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Saddle hyperbolicity implies hyperbolicity
for polynomial automorphisms of C?

ROMAIN DUJARDIN

We prove that for a polynomial diffeomorphism of C?, uniform hy-
perbolicity on the set of saddle periodic points implies that saddle
points are dense in the Julia set. In particular f satisfies Smale’s
Axiom A on C2.

1. Introduction

Let f be a polynomial automorphism of C? with non-trivial dynamics. For
such a dynamical system there are two natural definitions for the Julia set.
The first one is in terms of normal families: J = J™ N J~ is the set of points
at which which neither (f"),>0 nor (f~")n>0 is locally equicontinuous. The
second one is the closure J* of the set of saddle periodic orbits. The inclusion
J* C Jis obvious, and whether the reverse inclusion holds is one of the major
open questions in higher dimensional holomorphic dynamics.

Following Bedford and Smillie [BS1], we say that f is hyperbolic if J is
a hyperbolic set for f. Under this assumption we have a rather satisfactory
understanding of the global dynamics of f. Indeed it was shown in [BSI]
that under this assumption the forward and backward Julia sets J™ and J~
(see below for precise definitions) are laminated by stable and unstable
manifolds, that the Fatou set is the union of finitely many cycles of attracting
basins, that f satisfies Smale’s Axiom A on C? and finally that J = J*. It
was shown by Buzzard and Jenkins [BJ] that f is structurally stable on C2.
There are also tentative models for a description of the topological dynamics
on J (see Ishii [I] for a survey).

On the other hand it is sometimes more natural to postulate that f is
uniformly hyperbolic on J*. One reason is that this information can be read
off from the periodic points of f. This happens for instance in the study of the
stability /bifurcation dichotomy for families of polynomial automorphisms
IDLL, BD]. The global consequences of hyperbolicity on J* are then less
easy to analyze, in particular it does not a priori imply a uniform laminar
structure on J*.
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The main result of this paper is that these two notions actually coincide.

Main Theorem. Let f be a polynomial automorphism of C? with non-
trivial dynamics. If f is hyperbolic on J*, then J = J*.

In particular, if f is hyperbolic on J*, then it is hyperbolic in the sense
of [BS1].

Recall that the Jacobian Jac(f) of a polynomial automorphism is a non-
zero constant: thus f is dissipative when |Jac(f)| < 1 and conservative when
Jac(f)] = 1.

This result was first announced in the dissipative case in [F], but the pub-
lished proof is not correclﬂ and it has remained an intriguing open problem
since then. Recently, Guerini and Peters [GP] managed to establish the re-
sult under the more stringent assumption that f is substantially dissipative,
that is [Jac(f)| < d=2, where d is the dynamical degree (see §2.1/for this no-
tion). Observe that only quasi-hyperbolicity on J* is assumed in [GP| while
our approach seems to require the full strength of hyperbolicity.

The proof of the main theorem starts with the dissipative case (Sec-
tion . We assume by contradiction that f is dissipative, hyperbolic on J*
and that J # J*. In a first stage we show that for some p € J*, J~ intersects
W#(p) along a non-trivial relatively open subset, which is an unexpected
property in the dissipative setting (for instance in the substantially dissi-
pative case, the main point of [GP] is to show that J~ N W?(p) is totally
disconnected). The main input here is the ergodic closing lemma that we
obtained in a previous work [Du2]. In a second stage we use the results of
[BS6] on the properties of stable slices of J~ together with some potential-
theoretic ideas to actually derive a contradiction.

The conservative case is treated in Section [4| by a perturbative argument.
If f is conservative and hyperbolic on J*, we can find a holomorphic family
(fx) with fo = f containing dissipative parameters, on which J* moves under
a holomorphic motion. Again we assume that J*(f) # J(f), and use the
extension properties of the holomorphic motion of J* obtained in [DL] to
derive a contradiction from the previously established dissipative case.

