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On the affine Schützenberger involution
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We consider an involution on the affine Weyl group of type A in-
duced from the nontrivial automorphism on the (finite) Dynkin
diagram. We prove that the number of left cells fixed by this invo-
lution in each two-sided cell is given by a certain Green polynomial
of type A evaluated at -1.

1. Introduction

This paper is motivated by a former result of Lusztig [24]. Let W be the
Weyl group of type An−1 and W̌ be the centralizer of the longest element
in W . Then W̌ is naturally the Weyl group of type Cm where m = ⌊n/2⌋.
If L : W̌ → N is the restriction of the usual length function l : W → N, then
[24] gives a description of left cells in W̌ with the weight function L, and
showed that each left cell carries an irreducible representation of W̌ .

One of our goals in this paper is to extend his method to an affine
setting. Let Wa be the affine Weyl group of type Ãn−1 and let ω be the
involution of Wa which corresponds to the nontrivial automorphism of the
(finite) Dynkin diagram of type A. Then, the main theorem in this paper
states that the number of left cells fixed by ω in each two-sided cell of Wa is
given by a certain Green polynomial of type A, originally defined by Green
[16], evaluated at -1.

This paper is considered as a companion of [11]. There exists a bijection
defined by Shi [34, 35] between left cells of Wa and row-standard Young
tableaux, called the generalized Robinson-Schensted correspondence. Un-
der this bijection, the involution ω corresponds to an affine analogue of the
usual Schützenberger involution. The combinatorics of this involution is ex-
tensively studied in [11], and the main theorem in this paper also follows
from a more general result therein. Here, instead we explain this involution
ω in a representation-theoretic view, and also provide another proof of our
main theorem in terms of representation theory.

This paper is organized as follows: in Section 2 we cover basic notations
and definitions used in this paper; in Section 3 we define and describe the
involution ω, called the affine Schützenberger involution; in Section 4 we
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state the main theorem of this paper and remark some related facts; in
Section 5 we prove the main theorem modulo some combinatorial reduction;
in Section 6 we introduce a combinatorial model associated with our main
objects and complete the proof of the main theorem.

2. Notations and definitions

2.1. Basic notations

For a set X, we define |X| to be the cardinal of X. If there is a map f : X →
X, we denote by Xf the set of elements in X fixed by f . Similarly, if there
exists a group G acting on X, then we denote by XG the set of elements in
X fixed by the action of G.

For a variety X, we denote by H i(X) = H i(X,Qℓ) its i-th ℓ-adic coho-
mology group, and define H∗(X) :=

⊕
i∈Z(−1)iH i(X) to be their alternat-

ing sum (as a virtual Qℓ-vector space).
For an abelian category C, we write Db(C) to be its bounded derived

category, and K(C) = K(C)C to be the complexified Grothendieck group of
C. Likewise, for a variety X, we write K(X) = K(X)C to be the complexified
K-theory of X, i.e. the complexified Grothendieck group of the category
of coherent sheaves on X. If there is an action of a group G on X, then
we denote by KG(X) = KG(X)C the complexified G-equivariant K-theory
of X.

2.2. General setup

We fix n ∈ Z>0 throughout this paper. Let G := GLn be the general linear
group of rank n defined over C, B ⊂ G be the Borel subgroup consisting
of upper-triangular matrices, and T ⊂ B be the maximal torus consisting
of diagonal matrices. Also let g := LieG, b := LieB, and h := LieT be cor-
responding Lie algebras. Define B := G/B to be the flag variety of G. For
a nilpotent element N ∈ g, let BN be the Springer fiber of N , defined by
BN := {gB ∈ B | Ad(g)−1(N) ∈ b}.

2.3. Weyl groups of G

Let W and W̃ be the Weyl group and the extended affine Weyl group of G,
respectively. They are defined as follows:

W := N(G, T )/T, W̃ := N(GC((t)), TC((t)))/TC[[t]]



✐

✐

“9-Kim” — 2020/7/19 — 1:43 — page 811 — #3
✐

✐

✐

✐

✐

✐

On the affine Schützenberger involution 811

Here, N(X,Y ) denotes the normalizer of Y in X, and GR (resp. TR) is the

base change of G (resp. T ) from C to R. Also, we define Wa ⊂ W̃ to be the
subgroup generated by elements in N(GC((t)), TC((t))) whose determinant is
contained in C[[t]]×, called the affine Weyl group of G. Then, W is naturally
a subgroup of Wa.

We choose {s1, . . . , sn−1} ⊂ W such that si corresponds to swapping i-

th and (i+ 1)-th entries of diagonal matrices. Also we let s0, τ ∈ W̃ be the
images of




0 0 0 · · · 0 0 t
0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0
t−1 0 0 · · · 0 0 0




and




0 0 0 · · · 0 0 t
1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0 0
0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0




,

respectively. Then,

• (W, {s1, . . . , sn−1}) and (Wa, {s0, s1, . . . , sn−1}) are Coxeter groups,

• τsiτ
−1 = si+1 for 0 ≤ i ≤ n− 2 and τsn−1τ

−1 = s0, and

• W̃ ≃ Wa ⋊ ⟨τ⟩ , ⟨τ⟩ ≃ Z.

We define S := {s0, s1, . . . , sn−1} to be the set of simple reflections of Wa.

2.4. Involution ω

Define J ∈ G to be the matrix whose anti-diagonal entries are 1 and other
entries are 0. We define an involutive automorphism ω on G by

ω : G 7→ G : g 7→ J(tg−1)J−1.

We abuse notation and write ω for an involution on any object which is
naturally induced from the above automorphism. Clearly, it induces an in-
volution on g defined by ω(X) = −Ad(J)(tX). Also, it induces involutions

on W,Wa, and W̃ , respectively. Indeed, direct calculation shows that

ω(si) = sn−i for 1 ≤ i ≤ n− 1, ω(s0) = s0, ω(τ) = τ−1.

On the other hand, since ω fixes B, it defines an action on the flag variety
of G. If N ∈ g is a nilpotent element fixed by ω, then ω acts on its Springer
fiber BN and thus acts on the cohomology and the K-theory of BN as well.
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2.5. Kazhdan-Lusztig cells

We usually use the symbol c (resp. Γ, Γ−1) to denote a two-sided (resp.

left, right) cell of W̃ . (The notion of Kazhdan-Lusztig cells is first defined in
[20] for Coxeter groups, and is generalized to extended affine Weyl groups
in [27].) Then each two-sided (resp. left, right) cell of Wa is of the form
c ∩Wa (resp. Γ ∩Wa, Γ

−1 ∩Wa), and this gives a bijection between two-

sided (resp. left, right) cells of Wa and W̃ . Note that each two-sided (resp.

left, right) cell of W̃ is stable under multiplication (resp. left multiplication,

right multiplication) by τ ∈ W̃ .

