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We prove upper bounds for the Bergman kernels associated to ten-
sor powers of a smooth positive line bundle in terms of the rate
of growth of the Taylor coefficients of the Kähler potential. As ap-
plications, we obtain improved off-diagonal rate of decay for the
classes of analytic, quasi-analytic, and more generally Gevrey po-
tentials.
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1. Introduction

Let (L, h) → X be a positive Hermitian holomorphic line bundle over a com-
pact complex manifold of dimension n. The metric h induces the Kähler form

ω = −
√
−1
2 ∂∂̄ log(h) onX. For k in N, letH0(X,Lk) denote the space of holo-

morphic sections of Lk. The Bergman projection is the orthogonal projection
Πk : L

2(X,Lk) → H0(X,Lk) with respect to the natural inner product in-
duced by the metric hk and the volume form dV = ωn

n! . The Bergman kernel

Bk, a section of Lk ⊗ Lk, is the distribution kernel of Πk. Given p ∈ X, let
(U, eL) be a local trivialization of L near p. We write |eL|2h = e−φ and call φ
a local Kähler potential. In the frame ekL ⊗ ēkL, the Bergman kernel Bk(z, w)
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is understood as a function Kk(z, w) on U × U . In addition, by our nota-
tions, |Bk(z, w)|hk = |Kk(z, w)|e−kφ(z)/2−kφ(w)/2. To motivate our problem,
we start with the following refinement of a result of M. Christ [Ch13a] which
improves the Agmon estimates.

Theorem 1.1. Assume h ∈ C∞. Let d(z, w) be the distance function on X
associated with the Kähler metric ω. Then there exists an increasing function
f(k) → ∞ as k → ∞ such that for all z and w in X, we have

(1.1) |Bk(z, w)|hk ≤




Ckne−c kd(z,w)

2

, d(z, w) ≤ f(k)
√

log k
k ,

Ckne−c f(k)
√
k log k d(z,w), d(z, w) ≥ f(k)

√
log k
k .

where c and C are positive constants that depend only on (L, h) and X.

Although in [Ch13a], this result is only stated for d(z, w) > δ, for δ >
0 independent of k, it is implicit in their proof. The goal of this paper
is to prove a quantitative version of the above theorem that relates the
growth rate of f(k) to the growth rate of the derivatives of h, and use it
to obtain improvements in the cases where h is analytic, quasi-analytic, or
more generally Gevrey.

To state our main result we need some notations. Let M be a positive
C2 function on R>0. We say ∂2 log h belongs to the class CM if for every
local Kähler potential φ on an open set U , there exists A > 0 such that for
any multi-index α ∈ Z2n

≥0 with |α| ≠ 0, and any z ∈ U ,

∣∣∣∣
Dα(∂2φ)

α!
(z)

∣∣∣∣ ≤ A|α|M(|α|).

HereDα = ∂α1
z1 . . . ∂

αn
zn ∂

αn+1

z̄1 . . . ∂α2n

z̄n , and ∂2φmeans any second order partial
derivative of φ. We shall call M a majorant of the Taylor coefficients of ∂2φ.

Theorem 1.2. Suppose ∂2 log h ∈ CM and log (M) is strictly convex on
R>0. For each N ∈ R>0, let J(N) =M(N)1/N and assume J(N) is un-
bounded. Then there exists k0 such that for each k ≥ k0, the equation

(1.2) N2J(N)J ′(N)e
2NJ′(N)

J(N) = k,

has a unique solution N(k) ∈ R>0 and f(k) given by

(1.3) f(k) =
N(k)

√
J ′(N(k))/J(N(k))√

log k
,
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satisfies Theorem 1.1. When k < k0, for simplicity we define f(k) = f(k0).

Let us now draw some quick corollaries of this theorem. We say h belongs
to the Gevrey class Gs, s ≥ 1, if M(N) = N (s−1)N . Since this M satisfies
the conditions of the theorem for s > 1 (but not for s = 1) we immediately

get f(k) = δk
1

4s−2√
log k

, for δ > 0 independent of k, thus we obtain the following

improved upper bounds:

Corollary 1.3. Assume h ∈ Gs 1, s > 1. Then for all k ∈ N, and all z, w ∈
X, we have

(1.4) |Bk(z, w)|hk ≤
{
Ckne−c kd(z,w)

2

, d(z, w) ≤ k−
s−1

2s−1 ,

Ckne−c k
s

2s−1 d(z,w), d(z, w) ≥ k−
s−1

2s−1 .

where c and C are positive constants dependent only on (L, h) and X.

In the special case s = 1, meaning when the metric h is analytic, we ob-
tain the following estimate which was stated without a proof in Remark 6.6
of [Ch03]:

Corollary 1.4. Assume h is analytic. Then for all k ∈ N and z, w ∈ X,
we have

(1.5) |Bk(z, w)|hk ≤ Ckne−ckd(z,w)
2

.

Note that for this corollary we cannot directly use Theorem 1.2 because
in the analytic case J(N) is bounded (and vice versa). We will give two
proofs for this estimate, where one of them involves taking a uniform limit
s→ 1+ in Corollary 1.3. To provide more examples, we can also consider
Denjoy [Den21] classes of quasi-analytic functions given by

M(N) = (logN)N , (logN)N (log logN)N ,

(logN)N (log logN)N (log log logN)N , · · · .

For instance if M(N) = (logN)N , from Theorem 1.2 we get f(k) ∼
k

1

2 (log k)−
3

2 , which by plugging into Theorem 1.1 we obtain:

1Note that φ ∈ Gs if and only if h = e−φ ∈ Gs.
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Corollary 1.5. Assume h ∈ CM 2 with M(N) = (logN)N . Then for all
k ≥ 2 and all z, w ∈ X,

(1.6) |Bk(z, w)|hk ≤
{
Ckne−c kd(z,w)

2

, d(z, w) ≤ 1
log k ,

Ckne−
ck

log k
d(z,w), d(z, w) ≥ 1

log k .

We note that in Theorem 1.1, the maximum rate of growth of the func-

tion f(k) is k
1
2√

log k
, which happens when the metric h is analytic, but there is

no minimum rate of growth for f(k) as it can be arbitrary small by choosing
the majorant M in Theorem 1.2 to have arbitrary large growth rate. Also,
as we see all of the above estimates are much better than the following Ag-
mon type estimates (see [Be03, Ch91, De98, Lin01, MaMa15]) valid for all
smooth metrics h

(1.7) |Bk(z, w)|hk ≤ Ckne−c
√
kd(z,w).

We must emphasize that on the diagonal and in certain shrinking neigh-
borhoods of the diagonal we have more precise information on the Bergman
kernel. Zelditch [Ze98] and Catlin [Ca99] proved if h is C∞ then on the di-
agonal z = w, the Bergman kernel accepts a complete asymptotic expansion
of the form

|Bk(z, z)|hk = Kk(z, z)e
−kφ(z)(1.8)

∼ kn

πn

(
b0(z, z̄) +

b1(z, z̄)

k
+
b2(z, z̄)

k2
+ · · ·

)
.

Very near the diagonal, i.e. in a 1√
k
-neighborhood of the diagonal, one has a

scaling asymptotic expansion for the Bergman kernel (see [ShZe02, MaMa07,
MaMa13, LuSh15, HeKeSeXu16]). In fact given any γ > 0, for d(z, w) ≤
γ
√

log k
k one has (see [ShZe02])

(1.9) |Bk(z, w)|hk =
kn

πn
e−

kD(z,w)

2

(
1 +O

(
1

k

))
.

Here D(z, w) is Calabi’s diastasis function [Cal53] which is controlled from
above and below by d2(z, w) and defined by

(1.10) D(z, w) = φ(z) + φ(w)− ψ(z, w̄)− ψ(w, z̄),

2Again, φ belongs to this particular class if and only if h = e−φ does.



✐

✐

“7-Xu” — 2020/7/24 — 15:55 — page 747 — #5
✐

✐

✐

✐

✐

✐

Quantitative upper bounds for Bergman kernels 747

where ψ(z, w̄) is an (almost) holomorphic extension of the Kähler potential
φ(z). Furthermore, we expect this asymptotic property to hold for γ = f(k):

Conjecture 1.6. Assume ∂2 log h ∈ CM where M satisfies the conditions
of Theorem 1.2 and f(k) is given by (1.3). Then the asymptotic (1.9) holds

for d(z, w) ≤ f(k)
√

log k
k . In the analytic case (1.9) holds for d(z, w) < δ for

some δ > 0 independent of k3.

Related to this conjecture, in [HeLuXu18] it is shown that if h is analytic
then (1.9) holds for d(z, w) ≤ Ck−

1

4 . Under the weaker assumption h ∈ Gs,

for s > 1, it is proved in [Xu18] that (1.9) is valid for d(z, w) ≤ Cεk
− 1

2
+ 1

4s+4ε

for any ε > 0.

1.1. Organization of the paper

Our work is greatly inspired by [Ch13a]. To obtain a quantitative version
of the result of [Ch13a], we follow their proof thoroughly and keep track
of all constants involved. We also fill in some details of [Ch13a] such as
the bootstrapping arguments and the CR structure involved in the analytic
hypoellipticity lemma for the Kohn Laplacian. As in [Ch13a], we study the
Bergman kernel in three regions, namely

d(z, w) ≤ γ

√
log k
k , γ

√
log k
k ≤ d(z, w) ≤ f(k)

√
log k
k ,

and d(z, w) ≥ f(k)

√
log k
k .

As we discussed above in fact in the region d(z, w) ≤ γ
√

log k
k we have an

asymptotic expansion for the Bergman kernel (see [ShZe02]). For complete-
ness, in Subsection 3.5 we will provide a proof for this using [BeBeSj08]. In
the regions

γ

√
log k
k ≤ d(z, w) ≤ f(k)

√
log k
k , and d(z, w) ≥ f(k)

√
log k
k ,

which we will call near diagonal and far from diagonal respectively, we study
the Bergman kernel via studying the Green kernel of the Hodge-Kodaira
Laplacian as in [Ch13a]. In fact far from diagonal estimates follow from
near diagonal estimates by an iterative argument involving Neumann series
exactly as it is done in [Ch13a]. One of the main ingredients in the proof of

3In fact, in the analytic ase, this is a conjecture of Zelditch [Ze14].
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near diagonal estimates is our Lemma 3.6, which is new relative to [Ch13a],
and is the counterpart of the analytic hypoellipticity Lemma 2.2 when the
condition of analyticity of h is replaced by ∂2 log h belonging to the class
CM . The function f(k), which is responsible for the rate of the decay of
the Green kernel (or the Bergman kernel) is obtained in this step and it is
extracted from an interesting optimization problem where the convexity of
log(M) plays a key role.