LA first problem happens in the proof of [F, Thm. 2], which corresponds to Step
1 in our proof. Indeed in the construction of the “queer” disk V', the sequence (y,)
is contained in W*(J*) but not a priori in W} _(J*), hence one cannot directly
deduce that G (y,) > c. Also, Lemma 6 is not correct: local product structure
does not allow to transport whole components of W?*(z) N J to components of
W#(y) N J when z and y belong to the same global unstable manifold; in particular
the boundedness of such a component is not an invariant property.
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2. Preliminaries

In this section we recall some basic facts on the dynamics of polynomial au-
tomorphisms of C? and hyperbolic dynamics, and establish a few preliminary
results.

2.1. Vocabulary and basic facts

Let f be a polynomial diffeomorphism of C? with non-trivial dynamics. This
is the case exactly when the dynamical degree

d = lim (deg(f")""

is larger than 1. By [FM] there exists a polynomial change of coordinates in
which f is expressed as a composition of Hénon mappings (z,w) — (p;(z) +
a;w,a;z). We fix such coordinates from now on. The degree of f is d =
[[deg(pi) > 2 and the relation deg(f™) = d"™ holds so that d coincides with
the dynamical degree of the original map.

In these adapted coordinates, let

Vi = {(zw) €C?, |w| >R, |2| < |w|}
and Vi = {(z,w) € C2, |2| 2 R, |u] < ||}

and fix Ry > 0 so large that for R > Ry f(V4) C Vi and f~1(Vy) C Vop.
Hence the points of Vj (resp. V) escape under forward (resp. backward)
iteration. We denote by B the bidisk D(0, Rg)2. The non-wandering set of f
is contained in B.

An object (subset, current, or subvariety) in B is said to be vertical (resp.
horizontal) if its closure in B is disjoint from {|z| = Ro} (resp. {|w| = Rp}).
A vertical subvariety has a degree, which is the number of intersection points
with a generic horizontal line.

Here are some standard facts and notation (see e.g. [BS1, [BS2l BLS]):

e K* is the set of points with bounded forward orbits under f*! and
K = K" N K. Note that KT is vertical in B and f(BNK") Cc K.
Similarly, K~ is horizontal and f~'(BNK~) C K~.

e The complement of KT is denoted by U™' and the complement of K~
isU™.

o J¥ = OK% are the forward and backward Julia sets. If f is dissipative
then K= =J".
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e J=JtNJ is the Julia set.

e J* C J is the closure of the set of saddle periodic points. It is also the
support of the unique measure of maximal entropy logd.

The dynamical Green functions G are defined by

GH(zw) = lim d™"log" || (2, w)]

(where log™(x) = max(log(z),0)). These are non-negative continuous
plurisubharmonic functions on C?, such that K* = {G* = 0} and G7 is
pluriharmonic on UT/~ := {GJF/* >0}. We let T* = dd°G*. The maxi-
mum principle implies that Supp(Ti) = J*.

The restriction TT|p of TT to a complex submanifold D is a positive
measure on D locally defined by A(G'|p) and since G* is continuous this
measure coincideﬁﬂ with the wedge product T+ A [D]. A useful remark is
that if 2 belongs to K+ and D C C? is a holomorphic disk through z along
which G is harmonic, then D C K and (f"|a),,~; is a normal family.

If p is a saddle periodic point or more generally if it belongs to a hyper-
bolic saddle set, it admits stable and unstable manifolds W*/*(p). Each of
them is an immersed Riemann surface biholomorphic to C and by [BS2, [F'S]
W#(p) (vesp. W¥(p)) is dense in J* (resp. J~). A key point in the present
paper is to analyse the topological properties of sets of the form K~ N W*(p)
or KT NWY(p). Following [DL], we define the intrinsic topology to be the
topology induced on a stable (resp. unstable) manifold by the biholomor-
phism W?* ~ C, and the corresponding concepts of boundary, interior, etc.
will be labelled with the subscript i: 0;, Int;, etc.

The following basic lemma will be used several times.

Lemma 2.1 ([DL, Lemma 5.1]). Let p be a saddle periodic point. Then
the boundary of W#(p) N J~ relative to the intrinsic topology in W*(p) is
contained in J*.