In [27], a canonical bijection between two-sided cells of W̃ and nilpotent
orbits in g is constructed. (Here, we identify g with its Langlands dual.)
We write cλ to be the two-sided cell that corresponds to the nilpotent orbit
in g of Jordan type λ ⊢ n under this bijection. Then a(cλ) is equal to the
dimension of the Springer fiber corresponding to this nilpotent orbit, where
a is Lusztig’s a-function defined in [26].

2.6. Partitions, tableaux, and tabloids

For a partition λ, we write λ = (λ1, . . . , λr) for λ1 ≥ λ2 ≥ · · · ≥ λr > 0 or
λ = (1m12m2 · · · ) to describe its parts. Let l(λ) be the length of λ, and put
λi = 0 if i > l(λ). Define |λ| :=

∑
i≥1 λi =

∑
i≥1 imi. If |λ| = k, we also write

λ ⊢ k. We say λ is strict if λ1 > λ2 > · · · > λr > 0, or equivalently each mi

is either 0 or 1. For another partition µ, we write λ ∪ µ to be the partition
of |λ|+ |µ| whose parts are the union (as a multiset) of parts of λ and µ.

For a partition λ, define SY T (λ) to be the set of standard Young
tableaux of shape λ with entries 1, 2, . . . , |λ|. Similarly, we define RSY T (λ)
to be the set of row-standard Young tableaux of shape λ with entries 1, 2, . . . ,
|λ|, which is defined by dropping the condition from SY T (λ) that each
column is strictly increasing. If λ is a finite sequence of positive integers
which is not necessarily a partition, we still write RSY T (λ) to denote
the set of row-standard Young tabloids of shape λ. For a tabloid T , we
write T = (T (1), . . . , T (r)) where T (i) is the i-th part of T . For example,
if T ∈ RSY T ((3, 4)) is 1 3 4

2 5 6 7
with respect to the English notation, then

T (1) = (1, 3, 4) and T (2) = (2, 5, 6, 7).



✐

✐

“9-Kim” — 2020/7/19 — 1:43 — page 813 — #5
✐

✐

✐

✐

✐

✐

On the affine Schützenberger involution 813

3. The affine Schützenberger involution

The involution ω on G induces an involution on W̃ , which also permutes
Kazhdan-Lusztig cells of W̃ .

Definition 3.1. The affine Schützenberger involution is the involution in-
duced by ω on the set of left cells of W̃ , again denoted by ω.

If we restrict ω to the Coxeter group (W,S − {s0}), then it corresponds
to the nontrivial involutive automorphism on the Dynkin diagram of type
A, which is the same as conjugation by the longest element of W . This invo-
lution clearly permutes the left cells of W , and it is equivalent to the usual
Schützenberger involution on standard Young tableaux under the Robinson-
Schensted correspondence. This is why we call ω the affine Schützenberger
involution.

Note that the usual Schützenberger involution preserves the shape of
each standard Young tableau. It means that the corresponding involution
on W stabilizes each two-sided cell of W . (This can also be deduced from
[9, Corollary 10.3.3].) The same is true for ω, as the following lemma shows.

Lemma 3.2. Suppose that c is a two-sided cell of W̃ . Then ω(c) = c.

Proof. It is clear that ω(c) is also a two-sided cell of W̃ . Recall that c is stable
under multiplication by τ , thus in particular under its conjugation. Thus
by [27, Theorem 4.8(d)], c intersects nontrivially with W . As we observed
already that ω stabilizes each two-sided cell of W , the result follows. □

Therefore, it is possible to restrict ω to each two-sided cell of W̃ . We
are interested in the number of left cells in each two-sided cell that are fixed
by ω.

4. Main theorem and some remarks

4.1. Statement of the main theorem

For k ∈ N, let ρ2(k) be the cycle type of the longest element of the sym-
metric group permuting k elements, i.e. the partition (2, 2, . . . , 2) ⊢ k (resp.
(2, 2, . . . , 2, 1) ⊢ k) if k is even (resp. odd). The main result of this paper is
as follows.
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Theorem 4.1 (Main theorem). Suppose that a two-sided cell cλ ⊂ W̃
corresponds to the partition λ ⊢ n. Then the number of left cells in cλ that
are fixed by ω is given by Qλ

ρ2(n)
(−1), where Qλ

ρ2(n)
(t) is the Green polynomial

(for type A) originally defined in [16].

It is equivalent to [11, Theorem 4.2], which is proved by a more general
combinatorial result. In this paper we give another proof of this theorem
using representation theory.

4.2. Affine Weyl groups of type C

Let W̌a be the set of elements in Wa fixed by ω and L be the restriction of
l : Wa → N to W̌a. Then W̌a is the affine Weyl group of type C whose simple
reflections are given by

s0, s1sn−1, . . . , sn−3

2

sn+3

2

, sn−1

2

sn+1

2

sn−1

2

when n is odd, and

s0, s1sn−1, . . . , sn−2

2

sn+2

2

, sn

2
when n is even.

The pair (W̌a, L) is said to be in the quasisplit case in the sense of [30].
There exists a strong connection between cells in Wa and (W̌a, L) as the
following lemma shows.

Lemma 4.2. Suppose that c (resp. Γ) is a two-sided (resp. left) cell of W̃ .
Thus c ∩Wa (resp. Γ ∩Wa) is a two-sided (resp. left) cell of Wa.

(a) Γ ∩ W̌a is nonempty if and only if Γ is stable under ω.

(b) If Γ ∩ W̌a is nonempty, then it is also a left cell of (W̌a, L).

(c) c is always ω-stable, and c ∩ W̌a is a (nonempty) union of two-sided
cells of (W̌a, L).

Proof. For (a), one direction is clear since (Wa)
ω = W̌a. For the other di-

rection, first note that there exists D ⊂ Wa (the set of distinguished involu-
tions), such that ω(D) = D and D ∩ Γ consists of only one element for each
Γ. Therefore, if ω(Γ) = Γ then the unique element D ∩ Γ is fixed by ω, and
thus W̌a ∩ Γ is nonempty.