Section 2, provides background on the relation of the Bergman and Green
kernels, a priori elliptic estimates, analytic hypoellipticity of the Kohn Lapla-
cian and its underlying CR structure. Section 3 involves proving the near
diagonal estimates. The optimization problem for f(k) is studied in Subsec-
tion 3.3. Subsection 3.5 gives a proof of the very near diagonal asymptotic
expansion 1.9. Finally, Section 4 gives a proof for far from diagonal estimates
using the near diagonal estimates.

2. Background materials

2.1. The relation between the Bergman kernel and the Green
kernel

In this section we will introduce the Green kernel associated to the line
bundle Lk and explain its relation with the Bergman kernel.

Let

∂k : Γ(X,Λ
0,q(Lk)) → Γ(X,Λ0,q+1(Lk))

be the usual Dolbeault operator. Denote by ∂
∗
k the formal adjoint, with

respect to the L2 inner product induced by the Hermitian metric h and
Kähler metric ω. Then we have the Hodge-Kodaira Laplacian

□k = ∂k∂
∗
k + ∂

∗
k∂k : Γ(X,Λ

0,1(Lk)) → Γ(X,Λ0,1(Lk)).

Since the line bundle (L, h) is positive, by Weitzenböck formula (see (2.7)),
there exists some positive constant c > 0 such that

(□kf, f) ≥ ck∥f∥2L2 , for any f ∈ Γ(X,Λ0,1(Lk)).

By this lower bound and the fact that □k is formally self-adjoint, we have
the Green operator

G = □
−1
k : L2(X,Λ0,1(Lk)) → L2(X,Λ0,1(Lk)).
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Let Gk(z, w) be the distribution kernel of Gk, called the Green kernel. As
□k is formally self-adjoint, we have the Hermitian symmetry

Gk(z, w) = Gk(w, z).

For any section f ∈ Γ(X,Lk), using Hörmander’s L2 estimates, u =
∂
∗
kGk∂kf is the solution of

∂ku = ∂kf,

with the minimal L2 norm and u⊥ker ∂k. Therefore, in terms of the Bergman
projection Πk, we obtain

Πkf = f − ∂
∗
kGk∂kf.

Writing this into integrals, we get

∫

M
f(w)Bk(z, w)dVw = f(z)− ∂

∗
k

∫

M
∂kf(w)Gk(z, w)dVw.

By integrating by parts and comparing the kernels, we get

(2.1) Bk(z, w) = ∂
∗
k,z∂

∗
k,wGk(z, w), for any z ̸= w ∈ X.

Here the subindex z in ∂
∗
k,z and w in ∂∗k,w indicate which variable the operator

acts on.

2.2. An equivalent framework without weights

In this section, we introduce an equivalent framework of the L2 space of
Lk valued holomorphic sections. Though this frame only works in a local
coordinate chart, it is convenient since the norms are not involved with any
k-dependent weight.

Given a local coordinate chart U , let φ be a Kähler potential. We define
the linear map I : L2(U,Λ0,q(Lk)) → L2(U,Λ0,q) by

u := If = e−
k
2φf.

Note
∫
U |f |2e−kφdV =

∫
U |u|2dV . I is therefore a linear isometry, by which

we can identify these two L2 spaces. Let us carry out the corresponding
operators of ∂k, ∂

∗
k,□k on L2(U,Λ0,1) via this identification. Define Dk :
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Γ(U,Λ0,q) → Γ(U,Λ0,q+1) as

Dk = I−1 ◦ ∂k ◦ I = e−
k
2φ ∂k e

k
2φ = ∂k +

k
2 ∂̄φ ∧ .

Then the adjoint operator D
∗
k : Γ(U,Λ

0,q+1) → Γ(U,Λ0,q) becomes

D
∗
k = I−1 ◦ ∂∗k ◦ I = e−

k
2φ ∂

∗
k e

k
2φ,

and we can define the Laplace operator ∆k : Γ(U,Λ
0,1) → Γ(U,Λ0,1) by

∆k = DkD
∗
k +D

∗
kDk = I−1 ◦□k ◦ I = e−

k
2φ□k e

k
2φ.

Similarly, the counterpart of the Green kernel Gk(z, w) is

(2.2) Gk(z, w) = Gk(z, w)e
− k

2
φ(z)e−

k

2
φ(w),

which represents a fundamental solution of ∆k with a pole singularity at w.
This is a section in Γ(U × U, π∗1Λ

0,1 ⊗ π∗2Λ
0,1), where π1, π2 : U × U → U are

projections to the first and second components respectively. In particular,
Gk(z, w) is Hermitian symmetric in z, w and if we take the norm, then

|Gk(z, w)| = |Gk(z, w)|hk .

Indeed, L2(U,Λ0,1) and L2(U,Λ0,1(Lk)) are equivalent because of the iden-
tification I. We will work in the space L2(U,Λ0,1), where there is no weight

in the inner product, while all the operators are twisted by e
k
2φ. Note that

we only need k ≥ 1, which need not to be an integer in this unweighted
framework.

2.3. Elliptic regularity

In this section, we will recall some results from the regularity theory of the
elliptic systems. For more details, we refer the readers to [GiMa12].

The operators □k and ∆k are both elliptic operators. For simplicity, we
only state the results for ∆k here and similar results also hold for □k. In a
local coordinate chart U = B(0, 1), we can write out the operator ∆k. For
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any u ∈ Γ(U,Λ0,1),

(∆ku)s̄ = −∂i
(
gij̄∂j̄us̄

)
+
(
aij̄s̄ k + bij̄s̄

)
∂iuj̄(2.3)

+
(
aīj̄s̄ k + bīj̄s̄

)
∂īuj̄ +

(
cīs̄k

2 + dīs̄k + eīs̄

)
uī,

where we have used the Einstein summation convention, and denoted

∆ku = (∆ku)s̄dz
s, u = uj̄dz

j .

All the coefficients aij̄s̄ , a
īj̄
s̄ , b

ij̄
s̄ , b

īj̄
s̄ , c

ī
s̄, d

ī
s̄ and e

ī
s̄ are polynomials of g, φ, g−1,

and their derivatives (up to second order). For simplicity, we denote the
above identity as

∆ku = −∂i
(
gij̄∂j̄u

)
+ (ak + b) ∗ ∇u+ (ck2 + dk + e) ∗ u.

Here u is identified with the vector (u1, u2, · · · , un), ∇ is the gradient op-
erator, and ∗ denotes certain algebraic operations. Though g−1, a, b, c, d, e
are smooth and bounded uniformly for any Cm norm, k could be arbitrarily
large. In order to apply the elliptic estimates, we need to make all the coef-
ficients bounded uniformly by rescaling. For R ∈ (0, 1], define g̃(z) = g(Rz),
ã(z) = Ra(Rz), b̃(z) = Rb(Rz), c̃(z) = R2c(Rz), d̃(z) = R2d(Rz), ẽ(z) =
R2e(Rz) and ũ(z) = u(Rz). Then

(2.4) − ∂i

(
g̃

ij̄

∂j̄ ũ
)
+
(
ãk + b̃

)
∗ ∇ũ+

(
c̃k2 + d̃k + ẽ

)
∗ ũ = R2(∆ku)(Rz).

When R ≤ 1
k ≤ 1, all the coefficients are uniformly bounded for any Cm

norm. Let η be a smooth cut-off function such that supp η ∈ B(0, 34R) and
η = 1 in B(0, 12R). And let η̃(z) = η(Rz). By using the Caccioppoli inequal-
ity (see Theorem 4.11 in [GiMa12]), for any m ∈ N,

∥η̃ũ∥Hm+1(B(0,1)) ≤ C
(
∥ũ∥L2(B(0,1)) + ∥∆kũ∥Hm(B(0,1))

)
,

where C only depends on m, the lower bound of g−1 and the Cm+1 norm of
coefficients g−1, a, b, c, d, e. We change ũ back to u and obtain the following
interior estimates.

∥u∥Hm+1(B(0,R/2)) ≤ C
(

1
Rm+1 ∥u∥L2(B(0,R)) +

1
Rm−1 ∥∆ku∥Hm(B(0,R))

)
,(2.5)

for any R ≤ 1
k .
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2.4. A priori upper bounds of the Green kernel

In this section, we will prove an a priori upper bound of the Green kernel Gk.

Lemma 2.1. Given any point p ∈ X, there exists a coordinate chart U
containing p and constants C, a > 0, such that whenever z, w ∈ U and z ̸= w,
we have

(2.6) |Gk(z, w)|+ |∇zGk(z, w)|+ |∇2
zGk(z, w)| ≤ C

(
k + |z − w|−1

)a
,

where ∇ denotes the gradient.

This lemma is from [Ch13a] and here we fill in the details of the proof.
Admittedly, sharper upper bounds on Gk(z, w) can be proved but this one
is sufficient for our purpose. The proof is divided into two steps. First, we
can rather easily obtain certain upper bound on the operator Gk, whose
distribution kernel is Gk(·, ·). Second, the operator bound can be improved
to the pointwise bound in (2.6) by the interior estimates (2.5). This is a
standard bootstrapping argument and will be used again in later sections.

Proof. For □k : L
2(X,Λ0,1(Lk)) → L2(X,Λ0,1(Lk)), Weitzenböck formula

tells that

(2.7) □k = ∇∗∇+RicTM + kRicL,

where ∇ is the Chern connection on the bundle Lk coupled with the Levi-
Civita connection on Λ0,1. When k is sufficiently large, □k is bounded below
by k

2 , whence Gk has the operator bound ∥Gk∥L2→L2 ≤ 2
k . Let V be a coor-

dinate chart containing p. For simplicity, we can assume V = B(0, 2). Take
U = B(0, 1) and for any z, w ∈ U , by compositing with inclusion and restric-
tion maps, we can regard Gk as a linear operator

Gk : L
2(B(w, 14d(z, w)),Λ

0,1(Lk)) → L2(B(z, 14d(z, w)),Λ
0,1(Lk)),

with the operator bound ∥Gk∥ ≤ 2
k . If we let

Gk : L2(B(w, 14d(z, w)),Λ
0,1) → L2(B(w, 14d(z, w)),Λ

0,1)

be the linear operator with distribution kernel Gk(·, ·), then Gk shares the
same operator bound ∥Gk∥ ≤ 2

k by (2.2). That is, for any

u ∈ L2

(
B

(
w,

1

4
d(z, w)

)
,Λ0,1

)
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with suppu ⊆ B(w, 14d(z, w)), we have

∥Gku∥L2(B(z, 1
4
d(z,w))) ≤ 2

k∥u∥L2(B(w, 1
4
d(z,w))).