We denote by W (p) the connected component of W?*(p) N B containing
p (and accordingly for W"). Likewise, Wy (p) is the connected component
of W*(p) N B(p,§) containing p, and W} (p) denotes an unspecified open
neighborhood of p in W¥(p).

By [BLS], the currents TF have geometric structure, related to the de-
composition of J* into stable and unstable manifolds. By lamination by

21t is standard to define d° = 5=(d — 0). Accordingly, A here is 1/27 times the
ordinary Laplacian.
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Riemann surfaces we mean a closed subset £ of some open set 2 C C? such
that every p € £ admits a neighborhood B biholomorphic to a bidisk, such
that in the corresponding coordinates, a neighborhood of p in £ is a union
of disjoint graphs (that is, a holomorphic motion) over the first coordinate
in B. A positive current S is uniformly laminar if there is a lamination of
Supp(S) by Riemann surfaces and in the corresponding local coordinates S
is locally expressed as [[Ag] dv(a). These disks will be said subordinate to S.

A holomorphic disk D is subordinate to T if there exists a non-zero
uniformly laminar current S < T such that D is subordinate to S. By
[Dull Prop. 2.3], if p is any saddle point, then any relatively compact disk
D C W#(p) is subordinate to 7.

2.2. Stable (dis)connectivity

It was shown in [BS6] that the connectivity properties of sets of the form
Kt NW¥(p) (resp. K~ NW?#(p)) carry deep information on the geometry
of the Julia set. We say that f is stably connected if Ut N W*(p) is simply
connected for some (and then any) saddle point p, and stably disconnected
otherwise. Equivalently, f is stably disconnected if for some saddle point p,
W#(p) N K~ admits a compact component relative to the intrinsic topol-
ogy. This actually implies the stronger property that most components of
W#(p) N K~ are points (see the proof of Lemma 3.2| below for more details).

By [BS6l, Cor. 7.4], a dissipative polynomial automorphism is always
stably disconnected. It was observed in [Dul] that this implies a strong
non-extremality property for the current 7" |g: there exists a decomposition
T =) ey T]j where T,j is an average of integration currents over a
family of disjoint vertical disks of degree k (see [Dull, Thm. 2.4)).

Lemma 2.2. Let f be dissipative and hyperbolic on J* and let q € J*.
Then q belongs to the support of Tﬂwu,(q) and for (T+|Wu(q))—a.e. q near
q, W§(q') is a vertical manifold of finite degree in B.

Proof. The first assertion easily follows from the fact that (f"),>o cannot
be a normal family on W} (¢) (see [BLS, Lemma 2.8]). The second one is
a consequence of [Dull Thm. 2.4]. Indeed as observed above T |p admits a
decomposition TF|g = Y12 T,j where T,j is made of vertical disks of degree
k. Thus Ty () =TT AWE(@)] = 2, T A WE(q)]. Now if T is a leaf
of some TkJr intersecting Wi (¢) at ¢/, then since W} _(q) is subordinate to
T-, ¢ belongs to J* and I' is a manifold through ¢’ along which forward

iterates are bounded, hence I' = W§(¢'). O
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2.3. Hyperbolicity and local product structure

Let us recall some generalities from hyperbolic dynamics, specialized to our
situation. A (saddle) hyperbolic set for f is a compact invariant set A C
C? such that TC?|, admits a hyperbolic splitting, i.e. TC?|y = E* @ E¥,
where E® and E" are continuous line bundles such that E* (resp. E%) is
uniformly contracted (resp. expanded) by df. Then there exists §; > 0 such
that W5 (A) :=U,cp W5 () and Wt (A) := U,cp Wi (x) form laminations
in the d;-neighborhood of A.

A hyperbolic set is locally mazimal if there exists an open neighbor-
hood N of A such that A =", ., f~"(N). It has local product structure if
there exists 0 < dy < d7 such that if p,q € A are such that d(p,q) < d2 then
W5 (p) N Wit (q) consists of exactly one point belonging to A. It turns out
that these two properties are equivalent (see [Y], §4.1]).

We will use the following consequence of the shadowing lemma.