For (b), we rely on the results of [30]. Since Wa is tame (see [30, 1.11,
1.15]), it is bounded in the sense of [30, 13.2] (also see [30, 13.4] and [26,
Theorem 7.2] for its proof). Therefore, the argument in [30, Chapter 16] is
applicable and (b) follows from [30, Lemma 16.21].
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For (c), the first part is exactly Lemma 3.2. To show that c ∩ W̌a is
nonempty, we consider the canonical left cell Γ ⊂ c defined in [31]. Then
clearly Γ is ω-stable, thus c ∩ W̌a ⊃ Γ ∩ W̌a is nonempty by (a). Finally,
c ∩ W̌a is a union of two-sided cells of (W̌a, L) by [30, Lemma 16.20(b)] (and
its right analogue). □

Remark. In general, c ∩ W̌a is not a single two-sided cell. For example, if
n = 4 and m = 2, there are 6 two-sided cells in (W̌a, L), but W̃ has only

5 two-sided cells. Indeed, the second highest two-sided cell of W̃ (which
contains S) splits into two two-sided cells {s0}, {s2} of W̌a. (ref. [17, 18])

Now the following corollary is an immediate consequence.

Corollary 4.3. Let c be a two-sided cell of W̃ . Then the number of left
cells of (W̌a, L) in c ∩ W̌a is equal to the number of left cells of W̃ in c fixed
by the involution ω.

4.3. Relation to domino tableaux and Springer theory

Let Ǧ be SOn (resp. Spn) over C if n is odd (resp. even) and ǧ be its Lie
algebra. Regard W̌ := Wω as the Weyl group of Ǧ in a natural way. For a
nilpotent element Ň ∈ ǧ, let AŇ be the component group of the stabilizer
of Ň in Ǧ. Let B̌ be the flag variety of Ǧ and B̌Ň be the Springer fiber of Ň .

There exists a canonical bijection between two-sided cells in W̌ (with
equal parameters) and special nilpotent orbits in ǧ. Pick a two-sided cell
č ⊂ W̌ and let Ň ∈ ǧ be the nilpotent element in the corresponding special
nilpotent orbit. Also let λ be the Jordan type of Ň . Then it follows from the
results of Barbasch-Vogan [1] and Garfinkle [13–15] that the number of left
cells in č is equal to that of standard domino tableaux of shape λ. It is also
the same as the number of AŇ -orbits in the set of irreducible components
of B̌Ň , see [32, 33].

This statement has an “unequal” analogue as follows. If we restrict L :
W̌a → N to W̌ , then again (W̌ , L|W̌ ) is in the quasisplit case in the sense of
[30]. Thus similarly to the affine case above, the left cells of (W̌ , L|W̌ ) are
precisely an intersection of W̌ and some left cell of W fixed by ω (see [24]).
For a partition λ ⊢ n, let cλ ⊂ W be the two-sided cell of W parametrized
by λ. Then the number of left cells of (W̌ , L|W̌ ) contained in cλ ∩ W̌ is equal
to the number of standard domino tableaux of shape λ. In particular, if λ is
the Jordan type of a nilpotent element Ň ∈ ǧ (not necessarily special), then
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it is again the same as the number of AŇ -orbits in the set of irreducible
components of B̌Ň .

The statement above also has an “affine” analogue. For simplicity, let
us assume that n is odd, thus Ǧ = SOn is of type B. Then W̌a is naturally
the affine Weyl group of the Langlands dual of Ǧ. There exists a canonical
bijection between nilpotent orbits in ǧ and two-sided cells of W̌a (with equal
parameters) defined in [27]. Pick a two-sided cell č ⊂ W̌a and let Ň ∈ ǧ be
a nilpotent element in the corresponding nilpotent orbit. Then, a weaker
version of [27, Conjecture 10.5], proved in [2, 6, 8], implies that the number
of left cells in č is given by the dimension of (H∗(B̌Ň ))AŇ .

The main theorem in this paper should be considered as an “affine un-
equal” analogue of the first statement. Again let G be SOn or Spn depending
on the parity of n, and let Ň ∈ ǧ be a nilpotent element of Jordan type λ ⊢ n.
Let cλ ⊂ W̃ be the two-sided cell of W̃ parametrized by λ. Then the result
of [21] together with Theorem 4.1 implies that the number of left cells of
(W̌a, L) contained in cλ ∩ W̌a is equal to the Euler characteristic of B̌Ň , i.e.
the dimension of H∗(B̌Ň ).

5. Proof of the main theorem

5.1. Reduction to strict partitions

First, we claim that in order to prove the main theorem it suffices only
to consider the case when a two-sided cell c ⊂ W̃ corresponds to a strict
partition. This follows from two propositions below.

Proposition 5.1. Suppose that λ = (λ1, . . . , λr) ⊢ n− 2k is a partition for
some k ≥ 1. Let φ(λ ∪ (k, k)) be the number of left cells in cλ∪(k,k) fixed by
ω. We define φ(λ) similarly (by replacing n with n− 2k, etc.) Then, for
m = ⌊n/2⌋ we have

φ(λ ∪ (k, k)) =

(
m

k

)
2kφ(λ).

Its proof relies on combinatorics, which we postpone until Section 6.
We refer readers to [11] for detailed combinatorial descriptions of the affine
Schützenberger involution.
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Proposition 5.2. Suppose that λ = (λ1, . . . , λr) ⊢ n− 2k is a partition for
some k ≥ 1. Then,

Q
λ∪(k,k)
ρ2(n)

(−1) =

(
m

k

)
2k Qλ

ρ2(n−2k)(−1)

where m = ⌊n/2⌋ and Q
λ∪(k,k)
ρ2(n)

(t), Qλ
ρ2(n−2k)(t) are the corresponding Green

polynomials.

