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Given a constant mean curvature surface that bounds a compact
manifold with nonnegative scalar curvature, we obtain intrinsic
conditions on the surface that guarantee the positivity of its Hawk-
ing mass. We also obtain estimates of the Bartnik mass of such
surfaces, without assumptions on the integral of the squared mean
curvature. If the ambient manifold has negative scalar curvature,
our method also applies and yields estimates on the hyperbolic
Bartnik mass of these surfaces.
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1. Introduction

Given a Riemannian 3-manifold M , let Σ ⊂ M be a closed 2-surface with a
unit normal vector filed ν. Σ is called a CMC surface if its mean curvature
with respect to ν is a constant. Throughout this paper, we assume Σ is a
CMC surface that is topologically a sphere.

When the ambient manifold M has nonnegative scalar curvature, a clas-
sic result of Christodoulou and Yau [11] is the following:

Theorem 1.1 ([11]). Suppose Σ is a stable, CMC sphere in a 3-manifold
M with nonnegative scalar curvature, then m

H
(Σ) ≥ 0.
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Here m
H
(Σ) is the Hawking quasi-local mass [13] of Σ in M , given by

(1.1) m
H
(Σ) =

√

|Σ|
16π

(

1− 1

16π

∫

Σ
H2 dσ

)

,

where |Σ| is the area and H is the mean curvature of Σ, respectively, and
dσ denotes the area form on Σ. A CMC surface Σ is called stable if

(1.2)

∫

Σ
|∇f |2 − (|A|2 +Ric(ν, ν))f2 dσ ≥ 0

for any function f on Σ with
∫

Σ f dσ = 0, where ∇ denotes the gradient on
Σ, A is the second fundamental form of Σ and Ric(ν, ν) is the Ricci curvature
of M along ν.

The stability condition (1.2) is a natural geometric condition and it plays
a key role in the estimate of m

H
(Σ) in [11].

In this paper, one of the main questions that we consider is the non-
negativity of m

H
(Σ) without imposing the stability condition on Σ. Instead,

we assume Σ bounds a finite region Ω with nonnegative scalar curvature.
There are two reasons for making such a consideration:

i) First, from a quasi-local mass point of view, it is desirable to draw
information on the quasi-local mass of Σ purely from knowledge on
the geometric data (g,H), where g is the intrinsic metric on Σ and H

is the mean curvature;

ii) Second, in the special case when g is a round metric on Σ, one indeed
knows

m
H
(Σ) ≥ 0

for any CMC surface Σ with positive constant mean curvatureHo. This
is a consequence of the Riemannian positive mass theorem [22, 29]. To
see this, suppose Σ = ∂Ω where Ω is compact and has nonnegative
scalar curvature. Gluing Ω with an exterior Euclidean region R

3 \B,
where B is a round ball with boundary ∂B isometric to Σ, one con-
cludes Ho ≤ H

E
, where H

E
is the constant mean curvature of ∂B in

R
3 (see [18, 24]). As a result, m

H
(Σ) ≥ 0.

In relation to ii) above, it is natural to ask if m
H
(Σ) has positivity

property when the intrinsic metric on Σ is not far from being round. As an
application of our main result, Theorem 1.3 stated in a moment, we establish
positivity of m

H
(Σ) for these surfaces.
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To formulate our theorems, we make use of a scaling invariant number
ζg that measures how far a metric g is from a round metric. This ζg was
introduced in [20] and we recall it here. Given any metric g with positive
Gauss curvature Kg on the sphere S2, let ro be the area radius of (S2, g),
i.e., |S2|g = 4πr2o . Let {g(t)}0≤t≤1 be a smooth path of metrics on S2 such
that g(0) = g, g(1) is round, g(t) has positive Gauss curvature Kg(t) and
trg(t)g

′(t) = 0 for all t. (Existence of such a path, for instance, follows from
Mantoulidis and Schoen’s proof of [17, Lemma 1.2].) Associated to this path
{g(t)}0≤t≤1, let α and β be two constants given by

α =
1

4
max
t∈[0,1]

max
S2

|g′(t)|2g(t), β = r2o min
t∈[0,1]

min
S2

Kg(t).(1.3)

It is clear β ∈ (0, 1] by the Gauss-Bonnet Theorem, and α > 0 if g is not a
round metric. With these notations, we let

(1.4) ζg = inf
{g(t)}

(

α

2β

) 1

2

,

where the infimum is taken over all such paths {g(t)}0≤t≤1. We point out that
ζg in (1.4) satisfies 2ζ2g = η(g)−1, where η(g) was defined in [20, Section 4].

Evidently, ζg = 0 if g is a round metric; moreover, ζg is invariant under
constant scaling of g. For any γ ∈ (0, 1), it was shown in [20, Proposition 4.1]
that, if g is C2,γ-close to a round metric g∗, normalized with area 4π, then
ζg ≤ C||g − g∗||C0,γ(Σ) where C is an absolute constant.

The following theorem gives a sufficient condition on the intrinsic metric
on Σ that guarantees the positivity of m

H
(Σ).

Theorem 1.2. Let M be a Riemannian 3-manifold with nonnegative scalar
curvature, with boundary ∂M , which is a minimal surface (possibly discon-
nected) minimizing area among all closed surfaces which bound a domain
with ∂M . Suppose Σ ⊂ M is a CMC surface bounding a domain Ω with ∂M

and Σ has positive mean curvature with respect to the unit normal pointing
out of Ω. Let g be the intrinsic metric on Σ. Suppose g has positive Gauss
curvature. If

ζg < C

√

|∂M |
|Σ| ,

then m
H
(Σ) > 0. Here C is some absolute constant (for instance C can be√

2
3 ).
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Remark 1.1. A manifold M in Theorem 1.2 can be taken as an asymp-
totically flat 3-manifold for which the Riemannian Penrose inequality [5, 14]
applies.

We will deduce Theorem 1.2 from a general result which holds without
assumptions on ζg.

Theorem 1.3. Suppose Σ is a CMC surface that bounds a compact 3-
manifold Ω with nonnegative scalar curvature, which may have nonempty
interior horizon. Precisely, this means that Σ is a boundary component of
∂Ω and Σh := ∂Ω \ Σ, if nonempty, is a minimal surface that minimizes
area among surfaces enclosing Σh. Suppose the intrinsic metric g on Σ has
positive Gauss curvature and the mean curvature of Σ with respect to the

outward normal ν is a positive constant Ho. Let ro =

√

|Σ|
4π and define τ =

1
2roHo. Let θ be the unique root to

(1.5) θ3 − 3ζgτ

2
θ2 − 1 = 0.

Then the following holds:

a) If Σh = ∅, i.e. Σ = ∂Ω, then

τ ≤ θ.

b) If Σh ̸= ∅, then
τ2 +

rh

ro
≤ θ2.

Here rh =

√

|Σh|
4π .

c) Let m
B
(Σ) denote the Bartnik quasi-local mass of Σ, then

m
B
(Σ) ≤

√

|Σ|
16π

(

θ2 − 1
)

+m
H
(Σ)

=

√

|Σ|
16π

(

θ2 − τ2
)

.