Proposition 2.3. Let A be a compact locally mazximal hyperbolic set for a
polynomial diffeomorphism f of C2. Then there exist positive constants 1, o
and A such that for every n > 0; if x is such that {x,..., f*(x)} C A, then
there exists y € A such that x is Ae=“"-close to the local stable manifold
of y.

A similar result holds for negative iterates: if {f~"(x),...,x} C A, then
there exists z € A such that x© is Ae~“"-close to the local unstable manifold

of z.
The following corollary is well-known.

Corollary 2.4. If A is a compact locally mazximal hyperbolic set, then

W) = {z e C? /@) — A} =W @)

n—oo
pEA

and similarly
W) = U w ).
peEA
Note however that W#*(A), being an increasing union of laminations,

doesn’t need to have a lamination structure (this is already false when A is
a hyperbolic fixed point).

Proof of Proposition (sketch). This is very classical. Given an orbit seg-
ment {z,..., f"(x)} as in the statement of the proposition, let y(©) (resp.
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y™) be a point in A such that d(z,y?)) < n (resp. d(z,y™) < n). Then
define a n-pseudo-orbit (y*)),cz as follows

F(y) for k < 0;
y(k) =< f¥(x) for 0 < k < mn;
frn (y(")) for k > n.

Then if 7 is small enough by local maximality and the shadowing lemma
there exists a unique y € A such that for every k € Z, d(fk(y), y(k)) < Cn
(where C' is some constant depending on (f,A), see [Y], §4.1]). In particular
for 0 < k < n we have d(f*(z), f*(y)) < Cn and it follows from standard
graph transform estimates that d(x, W3 (y)) < Ae™". O

The next result is a simple application of the techniques of [BLS].

Proposition 2.5. If J* is hyperbolic then it has local product structure.
Furthermore global stable and unstable manifolds intersect only in J*:

WE(J*) N W) = J*.

Proof. Hyperbolicity implies that for some § > 0, if p and ¢ are close enough,
W5 (p) N W4'(q) consists of a single point r. We have to show that r € J*. In-
deed, W§(p) (vesp. W(q)) is a disk subordinate to T (resp. T~) so there
exists a non-trivial uniformly laminar current St <T% (resp. S~ <T7)
with W§(p) (resp W¥(q)) as aleaf. By [BLS| Lem. 8.2], S™ and S~ have con-
tinuous potentials, so the wedge product ST A S~ is well defined, and geo-
metric intersection theory of uniformly laminar currents [BLS|, Lem. 8.3] im-
plies that r € Supp(S™ A S7). Since ST AS™ < TT AT~ we conclude that
reJ*.

The proof of the second assertion is similar. By local product structure,

=J )

n>0

hence if r € W*(J*), there exists p € J* such that » € W#(p) so r belongs to
a disk subordinate to 7", and likewise r € W"(q) so it belongs to a disk sub-
ordinate to TF. Observe that these two disks are distinct: indeed otherwise
we would have W#(p) = W*(q) which is impossible because W*(p) N W*"(q)
is contained in K which is bounded in C?. So r is an isolated intersection
between W*(p) and W*(q) for the leafwise topology. If this intersection is
transverse, we argue as above to conclude that r belongs to J*. If it is a
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tangency, then by [BLS, Lem. 6.4] for ¢’ € J* close to ¢, we get transverse
intersections between W*(p) and W*(¢') close to r and conclude as in the
transverse case. O

2.4. Stability

A theory of stability and bifurcations for polynomial automorphisms of C?
was developed in [DIL], centered on the notion of weak J*-stability.

A branched holomorphic motion over a complex manifold A in C? is a
family of holomorphic graphs over A in A x C2. It is a holomorphic mo-
tion (i.e. an unbranched branched holomorphic motion!) when these graphs
are disjoint. A holomorphic family (fx)aea of polynomial automorphisms
of dynamical degree d is weakly J*-stable if the sets J*(f\) move under a
branched holomorphic motion, and J*-stable if this motion is unbranched.
Note that if fy, is uniformly hyperbolic on J*(f),), then it is J*-stable near
Ao in any holomorphic family containing f),.