Proof. Let Q′
λ(t) be the modified Hall-Littlewood Q′-function. (See [22] for

its definition and properties.) Note that Q′
λ(t) = tb(λ)

∑
ρ⊢|λ| z

−1
ρ Qλ

ρ(t
−1)pρ

where b(λ) =
∑

i≥1(i− 1)λi, zρ =
∏

i≥1 i
mimi! for ρ = (1m12m2 · · · ), and pρ

is a power symmetric function. Thus we have

〈
Q′

λ∪(k,k)(−1), pρ2(n)

〉
= (−1)b(λ∪(k,k))Q

λ∪(k,k)
ρ2(n)

(−1)

= (−1)b(λ)+k Q
λ∪(k,k)
ρ2(n)

(−1)

where ⟨ , ⟩ is the usual scalar product on the ring of symmetric functions.
On the other hand, by [23, Theorem 2.1 and 2.2] we have Q′

λ∪(k,k)(−1) =

(−1)kQ′
λ(−1)sk[p2], where sk is the Schur function corresponding to the par-

tition (k), p2 is the power symmetric function corresponding to the parti-

tion (2), and sk[p2] is their plethysm. Therefore,
〈
Q′

λ∪(k,k)(−1), pρ2(n)

〉
is

also equal to (here we use orthogonality of power symmetric functions with
respect to ⟨ , ⟩)

(−1)k
〈
Q′

λ(−1)sk[p2], pρ2(n)

〉

= (−1)b(λ)+k
Qλ

ρ2(n−2k)(−1)

zρ2(n−2k)

〈
pρ2(n−2k)sk[p2], pρ2(n)

〉

= (−1)b(λ)+k
Qλ

ρ2(n−2k)(−1)

zρ2(n−2k)k!

〈
pρ2(n), pρ2(n)

〉

= (−1)b(λ)+k
Qλ

ρ2(n−2k)(−1)

zρ2(n−2k)k!
zρ2(n)

= (−1)b(λ)+k m!2k

(m− k)!k!
Qλ

ρ2(n−2k)(−1).

Hence the result follows. □
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Combining two propositions above, we see that if the main theorem is true
for cλ, then it is also true for cλ∪(k,k). Thus by inductive argument, the main
theorem is valid if and only if it is valid for strict partitions.

Remark. We believe that this part is not essential to the proof of the
main theorem; it is likely that argument in Section 5.2 can be applied to the
general cases without assuming that the corresponding partition is strict.
However, this assumption is still useful as it simplifies our proof.

5.2. Asymptotic Hecke algebra and the canonical basis of K(BN)

From now on, we fix a two-sided cell c = cλ ⊂ W̃ where λ is strict. Let N ∈ g

be a nilpotent element of Jordan type λ. By [10, p.398], the reductive part
of ZG(N) (the stabilizer of N in G) is a torus isomorphic to (C×)l(λ), which
we denote by Fc. The idea we pursue here is motivated by the conjecture
of Lusztig relating the asymptotic Hecke algebra Jc attached to c and the
Fc-equivariant K-theory of a certain finite set, see [27, Conjecture 10.5].

We recall some results of [5]. Let DI0I0 be the category defined in [5,
p.4] and PI0I0 be its subcategory of perverse sheaves. Also, define g̃ :=
{(X, gB) ∈ g× B | Ad(g)−1X ∈ b} equipped with the obvious projection
g̃ → g. Then we have a natural equivalence of categories [5, Theorem 1]

DI0I0 ≃ Db(PI0I0) ≃ Db(CohGN (g̃×g g̃)),

where CohGN (g̃×g g̃) is the category of G-equivariant coherent sheaves which
are set-theoretically supported on the nilpotent cone N ⊂ g. (Here we iden-
tify G with its Langlands dual.) This isomorphism respects the convolution
structure on both sides.

Following [5, 11.2], it induces a canonical isomorphism

DI0I0 ≃ Db(A⊗O(g) A−modGN ),

where A⊗O(g) A−modGN is the category of finitely generated G-equivariant
(A⊗O(g) A)-modules that are set-theoretically supported on N ⊂ g. Here,
O(g) is the coordinate ring of g and A is a noncommutative Grothendieck
resolution of g×h/W h defined in [7, 1.5]. (See also [3].)

Recall the bijection between two-sided cells and nilpotent orbits in g

in [27]. This bijection is order-preserving [4], and each order induces a fil-
tration on each of two categories above. More precisely, let DI0I0,≤c (resp.
DI0I0,<c) be the thick subcategory of DI0I0 generated by irreducible objects
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ICw ∈ PI0I0 for w ∈ c′ ≤ c (resp. w ∈ c′ < c), where ICw is defined as in [5,
Theorem 55]. Then the quotient DI0I0,≤c/DI0I0,<c, denoted DI0I0,c, is well-
defined. Likewise, for a nilpotent orbit O ⊂ g let Db(A⊗O(g) A−modG≤O)

(resp. Db(A⊗O(g) A−modG<O)) be the full subcategory of Db(A⊗O(g) A−

modGN ) consisting of complexes whose cohomology is set-theoretically sup-
ported on O (resp. O −O). Then the quotient

Db(A⊗O(g) A−modG≤O)/D
b(A⊗O(g) A−modG<O),

denoted Db(A⊗O(g) A−modGO), is well-defined.
[5, Theorem 55] states that the isomorphism above respects the filtra-

tions on both sides. In particular, if we set O to be the orbit of N ∈ g, then
we have a canonical isomorphism

DI0I0,c ≃ Db(A⊗O(g) A−modGO).

Also it sends the perverse t-structure on the left to the usual t-structure on
the right shifted by a(c) = dimBN . (See [26] for the definition of Lusztig’s
a-function.) Now consider a full subcategory Ic of DI0I0,c whose objects
are (the images of) direct sums of irreducible perverse sheaves and their
shifts in DI0I0,≤c (under the quotient map). Under the isomorphism above,
it is transferred to the full subcategory of Db(A⊗O(g) A−modGO) whose
objects are (the images of) direct sums of irreducible (A⊗O(g) A)-modules

set-theoretically supported on O and their shifts (under the quotient map),
which we denote by IO. Since all the irreducible (A⊗O(g) A)-modules set-

theoretically supported on O are also scheme-theoretically supported on
O, we may also identify IO with the full subcategory of Db(AN ⊗AN −
modZG(N)) (the bounded derived category of finitely generated ZG(N)-
equivalent (AN ⊗AN )-modules) whose objects are direct sums of irreducible
objects and their shifts. Here, AN is the fiber of A at N ∈ g.

From this description above, we have canonical isomorphisms

K(Ic) ≃ K(DI0I0,c) ≃ K(Db(A⊗O(g) A−modGO))

≃ K(IO) ≃ K(Db(AN ⊗AN −modZG(N))).