In particular, this shows m
B
(Σ) ≤ Cro (1 + ζgτ) ζgτ +m

H
(Σ), where

C is an absolute constant.

We defer the definition of the Bartnik mass m
B
(·) to the next section.

For the moment, we give a few remarks about Theorem 1.3.
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Remark 1.2. The constant τ satisfies τ2 = 1
16π

∫

ΣH2
o dσ. Thus, mH

(Σ) >
0 ⇔ τ < 1. In terms of m

H
(Σ), a) and b) of Theorem 1.3 can be rewritten

as

(1.6) m
H
(Σ) ≥







ro
2 (1− θ2), if Σh = ∅;
ro
2

(

1 + rh
ro

− θ2
)

, if Σh ̸= ∅.

Similarly, c) of Theorem 1.3 can be rewritten as

(1.7) m
B
(Σ) ≤







ro
2

(

θ2 − 1
)

, if m
H
(Σ) = 0;

θ2−τ2

1−τ2 m
H
(Σ), if m

H
(Σ) ̸= 0.

Remark 1.3. If g is a round metric, then ζg = 0 and hence θ = 1. In this
case, it is easily seen Theorem 1.3 is true. For instance, a) follows from ii)
above; b) is a special case of the result in [19]; and c) follows from the fact
that one can attach a spatial Schwarzschild manifold with mass m = m

H
(Σ)

to Ω at Σ.

Remark 1.4. Conclusions in a) and b) of Theorem 1.3 concern how non-
negative scalar curvature and interior horizon affect m

H
(Σ) for a CMC sur-

face. This question was studied by the first and the third authors in [20].
Under smallness assumptions on τ , results weaker than a) and b) were de-
rived in [20].

An upper bound of m
B
(Σ) for CMC surfaces was first derived by Lin

and Sormani [15] for an arbitrary metric g on Σ. If Ho = 0 and the first
eigenvalue of −∆g +Kg is positive, Mantoulidis and Schoen [17] proved
m

B
(Σ) = m

H
(Σ). Assuming Kg > 0 and imposing the smallness assumption

on τ used in [20], an upper bound of m
B
(Σ) was derived by Cabrera Pacheco,

Cederbaum, McCormick and the first author [10]. A comparison of the es-
timates in [15] and [10] can be found in [10, Remark 1.2]. Our estimate of
m

B
(Σ) in c) of Theorem 1.3 shares the same feature as that in [10], but holds

without assumptions on τ .

Remark 1.5. If one does not assume Σ bounds a manifold with nonnega-
tive scalar curvature, the estimate of m

B
(Σ) in c) of Theorem 1.3 is still valid

provided the pair (g,Ho) satisfies m
H
(Σ) ≥ 0. See Remark 2.4 for detailed

reasons.

As a corollary of Remark 1.5 and the theorem of Christodoulou and Yau,
we have
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Corollary 1.1. The Bartnik mass of any stable CMC surface Σ with posi-
tive Gauss curvature in a 3-manifold with nonnegative scalar curvature sat-
isfies the estimate in c) of Theorem 1.3.

We have an analogue of Theorem 1.2 with
√

|∂M |
|Σ| replaced by

2m
B
(Σ)

ro
.

Theorem 1.4. Let Σ be a CMC surface, with positive mean curvature Ho,
bounding a compact 3-manifold Ω with nonnegative scalar curvature. Suppose
m

B
(Σ) > 0 and the intrinsic metric g on Σ has positive Gauss curvature. If

ζg < C

(

1 +
2m

B
(Σ)

ro

)−1

min

{

2m
B
(Σ)

ro
, 1

}

,

then m
H
(Σ) > 0. Here ro =

√

|Σ|
4π and C is some absolute constant (for in-

stance C can be
√
2
3 ).

Remark 1.6. In the setting of Theorem 1.4, one may also consider the
Brown-York mass of Σ [7, 8], given by m

BY
(Σ) = 1

8π

∫

Σ(HE
−Ho) dσ, where

H
E
is the mean curvature of the isometric embedding of (Σ, g) in R

3. As Ho

is a constant, one has

(1.8) m
BY

(Σ) = m
H
(Σ) +

(

1

8π

∫

Σ
H

E
dσ − ro

)

+
ro

2
(1− τ)2,

where the second term in the bracket is nonnegative by the Minkowski in-
equality. In [24], Shi and Tam proved m

BY
(Σ) ≥ 0. It would be interesting

to know if the positivity of m
BY

(Σ) can be used in the study of m
H
(Σ).

Remark 1.7. In relation to the positivity of m
H
(Σ), a natural question

is its rigidity. Under the assumption Σ is stable, recent results concerning
m

H
(Σ) = 0 were given by Sun [26] and by Shi, Sun, Tian and Wei [23].

Our proof of Theorem 1.3 is built on the previous work of the first and
the third authors [20]. The techniques we use to prove Theorem 1.3 here can
also be applied to the setting of manifolds with a negative scalar curvature
lower bound. It is known in the literature the Hawking mass m

H
(Σ) has a

hyperbolic analogue, mH

H
(Σ) (see (4.1)). Recently, Cabrera Pacheco, Ceder-

baum and McCormick [9] formulated a hyperbolic analogue of the Bartnik
mass and derived results analogous to those in [17] and [10]. Combining the
techniques in proving Theorem 1.3 and a gluing tool from [9], we obtain
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estimates of the hyperbolic Bartnik mass, which we denote by m
H

B
(Σ), for

the boundary of a compact manifold with negative scalar curvature.

Theorem 1.5. Suppose Σ is a CMC surface bounding a compact 3-manifold
Ω with scalar curvature R ≥ −6κ2 for some constant κ > 0. Let g be the
intrinsic metric on Σ and suppose its Gauss curvature satisfies Kg > −3κ2.
Let τ = 1

2Horo, where ro is the area radius of Σ and Ho is the positive
constant mean curvature of Σ in Ω. Then the hyperbolic Bartnik mass mH

B
(Σ)

satisfies

m
H

B
(Σ)−m

H

H
(Σ)(1.9)

≤ ro

2

[

κ2r2o

(

1 +
3

2
τξ

)2

+

(

1 +
3

2
τξ

) 2

3

− κ2r2o − 1

]

≤ ro

2

(

3κ2r2o + 1
)

(

1 +
3

4
τξ

)

τξ.

Here ξ ≥ 0 is a constant that is specified as follows.

(i) When infΣKg ≤ 0, ξ = ζg,κ, where ζg,κ is a constant determined by g,

given by ζg,κ = inf{g(t)}
(

α
2β+6κ2r2o

) 1

2

. Here the infimum is taken over

all paths of metrics {g(t)}0≤t≤1 with g(0) = g, g(1) is round, Kg(t) >

−3κ2, and trg(t)g
′(t) = 0, and α, β are two constants defined in (1.3).