Since ∆kGku = u, which vanishes in B(z, 14d(z, w)), if we apply the elliptic
estimates (2.5) to Gku on B(z,R) with R = min{ 1

k ,
1
4d(z, w)}, then for any

m ∈ N,

∥ηGku∥Hm(B(z,R)) ≤ CR−m∥Gku∥L2(B(z,R))

≤ C
(
k + |z − w|−1

)m ∥u∥L2(B(w, 1
4
d(z,w))),

where C is a constant depending only on Cm+3 norm of the Kähler potential
φ and the lower bound of

√
−1∂∂̄φ. Taking m = n+ 1 and applying the

Sobolev embedding theorem,

|Gku(z)| ≤ C
(
k + |z − w|−1

)n+1 ∥u∥L2(B(w, 1
4
d(z,w)).

Therefore,

∥Gk(z, ·)∥L2(B(w, 1
4
d(z,w))) = sup

u∈L2(B(w, 1
4
d(z,w))

∣∣∫ u(ζ)Gk(z, ζ)dζ
∣∣

∥u∥L2(B(w, 1
4
d(z,w))

≤ C
(
k + |z − w|−1

)n+1
.

Since for any ζ ∈ B(w, 14d(z, w)),

∆kGk(z, ζ) = 0,

when ∆k acts on the second component, again by applying the elliptic es-
timates (2.5) to Gk(z, ·) on B(w,R) with R = min{ 1

k ,
1
4d(z, w)}, and using

the Sobolev embedding theorem, we have

|Gk(z, w)|C2 ≤ C
(
k + |z − w|−1

)n+3 ∥Gk(z, ·)∥L2(B(w, 1
4
d(z,w)))

≤ C
(
k + |z − w|−1

)2n+4
,

where the pointwise C2 norm is taken on the second component w. Note the
constant C only depends on the dimension n and the Cn+6 norm of Kähler
potential φ and the lower bound of

√
−1∂∂̄φ. Hence, we can make C uniform

for all z, w ∈ U . The result follows by the symmetry G(z, w) = G(w, z) and
taking a = 2n+ 4. □
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2.5. Analytic hypoellipticity of the Kohn Laplacian

In this section, we work in the unweighted framework introduced above.
Let B ⊆ Cn be an open ball and let B̃ ⋐ B be a relatively compact subset.
When metrics are real analytic, M. Christ has proved the following estimates
in [Ch13a](see Lemma 7) by using the analytic hypoellipticity of the Kohn
Laplacian [Ta80, Tr78].

Lemma 2.2. Let the ball B ⊆ Cn be equipped with a real analytic Hermitian
metric g. Let L be a holomorphic line bundle over B, equipped with a positive
real analytic Hermitian metric h. For any relatively compact B̃ ⋐ B, there
exist positive constant C and b, such that for any solution u ∈ Γ(B,Λ0,q)
(0 < q < n) of ∆ku = 0 on B,

(2.8) ∥u∥L∞(B̃) ≤ Ce−bk∥u∥L∞(B)

Remark 2.3. This lemma does not require the metric g to be polarized
by the line bundle. That is to say, g is not necessarily −

√
−1∂∂̄ log h. We

still denote φ = − log h, which is a Kähler potential in the polarized case.
Positivity of h means that

(
φij̄
)
≥ cI for some c > 0. The constant C is a

universal numerical constant. The constant b depends on the following data:

(a) the lower bound of
√
−1∂∂̄φ, i.e. a positive constant c such that

(
φij̄
)
≥

cI in B;

(b) the lower bound of (gij̄), i.e. a positive constant c such that
(
gij̄
)
≥ cI

in B;

(c) the analyticity constant of φ, i.e. a positive constant C(φ) such that

∣∣∣Dα
(z,z̄)φ(z)

∣∣∣ ≤ C(φ)|α|+1α!, for any multi-index α and z ∈ B;

(d) the analyticity constant of each entry of metric g;

(e) the distance from B̃ to ∂B.

For the completeness, we include a proof here for n ≥ 2. To begin with,
we endow B × R with a strictly pseudoconvex CR structure (see [ChSh01]
for more details). Set the domain

Ω =
{
(z, w) ∈ B × C : Imw > φ(z)

2

}
.
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Then its boundary is

∂Ω =
{
(z, w) ∈ B × C : Imw = φ(z)

2

}
,

and it defining function is ρ(z, w) = Imw − φ(z)
2 . A straightforward calcula-

tion shows that if we define

Lp :=
∂

∂zp
+ iφp

∂

∂w
, for 1 ≤ p ≤ n,

then {Lp} form a global basis for the space of T 1,0∂Ω. Clearly,

[Lp, Lq] = 0, for any 1 ≤ p, q ≤ n.

Thus (∂Ω, T 1,0∂Ω) is a CR manifold.
We can identify the boundary ∂Ω with B × R via the diffeomorphism

π : ∂Ω → B × R defined as

π
(
z, t+ iφ(z)2

)
→ (z, t).

Therefore, a CR structure can be induced on B × R, via π, that is,

π∗Lp = π∗
(

∂
∂zp

+ iφp
∂
∂w

)
= ∂

∂zp
+ iφp

2
∂
∂t , for 1 ≤ p ≤ n.

We still use Lp for π∗Lp for 1 ≤ p ≤ n by abusing notations. If we denote
T = ∂

∂t , then

[Lp, Lq] =
[
∂
∂zp

+ iφp

2
∂
∂t ,

∂
∂zq

− iφq̄

2
∂
∂t

]
= −iφpq̄T.

Since φ = − log h is plurisubharmonic by the positivity of the Hermitian line
bundle (L, h), the CR structure on B × R is strictly pseudoconvex.

We will further endow the CR manifold B × R with a compatible Her-
mitian structure. Note Lp, Lp for 1 ≤ p ≤ n and T form a global basis of the
tangent bundle. We can directly define an Hermitian metric h such that

h(Lp, Lq) = gpq̄, h(Lp, Lq) = h(Lp, T ) = h(Lp, T ) = 0, h(T, T ) = 1.

Set ωp = dzp, ωp = dzp for 1 ≤ p ≤ n and τ = dt− iφp

2 dzp + i φp̄

dzp
, which form

a dual basis to Lp, Lp, T . Then h naturally induces a Hermitian metric on
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the cotangent bundle such that

(2.9) h(ωp, ωq) = gpq̄.

The induced volume form is therefore

dVB×R = det g
√
−1
2 dz1 ∧ dz1 ∧

√
−1
2 dz2 ∧ dz2(2.10)

∧ · · · ∧
√
−1
2 dzn ∧ dzn ∧ dt

= dVg ∧ dt.

We are now ready to prove Lemma 2.2.

Proof. Set U(z, t) = u(z)eikt as a (0, q) form on B × R. Let ∂b be the Cauchy
Riemann operator associated to the CR structure on B × R. Then

∂bU =

n∑

p=1

dzp ∧ LpU = eikt
(
∂ku+ k

2∂kφ ∧ u
)
= eiktDke

−iktU.

Since the metric and volume form on B × R as shown in (2.9) and (2.10)
are compatible with those of (B, g), the formal adjoint ∂

∗
b satisfies

∂
∗
bU = eiktD

∗
ke

−iktU.

Therefore,

□bU = eikt∆ku = 0.

Note that the CR structure constructed on B × R is real analytic and strictly
pseudoconvex, while the compatible Hermitian metric on B × R is also real
analytic. By the analytic hypoellipticity of Kohn Laplacian □b for n ≥ 2
([Ta80, Tr78]), the solution U is real analytic. What is more, there exists
some positive constant C, which only depends on the data in Remark 2.3,
such that

∥DαU(z, t)∥L∞(B̃×R) ≤ ∥U∥L∞(B×R)C
|α|α!, for any multi-index α.

In particular,

∥kmu(z)∥L∞(B̃) = ∥Dm
t U∥L∞(B̃×R) ≤ Cmm!∥u∥L∞(B), for m ≥ 0.

Therefore,

∥u∥L∞(B̃) ≤
Cmm!

km
∥u∥L∞(B), for m ≥ 0.
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Take m = [ kC ] and then by Stirling’s approximation,

∥u∥L∞(B̃) ≤
m!

mm
∥u∥L∞(B) ≤ e−m+1m

1
2 ∥u∥L∞(B) ≤ C1e

−bk∥u∥L∞(B),

where C1 = e and b = 1
2C . □

3. Estimates of the Green kernel near the diagonal

Given p ∈ X, let V be a coordinate chart containing p. Without the loss of
generality, we can assume V = B(p, 3) ⊆ Cn. Recall thatM(x) is a C2 func-
tion on R>0 such that log (M(x)) is strictly convex. We define the following
class of functions, the growth rate of whose Taylor coefficients are controlled
by M .

Definition 3.1. Suppose u ∈ C∞(V ). We say the Taylor coefficients of u
are majorized by M , if there exists some positive constant A such that for
any multi-index α ∈ Z2n

≥0 with |α| ≠ 0 and any z ∈ V ,

(3.1)

∣∣∣∣
Dαu

α!
(z)

∣∣∣∣ ≤ A|α|M(|α|).

We shall use CM (V ) to denote the collection of all such smooth functions on
V . We shall also say a family of functions is uniformly in CM (V ), if there
exists a positive constant A satisfying (3.1) for any function in the family.

Remark 3.2. It is not hard to verify that condition (3.1) is invariant under
holomorphic coordinates change if we allow A to depend on the coordinate
chart and local coordinates. Therefore, we can similarly define the class
CM (X).

Let φ be a Kähler potential on V such that all the second order deriva-
tives ∂2φ ∈ CM (V ). Set U = B(p, 1) and we will prove the following esti-
mates of Gk(z, w) for z, w in a shrinking neighborhood in U . We first intro-
duce some notations before stating the result.

Let J(x) =M(x)1/x and assume J(x) is unbounded. In Lemma 3.17, we
will prove that

x2J(x)J ′(x)e
2xJ′(x)

J(x)

is strictly increasing to infinity starting from some point x0 > 0 and we let

(3.2) k0 = x20J(x0)J
′(x0)e

2x0J′(x0)

J(x0) .
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Then for each integer k ≥ k0, the equation

N2J(N)J ′(N)e
2NJ′(N)

J(N) = k,

has a unique solution N(k) ∈ R>0 and we define f(k) as

f(k) =
N(k)

√
J ′(N(k))/J(N(k))√

log k
,

and for k < k0 we define f(k) = f(k0). By the following lemma, whose proof
will be given later, we know that:

Lemma 3.3. Then f(k) is strictly increasing to infinity for k ≥ k0.