We impose a C-algebra structure on each term so that they are canonically
isomorphic as C-algebras. First, Lusztig [28] defined the truncated convo-
lution on K(Ic) ≃ K(DI0I0,c), which is the usual convolution followed by
applying pHa(c), i.e. taking a(c)-th perverse cohomology sheaf. Then K(Ic)
equipped with this algebra structure is canonically isomorphic to the asymp-
totic Hecke algebra Jc attached to c (defined over C). On the other hand,
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this also induces a truncated convolution on K(Db(A⊗O(g) A−modGO)) ≃
K(IO), which is defined by the usual convolution followed by applying H0,
i.e. taking 0-th cohomology sheaf. (This is clear from the comparison of
t-structures on DI0I0,c and Db(A⊗O(g) A−modGO).) Therefore, we have a
canonical isomorphism of C-algebras

Jc ≃ K(Db(AN ⊗AN −modZG(N))).

It is also isomorphic to KFc(AN ⊗AN −mod) since Fc is the reductive part
of ZG(N).

There exists a natural morphism (of C-vector spaces)

KFc(AN ⊗AN −mod) → K(AN ⊗AN −mod)

which is induced from the forgetful functor. We claim that this morphism is
surjective and its kernel is a two-sided ideal of KFc(AN ⊗AN −mod) (with
respect to the truncated convolution), thus it induces a C-algebra structure
on K(AN ⊗AN −mod). Indeed, according to [7, 5.2.3], every irreducible
(AN ⊗AN )-module can be lifted to an Fc-equivariant one and such two lifts
are isomorphic up to characters of Fc. (Here we use the assumption that
λ is strict and thus Fc is a torus.) Also, every irreducible Fc-equivariant
AN ⊗AN -module arises in this way. From this, the claim easily follows.

On the other hand, inspired by the conjecture of Lusztig [27], Xi [38]
proved that Jc is (non-canonically) isomorphic to MatX×X (JΓ∩Γ−1), where
Γ is some fixed left cell in c, JΓ∩Γ−1 is the asymptotic Hecke algebra attached
to Γ ∩ Γ−1, and X = n!

λ1!···λr!
is the number of left cells in c which is also

equal to the Euler characteristic of BN . Furthermore, JΓ∩Γ−1 is isomorphic
to Rep(Fc), which in our case is the C-algebra of Laurent polynomials in
l(λ) variables, say C[x±1

1 , x±1
2 , . . . , x±1

l(λ)].
Let us fix the labeling of the left cells in c by Γ1,Γ2, . . . ,ΓX once and for

all. According to [38], we may choose an isomorphism Jc ≃ MatX×X (JΓ∩Γ−1)
such that (i, j)-entries in MatX×X (JΓ∩Γ−1) corresponds to Γ−1

i ∩ Γj . Now
consider the surjection MatX×X (JΓ∩Γ−1) ↠ MatX×X (C) induced from the
evaluation morphism

JΓ∩Γ−1 ≃ C[x±1
1 , x±1

2 , . . . , x±1
l(λ)] → C : f(x1, x2, . . . , xl(λ)) 7→ f(1, 1, . . . , 1).

Then it is not hard to show that the composition Jc ↠ MatX×X (C) does not
depend on the choice of the isomorphism Jc ≃ MatX×X (JΓ∩Γ−1) whenever
it respects the fixed labeling of left cells in c. In other words, there exists a
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canonical isomorphism Jc ↠ MatX×X (C) once the order of left cells in c is
fixed.

So far, we have canonical morphisms

Jc KFc(AN ⊗AN −mod)

MatX×X (C) K(AN ⊗AN −mod)

≃

On the other hand, there exists a section map MatX×X (C) → Jc which
comes from the C-algebra structure C → JΓ∩Γ−1 . Composed with Jc ≃
KFc(AN ⊗AN −mod) ↠ K(AN ⊗AN −mod), it induces a morphism
MatX×X (C) → K(AN ⊗AN −mod) which makes the above diagram com-
mute. In particular, this morphism is canonical (even though the section
map MatX×X (C) → Jc needs not be canonical).

Also, we claim that this morphism is an isomorphism. Indeed, since it is
a C-algebra morphism and MatX×X (C) is simple, MatX×X (C) → K(AN ⊗
AN −mod) is injective. (This map is not zero as it preserves the multiplica-
tive unit.) Now we recall one of the main results in [7].

Lemma 5.3. There exists a canonical isomorphism K(AN −mod) ≃
K(BN ). Under this isomorphism, the basis Irr(AN ) of K(AN −mod) cor-
responds to the canonical basis of K(BN ) defined in [29].

In particular, we have

dimCK(AN ⊗AN −mod) = X 2 = dimCMatX×X (C),

from which the claim follows. Thus we have a canonical commutative dia-
gram

Jc KFc(AN ⊗AN −mod)

MatX×X (C) K(AN ⊗AN −mod)

≃

≃

Now using the above lemma again, we obtain a canonical isomorphism (of
vector spaces)

MatX×X (C) ≃ K(BN )⊗K(BN ).
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5.3. Involution ω

We recall the involution ω on G. Clearly, it also induces an involution
on Jc and MatX×X (C). It is clear that there exists a basis {v(Γ′−1,Γ′′) |
Γ′,Γ′′ are left cells in c} of MatX×X (C) such that

ω(v(Γ′−1,Γ′′)) = v(ω(Γ′−1),ω(Γ′′)).

Therefore, we have

tr(ω,MatX×X (C)) = |{left cells in c}ω|2.

On the other hand, if N ∈ g is ω-stable, then ω also induces an action
on K(BN ), and by [19, Lemma 3.2] we have (note that ρ2 is the cycle type
of the longest element in W )

tr(ω,K(BN )⊗K(BN )) = tr(ω,H∗(BN )⊗H∗(BN )) = (Qλ
ρ2(n)

(−1))2.

However, this still makes sense even when N is not ω-stable. Indeed, for
any g ∈ G such that Ad(g)(N) = ω(N), we have an isomorphism Ad(g)∗ :
H∗(Bω(N)) → H∗(BN ) which does not depend on the choice of g since ZG(N)
is connected. Also we have a commutative diagram

H∗(B) H∗(B) H∗(B)

H∗(BN ) H∗(Bω(N)) H∗(BN )

ω =

ω Ad(g)∗

Thus by identifying H∗(BN ) with the quotient of H∗(B), the result above is
still valid.