A number of properties of weakly J*-stable families are established in
[DL], including extension properties of the branched holomorphic motion of
J* to K (and more generally to J© U J™), that will be used in Section
These properties hold under the standing assumption that the family (f))
is substantial E|: this means that either all members of the family are dissi-
pative, or that no relation of a certain form between multipliers of periodic
points persistently holds in the parameter space A. Without entering into
the details, let us just note that by [BHI, Thm. 1.4] any open subset of the
family of all polynomial automorphisms of dynamical degree d is substantial.

3. Proof of the main theorem: the dissipative case

The proof is by contradiction so assume that f is a dissipative polynomial
diffeomorphism of C2, that is uniformly hyperbolic on J*, and that J* C .J.

Step 1. There exists p € J* and a holomorphic disk A C W*(p) such that
G_|A =0.

The purpose of the remaining steps [2] and [3] will be to show that such a
“queer” component of W*(p) N J~ actually does not exist.

3There is an unfortunate terminological conflict here: this should not be confused
with the notion of substantial dissipativity mentioned in the introduction.
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Proof. We first claim that it is enough to show that there exists p € J* and
q € W#(p) such that ¢ € J\ J*. Indeed observe that W*(p) N J = W?(p) N
J~ = W?(p) N K~. By Lemmal[2.1]we have that 0;(W*(p) N J~) C J*. Hence
if g belongs to W?*(p)n(J\J*), it belongs to the intrinsic interior
Int;(W*(p) N J ™), hence G~ = 0 in a neighborhood of ¢ in W?*(p).

Let now = € J\ J*. By Corollary if w(z) C J* then x € W9(J*)
and if a(z) C J* then z € W*(J*). Since W*(J*) N W*(J*) = J*, we infer
that either w(z) ¢ J* or a(z) ¢ J*. In either case we will show that both
We(J*) N (J\ J*) and W*(J*) N (J \ J*) are non-empty. Thus by symme-
try it is enough to deal with the case where w(z) ¢ J*.

Choose 1 so small that Proposition holds for J* and w(x) is not
contained in A/, where N := (J*), is the n-neighborhood of J*.

Consider the sequence of Cesaro averages v, = %ZZ;(I) k(). By the
ergodic closing lemma of [Du2], every cluster value of the sequence (v,) is
supported on J*. It follows that the asymptotic proportion of iterates of =
belonging to A tends to 1, i.e.

“#{o<k<no1, o en)

n—oo

Indeed if a positive proportion of iterates stayed outside N, any cluster limit
of v, would have to give positive mass to N/ C,

We thus infer that there are arbitrary long strings {x;, ..., Zit,} in the
orbit of x that are entirely contained in N. Indeed, if on the contrary the
length of such a string were uniformly bounded by some ng, then the density
of iterates outside N would be bounded below by 1/(ng + 1). Therefore for
every n there exists i, such that {z; ,...,x; +n} C N. Choose i, to be
minimal with this property. Since w(z) ¢ N, there exists j > i such that
z; ¢ N. So finally for every n we can find i, < j, such that j, —i, > n,
{zi,,...,x;,} CN,zi,—1 ¢ N and x, 41 ¢ N.

Let p (resp. p’) be a cluster value of (z;,_1) (resp. (z;,+1)). The points
p and p’ belong to J because x does, but not to J* because they lie outside
N. Tt follows from Proposition that p € W¥(q) for some ¢ € J* and
p' € W¥(¢') for some ¢’ € J*. The proof is complete. O

Remark 3.1. If f is substantially dissipative i.e. |Jac(f)| < deg(f) 2, then
the contradiction readily follows from this first step. Indeed Wiman’s the-
orem together with uniform hyperbolicity imply that the vertical degree of
components of stable manifolds in some large bidisk B is uniformly bounded
(see [GP, Prop. 4.2] or [LP, Lem. 5.1]), and it follows that J~ NW*(x) is
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totally disconnected for every x (see [Dull Thm. 2.10] or [GP, Thm. 4.3]),
which contradicts the conclusion of Step

In the second and third steps we do not use the assumption that

T\ J* £ 0.