This section is devoted to proving the following theorem, which proves
our near diagonal estimates with f(k) defined above.

Theorem 3.4. Suppose the Kähler potential φ satisfies that ∂2φ ∈ CM (V )
where M is strictly logarithmically convex and M(x)

1

x is unbounded. Then
there exist positive constants a, b, C, γ, κ, independent of k so that for any

z, w ∈ U with γ
√

log k
k ≤ |z − w| ≤ f(k)

√
log k
k and k ≥ κ,

|Gk(z, w)|+ |∇zGk(z, w)|+ |∇z∇wGk(z, w)| ≤ Ce−bk|z−w|
2

.

When φ is analytic this estimate holds in the much larger neighborhood

γ
√

log k
k ≤ |z − w| ≤ 1 for any k ≥ κ.

Remark 3.5. The constant b depend on the following data:

(a) the lower bound of
√
−1∂∂̄φ, i.e. a positive constant c such that

(
φij̄
)
≥

cI in B;

(b) the lower bound of (gij̄), i.e. a positive constant c such that
(
gij̄
)
≥ cI

in B;

(c) the constant A as in (3.1) for metric g and ∂2φ.

And C depends on (a), (b), (c) and certain Cm norm of φ and g for some m
only depending on the dimension n.

The following lemma is the counterpart of Lemma 2.2 for metrics in the
class CM , which is a key step in proving the above theorem. As in [Ch13a],
we will construct analytic metrics to approximate g and h in the CM class
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and apply Lemma 2.2 to the approximation metrics. As the constants in
(2.8) depend only on the data mentioned in Remark 2.3, which are uniform
in a shrinking ball depending on k for all the approximation metrics, we can
prove (2.8) for the CM metrics in such a shrinking ball.

Lemma 3.6. Let the ball B = B(0, 3) ⊆ Cn be equipped with a smooth
Hermitian metric g ∈ CM (B). Let L be a holomorphic line bundle over B,
equipped with a positive smooth Hermitian metric h such that all second or-
der derivatives ∂2 log h ∈ CM (B). Then for each δ ∈ (0, 1), there exist posi-
tive constants C and b, such that for any solution u ∈ Γ(B,Λ0,q) (0 < q < n)
of ∆ku = 0 on B,

∥u∥
L∞(B(z,

1
2 δf(k)

√
log k

k
))
≤ Ce−bf

2(k) log k∥u∥
L∞(B(z,δf(k)

√
log k

k
))
,(3.3)

for any z ∈ B(0, 1),

where f is defined in (1.3).

Here ∂2 log h ∈ CM (B) means that for every local potential φ = − log h
on an open set B, there exists A > 0 satisfying (3.1) for any multi-index
α ∈ Z2n

≥0 with |α| ≠ 0 and any z ∈ B,

Remark 3.7. As in Remark 2.3, this lemma does not require the metric g
is polarized by the line bundle either. We still denote φ = − log h, which is
a Kähler potential in the polarized case. The constants C and b depend on
the same data as in the previous remark.

Before proving this lemma, we first show the application of this lemma
in proving Theorem 3.4.

Proof of Theorem 3.4. Given w ∈ B(p, 1), by using the Bochner coordinates
at w, we can write the Kähler potential as φ(z) = |z|2 +O(|z|4) = |z|2ϕ(z)
for some ϕ ∈ C∞(B(w, 2)) and any z ∈ B(w, 2). Fix r ≥ 2√

k
and define a

linear map T : B(0, 2) ⊆ Cn → U such that T (ζ) = rζ. Pulling back the op-
erator Dk = Dk,φ, we obtain

(3.4) D
†
k,φ(rζ) = ∂k +

k
2∂k (φ(rζ))∧ = ∂k +

k̃
2∂k

(
φ(rζ)
r2

)
∧ = D

†
k̃,
φ(rζ)
r2

,

where ∂k always acts on the ζ variable and

k̃ = kr2 > log k.
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Associated to the L2 inner product induced by the metric g(rζ) over B(0, 2),

we can also define the adjoint of D
†
k,φ(rζ) and the Laplace operator ∆†

k,φ(rζ).

Note φ(rζ)
r2 = |ζ|2ϕ(rζ) as a function of ζ belongs to C∞(B(0, 2)) for any

0 < r ≤ 1. What is more, the following data are also uniform for 0 < r ≤ 1.

(a) ∂∂̄ φ(rζ)r2 =
(
∂∂̄φ

)
(rζ) is bounded below uniformly for 0 < r ≤ 1.

(b) g(rζ) is bounded below uniformly for 0 < r ≤ 1.

(c) ∂2 φ(rζ)r2 = ∂2φ(rζ) is in CM uniformly for 0 < r ≤ 1. This is to say, there

exists a positive constant A satisfying (3.1) for all functions ∂2 φ(rζ)r2

with 0 < r ≤ 1.

(d) The metric g(rζ) is in CM uniformly for 0 < r ≤ 1.

Pulling back the Green kernel Gk via T and using (3.4), for any nonzero
ζ ∈ B(0, 2) we have

∆†
k̃,
φ(rζ)
r2

Gk(rζ, 0) = ∆†
k,φ(rζ)Gk(rζ, 0) = T ∗ (∆kGk) (ζ, 0) = 0.(3.5)

By taking δ = 1
4 in Lemma 3.6 , for any ζ with 1

3f(k̃)
√

log k̃

k̃
≤ |ζ| ≤

4
3f(k̃)

√
log k̃

k̃
, we have

|Gk(rζ, 0)| ≤Ce−bf
2(k̃) log k̃∥Gk(r ·, 0)∥

L∞(B(ζ,
1
4f(k̃)

√
log k̃

k̃
))
.

Note that whenever ξ ∈ B(ζ, 14f(k̃)
√

log k̃

k̃
), one has |ξ| ≥ 1

12f(k̃)
√

log k̃

k̃
. Since

f(k) is bounded from below by a positive constant by Lemma 3.3, we have

|ξ| ≥ ck−
1
2 for some positive constant c. Now for any 2√

k
≤ r ≤ 1, the a priori

estimates on Gk in Lemma 2.1 imply

|Gk(rζ, 0)| ≤ Ckae−bf
2(k̃) log k̃.

The constants C and b only depend on the positivity of
√
−1∂∂̄φ, the con-

stant A in (3.1) for ∂2φ, and n. The constant a only depends on the dimen-
sion n. Since for any ζ ̸= 0,

∆†
k̃,
φ(rζ)
r2

Gk(rζ, 0) = 0,



✐

✐

“7-Xu” — 2020/7/24 — 15:55 — page 761 — #19
✐

✐

✐

✐

✐

✐

Quantitative upper bounds for Bergman kernels 761

where ∆†
k̃,
φ(rζ)
r2

acts on the first variable ζ, by using the interior estimates

(2.5) with R = 1

6k̃
, and Sobolev embedding theorem, we obtain

∥Gk(rζ, 0)∥
C1(A(0; 1

2
f(k̃)(

√
log k̃

k̃
),f(k̃)(

√
log k̃

k̃
))

≤ Cka∥Gk(rζ, 0)∥
L∞(A(0; 1

3
f(k̃)(

√
log k̃

k̃
), 4

3
f(k̃)(

√
log k̃

k̃
)))

≤ Ckae−bf
2(k̃) log k̃

≤ Ckae−
b

4
k|rζ|2

In each line, C and a may be renamed by new constants, but they only
depend on the positivity of

√
−1∂∂̄φ, the constant A in (3.1) for ∂2φ, and

n. And a still only depends on n. Therefore, uniformly for any w ∈ U , any
r with 2√

k
≤ r ≤ 1, and any z, w ∈ U satisfying

r

2
f(kr2)

√
log(kr2)
kr2 ≤ |z − w| ≤ rf(kr2)

√
log(kr2)
kr2 ,

we have

|Gk(z, w)|+ |∇zGk(z, w)| ≤ Ckae−bk|z−w|
2

.

In particular, if we vary r within the interval [2k−1/2, 1], we have for z, w ∈ U

with
√

log k
k ≤ |z − w| ≤ f(k)

√
log k
k ,

|Gk(z, w)|+ |∇zGk(z, w)| ≤ Ckae−bk|z−w|
2

.

Since ∆k∇zGk(z, w) = ∆k∇zGk(z, w) = 0 if ∆k is acting on the w vari-
able, the estimate on ∇z∇wGk(z, w) follows by bootstrapping. By the rela-
tion (2.1), this lemma immediately implies the Theorem 1.2 for any points

z, w ∈ X with γ
√

log k
k ≤ d(z, w) ≤ f(k)

√
log k
k . Here γ is a sufficiently large

constant so that ka can be absorbed by e−
b
2kd(z,w)

2

. This finishes the proof
of Theorem 3.4, except it remains to prove it in the analytic case. □

3.1. Proof of Theorem 3.4 in the analytic case.

We provide two proofs. The first proof 4 is obvious from the above rescaling
argument, the only change is that instead of Lemma 3.6 which is specialized

4This proof was communicated to us by M. Christ [Ch17].
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for the non-analytic cases, we use Lemma 2.2 combined with the uniformity
of the following data:

(a) ∂∂̄ φ(rζ)r2 =
(
∂∂̄φ

)
(rζ) is bounded below uniformly for 0 < r ≤ 1.

(b) g(rζ) is bounded below uniformly for 0 < r ≤ 1.

(c) ∂2 φ(rζ)r2 = ∂2φ(rζ) is uniformly analytic for 0 < r ≤ 1.

(d) The metric g(rζ) is uniformly analytic for 0 < r ≤ 1.

The second proof involves taking the limit s→ 1+ in Corollary 1.3. Since
we need to understand the constants involved in terms of s, we shall give
this proof in Subsection 3.4.

3.2. Proof of Lemma 3.6

By translation, we can assume z = 0 and work in B(0, 2). Take the Taylor
expansion of φ at 0, that is,

φ(ζ) = φ(0) +

n∑

i=1

φi(0)ζi +

n∑

i=1

φī(0)ζi +
1
2

n∑

i,j=1

φij(0)ζiζj

+

n∑

i,j=1

φij̄(0)ζiζj +
1
2

n∑

i,j=1

φīj̄(0)ζiζj +O(|ζ|3).