(ii) When infΣKg > 0, ξ is a constant given in (4.38). In particular, ξ

satisfies ξ ≤ ζgθ
2 ≤ ζg

(

1 + 3
2τζg

)2
. Here ζg is given in (1.4) and θ is

the unique root to θ3 − 3
2τζgθ

2 − 1 = 0.

The remainder of this paper is organized as follows. In Section 2, we con-
sider manifolds with nonnegative scalar curvature and prove Theorem 1.3.
In Section 3, we apply Theorem 1.3 to prove Theorems 1.2 and 1.4. In
Section 4, we consider manifolds with negative scalar curvature and prove
Theorem 1.5.

2. Manifolds with nonnegative scalar curvature

Let Ω, Σ, ro, Ho and τ be given in Theorem 1.3. By Remark 1.3, it suffices
to assume that the intrinsic metric g on Σ is not round. We divide the proof
of Theorem 1.3 into a few steps:
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Step 1. We review the construction of a suitable metric on N = [0, 1]× Σ
from [20]. Let {g(t)}t∈[0,1] be any given smooth path of metrics on Σ, sat-
isfying g(0) = g, g(1) is round, Kg(t) > 0 and trg(t)g

′(t) = 0, ∀ t. Given any

parameter m ∈ (−∞, 12ro), consider part of a spatial Schwarzschild metric

γm =
1

1− 2m
r

dr2 + r2g∗, r ≥ ro,

where g∗ is the standard metric with area 4π on the sphere S2. Rewriting
γm as γm = ds2 + u2m(s)g∗, s ≥ 0, one has um(0) = r0 and

(2.1) u′m(s) =

(

1− 2m

um(s)

) 1

2

.

Let k > 0 be a constant given by

(2.2) k = τ

(

1− 2m

ro

)− 1

2

.

Define a metric

γ(m) = A2dt2 + r−2
o u2m(Akt)g(t).

Here A > 0 is some constant which will be chosen later. The following prop-
erties of (N, γ(m)) follow from direct calculation (see (2.1)–(2.16) in [20]):

• each Σt := {t} × Σ has positive constant mean curvature w.r.t ∂t;

• the induced metric on Σ0 is g, and the mean curvature of Σ0 w.r.t ∂t
is Ho;

• the Hawking mass of each Σt is

(2.3) m
H
(Σt) =

1

2
(um(Akt)− ro) (1− k2) +m

H
(Σ);

• the scalar curvature R(γ(m)) of γ(m) satisfies

R(γ(m)) = 2u−2
m

[

r2oKg(t) − k2 − 1

8
|g′(t)|2g(t)A−2u2m

]

(2.4)

≥ 2u−2
m

[

β − k2 − 1

2
αA−2u2m(Ak)

]

.
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By (2.4), a sufficient condition to have R(γ(m)) ≥ 0 is that there exists an
A > 0 such that β − k2 − 1

2αA
−2u2m(Ak) ≥ 0. If this is the case, then neces-

sarily k2 < β ≤ 1. As k2 < 1 is equivalent tom < mo, wheremo =
ro
2 (1− τ2)

is the Hawking mass of Σ, such an A exists only if m < mo.

Step 2. For any suitably given m < mo, we choose an optimal A = Ao such

that γ(m) has nonnegative scalar curvature.

Lemma 2.1. For each m ∈ (−∞,mo) satisfying

(2.5) β >
(

1 +
α

2

)

k2,

there exists a constant Ao > 0 such that

(2.6) β − k2 − α

2
A−2

o u2m(Aok) = 0.

Moreover, the set of all such Ao is bounded from above and away from zero
as m tends to −∞. That is, there are constants B2 > B1 > 0 and m̃ < 0
such that B1 < Ao < B2 whenever m < m̃.

Proof. Since α > 0, (2.6) is equivalent to

(2.7) k−22α−1(β − k2) = (Aok)
−2u2m(Aok).

Consider the function fm(s) = s−1um(s). One has lims→0+ fm(s) = ∞ and

(2.8) lim
s→∞

fm(s) = lim
s→∞

u′m(s) = lim
s→∞

(

1− 2m

um(s)

) 1

2

= 1.

Thus, the range of fm includes (1,∞). Since (2.5) implies

k−22α−1(β − k2) > 1,

the existence of such an Ao follows.
Now, by (2.6) and the fact um(s) ≥ ro, one has

(2.9) β − k2 =
α

2
A−2

o u2m(Aok) ≥
α

2
A−2

o r2o ,

which gives

(2.10) A2
o ≥

α

2
r2o
(

β − k2
)−1

.

As limm→−∞ k = 0, this shows Ao is bounded away from 0 as m → −∞.
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Next, suppose m < 0. By (2.1), u′m(s) ≤
(

1− 2m
ro

) 1

2

= τk−1, which im-

plies

um(s) ≤ r0 + τk−1s.

Thus, for 0 ≤ s ≤ Aok,

(2.11) u′m(s) ≤
√

1− 2m(r0 +Aoτ)

u2m(s)
,

or equivalently

(2.12) um(s)u′m(s) ≤
√

u2m(s)− 2m(r0 +Aoτ).

Upon integration, (2.12) shows

u2m(Aok) ≤ r2o +A2
ok

2 + 2Aok
√

r2o − 2m(ro +Aoτ).

Combined with (2.6) and (2.2), this implies

β − k2 ≤ α

2
A−2

o

(

r2o +A2
ok

2 + 2Aok
√

r2o − 2m(ro +Aoτ)
)

,

i.e.

(2.13) β − k2 − α

2
k2 ≤ α

2

(

r2oA
−2
o + 2A−1

o

√

τ2r2o + (τ2 − k2)roAoτ
)

.

Since β > 0 and limm→−∞ k = 0, it follows from (2.13) that Ao is bounded
from above as m → −∞. □

In what follows, for each m satisfying (2.5), we choose A to be the
smallest root Ao to equation (2.6). By (2.4), the metric

γ(m) = A2
odt

2 + r−2
o u2m(Aokt)g(t)

has nonnegative scalar curvature. For each m, we glue (N, γ(m)) to Ω by
identifying Σ0 with Σ. The argument in [20, Section 3] leading to (3.9)
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therein then gives

(2.14) m
H
(Σ1) ≥

√

|Σh|
16π

, if Σh ̸= ∅,

and

(2.15) m
H
(Σ1) ≥ 0, if Σh = ∅.

Here, by (2.3),

(2.16) m
H
(Σ1) =

1

2
(um(Aok)− ro) (1− k2) +m

H
(Σ).

Step 3. We follow the idea in [20] by letting m → −∞ in (2.14) and (2.15).
Since limm→−∞ k = 0, (2.5) is satisfied for every sufficiently negative m. By
Lemma 2.1, there exists a sequence {mi} with limi→∞mi = −∞ such that

the corresponding sequence {A(i)
o }, where A(i)

o is the Ao associated with mi,

has a finite limit. Consequently, by (2.6), the sequence {umi
(A

(i)
o k(i))} has

a finite limit as well. Here k(i) is the k associated with mi.
We evaluate limi→∞ umi

(A
(i)
o k(i)). One way to achieve this is to implicitly

solve (2.1). Suppose m < 0. Let vm(s) > 0 be the function such that

(2.17)
−2m

um(s)
= sinh−2(vm(s)).