Step 2. For every p € J*, if Q is a component of Int;(W?*(p) N J~), then
Q is unbounded for the leafwise topology.

Proof. Note first that by the maximum principle, any component of
Int;(W*(p) N J ™) = Int;(W*(p) N K™) is simply connected, so 2 is a topo-
logical disk. Assume by contradiction that € is bounded for the leafwise
topology. Then iterating forward a few times if needed, we can suppose that
Q) is entirely contained in a local product structure box.

More precisely for small § > 0, we can fix holomorphic local coordinates
(z,w) near p in which p = (0,0), W35(p) = {z = 0} and Wi\(p) = {w = 0},
and assume  is contained in W§(p). Note that by Lemma 0iQ C J*.
We can assume that for every ¢ € Wi (p) N J*, W35(q) contains a graph over
the disk D(0,0) in the first coordinate, with slope bounded by 1/2. Then
if |z9] <9, the holonomy hg ., along local unstable leaves is well defined
on Wy (p) N J* and maps Wy (p) N J* into {z = 2z} NJ~. This holonomy
is a holomorphic motion so by Slodkowski’s theorem [J] it extends to a
holomorphic motion of Wy (p). In particular the motion of 0§ extends to
a motion of {2 and it makes sense to speak about hg . (€2). This is an open
subset of {z = 2y}, which is topologically a disk and whose boundary is
contained in J~. Thus for every n >0, f~"(d(hg , (2))) in contained in B
and by the maximum principle, the same holds for f~"(hg . (€2)).

Finally, O := U| 2|<5 hg ., (£2) is an open set whose negative iterates re-
main in B, hence it is contained in the Fatou set of f~!. But since f is
dissipative, this Fatou set is empty, which is the desired contradiction. [J

Step 3. The unstable holonomy preserves the decomposition
W2(p) = (W3(p)nJ )u(W(p)nU").

To make this statement precise, observe that for every p € J*, the com-
ponents of the complement of 9;(W#*(p) N J~) in W#(p) can be divided into
two types: components of Int;(WW*(p) N J~) and components of W*(p) NU~
(note that since U~ is open in C?, W*(p) N U~ is open for the intrinsic
topology as well). Consider as above local coordinates (z,w) near p in which



Saddle hyperbolicity implies hyperbolicity 703

p=1(0,0), W3s(p) = {z =0} and Wi(p) = {w = 0}. The unstable holon-
omy hg . is initially only defined for points of Wy (p) N J* = 9;(Wj(p) N
J7), however by Stodkowski’s theorem it can be extended to Wj(p). By
Step [2, components of Int;(WW*(p) N J~) are leafwise unbounded so they
cannot be contained in Ws(p). Obviously, the same holds for components
of We(p)NU~.

If g belongs to J* N Wy'(p), the extended holonomy h;; , defines a home-
omorphism W§(p) — hy (W5 (p)). By local product structure this homeo-
morphism preserves J* so any component of W3 (p) \ J* is mapped onto a
component of hy (W;(p)) \ J*), which is itself contained in a component of
W#(q) \ J*. The claim of Stepis that the extended holonomy h;, , preserves
the type of components.

Since it doesn’t make sense to transport a whole leafwise unbounded
component by unstable holonomy, to prove this assertion we need to find a
criterion that recognizes the type of a component just from local topological
properties near a point of its boundary. As already said the maximum prin-
ciple implies that any component of Int;(W?*(p) N J~) is simply connected.
Thus Step [3] follows from:

Lemma 3.2. If Q is a component of W3(p)NU™, then Q is not simply
connected near any point of 0, more precisely: if ¢ € 9 and N is any
neighborhood of q, there is a loop in N N €Y, homotopic to a point in N, and
enclosing a component of W*(p) N J~

