 for any ε >

0, R > 1. We also write A ≳ B if A ≥ CB for an absolute constant C > 0.
Estimates of the form (1.1), especially the case p = 2, have applications

to Carleson’s pointwise convergence problem for Schrödinger solutions [3]
and have been studied extensively by many authors. The state-of-art results
are summarized as follows. Due to examples by Dahlberg–Kenig [4, n = 1]
and Bourgain [2, n ≥ 2], and positive results by Kenig–Ponce–Vega [11, n =
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1], D.–Guth–Li [5, n = 2] and D.–Z. [8, n ≥ 3], it is known that

(1.2) γ̄n,p = max

{
n

(
1

p
−

n

2(n+ 1)

)
, 0

}

for any p ≥ 1 when n = 1, 2, and 1 ≤ p ≤ 2 when n ≥ 3. Also, from the Stein-
Tomas Fourier restriction theorem it follows that γ̄n,p = 0 for p ≥ 2(n+2)

n .
However, it remains as an interesting problem to determine γ̄n,p for 2 < p <
2(n+2)

n when n ≥ 3.
It may seem plausible that (1.2) should hold for any p ≥ 1 and n ≥ 1.

However, we disprove this for a certain range of p when n ≥ 3. Our main
result is the following lower bound for γ̄n,p.

Theorem 1.1. Let n ≥ 3 and p ≥ 2. For every integer 1 ≤ m ≤ n,

γ̄n,p ≥
n+m

2

(
1

p
−

1

2

)
+

m

2(m+ 1)
.

The example that proves Theorem 1.1 is built upon Bourgain’s example
[2] that provides the lower bound for the case m = n. For the case 1 ≤ m <
n, we take Bourgain’s example in the intermediate dimension m and then
“fatten” it to a function on R

n.
We state two special cases of Theorem 1.1 as a corollary.

Corollary 1.2. If γ̄n,p = n(1p − n
2(n+1)), then

p ≤ p0(n) := 2 +
4

(n− 1)(n+ 2)
.

If γ̄n,p = 0, then

p ≥ p1(n) := max
m∈Z,1≤m≤n

2 +
4

n− 1 +m+ n/m
.

Remark 1.3. Note that p0(n) <
2(n+1)

n < p1(n) when n ≥ 3. Therefore,
(1.2) fails for p0(n) < p < p1(n) when n ≥ 3.

Finally, we remark that some upper bounds for γ̄n,p can be obtained
from weighted Fourier restriction estimates, c.f. [8]. In particular, we refer
the reader to [7] for such estimates with p = 2(n+ 1)/n, which was obtained
via the polynomial partitioning method [9, 10] and refined Strichartz esti-
mates [5, 6]. For p > 2(n+ 1)/n, one can get new upper bounds by using
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an additional ingredient, the fractal L2 restriction estimate [8]. However, it
seems that new ingredients are still needed to get sharp results. We do not
explore along this direction in the current paper.

2. An example that proves Theorem 1.1

Theorem 1.1 is a consequence of the following.

Proposition 2.1. Let m,n be integers with 1 ≤ m ≤ n. For any R > 1,
there exists f ∈ L2(Rn) with f̂ supported in the annulus {ξ ∈ R

n : |ξ| ∼ R}
satisfying the following property; There is a set E ⊂ Bn(0, 1) of measure

comparable to R−n−m

2 such that for every x ∈ E,

|eit∆f(x)|

∥f∥L2

≳ R
m

2(m+1)R
n−m

4 for some t = −
x1
2R

+O(R−3/2).

Proof. We write x̄ = (x, x′) ∈ R
m × R

n−m and ξ̄ = (ξ, ξ′) ∈ R
m × R

n−m.
We briefly recall an estimate for the example f0 ∈ L2(Rm) from [2],

where f̂0 is supported in the annulus {ξ ∈ R
m : |ξ| ∼ R}; There is a set

E0 ⊂ Bm(0, 1) of measure comparable to 1 such that for every x ∈ E0,

(2.1)
|eit∆f0(x)|

∥f0∥L2

≳ R
m

2(m+1) for some t = −
x1
2R

+ τ with |τ | ≤
1

10
R−3/2.

See also [12] for a different example based on [1], which provides an estimate
essentially the same as (2.1).

Let χ = χ[− 1

2
, 1
2
] be the characteristic function of the interval [−1

2 ,
1
2 ]. Let

f1(x
′) be given by

f̂1(ξ
′) =

n∏

j=m+1

R− 1

4χ
(
R− 1

2 (ξj −R)
)
,

so that ∥f1∥L2(Rn−m) = 1. The choice of the function f1 is motivated by the
example from [2]. Note that

|eit∆f1(x
′)| = (2π)−(n−m)/2

n∏

j=m+1

R
1

4

∣∣∣∣∣

∫

[− 1

2
, 1
2
]
ei(R

1/2ξj(xj+2Rt)+tRξ2j )dξj

∣∣∣∣∣ .

When |t+ x1

2R | ≤
1
2R

−3/2 and |xj − x1| ≤
1
2R

−1/2 for each m < j ≤ n, there
is little cancellation in the above integral and therefore

(2.2) |eit∆f1(x
′)| ≳ R

n−m

4 .



✐

✐

“4-Kim” — 2020/7/21 — 14:41 — page 690 — #4
✐

✐

✐

✐

✐

✐

690 X. Du, J. Kim, H. Wang, and R. Zhang

We take f to be the tensor product of f0 and f1, i.e.,

f(x̄) := f0(x)f1(x
′).

Let E be the set given by

E =

{
(x, x′) ∈ Bn(0, 1) : x ∈ E0 and max

m<j≤n
|xj − x1| ≤

1

2
R−1/2

}
.

It follows that the measure of the set E is comparable to R−n−m

2 . Moreover,
for any x̄ = (x, x′) ∈ E, we have by (2.1) and (2.2),

|eit∆f(x̄)|

∥f∥L2

=
|eit∆f0(x)|

∥f0∥L2

|eit∆f1(x
′)|

∥f1∥L2

≳ R
m

2(m+1)R
n−m

4

for some t satisfying |t+ x1

2R | ≤
1
10R

−3/2. □

We proceed to the proof of Theorem 1.1. It follows from Proposition 2.1
that,

(2.3)

∥∥∥∥ sup
0<t≤ 1

R

∣∣eit∆f
∣∣
∥∥∥∥
Lp(Bn(0,1))

≳ R
m−n

2
( 1

p
− 1

2
)R

m

2(m+1) ∥f∥2.

Theorem 1.1 follows from (2.3) by scaling. Define the function g ∈ L2(Rn)
by

ĝ(ξ) = R
n

2 f̂(Rξ)

so that ĝ is supported in the annulus |ξ| ∼ 1 and ∥g∥L2 = ∥f∥L2 . By parabolic
rescaling, we have

|eit∆f(x)| = R
n

2 |eiR
2t∆g(Rx)|.

Hence, by (2.3),

∥∥∥∥ sup
0<t≤R

|eit∆g|

∥∥∥∥
Lp(Bn(0,R))

= Rn( 1

p
− 1

2
)

∥∥∥∥ sup
0<t≤ 1

R

|eit∆f |

∥∥∥∥
Lp(Bn(0,1))

≳ R
n+m

2
( 1

p
− 1

2
)R

m

2(m+1) ∥g∥2.

This finishes the proof of Theorem 1.1.
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