In term of vm(s), (2.1) becomes

−4m sinh2(vm(s))v′m(s) = 1,

or equivalently

(2.18) (−m)[sinh(2vm(s))− 2vm(s)]′ = 1.

Plugging in

sinh(2vm(s)) = 2

(−um(s)

2m

) 1

2
(

1− um(s)

2m

) 1

2

and

vm(s) = ln

(

(−um(s)

2m

) 1

2

+

(

1− um(s)

2m

) 1

2

)

,
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we get

2m

[

ln

(

(−um(s)

2m

) 1

2

+

(

1− um(s)

2m

) 1

2

)

−
(−um(s)

2m

) 1

2
(

1− um(s)

2m

) 1

2

]

− 2m

[

ln

(

(

− ro

2m

) 1

2

+
(

1− ro

2m

) 1

2

)

−
(−ro

2m

) 1

2
(

1− ro

2m

) 1

2

]

= s.

Takingm = mi, k = k(i),Ao = A
(i)
o , s = A

(i)
o k(i), and let u

(i)
mi

:= umi
(A

(i)
o k(i)),

we have

2mi



ln





(

−u
(i)
mi

2mi

) 1

2

+

(

1− u
(i)
mi

2mi

) 1

2



−
(

−u
(i)
mi

2mi

) 1

2
(

1− u
(i)
mi

2mi

) 1

2





(2.19)

− 2mi

[

ln

(

(

− ro

2mi

) 1

2

+

(

1− ro

2mi

) 1

2

)

−
(−ro

2mi

) 1

2
(

1− ro

2mi

) 1

2

]

= A(i)
o k(i).

By Lemma 2.1,
u(i)
mi

2mi
= O(|mi|−1) as i → ∞. Hence,

ln





(

−u
(i)
mi

2mi

) 1

2

+

(

1− u
(i)
mi

2mi

) 1

2



−
(

−u
(i)
mi

2mi

) 1

2
(

1− u
(i)
mi

2mi

) 1

2

= −2

3

(

−u
(i)
mi

2mi

) 3

2

+O(|mi|−2).

Combined with (2.2), this gives

lim
i→∞

2mi

k(i)



ln





(

−u
(i)
mi

2mi

) 1

2

+

(

1− u
(i)
mi

2mi

) 1

2



−
(

−u
(i)
mi

2mi

) 1

2
(

1− u
(i)
mi

2mi

) 1

2





=
2

3
r
− 1

2
o τ−1 lim

i→∞
u(i)mi

3

2 .
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Similarly,

lim
i→∞

2mi

k(i)

[

ln

(

(

− ro

2mi

) 1

2

+

(

1− ro

2mi

) 1

2

)

−
(−ro

2mi

) 1

2
(

1− ro

2mi

) 1

2

]

=
2

3
roτ

−1.

Hence, by (2.19), we have

(2.20) lim
i→∞

u(i)mi
= ro

(

1 +
3

2
τr−1

o lim
i→∞

A(i)
o

) 2

3

.

Now let Āo := limi→∞A
(i)
o . By (2.10),

Āo ≥
(

α

2β

) 1

2

ro > 0.

Taking limit in (2.6), we have

(2.21) β =
α

2
Ā−2

o

(

lim
i→∞

u(i)mi

)2
.

Therefore, it follows from (2.20) and (2.21) that

(2.22)

(

ro

Āo

) 3

2

+
3τ

2

(

ro

Āo

) 1

2

=

(

2β

α

) 3

4

.

We now define θ > 0 such that

(2.23)
Āo

ro
= θ2

(

α

2β

) 1

2

.

Then (2.22) shows

(2.24) θ3 − 3τ

2

(

α

2β

) 1

2

θ2 − 1 = 0.

By (2.20), (2.23) and (2.24), we have

(2.25) lim
i→∞

u(i)mi
= ro

(

1 +
3τ

2
θ2
(

α

2β

) 1

2

)
2

3

= roθ
2.



✐

✐

“12-Miao” — 2020/7/23 — 0:28 — page 868 — #14
✐

✐

✐

✐

✐

✐

868 P.-Z. Miao, Y.-H. Wang, and N.-Q. Xie

From this and (2.16), we conclude

lim
i→∞

m
H
(Σ1) = lim

i→∞
1

2

(

u(i)mi
− ro

)

(1− k(i)
2
) +m

H
(Σ)(2.26)

=
ro

2

(

θ2 − 1
)

+m
H
(Σo)

=
ro

2

(

θ2 − τ2
)

.

Here m
H
(Σ1) denotes the Hawking mass of Σ1 in (N, γ(mi)).

Remark 2.1. Since {A(i)
o } can be taken to be any converging sequence,

the argument above indeed shows

lim
m→−∞

um(Aok) = roθ
2 and lim

m→−∞
Ao = roθ

2

(

α

2β

) 1

2

.

The following theorem follows directly from (2.14), (2.15) and (2.26).

Theorem 2.1. Let Ω, Σ, g, ro, Ho and τ be given in Theorem 1.3. Let
{g(t)}t∈[0,1] be a smooth path of metrics on Σ satisfying g(0) = g, g(1) is
round, Kg(t) > 0 and trg(t)g

′(t) = 0. Let α and β be the constants associated
to {g(t)}t∈[0,1], given by (1.3). Let θ > 0 be the number that is the unique
root to

θ3 − 3τ

2

(

α

2β

) 1

2

θ2 − 1 = 0.

Then

τ ≤ θ if Σh = ∅,

and

τ2 +
rh

ro
≤ θ2 if Σh ̸= ∅.

Here rh =

√

|Σh|
4π is the area radius of Σh.
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Remark 2.2. Let f(x) = x3 − 3τ
2

(

α
2β

) 1

2

x2 − 1. As

f ′(x) = 3x

[

x− τ

(

α

2β

) 1

2

]

,

it is easily seen that, given a number x,

x ≤ θ ⇐⇒ f(x) ≤ 0.

Thus, the conclusion in Theorem 2.1 can be equivalently stated as

(2.27) τ3

[

1− 3

2

(

α

2β

) 1

2

]

≤ 1 if Σh = ∅,

and

(2.28)

(

τ2 +
rh

ro

) 3

2

− 3τ

2

(

α

2β

) 1

2
(

τ2 +
rh

ro

)

≤ 1 if Σh ̸= ∅.

Part a) and b) of Theorem 1.3 now follow from Theorem 2.1 by consid-

ering sequences of paths of metrics {g(t)}t∈[0,1] with
(

α
2β

) 1

2 → ζg.