Recall that the C-vector space isomorphism MatX×X (C) ≃ K(BN )⊗
K(BN ) is canonical (once the order of left cells in c is fixed). As ω on
MatX×X (C) and K(BN )⊗K(BN ) are both induced from the same auto-
morphism ω on G, it follows that this isomorphism is ω-equivariant. 1 In

1To be precise, we should check that ω acts the same way on the Langlands dual
of G as on G, but it is also true since ω is self-dual on the root datum of G.
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particular, we have

|{left cells in c}ω|2 = tr(ω,MatX×X (C))

= tr(ω,K(BN )⊗K(BN )) = (Qλ
ρ2(n)

(−1))2.

But since

Qλ
ρ2(n)

(−1) = tr(ω,H∗(BN )) = tr(ω,K(AN −mod)) = | Irr(AN )ω| ≥ 0,

we have |{left cells in c}ω| = Qλ
ρ2(n)

(−1). Thus the main theorem is proved.

Remark. The canonical basis of K(BN ) in [29] is a signed basis, i.e. there
is ambiguity on the choice of signs. On the other hand, Irr(AN ) ⊂ K(AN −
mod) is an actual basis, and ± Irr(AN ) is mapped to Lusztig’s canonical
basis under the isomorphism K(AN −mod) ≃ K(BN ). In our proof, it is
crucial that ω stabilizes not only the signed basis but also Irr(AN ) itself.

6. Proof of Proposition 5.1: some combinatorics

This section is devoted to the proof of Proposition 5.1. The argument in this
section is explained in [11] in more detail and the proposition also follows
from the results therein. However, we still provided its proof here for the
sake of completeness.

6.1. The generalized Robinson-Schensted algorithm

First, we investigate the connection between left cells in W̃ and row-standard
Young tableaux under the generalized Robinson-Schensted algorithm origi-
nally defined by Shi [34, 35]. Following [25], we identify W̃ with the subgroup
of Aut(Z) defined by

{w ∈ Aut(Z) | ∀i ∈ Z, w(n+ i) = w(i) + n}.

We express each w ∈ Aut(Z) in terms of the sequence [w(1), w(2), . . . , w(n)],
called the window notation. Then we have

si = [1, 2, . . . , i− 1, i+ 1, i, i+ 2, . . . , n],

s0 = [0, 2, . . . , n− 1, n+ 1], τ = [2, 3, . . . , n, n+ 1].

It is easy to check that they satisfy the defining relations of W̃ .
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For the description of the generalized Robinson-Schensted algorithm, it
is natural to consider an infinite version of (standard) Young tableaux. To
that end, we define the notion of an infinite periodic sequence as follows.

Definition 6.1. For each i ∈ Z>0, let r̃i be a finite sequence of integers. Let
r̃i(1) (resp. r̃i(0)) be the smallest positive (resp. largest nonpositive) integer
in r̃i (if exists) and label each element in r̃i by its position relative to r̃i(1)
or r̃i(0). Then we call r̃ = (r̃1, r̃2, . . .) an infinite periodic sequence modulo n
(IP sequence mod n for short) if it satisfies the following properties;

1) each r̃i is strictly increasing, thus in particular r̃i(k) > 0 if and only if
k > 0,

2) limi→∞ |r̃i| = ∞,

3) for any k ∈ Z, the limit limi→∞(r̃i(k)) exists,

4) there exists M ∈ N such that for any i > 0 and r̃i = (r̃i(s), r̃i(s+
1), . . . , r̃i(t− 1), r̃i(t)),

r̃i(k) = lim
j→∞

r̃j(k) for any s+M ≤ k ≤ t−M, and

5) there exists 1 ≤ l ≤ n and 1 ≤ a1 < a2 < · · · < al ≤ n such that

lim
i→∞

r̃i(kl + r) = kn+ ar for any k ∈ Z and 1 ≤ r ≤ l.

For any such sequence r̃, it is clear that l, a1, . . . , al in (5) are uniquely
determined if they exist. We define Ψn to be the function which sends r̃ to
the finite sequence (a1, . . . , al).

Likewise, we define an infinite periodic tabloid as follows.

Definition 6.2. Let T̃ = (T̃1, T̃2, . . .) be an infinite series of Young tabloids
such that the following properties hold.

1) There exists M ′ ∈ N such that T̃i has ≤ M ′ rows. We define l(T̃ ) to be
the smallest M ′ which satisfies this property, called the length of T̃ .

2) For each 1 ≤ j ≤ l(T̃ ), T̃ (j) := {T̃
(j)
i }i≥1 is an IP sequence mod n where

T̃
(j)
i is the j-th row of T̃i.

Then we call T̃ an infinite periodic tabloid modulo n (IP tabloid mod n for
short). For such T̃ , we similarly define Ψn(T̃ ) to be the Young tabloid whose

rows are Ψn(T̃
(1)), . . . ,Ψn(T̃

(l(T̃ ))). Note that an IP sequence mod n is an
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IP tabloid mod n of length 1. We define IPn to be the set of infinite periodic
tabloids modulo n.

For any element w ∈ W̃ , consider the following sequence that is infinite
in both ways:

. . . , w(−3), w(−2), w(−1), w(0), w(1), w(2), w(3), . . .

We consider a sequence {(ai, bi)}i≥1 such that ai ≤ bi, ai is decreasing, bi
is increasing, limi→∞ ai = −∞, and limi→∞ bi = ∞. For each i, we consider
the standard Young tableaux T̃i which is the result of the usual Robinson-
Schensted algorithm with input (w(ai), w(ai + 1), . . . , w(bi − 1), w(bi)). Then
we obtain a series of standard Young tableaux T̃ = {T̃i}i≥1. Now we apply
the argument in [12, Section 7] to obtain the following.

Proposition 6.3. We have T̃ ∈ IPn and l(T̃ ) ≤ n. Also, Ψn(T̃ ) is the same
as the result of the generalized Robinson-Schensted algorithm defined in [34,
35] applied to w−1. (In particular, Ψn(T̃ ) does not depend on the choice of

the sequence {(ai, bi)}i≥1). Moreover, if w is an element of W ⊂ W̃ , then
Ψn(T̃ ) is the same as the output of the usual Robinson-Schensted algorithm
applied to w−1.