Set

P = φ(0) +

n∑

i=1

φi(0)ζi +

n∑

i=1

φī(0)ζi +
1
2

n∑

i,j=1

φij(0)ζiζj +
1
2

n∑

i,j=1

φīj̄(0)ζiζj .

Let Q be the real-valued harmonic conjugate of P , normalized to vanish at
0. Since ∂̄(P + iQ) = 0,

Dk,φ = ∂̄ + k
2 ∂̄φ∧ = eikQ

(
∂̄ + k

2 ∂̄(φ− P )∧
)
e−ikQ = eikQDk,φ−P e

−ikQ.

With the L2 inner product induced by g on Γ(B(0, 2),Λ0,q), the formal
adjoint operators are related by

D
∗
k,φ = eikQD

∗
k,φ−P e

−ikQ.

For the Laplace operators, we have

∆k,φ = eikQ∆k,φ−P e
−ikQ.
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Therefore,

∆k,φu = 0 if and only if ∆k,φ−P e
−ikPu = 0.

What is more, u and e−ikPu share the same L∞ norm. So by replacing φ by
φ− P , we can assume the Taylor expansion of φ at 0 has the form

φ(ζ) =

n∑

i,j=1

φij̄ζiζj +O(|ζ|3).

We will now extend φ to a plurisubharmonic function on Cn. Let η be
a smooth cut-off function on Cn such that η = 1 on B(0, 1) and supp η ⊆
B(0, 2). For any ζ ∈ Cn, define

ψ(ζ) = φ2(ζ) + η
(
ζ
ε0

)
(φ(ζ)− φ2(ζ)) ,

where ε0 is a small positive number and φ2 is the Taylor polynomial of
degree 2 for φ at 0, which in here φ2(ζ) =

∑n
i,j=1 φij̄(0)ζiζj . Then ψ is close

to φ2 in C2 norm when ε0 is sufficiently small.

Lemma 3.8. When ε0 is sufficiently small, we have

∥ψ − φ2∥C2(Cn) = O(ε0).

Proof. Since ψ − φ2 = 0 when |ζ| ≥ 2ε0, we only need to consider |ζ| ≤ 2ε0.
Since ε0 is sufficiently small, by Taylor’s theorem,

φ(ζ)− φ2(ζ) = O(|ζ|3).

Therefore,

∥ψ − φ2∥C2(Cn) = ∥ψ − φ2∥C2(B(0,2ε0)) = O(ε0). □

In particular, this implies that
(
∂i∂j̄ψ

)
(ζ) is positive uniformly for ζ ∈

Cn when ε0 is sufficiently small, because ∂i∂j̄φ2(z) = ∂i∂j̄φ(0) is a positive
definite constant matrix. From now on, we will fix such a sufficiently small
constant ε0.

To proceed, we need the following lemma on the function J(x) =M(x)1/x

on R>0.

Lemma 3.9. If logM(x) is strictly convex and J(x) is unbounded, then
there exists some x0 > 0 such that J(x) is strictly increasing for x > x0
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Proof. Since logM(x) is strictly convex, x log J(x) is strictly convex. By
taking two derivatives, we have

(3.6) 2
J ′(x)
J(x)

+ x
J ′′(x)J(x)− (J ′(x))2

J2(x)
> 0.

It follows that

x

(
J ′(x)
J(x)

)′
= x

J ′′(x)J(x)− (J ′(x))2

J2(x)
> −2

J ′(x)
J(x)

.

Therefore,

(3.7)

(
x2
J ′(x)
J(x)

)′
> 0.

So either J ′(x) is always negative, or J ′(x) is positive starting from some x0.
In the first case, J ′(x) < 0 implies that J(x) is bounded, which contradicts
our assumption. So J ′(x) is positive after some x0, and the result follows
immediately. □

Definition 3.10. We define x0 to be the smallest number such that J ′(x) >
0 for x > x0 and J(x) ≥ J(y) for all y ≤ x0.

Next, we construct a sequence of real analytic functions ΨN,r to approx-
imate ψ. Define

(3.8) ΨN,r(ζ) = r−2ψN (rζ) + r−2 (1− η(ζ)) (ψ2(rζ)− ψN (rζ)) ,

where ψN is the Taylor polynomial of degree N for ψ at 0. We will restrict
r to be

1√
k
≤ r ≤ εM(N)−1/N ,

for some variable ε > 0 sufficiently small, where all approximation functions
ΨN,r are uniformly plurisubharmonic on Cn.

Lemma 3.11. There exits some ε+ 1 > 0 depending on constant A, di-
mension n and the metric g, such that

√
−1∂∂̄ΨN,r(ζ) is positive uniformly

for ζ ∈ Cn and r ≤ εM(N)−1/N for all 0 < ε ≤ ε1.
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Proof. It is sufficient to show that when ε is small enough, uniformly for
r ≤ εM(N)−1/N , one has

(3.9) ∥ΨN,r(ζ)− ψ2(ζ)∥C2(Cn) = O(ε).

By (3.8), ψN,r writes into

ΨN,r(ζ) = ψ2(ζ) + r−2η(ζ) (ψN (rζ)− ψ2(rζ)) .

Since supp η ⊆ B(0, 2), we only need to estimate
∥∥∥∥
1

r2
(ψN (rζ)− ψ2(rζ))

∥∥∥∥
C2(|ζ|≤2)

.

Recall ψN and ψ2 are Taylor polynomials for ψ at 0. Denote v = (ζ, ζ). Then

1
r2 (ψN (rζ)− ψ2(rζ)) =

∑

3≤|α|≤N

Dα
v ψ
α! (0)r|α|−2vα.

By Lemma 3.9 and Definition 3.10, if N ≥ x0 then we have M(|α|)1/|α| ≤
M(N)1/N for any 1 ≤ |α| ≤ N . Note that ψ = φ in B(0, ε0) and thus we
have

∥∥ 1
r2 (ψN (rζ)− ψ2(rζ))

∥∥
C2(|ζ|≤2)

≤
∑

3≤|α|≤N

∣∣∣D
α
v ψ
α! (0)

∣∣∣ r|α|−2∥vα∥C2(|ζ|≤2)

≤
∑

3≤|α|≤N
A|α|−2M(|α| − 2)

(
εM(N)−1/N

)|α|−2
|α|22|α|

≤
∑

3≤|α|≤N
(εA)|α|−2|α|22|α|.

Therefore, when ε ≤ 1
16A ,

∥∥ 1
r2 (ψN (rζ)− ψ2(rζ))

∥∥
C2(|ζ|≤2)

≤ 22n+7Aε.

So the result follows by the fact that 1
r2ψ(rζ) =

∑n
i,j=1 φij̄(0)ζiζj . □

Remark 3.12. By using the same argument, we can actually generalize
(3.9) to any Cm norm. That is to say,

∥ΨN,r(ζ)− ψ2(ζ)∥Cm(Cn) = Om(ε).
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The approximation functions ΨN,r are also uniformly real analytic as
stated in the following lemma.

Lemma 3.13. There exist some ε1 > 0 depending on A, such that ΨN,r(ζ)
are real analytic on |ζ| ≤ 1, uniformly for r ≤ εM(N)−1/N for all 0 < ε ≤ ε1.

Proof. We denote v = (ζ, ζ). When |ζ| ≤ 1, (3.8) writes into

ΨN,r(ζ) = r−2ψN (rζ) =
∑

2≤|α|≤N

Dα
v ψ
α! (0)r|α|−2vα.

After taking derivatives,

Dβ
vΨN,r(ζ)
β! =

∑

2≤|α|≤N

∑

β≤α

Dα
v ψ
α! (0)r|α|−2

(
α

β

)
vα−β .

By using the fact that ψ = φ on B(0, ε0),

∣∣∣D
β
vΨN,r(ζ)
β!

∣∣∣ ≤
∑

2≤|α|≤N

∑

β≤α
A|α|−2M(|α| − 2)r|α|−2

(
α

β

)

≤
∑

2≤|α|≤N
2|α|(Aε)|α|−2.

When ε ≤ 1
4A , ∣∣∣D

β
vΨN,r(ζ)
β!

∣∣∣ ≤ 22n+5.
□

Similarly, we will also approximate the metric g by analytic ones. Define

(3.10) gN,r(ζ) = gN (rζ) + (1− η(ζ)) (g(0)− gN (rζ)) ,

where gN is the Taylor polynomial of degree N for g at 0. By the same
argument as in Lemma 3.11, we can show that

(3.11) ∥gN,r(ζ)− g(0)∥C2(Cn) = O(ε).

In particular, when ε is sufficiently small, gN,r is bounded below by some
positive constant on Cn, uniformly for r ≤ εM(N)−1/N . What is more, the
same argument as in Lemma 3.13 implies that gN,r is real analytic on |ζ| ≤ 1,
uniformly for r ≤ εM(N)−1/N .
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For each plurisubharmonic function ΨN,r on Cn and any k > 0, we can
define Dk,ΨN−n−1,r

= ∂̄ + k
2 ∂̄ΨN−n−1,r∧. With the L2 inner product on dif-

ferential forms induced by gN−n−3,r, we have the formal adjoint D
∗
k,ΨN−n−1,r

.
We can further define the Laplace operator

∆k,ΨN−n−1,r,gN−n−3,r
= Dk,ΨN−n−1,r

D
∗
k,ΨN−n−1,r

+D
∗
k,ΨN−n−1,r

Dk,ΨN−n−1,r
.

One key observation is that

Dkr2,ΨN−n−1
= Dk,r2ΨN−n−1

,

and so is that

∆kr2,ΨN−n−1,r,gN−n−3,r
= ∆k,r2ΨN−n−1,r,gN−n−3,r

.

Denote ∆N =∆kr2,ΨN−n−1,r,gN−n−3,r
for simplicity and let ∆=∆k,ψ(rζ),g(rζ)

for |ζ| ≤ 1. We will compare these two Laplacians.

Lemma 3.14. For any w ∈ Cn+2(B(0, 1)) and any |ζ| ≤ 1, we have

|∆w(ζ)−∆Nw(ζ)|Cn ≤ Ck2(2n+3Aε)N−n−2|w(ζ)|Cn+2 ,

where C is a constant only depending on the metric g and dimension n and
|w(ζ)|Cm =

∑m
j=0 |∂jw(ζ)| for any m ≥ 0.

Proof. Recall that when |ζ| ≤ 1, r2ΨN,r(ζ) = ψN (rζ), which is the Taylor
polynomial of ψ at 0. By Taylor’s theorem,

ψ(rζ)− ψN−n−1(rζ) =
∑

|α|=N−n

N−n
α! (rζ)α

∫ 1

0
(1− t)N−n−1 (Dαψ) (rtζ)dt.