Remark 2.3. Because we have chosen Ao > 0 to be the smallest root to
(2.6), we have β − k2 − α

2A
−2u2m(Ak) < 0, ∀A ∈ (0, Ao). Thus, if Ão > 0 is

any number such that β − k2 − α
2 Ã

−2
o u2m(Ãok) ≥ 0, we must have Ao ≤ Ão,

and hence um(Aok) ≤ um(Ãok). Thus, besides requiring no assumptions on
τ , inequalities in a) and b) of Theorem 1.3 are stronger than those of The-
orems 1.1 and 1.2 in [20].

In the remaining part of this section, we prove part c) of Theorem 1.3.
First, we review the definition of m

B
(·). Given a metric g and a function

H on a surface Σ that is topologically a sphere, the Bartnik mass m
B
(Σ)

associated to the triple (Σ, g,H) [2, 3] can be defined as

inf {m
ADM

(M,γ) | (M,γ) is an admissible extension of (Σ, g,H)} .

Here m
ADM

(·) denotes the ADM mass [1], and an asymptotically flat 3-
manifold (M,γ) with boundary is an admissible extension of (Σ, g,H) if:
∂M is isometric to (Σ, g); the mean curvature of ∂M in (M,γ) equals H;
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(M, g) has nonnegative scalar curvature; and either (M,γ) contains no closed
minimal surfaces (except possibly ∂M), or ∂M is outer-minimizing in (M,γ)
(see [5, 6, 14, 30] for instance).

Working with this definition, one sees that part c) of Theorem 1.3 would
be a natural consequence of the previous three steps. The reason is, because
Σ1 has a round intrinsic metric and constant mean curvature in (N, γ(m)),
one can attach part of a spatial Schwarzschild manifold with mass m

H
(Σ1),

outside a rotationally symmetric sphere isometric to Σ1, to (N, γ(m)) at
Σ1. The resulting manifold would be an admissible extension of (Σ, g,Ho),
except it may not be smooth across Σ1. If it were smooth across Σ1, then
m

B
(Σ) ≤ m

H
(Σ1) by definition. Passing to the limit in Step 3, one would

obtain the estimate in c).
To give a precise proof of c), we can make use of a gluing result in

[10]. For this purpose, we return to the end of Step 2 to point out a few
additional feature of (N, γ(m)). By (2.14) and (2.15), the Hawing mass of Σ1

in (N, γ(m)) satisfies

(2.29) m
H
(Σ1) ≥ 0.

By (2.4) and (2.6), the scalar curvature of γ(m) at any (x, t) ∈ Σ× [0, 1) ⊂ N

satisfies

R(γ(m))(x, t) = 2u−2
m (Aokt)

[

r2oKg(t)(x)− k2 − 1

8
|g′(t)|2g(t)(x)A−2

o u2m(Aokt)

]

> 2u−2
m (Aok)

[

β − k2 − 1

2
αA−2

o u2m(Ak)

]

= 0.(2.30)

At t = 1, we also have

R(γ(m))(x, 1) = 2u−2
m (Aok)

[

1− k2 − 1

8
|g′(1)|2g(1)(x)A−2

o u2m(Aok)

]

(2.31)

> 2u−2
m (Aok)

[

β − k2 − 1

2
αA−2

o u2m(Ak)

]

= 0,

because β < 1 (since g(1) is round while g(0) = g is not round). Thus,
R(γ(m)) > 0 everywhere on N .

Now we can apply [10, Proposition 2.1] to (N, γ(m)). We may first assume
the path {g(t)}t∈[0,1] has a property g(t) = g(1) for t in (1− δ, 1] for some
δ > 0. In this case, a direct application of [10, Proposition 2.1] gives

(2.32) m
B
(Σ) ≤ m

H
(Σ1).
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In general, by approximating {g(t)}t∈[0,1] with paths satisfying such a prop-
erty (see (3.9)–(3.13) in [10]), one knows (2.32) still holds.

Combining (2.26) and (2.32), we obtain

m
B
(Σ) ≤ lim

i→∞
m

H
(Σ1)(2.33)

=
ro

2

(

θ2 − 1
)

+m
H
(Σo).

Elementary estimates show that the root θ to (1.5) satisfies 1 ≤ θ ≤ 1 +
3
2τζg. Thus,

(2.34) m
B
(Σ) ≤ 3

2
ro

(

1 +
3

4
τζg

)

τζg +m
H
(Σ).

This completes the proof of part c) of Theorem 1.3.

Remark 2.4. In Theorem 1.3, we assume Σ bounds a compact 3-manifold
with nonnegative scalar curvature. If this assumption is dropped, the above
proof is still valid to show (2.33), provided a sufficient condition m

H
(Σ) ≥ 0

is assumed on (g,Ho). This is because, by (2.16), m
H
(Σ1) > m

H
(Σ) for each

(N, γ(m)) used in the proof.

Remark 2.5. In [10], it was shown if (g,Ho) on Σ satisfies τ2 < β
1+α

, then

(2.35) m
B
(Σ) ≤

[

α

β − (1 + α)τ2

] 1

2

τm
H
(Σ) +m

H
(Σ).

Comparing (2.33) and (2.35), we see (2.33) requires no assumptions on τ

and it improves (2.35) when τ is small. For instance, as τ → 0,

θ2 − 1

1− τ2
=

(

α

2β

) 1

2

τ +O(τ2) and

[

α

β − (1 + α)τ2

] 1

2

τ =

(

α

β

) 1

2

τ +O(τ2).

3. Applications of Theorem 1.3

We apply Theorem 1.3 to prove Theorems 1.2 and 1.4.

Lemma 3.1. Given two constants b > 0 and λ > 0, consider the function

(3.1) Φ(τ) =
(

τ2 + λ
)

3

2 − bτ
(

τ2 + λ
)

− 1, τ ∈ (0,∞).

If b < min{ λ√
1+λ

, 1√
1+λ

}, then Φ(τ) > 0 for any τ ≥ 1.
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Proof. One has

(1 + λ)−1Φ(1) =
√
1 + λ− 1

1 + λ
− b(3.2)

=
λ

(1 + λ)
(√

1 + λ+ 1
) +

λ√
1 + λ

− b > 0,

and

(3τ2 + λ)−1Φ′(τ) =
3
(

τ2 + λ
) 1

2 τ

3τ2 + λ
− b(3.3)

≥ τ√
τ2 + λ

− b > 0

for τ ≥ 1. The lemma follows. □

Proof of Theorem 1.2. We take the constant C =
√
2
3 . Suppose

(3.4) ζg <

√
2

3

√

∂M

|Σ| .

Applying b) of Theorem 1.3 to the domain Ω, bounded by Σ and ∂M , in
M , we have

(3.5) τ2 +
rh

ro
≤ θ2,

where ro =

√

|Σ|
4π , rh =

√

|∂M |
4π , τ = 1

2roHo, Ho is the positive constant mean

curvature of Σ, and θ > 0 is the unique root to (1.5). Similarly to Remark 2.2,
we know (3.5) is equivalent to

(3.6)

(

τ2 +
rh

ro

) 3

2

− 3τζg
2

(

τ2 +
rh

ro

)

− 1 ≤ 0.