Here w−1 appears instead of w since we consider the left action of W̃ on
Z instead of the right one. We define Q(w) to be Ψn(T̃ ) in the theorem and
set P (w) := Q(w−1). Then by [34, 35], P (w) and Q(w) have the same shape.

For w,w′ ∈ W̃ , Q(w) = Q(w′) (resp. P (w) = P (w′)) if and only if they are
contained in the same left (resp. right) cell. Likewise, Q(w) and Q(w′) have
the same shape if and only if they lie in the same two-sided cell, which is
parametrized by the shape of Q(w).

6.2. Affine Schützenberger involution and combinatorial
R-matrix

Recall the involution ω acting on W̃ . Under the identification of W̃ with the
subset of Aut(Z), it corresponds to the conjugation by the element k 7→ 1− k

in Aut(Z). It permutes left cells in W̃ , thus defines an involution on the set
of row-standard Young tableaux under the generalized Robinson-Schensted
correspondence. Also, since ω stabilizes each two-sided cell, it restricts to the
involution on RSY T (λ) (the set of row-standard Young tableaux of shape
λ) for each λ ⊢ n.
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We claim that this action can be described in terms of combinatorial R-
matrices. (This is originally proved by Chmutov-Lewis-Pylyavskyy.) First
we recall the definition of combinatorial R-matrices on the tensor product
of single-row Kirillov-Reshetikhin crystals (KR crystals for short). We refer
readers to [36] for a nice exposition on this subject. For a, b ∈ Z>0, we regard
RSY T ((a, b)) as a subset of the vertices of the crystal graph Bb ⊗ Ba, where

Bs is the KR crystal of shape (s) (of Uq(ŝlk) for a suitable choice of k).
Then there exists a unique isomorphism Bb ⊗ Ba → Ba ⊗ Bb, which we call
the combinatorial R-matrix, and it restricts to a bijection

R : RSY T ((a, b)) → RSY T ((b, a)).

[36, Example 4.10] describes this operation using jeu-de-taquin and sliding
process. Here we briefly explain his description with an example.

Example 6.4. Let a = 4, b = 3 and T = 3 4 6 7
1 2 5

∈ RSY T ((a, b)). To ap-

ply R, we first draw the skew-shaped standard Young tableau 3 4 6 7
1 2 5

obtained from sliding the first row to the right, and apply jeu-de-taquin pro-
cess until each row has the correct number of boxes.

3 4 6 7
1 2 5 •

→ 3 4 6 7
1 2 5 •

→ 4 6 7
1 2 3 5

As a result, we have R(T ) = 4 6 7
1 2 3 5

. Note that both 3 4 6 7
1 2 5

and

4 6 7
1 2 3 5

are jeu-de-taquin equivalent to the standard Young tableau

1 2 3 4 6 7
5

. In general, the combinatorial R-matrix does not change the

associated jeu-de-taquin equivalent standard Young tableau.
Or, first we again consider 3 4 6 7

1 2 5
and slide each box on the

second row to the rightest with preserving semi-standard property to get
3 4 6 7

1 2 5
. Then, push down the correct number of leftmost boxes (in this

case we push down 4− 3 = 1 box) from the first row to obtain 4 6 7
1 2 3 5

.

Thus we also see that R(T ) = 4 6 7
1 2 3 5

.

If a < b, then we first slide each box in the first row to the leftest with
preserving semi-standard property and push up the correct number of right-
most boxes from the second row.

This combinatorial R-matrix is generalized to any finite tensor product
of single-row KR crystals. In particular, for any sequence of positive integers
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λ = (λ1, . . . , λr) (not necessarily a partition) we similarly define

Ri : RSY T (λ) → RSY T ((λ1, . . . , λi−1, λi+1, λi, λi+2, . . . , λr))

to be the corresponding combinatorial R-matrix. From the theory of crystals,
we easily deduce the following properties of R.

1) R2
i = Id.

2) RiRi+1Ri = Ri+1RiRi+1.

3) If λi = λi+1, then Ri = Id.

4) In general, if λ1, . . . , λr, µ1, . . . , µr ∈ N such that {λ1, . . . , λr} =
{µ1, . . . , µr}, then all the compositions of combinatorial R-matrices
from RSY T ((λ1, . . . , λr)) to RSY T ((µ1, . . . , µr)) give the same map.

As promised, we illustrate ω in terms of combinatorial R-matrices as
follows.

Proposition 6.5. Let λ ⊢ n be a partition. For a given T ∈ RSY T (λ),
T 7→ ω(T ) is equivalent to the following process:

1) rotate T by 180◦ and push each row to the left so that it becomes a
Young tabloid,

2) substitute each entry i by n+ 1− i to make it row-standard, and

3) apply combinatorial R-matrices accordingly to retain the original
shape λ.

First, we restrict our attention toW ⊂ W̃ and SY T (λ) ⊂ RSY T (λ) (the
set of standard Young tableaux of shape λ). Then for any w ∈ W , ω(w) =
w0ww0 where w0 ∈ W is the longest element in W . Under the Robinson-
Schensted algorithm, this corresponds to the usual Schützenberger involu-
tion. Also, it follows from [37, Appendix A] that this involution is the same
as the one described in Proposition 6.5. Therefore, this proposition is true
for elements in SY T (λ).

In general, let T̃ be an IP tabloid mod n such that Ψn(T̃ ) is a row-
standard Young tabloid. We claim that combinatorial R-matrices and the
function Ψn behave well together as follows.

Lemma 6.6. For 1 ≤ i ≤ l(T̃ )− 1, let Ri(T̃ ) be the series (Ri(T̃1),Ri(T̃2),
. . .). Then Ri(T̃ ) is again an IP tabloid mod n and we have Ψn(Ri(T̃ )) =
Ri(Ψn(T̃ )).
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Proof. It suffices to assume that l(T̃ ) = 2 and i = 1. In this case, it is an
easy combinatorial exercise using the description of R in terms of sliding
process in [36, Example 4.10]. □

Example 6.7. Suppose T̃ is an IP tabloid mod 7 such that Ψ7(T̃ ) =
3 4 6 7
1 2 5

. Then (the limit of) each row of T̃ looks like

· · · −11−10−8 −7 −4 −3 −1 0 3 4 6 7 10 11 13 14 17 18 20 21 · · ·
,

and

· · · −13−12−9 −6 −5 −2 1 2 5 8 9 12 15 16 19 · · ·
.