Allow C(n) to be a constant only depending on n, which may change in dif-
ferent steps. Thus, for r ≤ εM−1/N and sufficiently small ε, we can estimate
the difference as

∥ψ(rζ)− ψN−n−1(rζ)∥Cn+2(|ζ|≤1) ≤ C(n)2(n+3)N (εA)N−n

≤ C(n)(2n+3εA)N−n,

Similarly, gN−n−3,r(ζ) = gN−n−3(rζ) for |ζ| ≤ 1, which is the Taylor poly-
nomial of g at 0, whence

∥g(rζ)− gN−n−3,r(ζ)∥Cn+2(|ζ|≤1) ≤ C(n)(2n+3Aε)N−n−2.
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Since gN,r are bounded below and above uniformly on |ζ| ≤ 1 by (3.11), we
also have the similar estimates on the inverses of gN,r and g. That is,

∥∥∥g−1(rζ)− g−1
N−n−3,r(ζ)

∥∥∥
Cn+2(|ζ|≤1)

≤ C(2n+3Aε)N−n−2,

where C = C(n, g) is a constant depending only on the metric g and di-
mension n. Note that in general, the notation ∆k,φ,g denotes a second order
differential operator, whose coefficients are polynomials of derivatives (up
to second order) of g, φ and g−1, together with k and k2. Thus, for any
w ∈ C2(B(0, 1)) and any |ζ| ≤ 1, we have

|∆w(ζ)−∆Nw(ζ)|Cn ≤ Ck2(2n+3Aε)N−n−2|w(ζ)|Cn+2 .
□

Now define w(ζ) = ur(ζ) := u(rζ). Since for any |ζ| ≤ 1,

∆ur(ζ) = ∆k,ψ(rζ),g(rζ)u(rζ) = ∆k,φ(rζ),g(rζ)u(rζ) = 0,

by using the interior estimates (2.5), we have for any |ζ| ≤ 1
2 ,

|∆Nur(ζ)|Cn ≤ Ck2(2n+3Aε)N−n−2|ur(ζ)|Cn+2(3.12)

≤ Ck2n+5(2n+3Aε)N−n−2∥ur∥
L2(B(ζ,

1
2 ))
.

Recall that ∆N =∆kr2,ΨN−n−1,r,gN−n−3,r
, where uniformly for r≤εM−1/N ,√

−1∂∂̄ΨN,r is positive by Lemma 3.11 and ∥gN,r(ζ)∥C2(Cn) is bounded above
by (3.11). Performing a standard integration by parts calculation (see Chap-

ter IV in [Ho66]), for
√

log k
k ≤ r ≤ εM−1/N and any h ∈ C∞

0 (Cn,Λ0,1),

(∆Nh, h)L2 ≥
kr2

2
(h, h)L2 .

Note that the L2 norm here is induced by the metric gN−n−3 on Cn.
Let η be a smooth cut-off function such that η = 1 in B(0, 14) and

supp η ⊆ B(0, 12). Then for the equation

∆Nv = η∆Nur,

there exits a solution v such that

(3.13) ∥v∥L2 ≤ 2

kr2
∥η∆Nur∥L2 .
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Combining with (3.12), we have

(3.14) ∥v∥L2 ≤ Ck2n+5(2n+3Aε)N−n−2∥ur∥L2(B(0,1)).

By the interior estimates (2.5) and the Sobolev embedding, we have the
pointwise estimates of v in B(0, 14). That is,

|v(ζ)| ≤ C∥v∥Hn+1(B(0, 1
2
)) ≤ C

(
kn+1∥v∥L2(B(0, 1

2
)) + kn−1∥∆Nv∥Hn(B(0, 1

2
))

)
.

Using (3.12) and (3.13), we have

|v(ζ)| ≤ Ckn+1∥∆Nur∥Hn(B(0, 1
2
)) ≤ Ck3n+6(2n+3Aε)N−n−2∥ur∥

L2(B(ζ,
1
2 ))
.

On the other hand, as ∆N (ur − v) = 0 for ζ ∈ B(0, 14) and all the data in

Remark 2.3 are uniform for
√

log k
k ≤ r ≤ εM−1/N , by Lemma 2.2,

∥ur − v∥L∞(B(0, 1
8
)) ≤ Ce−bkr

2∥ur − v∥L∞(B(0, 1
4
))

≤ Ce−bkr
2 (

1 + k3n+6(2n+3Aε)N−n−2
)
∥ur∥L∞(B(0,1)),

where b is some positive constant independent from k, r and N . Therefore,

∥ur∥L∞(B(0, 1
8
)) ≤ Ck3n+6e−bkr

2∥ur∥L∞(B(0,1))

+ Ck3n+6e−(N−n−2) log( 1

2n+3Aε
)∥ur∥L∞(B(0,1)).

We restrict N ≥ 2n+ 4 and ε ≤ 22n+6A2 and rename b to be min
{
b, 14
}
.

Then,

∥ur∥L∞(B(0, 1
8
)) ≤ Ck3n+6

(
e−bkr

2

+ e−bN log( 1

ε)
)
∥ur∥L∞(B(0,1)),(3.15)

where C is a positive constant depending on the constant A in (3.1) for ∂2φ
and g, the dimension n, the positivity of

√
−1∂∂̄φ and g.

We now set r = εM(N)−1/N with ε ≤ ε1, where ε1 is sufficiently small
so that (3.15) holds, and match the decay rates to obtain

kr2 = N log
(
1
ε

)
.

To get the fastest decay rate, our goal is to maximize kr2 under the above
restrictions.
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Lemma 3.15. Given k > x20J(x0)J
′(x0)e

2NJ′(x0)

J(x0) , if r ∈ (0,∞), ε ∈ (0, ε1],
N ∈ [x0,∞) satisfy

r = εM(N)−1/N , kr2 = N log (1/ε) ,

Then there exists a unique point (r̄, ε̄, N̄) maximizing kr2 under the above
conditions. What is more, the maximum satisfies

(3.16) C(ε1)
−1f2(k) log k ≤ max(kr2) ≤ f2(k) log k,

where f(k) is defined as in (1.3) and C(ε1) is a constant depending on ε1
(for example we can take C(ε1) =

4 log(1/ε1)
ε21

).

Now we use this lemma to finish the proof of Lemma 3.6 and the proof
of Lemma 3.15 is delayed to the next section.

Since (r̄, ε̄, N̄) is the point where kr2 is attaining the maximum, (3.16)
implies

C(ε1)
−1/2f(k)

√
log k
k ≤ r̄ ≤ f(k)

√
log k
k .

Plugging r = δr̄ into (3.15) for given δ ∈ (0, 1) and using the fact that
limk→∞ f(k) = +∞ by Lemma 3.3, we have

∥u∥
L∞(B(0, δ

8C(ε1)1/2
f(k)

√
log k

k
)

≤ Ck3n+6
(
e−bδ

2 max(kr2) + e−bmax(kr2)
)
∥u∥

L∞(B(0,δf(k)
√

log k

k
))

≤ Ce−
1

2
bδ2f2(k) log k∥u∥

L∞(B(0,δf(k)
√

log k

k
))
.

Here C is a positive constant depending on the constant A in (3.1) for ∂2φ
and g, the dimension n, the positivity of

√
−1∂∂̄φ and g. We then rename

1
2bδ

2 by b. The result follows by a covering argument.

3.3. The optimization problem for f(k)

In this section we prove Lemmas 3.15 and 3.3.
Note

kr2 = kε2M−2/N = N log
(
1
ε

)
.

This can be written as

(3.17)
kε2

log(1ε )
= NM2/N := g(N).
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By Lemma 3.9, g(N) = NM2/N = NJ2(N) is strictly increasing for N ≥ x0.
We set N ≥ x0 from now on. Equivalently, that means

kε2

log
(
1
ε

) = g(N) ≥ g(x0).

Let ε0(k) be the only solution to kε2

log( 1

ε)
= g(x0). Then given ε ≥ ε0(k) we

can solve N = N(ε) = g−1

(
kε2

log( 1

ε)

)
. For ε ∈ [ε0(k), 1), we set

h(ε) = N(ε) log

(
1

ε

)
.

Then h satisfies the following property.

Lemma 3.16. Given k > 0, h(ε) has a unique critical point in (ε0(k), 1),
denoted by ε(k). h is strictly increasing in (0, ε(k)) and strictly decreasing
in (ε(k), 1).

Proof. We compute the critical point of h,

h′(ε) = N ′(ε) log

(
1

ε

)
− N

ε
.

On the other hand, if we rewrite (3.17) into

kε2 = g(N) log

(
1

ε

)
,

and take the derivative, we get

2kε = g′(N)N ′(ε) log

(
1

ε

)
− g(N)

ε
.

Therefore,

(3.18) N ′(ε) log

(
1

ε

)
=

2kε+ g(N)
ε

g′(N)
,

and h′(ε) turns into

(3.19) h′(ε) =
2kε+ M2

ε

g′(N)
− g(N)

ε
=

2 log
(
1
ε

)
g(N) + g(N)−Ng′(N)

εg′(N)
.



✐

✐

“7-Xu” — 2020/7/24 — 15:55 — page 772 — #30
✐

✐

✐

✐

✐

✐

772 H. Hezari and H. Xu

If we set h′(ε) = 0, then the critical point satisfies

log

(
1

ε

)
=
Ng′(N)− g(N)

2g(N)
=
NJ ′(N)

J(N)
.

Plugging this back into (3.17),

(3.20) k = g · Ng
′(N)− g(N)

2g(N)
· e

Ng′(N)−g(N)

g(N) = N2J(N)J ′(N)e
2NJ′

J .

We will show that the function on the right side is strictly increasing to
infinity when N > x0.

Lemma 3.17. Let G(x) = xg′(x)−g(x)
g(x) for x ∈ R>0 and let x0 be defined by

Definition 3.10. If logM(x) is strictly convex andM(x)
1

x is unbounded, then
g(x) ·G(x) · eG(x) is strictly increasing on (x0,∞) and converges to +∞ as
x→ ∞.

Proof. Recall that g(x) = xM
2

x (x) and thus x log(g(x))− x log x is strictly
convex. By a straightforward computation,

(3.21) (x log(g(x))− x log x)′′ = 2
g′(x)
g(x)

+ x
g′′(x)g(x)− (g′(x))2

g2(x)
− 1

x
> 0.