Let b = 3ζg
2 and λ = rh

ro
. Condition (3.4) becomes b < 1√

2
λ. Since |∂M | ≤ |Σ|,

λ ≤ 1. Thus, by (3.6) and Lemma 3.1, we have τ < 1, i.e m
H
(Σ) > 0. □

Theorem 1.4 is proved in a similar way.
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Proof of Theorem 1.4. Since Σ bounds a compact Ω with nonnegative scalar
curvature, m

B
(Σ) satisfies the estimate in c) of Theorem 1.3, i.e.

(3.7) τ2 +
2m

B
(Σ)

ro
≤ θ2.

Therefore,

(3.8)

(

τ2 +
2m

B
(Σ)

ro

) 3

2

− 3τζg
2

(

τ2 +
2m

B
(Σ)

ro

)

− 1 ≤ 0.

Now suppose

(3.9) ζg <

√
2

3

(

1 +
2m

B
(Σ)

ro

)− 1

2

min

{

2m
B
(Σ)

ro
, 1

}

.

Let b = 3ζg
2 and λ =

2m
B
(Σ)

ro
, (3.9) shows

b < (1 + λ)−
1

2 min {λ, 1} .

By (3.8) and Lemma 3.1, we conclude τ < 1, i.e m
H
(Σ) > 0. □

4. Manifolds with negative scalar curvature

In the remaining of this paper, we turn attention to CMC surfaces in man-
ifolds with a negative lower bound on the scalar curvature. Let M denote
a Riemannian 3-manifold with scalar curvature R ≥ −6κ2, where κ > 0 is
a constant. Let Σ ⊂ M be a closed surface. In this context, the hyperbolic
Hawking mass of Σ is given by

(4.1) m
H

H
(Σ) =

√

|Σ|
16π

(

1− 1

16π

∫

Σ
H2 dσ +

1

4π
κ2|Σ|

)

.

A natural analogue of the Bartnik mass is

m
H

B
(Σ) = inf {m(MH , γH)} ,

where m(·) is the mass of an asymptotically hyperbolic manifold and the
infimum is taken over a space of “admissible asymptotically hyperbolic ex-
tensions” (MH , γH) of (Σ, g,H). We refer readers to the recent work of Cabr-
era Pacheco, Cederbaum and McCormick [9] for a detailed discussion of this
definition.
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We now let Ω, Σ, g, Ho, ro and τ be given in Theorem 1.5. If g is a round
metric, then ζg = 0 and ξ = 0. In this case, (1.9) reduces to m

H

B
(Σ) ≤ m

H

H
(Σ).

This is true because a spatial AdS-Schwarzschild manifold with mass m =
m

H

H
(Σ), lying outside a rotationally symmetric sphere isometric to Σ, can be

attached to Ω at Σ.
In what follows, we assume that g is not a round metric. Under the

assumptionKg > −3κ2, there exists a smooth path of metrics {g(t)}0≤t≤1 on
Σ with g(0) = g, g(1) is round, Kg(t) > −3κ2, and trg(t)g

′(t) = 0. (Existence
of such a path can be provided by the solution to the normalized Ricci flow
on Σ starting at g. See [16, Lemma 4.2] and [9, Lemma 5.1] for instance.)
We fix such a path {g(t)}0≤t≤1 and let α, β be the constants given in (1.3).
Then α > 0 and 1 > β > −3κ2r2o .

Similar to Step 1 in the proof of Theorem 1.3, now one can consider a
spatial AdS-Schwarzschild metric γm =

(

1− 2m
r

+ κ2r2
)−1

dr2 + r2g∗, r ≥
ro, where m is any parameter such that 1− 2m

ro
+ κ2r2o > 0. Rewriting γm

as γm = ds2 + u2m(s)g∗, s ≥ 0, one has um(0) = ro and

(4.2) u′m(s) =

(

1− 2m

um(s)
+ κ2u2m(s)

) 1

2

.

Define a constant

(4.3) k = τ

(

1− 2m

ro
+ κ2r2o

)− 1

2

and a metric

γ(m) = A2dt2 + r−2
o u2m(Akt)g(t)

on N = [0, 1]× Σ, where A > 0 is a constant to be chosen. Direct calculation
shows

• each Σt := {t} × Σ has positive constant mean curvature w.r.t ∂t;

• the induced metric on Σ0 is g, and the mean curvature of Σ0 w.r.t ∂t
is Ho;

• the hyperbolic Hawking mass of each Σt is

m
H

H
(Σt) =

1

2
(um(Akt)− ro) (1− k2)(4.4)

+
1

2
κ2(1− k2)(u3m(Akt)− r3o) +m

H

H
(Σ);
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• the scalar curvature R(γ(m)) of γ(m) satisfies

R(γ(m)) = 2u−2
m (r2oKg(t) − k2)− 1

4
|g′(t)|2g(t)A−2 − 6k2κ2(4.5)

≥ 2u−2
m (β − k2)− αA−2 − 6k2κ2.

Remark 4.1. The manifold (N, γ(m)), constructed above via the warping
function of a AdS-Schwarzschild metric, was also used in [9]. Estimates on
m

H

B
(·) for a pair (g,Ho) were derived in [9] under suitable smallness condi-

tions on Ho. In this section, by assuming (g,Ho) arises from the boundary
of Ω and by making an optimal choice of A, we obtain estimates on m

H

B
(·)

that require no assumption on Ho.

By (4.5), a sufficient condition to guarantee R(γ(m)) ≥ −6κ2 on N is

(4.6) u−2
m (Akt)(β − k2)− 1

2
αA−2 + 3κ2(1− k2) ≥ 0, ∀ t ∈ [0, 1].

As um(s) is monotone, (4.6) is equivalent to

(4.7) u−2
m (Ak)(β − k2)− 1

2
αA−2 + 3κ2(1− k2) ≥ 0, if β − k2 > 0,

or

(4.8) r−2
o (β − k2)− 1

2
αA−2 + 3κ2(1− k2) ≥ 0, if β − k2 ≤ 0.

Next, as in Step 2 in the proof of Theorem 1.3, we choose an optimal
A = Ao so that (4.7) or (4.8) are met. If β ≤ 0, using the fact β + 3κ2r2o > 0,
one easily sees an optimal A satisfying (4.8) is

(4.9) Ao = ro

(

1
2α

β + 3κ2r2o − (1 + 3κ2r2o) k
2

) 1

2

,

provided k is small.
If β > 0 (which occurs only if infΣKg > 0), we choose an optimal Ao

satisfying (4.7) according to the following lemma.
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Lemma 4.1. Suppose α > 0 and β > 0. For every m ∈ (−∞, 0) satisfying
k2 < β, there exists a positive constant Ao such that

(4.10) (β − k2) +

[

3κ2(1− k2)− 1

2
αA−2

]

u2m(Aok) = 0.

Moreover, the set of all such Ao is bounded from above and away from zero
as m tends to −∞.