Proof. Since f is dissipative by [BS6, Cor. 7.4] it is stably disconnected. It
follows that almost every unstable component of K is a point (see [BS6,
Thm. 7.1] and also [Dull, Thm. 2.10]). More specifically, if x4 is the unique
measure of maximal entropy, then for u-a.e. x, the measure T~ ]Ws(x) (which
is locally given by the wedge product T~ A [IW*(x)]) gives full mass to the
point components of J~ N W#(x). Obviously by Lemma every such point
component belongs to J* so we can transport it to nearby stable manifolds by
unstable holonomy. In addition, the measure 7"~ [y ;) is holonomy invariant
(see [BSI, Thm. 6.5] or [BLS, Thm. 4.5]) so if x is such that T~ A [W§(z)]
gives full mass to point components, then the same holds for nearby z’. Thus
we conclude that this property holds for every p € J*: T |+ (p,) gives full
mass to the point components of J~ N W?#(p).

Lemma 3.3. Let pe J* and Q be a component of W*(p)NU~ such
that Q is locally simply connected near some q € 0. Then OS) has positive
(T~ lw(p))-measure.
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This proves Lemma [3.2] Indeed, assuming that € is locally simply con-
nected near some ¢ € 9¢), Lemma asserts that T _]WS(p) carries positive
mass on a non-trivial continuum so f cannot be stably disconnected. On the
other hand f must be stably disconnected because it is dissipative, and we
reach a contradiction. (]

The idea of Lemma [3.3]is as follows: every neighborhood of ¢ in 92 has
positive harmonic measure when viewed from 2. But the harmonic measure
viewed from €2 is absolutely continuous with respect to 7~ A [W*(p)], hence
the result. The formalization of this argument requires some elementary po-
tential theory, for which we refer the reader to Doob’s classical monographﬁ
[Da].

In particular we shall use the formalism of sweeping (or balayage). Let
D be a smoothly bounded domain in C, A a non-polar compact subset of D
and v a positive measure on D. The swept measure p, p 4 of v on A is the
distribution on A of the exit point of the Brownian motion in D \ A whose
starting point is distributed according to v. In particular its mass is lower
than that of v since a positive proportion of Brownian paths escape from
0D. If G, p is the Green potential of v in D, that is the unique negative
subharmonic function on D such that G, plagp = 0 and AG, p = v, then the
swept measure of v on A is AR, p 4, where

(1) Ry p,a(z) =sup{u(z), v <0 subharmonic on D and u < G, p on A}

(see Sections 1.IT1.4, 1.X and 2.IX.14 in [Dd]). If v and ¢/ have their sup-
ports disjoint from A, then the corresponding swept measures are mutually
absolutely continuous (as follows from instance from Theorem 1.X.2 in [Do]).

Proof. We first claim that we can shift ¢ slightly so that the assumptions
of the lemma hold and in addition W§(¢') is of bounded vertical degree.
Indeed ¢ belongs to J* and for ¢' € Wi(¢q) N J*, there is a component of
Wg(q') \ J* corresponding to € under unstable holonomy, which is locally
simply connected near ¢’. Since G~ is continuous, if ¢’ is close enough to
q, it takes positive values on that component, so we infer that the property
that € is a component of U~ is open. Now by Lemma for (T |y )-a.e.
¢, W§(¢') is a vertical manifold in B of finite degree which establishes our
claim. Without loss of generality rename ¢’ into g. For every gy < mingg G,
the component of {G~ < go} containing g in W#*(q) is relatively compact for
the intrinsic topology. We fix such a gg which is not a critical value of G~

4Note that Doob works with superharmonic functions so all inequalities have to
be reversed.



Saddle hyperbolicity implies hyperbolicity 705

and let D be the corresponding component, which is a smoothly bounded
topological disk. From now on we work exclusively in D.