By Lemma 3.9, g(x)x is strictly increasing on (x0,∞). It implies that for
x > x0, (

g(x)

x

)′
=
xg′(x)− g(x)

x2
> 0,

and thus G(x) > 0 for x > x0. Next we compute the derivative of G:

G′(x) =
g′(x)
g(x)

+ x
g′′(x)g(x)− (g′(x))2

g2(x)
.

So (3.21) rewrites into

G′(x)− 1

x
G(x) = G′(x) +

g′(x)
g(x)

− 1

x
> 0.

In order to show that ln g(x) + lnG(x) +G(x) is increasing, we compute its
derivative:

(ln g(x) + lnG(x) +G(x))′ =
g′(x)
g(x)

+
G′(x)
G(x)

+G′(x) >
G′(x)
G(x)

+
1

x
> 0.
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Now that g(x) ·G(x) · eG(x) is strictly increasing for x > x0, it remains to
check g(x) ·G(x) · eG(x) is unbounded. Assume not. Then there exists some
constant C > 0 such that

xg′(x)− g(x) = g(x) ·G(x) ≤ C,

which can be rewritten into

(
g(x)

x
+
C

x

)′
≤ 0,

which is against the assumption that g(x)
x =M(x)2/x is unbounded. So the

result follows. □

Now that the right side of (3.20) is strictly increasing in N , for any k >
1
2g(x0)G(x0)e

G(x0), there exists a unique solution N(k) > x0 as in (1.2).

And by using the relation kε2

log 1

ε

= g(N) in (3.17), we can further solve ε(k) ∈
(0, 1), the critical point of h(ε). It is clear that ε(k) ∈ (ε0(k), 1) by the fact
g(N(k)) > g(x0).

Since h(ε) has a unique critical point in (ε0(k), 1), it remains to check h
attains a local max at ε(k). By taking one more derivative of (3.19),

h′′(ε) =− 2 log
(
1
ε

)
+ 3

ε2
g

g′
+

2 log
(
1
ε

)
+ 1

ε

(g′)2 − gg′′

(g′)2
− N ′(ε)

ε
+
N

ε2

=− 2 log
(
1
ε

)
+ 3

ε2
g

g′
+

2 log
(
1
ε

)
+ 1

ε

(g′)2 − gg′′

(g′)2

− 1

ε2 log
(
1
ε

) 2g log
(
1
ε

)
+ g

g′
+
N

ε2
.

Using (3.6),

h′′(ε) ≤ −2 log
(
1
ε

)
+ 3

ε2
g

g′
+

2 log
(
1
ε

)
+ 1

ε

(
2g′

g
− 1

N

)(
g

g′

)2 1

N

− 2 log
(
1
ε

)
+ 1

ε2 log
(
1
ε

) g

g′
+
N

ε2
.

Since at the critical point

g(ε(k))

g′(ε(k))
=

N

2 log
(

1
ε(k)

)
+ 1

,
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it follows that

h′′(ε(k)) ≤ − 2

ε(k)2
N

2 log
(

1
ε(k)

)
+ 1

+
2

ε(k)

− 1

ε(k)
(
2 log

(
1
ε(k)

)
+ 1
) − N

ε(k)2 log
(

1
ε(k)

) .

Thus h′′(ε(k)) < 0 by noting the fact

max
0<ε<1

ε log

(
1

ε

)
=

1

e
<

1

2
.

So the function h is strictly increasing before the critical point ε(k) and is
strictly decreasing afterwards. □

As ε is actually contained in (ε0(k), ε1] under our constraint, there are
two cases for the maximum of h(ε). The first case is when ε(k) ≤ ε1. Then

max
ε∈(ε0(k),ε1]

h(ε) = N(k) log

(
1

ε(k)

)
.

The second case is when ε(k) > ε1 and the maximum of h(ε) is attained
at ε1 instead. But in this case, h(ε1) is actually comparable to h(ε(k)). To
be precise, we claim that there exists some constant C(ε1) depending on ε1
such that

(3.22) h(ε1) ≤ h(ε(k)) ≤ C(ε1)h(ε1).

The first inequality is clear by Lemma 3.16. To prove the second one, we
need the following lemma on g.

Lemma 3.18. If logM(x) is strictly convex andM(x)
1

x is unbounded, then

(a) g(x) is strictly convex on R>0.

(b) For any y ≥ 1 and any k ≥ g(x0),

1

y
g−1(ky) ≤ g−1(2k).
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Proof. Recall (3.21) and rewrite it into

g′′(x)
g(x)

>

(
g′(x)
g(x)

)2

− 2

x

g′(x)
g(x)

+
1

x2
=

(
g′(x)
g(x)

− 1

x

)2

.

Thus (a) follows immediately.
Now we prove (b). Since g(x) is increasing for x∈(x0,∞) by Lemma 3.9

and convex by (a), the inverse function g−1(x) is concave on (g(x0),∞). For
any k ≥ g(x0) and y ≥ 1, we have

1

y
g−1 (ky) ≤ 1

y
g−1 (ky) +

y − 1

y
g−1(g(x0))

≤ g−1

(
yk + (y − 1)g(x0)

y

)
≤ g−1(2k).

So we obtain (b). □

Now we prove (3.22). If ε(k) ∈ (ε1, e
−1), then

h(ε(k)) = log (1/ε(k)) g−1

(
kε(k)2

log (1/ε(k))

)
≤ log (1/ε1) g

−1(k),

and Lemma 3.18 gives that for any k ≥ 2g(x0) log(1/ε1)
ε21

,

g−1(k) ≤ 2 log(1/ε1)

ε21
g−1

(
kε21

log (1/ε1)

)
.

Therefore, (3.22) follows by setting C(ε1) =
2 log(1/ε1)

ε21
.

On the other hand, if ε(k) ∈ (e−1, 1), then using Lemma 3.18 again, for

any k ≥ 2 log(1/ε1)
ε21

, we have

h(ε(k)) ≤ g−1 (2k) ≤ 4 log(1/ε1)

ε21
g−1

(
kε21

log (1/ε1)

)
,

and thus (3.22) follows by setting C(ε1) =
4
ε21
.

Proof of Lemma 3.3. We denote β(N(k)) = J ′(N(k))
J(N(k)) and then f2(k) writes

into

f2(k) =
N2(k)β(N(k))

log k
.
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We denote Ṅ(k) = dN
dk (k) and compute the derivative of f2(k):

(3.23) (f2)′(k) =
ṄN (2β +Nβ′) k log k −N2β

k log2 k
.

Taking the logarithm of (1.2), we get

(3.24) 2 logN + 2 log J + log β + 2Nβ = log k.

Differentiating this, we get

Ṅ

(
2

N
+ 2β +

β′

β
+ 2β + 2Nβ′

)
= Ṅ

(
Nβ′ + 2β

)( 1

Nβ
+ 2

)
=

1

k
.

We solve Ṅ and plug it into (3.23):

(f2)′(k) =
N
(

1
Nβ + 2

)−1
log k −N2β

k log2 k
=
N log k −N − 2N2β

k log2 k
(

1
Nβ + 2

) .

Note that β(N(k)) = J ′(N(k))
J(N(k)) > 0 for N(k) > x0 by Lemma 3.9. So it is

sufficient to check log k − 1− 2Nβ is positive. By (3.24),

log k − 1− 2Nβ = 2 log J + log
(
N2β

)
− 1.

By (3.7), log
(
N2β

)
is bounded below when N(k) > x0. Recall J(x) is in-

creasing to infinity when x > x0 by Lemma 3.9 and N(k) is also increasing
to infinity. Thus f(k) is strictly increasing when k is large enough. It remains
to show that limk→∞ f(k) = ∞.

Recall from the proof of Lemma 3.16 that

f2(k) log k = h(ε(k)) ≥ h(k−1/4).

The second inequality is valid because h attains the maximum at ε(k).

If ε = k−1/4, then for sufficiently large k satisfying 4
√
k

log k ≥ x0, N(ε) =

g−1
(

4
√
k

log k

)
by (3.17). Thus,

h(k−1/4) =
1

4
g−1

(
4
√
k

log k

)
log k.

The result follows by the fact that g(x) = xJ2(x) is increasing to infinity on
(x0,∞). □
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3.4. The second proof of Theorem 3.4 in the analytic case

Let s ∈ (1, 2) and assume h ∈ G1 ⊂ Gs. Clearly the majorant is given by
M(N) = N (s−1)N and hence correspondingly J(N) = N s−1 and g(N) =
NJ2(N) = N2s−1. It is clear from Definition 3.10 that in this case x0 = 1,
and therefore k0 = (s− 1)e2s−2. From the proof of Lemma 3.18, we also

require that k ≥ 2 log(1/ε1)
ε21

, where ε1 only depends n and h but not s. In

addition, in the proof of estimate (3.15), we need N(k) ≥ 2n+ 4. But since
N(k) satisfies (1.2) we get

N(k) =

(
e2−2s

s− 1

) 1

2s−1

k
1

2s−1 ≥
(
e2−2s

s− 1

) 1

2s−1

.

Hence by choosing s sufficiently close to 1 we get N(k) ≥ 2n+ 4 for all
k ≥ 1. Another place that we need to carefully study the dependence of our
constants on s is in the proof of Lemma 3.15, when we absorb ka(n) into
e−bf(k)

2 log k, where a(n) depends only on n. To do this we need to choose
k large enough so that bf(k)2 ≥ 2a(n). This follows because by (1.3) for s
sufficiently close to 1, we have

f(k) =

(
(s− 1)N(k)

log k

) 1

2

= (s− 1)
s−1

2s−1 e
1−s

2s−1
k

1

4s−2

√
log k

≥ 1

2

k
1

6

√
log k

.

Finally, since b and C in Theorem 3.4 are independent of s, we can take the

limit as s→ 1+, and obtain f(k) → k
1
2√

log k
, which proves Theorem 3.4 in the

analytic case.

3.5. Estimates of the Bergman kernel when d(z, w) ≤ γ

√
log k

k

In the shrinking neighborhood d(z, w) ≤ γ
√

log k
k for any γ > 0, the asymp-

totic expansion of Bergman kernel (1.8) is actually still valid. The following
theorem is due to Shiffman and Zelditch in [ShZe02] and [ShZe08]. We in-
clude a proof here for the completeness using [BeBeSj08].

Theorem 3.19. Assume h∈C∞. Given any positive constant γ, if d(z, w)<

γ
√

log k
k , then we have

(3.25) Kk(z, w) = e−kψ(z,w̄)
kn

πn


1 +

m−1∑

j=1

bj(z, w̄)

kj
+

1

km
Om,γ(1)


 .
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Here, ψ(z, w̄) and bj(z, w̄) are (almost) holomorphic extensions of φ(z) and
bj(z, z̄) from (1.8).