Proof. For each fixed m, consider the function

fm(A) = (β − k2) +

[

3κ2(1− k2)− 1

2
αA−2

]

u2m(Ak), A ∈ (0,∞).

One has limA→0+ fm(A) = −∞ since α > 0, and limA→∞ fm(A) = ∞ be-
cause lims→∞ um(s) = ∞ and k2 < β < 1. Moreover, fm(A) is strictly in-
creasing in A. Hence, there exists a unique root Ao > 0 to (4.10). For this
Ao, one has

(4.11) 3κ2(1− k2)− 1

2
αA−2

o ≤ 0,

for otherwise the left side of (4.10) would be positive. Thus,

(4.12) A2
o ≤

1

6
ακ−2(1− k2)−1.

As limm→−∞ k = 0, this shows that Ao is bounded from above as m tends
to −∞. On the other hand, by (4.10), (4.11) and the fact um(s) ≥ ro, one
has

0 ≤ (β − k2) +

[

3κ2(1− k2)− 1

2
αA−2

o

]

r2o ,

i.e.

(4.13) αr2o
[

2(β − k2) + 6κ2(1− k2)r2o
]−1 ≤ A2

o.

This shows Ao is bounded away from 0 as m tends to −∞. □

In what follows, we assume m is sufficiently negatively large so that k2 is
small. We choose A = Ao > 0 so that Ao is the unique root to (4.10) if β > 0;
and Ao is given by (4.9) if β ≤ 0. In either case, Ao = O(1), as m → −∞.

Before we compute limm→−∞Ao and limm→−∞ um(Aok), we point out
the non-negativity of mH

H
(Σ1) in our setting.
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Proposition 4.1. Let Ω, Σ, (N, γ(m)), Ao, be given above. Then m
H

H
(Σ1) ≥

0.

Proof. This is essentially a consequence of the positive mass theorem on
asymptotically hyperbolic manifolds (see [12, 28] for instance). More pre-
cisely, this follows from such a theorem on manifolds with corners along a
hypersurface (see [4] and also [25, 27]). Consider three manifolds

Ω, (N, γ(m)), and M
m
,

where M
m

is part of the spatial AdS-Schwarzschild manifold, with mass
m = m

H

H
(Σ1), lying outside a rotationally symmetric sphere S isometric to

Σ1. One can glue M
m

to (N, γ(m)) by identifying S with Σ1 and glue Ω
to (N, γ(m)) by identifying Σ with Σ0. Applying [4, Theorem 1.1] to the
resulting manifold, one concludes m ≥ 0. □

The above proof of Proposition 4.1 indeed indicates mH

B
(Σ) ≤ m

H

H
(Σ1) if

the manifold obtained by gluing Mm and (N, γ(m)) along Σ1 is smooth. By
invoking a gluing result in [9, Proposition 3.3], one can verify this assertion.

Proposition 4.2. Let Ω, Σ, (N, γ(m)), Ao, be given above. Then m
H

B
(Σ) ≤

m
H

H
(Σ1).

Proof. Since β < 1 and Σ1 is round in (N, γ(m)), an examination of (4.7)
and (4.8) shows R(γ(m)) > −6κ2 near Σ1 in N . The claim nows follows from
Proposition 4.1 and [9, Proposition 3.3] in the same way that (2.32) follows
from (2.29) and [10, Proposition 2.1]. □

Next, we proceed to evaluate limm→−∞Ao and limm→−∞ um(Aok). First,
as m < 0, (4.2) implies

u′m(s) ≤
(

1− 2m

ro
+ κ2u2m(s)

) 1

2

,

which, upon integration, gives
(4.14)

κum(Aok) +

√

1− 2m

ro
+ κ2u2m(Aok) ≤ eκAok

[

κro +

√

1− 2m

ro
+ κ2r2o

]

.

This yields

(4.15) um(Aok) ≤ u∗m,
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where

u∗m =
eκAok

(

κro +
√

1− 2m
ro

+ κ2r2o

)2

− e−κAok
(

1− 2m
ro

)

2κ
(

κro +
√

1− 2m
ro

+ κ2r2o

)(4.16)

= ro

[

1

2

(

eκAok + e−κAok
)

+
1

2κk

(

eκAok − e−κAok
) Ho

2

]

.

For 0 ≤ s ≤ Aok, by (4.2), we have

u′m(s) ≤
(

u∗m − 2m+ κ2u∗m
3

um(s)

)

1

2

,(4.17)

which implies

(4.18) u
3

2
m(Aok) ≤

3

2
Aok

√

u∗m − 2m+ κ2u∗m
3 + r

3

2
o .

On the other hand, by (4.2),

(4.19) u′m(s) ≥
(

− 2m

um(s)

) 1

2

,

which implies

(4.20) u
3

2
m(Aok) ≥

3

2
Aok

√
−2m+ r

3

2
o .

Now, let {mi} denote any sequence that tends to −∞ so that the corre-

sponding sequence {A(i)
o } has a finite limit, where A

(i)
o is the Ao associated

with mi. Let Āo := limm→−∞A
(i)
o . As limi→∞ k = 0, by (4.3) and (4.16),

(4.21) lim
i→∞

u∗mi
= ro

(

1 +
1

2
ĀoHo

)

and

(4.22) lim
i→∞

k
√
−2mi = τr

1

2
o = lim

i→∞
k

√

u∗mi
− 2mi + κ2u∗mi

3.

Hence, if we let

ξ = Āor
−1
o ,



✐

✐

“12-Miao” — 2020/7/23 — 0:28 — page 879 — #25
✐

✐

✐

✐

✐

✐

On Hawking mass and Bartnik mass of CMC surfaces 879

then, by (4.18) and (4.20),

(4.23) ūo := lim
i→∞

umi
(A(i)

o k) = ro

(

1 +
3

2
τξ

) 2

3

.

As a result of (4.23) and (4.4), we see that the limit of the hyperbolic
Hawking mass of Σ1 in (N, γ(mi)) is given by

lim
i→∞

m
H

H
(Σ1) =

1

2
(ūo − ro) +

1

2
κ2(ū3o − r3o) +m

H

H
(Σ)

=
ro

2

[

(

1 +
3

2
τξ

) 2

3

+ κ2r2o

(

1 +
3

2
τξ

)2

− 1− κ2r2o

]

+m
H

H
(Σ).(4.24)

Here, by (4.9),

(4.25) ξ =

(

1
2α

β + 3κ2r2o

) 1

2

, if β ≤ 0.

When β > 0, by (4.13),

(4.26) ξ ≥
(

1
2α

β + 3κ2r2o

) 1

2

> 0.

Hence, by (4.10) and (4.23),

(4.27) β +
(

3κ2r2o −
α

2
ξ−2
)

(

1 +
3

2
τξ

) 4

3

= 0,

or equivalently

(4.28)

[

β + 3κ2r2o

(

1 +
3

2
τξ

) 4

3

]

ξ2 − α

2

(

1 +
3

2
τξ

) 4

3

= 0.