By assumption there is a neighborhood N of ¢ in D and a component U
of {G™ >0} NN that is simply connected. We have to show that OU N N
has positive mass relative to AG~. We choose N to be closed so that 09U N N
is compact. First, observe that for every z5 € U N N, the probability that the
Brownian motion issued from zy hits QU N N before leaving U is positive.
Therefore the swept measure ps.  p ounn has positive mass and to prove the
lemma it is enough to show that is absolutely continuous with respect to
AG™. Recall that the measure class of the swept measure does not depend on
the starting point so we can replace ¢,, by an arbitrary positive measure on
D\ (DNK™). Let 0 < g1 < go and pg, := A(max(G~,g1)) be the natural
measure induced by G~ on the level set {G~ = g1}. We choose p4, for the
initial distribution of Brownian motion. Since G~ = g9 on 9D, the Green
function Gag- p of the restriction of AG™ to D is equal to G~ — go, and
likewise

Gy, .0 =max(G~,g1) — go-
Thus from we get that

R, D.K-nD = sup {u(z), ush. <0on D andu<G, ponK N D}
=sup{u(z), ush.<0on D and u<g; —goon K~ ND}
G~ — g0

= |91 — go|
g0

and finally

go — g1 _
Pug, ,D,K-ND = AG™.
9o

The proof is complete. O
Step 4. Conclusion.

We just have to assemble the three previous steps. Assume as before by
contradiction that f is dissipative, uniformly hyperbolic on J* and J* C J.
Then by Step|[1]there exists p € J* and a “queer” component 2 of W*(p) \ J*
along which G~ = 0. Pick ¢ € 09). By Lemma q € J* so we can follow
QN W;(q) using the holonomy along local unstable manifolds. Then for ¢’ €
Wit (q) near g, the holonomy image hy (€2 N W;(q)) is contained in a queer
component of W*(¢')\ J*, which must be leafwise unbounded by Step
On the other hand by Lemma for generic ¢’ in Wi (q) (relative to the
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transverse measure T [yu (o)) W5 (q') is of bounded degree, in particular any
component of K~ N Wj;(q¢') is leafwise bounded. This contradiction finishes
the proof. O

4. Proof of the main theorem: the conservative case

Again the proof is by contradiction, so assume that f is a conservative
polynomial automorphism of C? such that J* is a hyperbolic set and J* C .J.
We will use a perturbative argument and the dissipative case of the theorem
to reach a contradiction.

Assume that f is written as a product of Hénon mappings f = hy o
-0 hg and let (f))rep be a parameterization of a neighborhood of f in
the space of such products, that is, the space of coefficients of the h;, and
such that fo = f. We can assume that B is a ball in CV for some N. Since
A +— Jac(fy) is an open map, there exist parameters arbitrary close to 0
for which fy is dissipative. As already said, by [BHI, Thm. 1.4] there is no
persistent relation between multipliers of periodic orbits so the family is
substantial in the sense of [DL].

Since fj is hyperbolic on J*( fp) the family (f)) is J*-stable in a neighbor-
hood of the origin, that is, J*(f\) moves under a holomorphic motion. Re-
ducing the parameter space we can assume that J* is hyperbolic throughout
B. Pick a point p = p(0) € J(fo) \ J*(fo). It was shown in [DL, Thm. 5.12]
that in a (weakly) J*-stable family, the motion of J* extends to a branched
holomorphic motion of K. Thus there exists a holomorphic continuation
p(A) of p(0) such that for every A € B, p(\) belongs to K(fy). Furthermore
for every A € B, p(}) is disjoint from J*(fy). Indeed if for some \g € B we
had p(A\o) € J*(f\,), then by [DL, Lem 4.10] p(\) would have to coincide
throughout the family (fy) with the natural continuation of p(\g) as a point
of the hyperbolic set J*, which is not the case since p(0) ¢ J*(fo).

Let now A\; € B be such that fy, is dissipative. Then by the first part
of the proof J(f,) = J*(f\,), and K(fx,) \ J(f),) is non-empty since it
contains p(A1). For a dissipative hyperbolic map

K\J=(KtnJ)\(JtnJ )=Int(K*)nJ,

so we deduce that Int(K™(fy,)) is non-empty. By [BSI], Int(K*(fy,)) is a
finite union of attracting basins of periodic sinks, therefore f), admits an
attracting periodic point. On the other hand by [DL, Thm. 4.2], periodic
points stay of constant type in a J*-stable family (this holds even in the
presence of conservative maps, provided the family is substantial), so fo
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must have an attracting orbit, which is contradictory since it is conservative.
The proof is complete. O
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