Now we put each box in the second row to the rightest with keeping semi-
standard property. Then it looks like

· · · −11−10−8 −7 −4 −3 −1 0 3 4 6 7 10 11 13 14 17 18 20 21 · · ·

· · · −13−12 −9 −6 −5 −2 1 2 5 8 9 12 15 16 19 · · ·

But this is a concatenation of 3 4 6 7
1 2 5

and its shifts by a multiple

of 7. Note that 3 4 6 7
1 2 5

appears in the usual combinatorial R-matrix

calculation on Ψ7(T̃ ) = 3 4 6 7
1 2 5

(cf. Example 6.4). Also, if one pushes down

all the possible boxes from the first row, then it corresponds to pushing
down the box of entry 3 in 3 4 6 7

1 2 5
. Therefore, in this case we get

Ψ7(R(T̃ )) = R(Ψ7(T̃ )).
Indeed, it is not hard to show that the image of Ψn ◦ R only depends on

Ψn(T̃ ); if T̃ , T̃
′ are two IP tabloids mod n such that Ψn(T̃ ) = Ψn(T̃

′), then
indeed we have Ψn(R(T̃ )) = Ψn(R(T̃ ′)). In other words, one may simply
ignore “finite error” part in both ends of IP sequences mod n because of the
condition (4) in Definition 6.1.

Proof of Proposition 6.5. Suppose w ∈ W̃ is given and T̃ = (T̃1, T̃2, . . .) is an
IP tabloid mod n constructed in Proposition 6.3. Here we choose (ai, bi)i≥1

such that ai + bi = 1. (This assumption is not necessary but it simplifies
the proof.) In other words, each T̃i is the output of the usual Robinson-
Schensted algorithm applied to the sequence w(ai), w(ai + 1), . . . , w(bi −
1), w(bi). If we apply ω, then it corresponds to replacing the sequence w(ai),
w(ai + 1), . . . , w(bi − 1), w(bi) with ω(w)(ai), ω(w)(ai + 1), . . . , ω(w)(bi − 1),
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ω(w)(bi), i.e.

1− w(1− ai), 1− w(−ai), . . . , 1− w(2− bi), 1− w(1− bi)

which is equal to

1− w(bi), 1− w(bi − 1), . . . , 1− w(1 + ai), 1− w(ai)

since ai + bi = 1. According to [37, Appendix A], this is similar to the usual
Schützenberger involution. Indeed, the output of usual Robinson-Schensted
algorithm applied to 1− w(bi), 1− w(bi − 1), . . . , 1− w(1 + ai), 1− w(ai)
can also be obtained from T̃i by the following process.

1) Rotate T̃i by 180◦ and push each row to the left so that it becomes a
Young tabloid,

2) substitute each entry i by 1− i, and

3) find a standard Young tableau which is jeu-de-taquin equivalent to the
result of (2) with the same shape as T̃i.

From the properties of combinatorial R-matrices, step (3) is also equivalent
to the following.

(3’) apply combinatorial R-matrices accordingly to retain the original
shape of T̃i.

Now we apply Ψn on the output of each T̃i under this process. Step (1)
obviously commutes with Ψn, and so does step (2) modulo n. Also, step (3’)
commutes with Ψn by Lemma 6.6. Therefore, ω(Ψn(T̃ )) is obtained from
T = Ψn(T̃ ) by applying the process below:

1) Rotate T by 180◦ and push each row to the left so that it becomes a
Young tabloid,

2) substitute each entry i by 1− i modulo n, say n+ 1− i, and

3) apply combinatorial R-matrices accordingly to retain the original
shape of T .

But this is what we want to prove. □

The description of ω in terms of combinatorial R-matrices has an ad-
vantage that it can be generalized to any row-standard Young tabloid, say
RSY T (λ) where λ is a finite sequence of positive integers which is not nec-
essarily a partition, since the method described in Proposition 6.5 does not
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rely on the condition that λ is a partition. If we write such a generalization
again by ω, then the following lemma is easily proved.

Lemma 6.8. Let λ = (λ1, . . . , λr) be a finite sequence of positive integers.
Then for 1 ≤ i ≤ r − 1, the two maps

ω ◦ Ri,Ri ◦ ω : RSY T (λ) → RSY T ((λ1, . . . , λi−1, λi+1, λi, λi+2, . . . , λr))

coincide. In other words, Ri and ω “commute”.

6.3. Proof of Proposition 5.1

By Proposition 6.5 and Lemma 6.8, we may illustrate T 7→ ω(T ) for T ∈
RSY T (λ ∪ (k, k)) by the following process.

1) Apply R accordingly to obtain a row-standard Young tabloid of shape
(k, λ1, . . . , λr, k).

2) Apply (the generalized version of) ω which is an involution on
RSY T ((k, λ1, . . . , λr, k)).

3) Apply R accordingly to obtain a row-standard Young tableau of
shape λ ∪ (k, k).

Note that step (1) and (3) are inverse to each other. Therefore by Lemma
6.8, we have

|RSY T (λ ∪ (k, k))ω| = |RSY T ((k, λ1, . . . , λr, k))
ω|.

Now, we consider the surjection

Φ: RSY T ((k, λ1, . . . , λr, k)) → RSY T (λ)

which sends T = (T (1), T (2), . . . , T (r), T (r+1), T (r+2)) to the renormalization
of (T (2), . . . , T (r), T (r+1)), i.e. removes the first and the last row (of length
k) of T and renormalizes the result so that the entries are 1, 2, . . . , |λ|. For
example,

if k = 2, λ = (4, 3), and T = 3 9
1 2 7 11
5 6 10
4 8

, then Φ(T ) = 1 2 5 7
3 4 6

.

Now, from the description of ω (Proposition 6.5), T is ω-stable if and only
if
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1) there exists a1, a2, . . . , ak ∈ {1, 2, . . . , n} such that a1 < a2 < · · · < ak
and {a1, . . . , ak} ∩ {n− a1, . . . , n− ak} = ∅, and the first (resp. last)
row of T is (a1, a2, . . . , ak) (resp. (n− ak, n− ak−1, . . . , n− a1)),

2) Φ(T ) is ω-stable.

Thus, φ(λ ∪ (k, k)) equals φ(λ) multiplied by the number of choices of such
{a1, a2, . . . , ak}, which is equal to

(
m
k

)
2k where m = ⌊n/2⌋. But this is what

we want to prove.
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