Note that by taking m = 1, (3.25) writes into (1.9), which in particu-
lar implies the desired estimates (1.1) of the Bergman kernel for d(z, w) ≤
γ
√

log k
k .

Proof. For any m ∈ N, when d(z, w) is sufficiently small, we have the off-
diagonal expansion from [BeBeSj08]:

Kk(z, w) = ekψ(z,w̄)
kn

πn


1 +

m−1∑

j=1

bj(z, w̄)

kj


+ e

k

2
(φ(z)+φ(w))k−m+nOm(1).

By combining the terms on the right hand side together, we obtain

Kk(z, w)=e
kψ(z,w̄) k

n

πn


1+

m−1∑

j=1

bj(z, w̄)

kj
+e

k

2
(φ(z)+φ(w)−2ψ(z,w̄))k−mOm(1)


.

Now we replace m by m+ p in the above equation. Then

Kk(z, w) = ekψ(z,w̄)
kn

πn

(
1 +

m+p−1∑

j=1

bj(z, w̄)

kj

+ e
k

2
(φ(z)+φ(w)−2ψ(z,w̄))k−m−pOm+p(1)

)
.

For the error term, if we take p ≥ γ2 we have
∣∣∣e

k

2
(φ(z)+φ(w)−2ψ(z,w̄))

∣∣∣ = e
k

2
D(z,w) ≤ ekd

2(z,w) ≤ kγ
2 ≤ kp.

Therefore,

Kk(z, w) = e−kψ(z,w̄)
kn

πn

(
1 +

m−1∑

j=1

bj(z, w̄)

kj
+

m+p−1∑

j=m

bj(z, w̄)

kj

+ kp · k−m−pOm,γ(1)

)

=e−kψ(z,w̄)
kn

πn

(
1 +

m−1∑

j=1

bj(z, w̄)

kj
+ k−mOm,γ(1)

)
.

So the result follows. □
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4. Estimates of the Green kernel far from the diagonal

In this section, we are going to prove Theorem 1.2. By the relation (2.1)
between the Bergman kernel and Green kernel. it is sufficient to estimate
Gk(z, w) and its derivatives.

4.1. Construction of local Green kernel

Lemma 4.1. Given any r with r ≥ f(k)
√

log k
k , there exists a bounded lin-

ear operator

T : L2(X,Λ0,1(Lk)) → L2(X,Λ0,1(Lk))

such that for sufficiently large k,

(1) The distribution kernel of T is supported in {(z, w) : d(z, w) ≤ r},
(2) ∥T ◦□k − I∥ ≤ e−brf(k)

√
k log k, where b is a positive constant depend-

ing on (L, h) and X.

Proof. Fix r with r ≥ f(k)
√

log k
k . For any x, y ∈ X, define

K(z, w) = Gk(z, w)η

(
k

f2(k) log k
d(z, w)2

)
,

where η is a smooth cut-off function such that supp η ⊆ B(0, 1) and η = 1
on B(0, 14). Then clearly we have

suppK ⊆
{
(z, w) ∈ X ×X : d(z, w) ≤ f(k)

√
log k
k

}
.

Define

P : L2(X,Λ0,1(Lk)) → L2(X,Λ0,1(Lk))

as the operator with distribution kernelK(z, w). Letting□k act on z variable
and computing derivatives straightforwardly,

|□k (K(z, w)−Gk(z, w))| ≤ Ck (|Gk(z, w)|+ |∇zGk(z, w)|) .

Since |□k (K(z, w)−Gk(z, w))| is supported in

{
(z, w) ∈ X ×X : 1

2f(k)

√
log k
k ≤ d(z, w) ≤ f(k)

√
log k
k

}
,



✐

✐

“7-Xu” — 2020/7/24 — 15:55 — page 780 — #38
✐

✐

✐

✐

✐

✐

780 H. Hezari and H. Xu

so by Theorem 3.4, we have

|Gk(z, w)|+ |∇xGk(z, w)| ≤ Ce−bf
2(k) log k,

and therefore we must have

|□k (K(z, w)−Gk(z, w))| ≤ Ck2e−bf
2(k) log k.

In terms of the operator P , the above inequality becomes

∥□k ◦ P − I∥ ≤ Ck2e−bf
2(k) log k.

If we change b to b
2 , then for sufficiently large k,

∥□k ◦ P − I∥ ≤ e−bf
2(k) log k.

Next define operators

E = I −□k ◦ P, T = P ◦
N−1∑

j=0

Ej .

Then

□k ◦ T = (I − E) ◦
N−1∑

j=0

Ej = I − EN .

Taking the operator norm, we get

∥□k ◦ T − I∥ ≤ ∥E∥N ≤ e−bNf
2(k) log k.

Set N = [
√
kr

f(k)
√
log k

] ≥ 1
2

√
k

f(k)
√
log k

r. Then

∥□k ◦ T − I∥ ≤ e−
b r
2 f(k)

√
k log k.

Since □k and T are both formally self-adjoint, we immediately get the
same bound for T ◦□k − I. Recall suppK ⊆ {(z, w) ∈ X ×X : d(z, w) ≤
f(k)

√
log k
k }, so is the distribution kernel of E. Therefore, the distribution

kernel of T is supported where

d(z, w) ≤ Nf(k)

√
log k
k ≤ r.

□
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Now we will prove Theorem 1.2. First, note that when d(z, w) ≤ γ
√

log k
k ,

the asymptotic expansion (1.9) is valid and (1.1) directly follows, and when

γ
√

log k
k ≤ d(z, w) ≤ f(k)

√
log k
k , (1.1) follows by Theorem 3.4. It remains to

prove the result for d(z, w) ≥ f(k)
√

log k
k .

4.2. Estimates of the Green kernel when d(z, w) ≥ f(k)
√

log k

k

Lemma 4.2. There exist positive constants C and b such that for any

z, w ∈ X with d(z, w) ≥ f(k)
√

log k
k , we have

|Gk(z, w)|C2 ≤ Ce−bf(k)
√
k log k d(z,w).

Proof. Given z, w ∈ X with d(z, w) ≥ f(k)
√

log k
k . By taking necessary

embedding and restriction, we can regard Gk as an operator from
L2(B(y, 14d(z, w)),Λ

0,1(Lk)) to L2(B(x, 14d(z, w)),Λ
0,1(Lk)). Set r = d(z, w).

Let T (z′, w′) be a local Green kernel constructed in Lemma 4.1 supported
where d(z′, w′) ≤ r

2 and T be the associated operator. Then for any u ∈
L2(B(w, 14d(z, w)),Λ

0,1(Lk)) with suppu ⊆ B(w, 14d(z, w)), we have

Gku = T□kGku+ (I − T□k)Gku = Tu+ (I − T□k)Gku.

Since suppTu ⊆ B(w, 14d(z, w) +
r
2), which is disjoint from B(z, 14d(z, w)),

∥Gku∥L2(B(z, 1
4
d(z,w))) = ∥ (I − T□k)Gku∥L2(B(z, 1

4
d(z,w)))

≤ 2
ke

−brf(k)
√
k log k∥u∥L2(B(w, 1

4
d(z,w))).

The second inequality follows by the second part of Lemma 4.1 and the fact
that □k is bounded below by k

2 for sufficiently large k. Thus as an operator
from L2(B(w, 14d(z, w)),Λ

0,1(Lk)) → L2(B(z, 14d(z, w)),Λ
0,1(Lk)),

∥Gk∥ ≤ 2
ke

−brf(k)
√
k log k ≤ e−brf(k)

√
k log k.

Since □kGku = u, which vanishes in B(z, 14d(z, w)), if we apply the interior
estimates (2.5) to Gku, then for any m ∈ N,

∥ηGku∥Hm(B(z, 1
k
)) ≤ Ckm∥Gku∥L2(B(z, 1

k
))

≤ Ckme−brf(k)
√
k log k∥u∥L2(B(w, 1

4
d(z,w)),
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where C is a constant only depending on m and Kähler potential φ. Taking
m = n+ 1 and applying Sobolev embedding theorem,

|Gku(z)|hk(z) ≤ Ckn+1e−brf(k)
√
k log k∥u∥L2(B(w, 1

4
d(z,w))).

Therefore,

∥Gk(z, ·)∥L2(B(w, 1
4
d(z,w))) = sup

u∈L2(B(w, 1
4
d(z,w)))

∣∣∫ u(ζ)Gk(z, ζ)e−kφ(ζ)dζ
∣∣
hk(z)

∥u∥L2(B(w, 1
4
d(z,w)))

≤ Ckn+1e−brf(k)
√
k log k.

Since for any ζ ∈ B(w, 14d(z, w)), we have

□kGk(z, ζ) = 0,

where □k acts on the second component, again using the interior estimates
(2.5) and Sobolev embedding theorem, we have

|Gk(z, w)|hk ≤ Ckn+1∥Gk(z, ·)∥L2(B(w, 1
4
d(z,w))) ≤ Ck2n+2e−brf(k)

√
k log k.

Therefore,

|Gk(z, w)|hk ≤ Ck2n+2e−bf(k)
√
k log k d(z,w) ≤ C ′e−

b
2f(k)

√
k log k d(z,w).

Note the constant C only depends on the dimension n, constant A as in (3.1)
for ∂2φ and positivity of

√
−1∂∂̄ϕ. Then using a standard bootstrapping

argument, we obtain the estimates for the C2 norm of Gk(z, w) with respect
to z and w variables. □

4.3. Proof of Corollary 1.4

In Theorem 3.4, we proved that in the particular case when h is analytic we
have for any k ≥ κ

|Gk(z, w)|+ |∇zGk(z, w)|+ |∇z∇wGk(z, w)| ≤ Ce−bk|z−w|
2

,

whenever γ
√

log k
k ≤ |z − w| ≤ 1, which in terms of the distance function on

X can be considered as γ
√

log k
k ≤ d(z, w) ≤ δ for some δ > 0 and a new γ
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comparable with the previous one. We then use the same iterative argument

as above with f(k) = k
1
2√

log k
, combined with a covering argument, to obtain

|Gk(z, w)|C2 ≤ Ce−bk d(z,w) for d(z, w) ≥ δ,

which implies the same estimates for the Bergman kernel. But note that
since X is compact, in this estimate we can replace d(z, w) with d(z, w)2 by
making b a bit smaller; for example changing b to b

diam(X) , with diam(X)
being the diameter of X, would do the job.
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