Remark 4.2. Consider

Ψ(x) = β +
(

3κ2r2o −
α

2
x−2

)

(

1 +
3

2
τx

) 4

3

, x ∈ (0,∞).

Then

Ψ′(x) =

(

6κ2r2oτ + αx−3 +
1

2
ατx−2

)(

1 +
3

2
τx

) 1

3

> 0.
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As limx→0+Ψ(x) = −∞ and limx→∞Ψ(x) = ∞, Ψ(x) has a unique root
ξ > 0.

Remark 4.3. Since {A(i)
o } can be any converging sequence, the argument

above shows

lim
m→−∞

Ao = roξ and lim
m→−∞

um(Aok) = ro

(

1 +
3

2
τξ

) 2

3

.

Suppose β > 0, we want to estimate ξ > 0 which is the solution to (4.28).
Similar to (2.23), we make a change of variable by letting

ξ =

(

α

2β

) 1

2

θ2κ

for θκ > 0. Then (4.28) becomes

(4.29)



1 + 3κ2r2oβ
−1

(

1 +
3

2

(

α

2β

) 1

2

τθ2κ

)
4

3





3

4

θ3κ −
3

2

(

α

2β

) 1

2

τθ2κ − 1 = 0.

For x ∈ (0,∞), consider the function
(4.30)

f(x) =



1 + 3κ2r2oβ
−1

(

1 +
3

2

(

α

2β

) 1

2

τx2

)
4

3





3

4

x3 − 3

2

(

α

2β

) 1

2

τx2 − 1.

By Remark 4.2, f(x) has a unique positive root θκ. As in Theorem 2.1, we
let θ > 0 be the unique root to

(4.31) θ3 − 3

2

(

α

2β

) 1

2

τθ2 − 1 = 0.

Then f(θ) ≥ 0. Therefore, we conclude

(4.32) θκ ≤ θ.

In particular, using the fact θ ≤ 1 + 3
2

(

α
2β

) 1

2

τ , we have

(4.33) θκ ≤ 1 +
3

2

(

α

2β

) 1

2

τ.

Our above discussion has established the following theorem.
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Theorem 4.1. Let Ω, Σ, g, Ho, ro and τ be given in Theorem 1.5. Suppose
g is not a round metric and its Gauss curvature satisfies Kg > −3κ2. Let
{g(t)}0≤t≤1 be a given smooth path of metrics on Σ satisfying g(0) = g, g(1)
is round, Kg(t) > −3κ2, and trg(t)g

′(t) = 0. Then the hyperbolic Hawking
mass m

H

B
(Σ) satisfies

m
H

B
(Σ)−m

H

H
(Σ)(4.34)

≤ ro

2

[

κ2r2o

(

1 +
3

2
τξ

)2

+

(

1 +
3

2
τξ

) 2

3

− κ2r2o − 1

]

.

Here ξ > 0 is a constant given by

(4.35) ξ =

(

1
2α

β + 3κ2r2o

) 1

2

, if β ≤ 0;

and ξ is the unique positive root to

(4.36)

[

β + 3κ2r2o

(

1 +
3

2
τξ

) 4

3

]

ξ2 − α

2

(

1 +
3

2
τξ

) 4

3

= 0, if β > 0.

In the latter case, if one writes ξ =
(

α
2β

) 1

2

θ2κ for a positive θκ, then θκ ≤ θ

where θ > 0 is the unique root to

θ3 − 3

2

(

α

2β

) 1

2

τθ2 − 1 = 0.

In particular, this shows

(4.37) ξ ≤
(

α

2β

) 1

2

[

1 +
3

2

(

α

2β

) 1

2

τ

]2

.

Theorem 1.5 is a corollary of Theorem 4.1.

Proof of Theorem 1.5. Note that the second inequality in (1.9) simply fol-
lows from

κ2r2o

(

1 +
3

2
τx

)2

+

(

1 +
3

2
τx

) 2

3

− κ2r2o − 1

= τx

(

1 +
3

4
τx

)

[

3κ2r2o +
3

(

1 + 3
2τx

)
4

3 +
(

1 + 3
2τx

)
2

3 + 1

]

, x ≥ 0.
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If infΣKg ≤ 0, the pair (α, β) associated to any path {g(t)}0≤t≤1 with
g(0) = g, g(1) is round, Kg(t) > −3κ2, and trg(t)g

′(t) = 0, necessarily has
β ≤ 0. Thus, (i) follows from taking the infimum over such paths in (4.35)
of Theorem 4.1.

Suppose infΣKg > 0, moreover we assume g is not a round metric. In this
case, we can restrict the attention to the paths {g(t)}0≤t≤1 with g(0) = g,
g(1) is round, Kg(t) > 0, and trg(t)g

′(t) = 0. A pair (α, β) associated to such
a path has β > 0. Applying Theorem 4.1, by (4.36), we see (1.9) holds for
(4.38)

ξ = inf
{g(t)}

{

the root of

[

β + 3κ2r2o

(

1 +
3

2
τx

) 4

3

]

x2 − α

2

(

1 +
3

2
τx

) 4

3

= 0

}

.

Furthermore, such an ξ satisfies

ξ ≤ ζgθ
2,

where θ is the unique root to θ3 − 3
2ζgτθ

2 − 1 = 0. Since θ ≤ 1 + 3
2ζgτ , we

have ξ ≤ ζg
(

1 + 3
2ζgτ

)2
. This completes the proof. □

We end this paper with a remark that discusses the analogues of (1.6).

Remark 4.4. In the context of Theorem 1.5, one indeed has

m
H

H
(Σ) +

ro

2

[

κ2r2o

(

1 +
3

2
τξ

)2

+

(

1 +
3

2
τξ

) 2

3

− κ2r2o − 1

]

≥ 0.(4.39)

This follows from Proposition 4.1 and (4.24). Recall that Proposition 4.1 is
a consequence of the positive mass theorem on asymptotically hyperbolic
manifolds.

Next suppose the compact manifold Ω in Theorem 1.5 has an additional
CMC boundary component Σh := ∂Ω \ Σ whose mean curvature equals 2κ
(with respect to the inward normal). Suppose Σh minimizes area among sur-
faces enclosing Σh in Ω. Assuming the Penrose inequality on asymptotically
hyperbolic manifolds holds valid (see [21, 28] for a statement of this conjec-
ture), one would have m

H

H
(Σ1) ≥ 1

2rh as a replacement of Proposition 4.1.
Here rh is the area radius of Σh. This combined with (4.24) then implies

(4.40) m
H

H
(Σ) +

ro

2

[

κ2r2o

(

1 +
3

2
τξ

)2

+

(

1 +
3

2
τξ

) 2

3

− κ2r2o − 1

]

≥ rh

2
.
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Since the hyperbolic Penrose inequality is still open, the above inequality
on compact manifolds Ω may serve as a test of the hyperbolic Penrose in-
equality.
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Chrusćiel and H. Friedrich, editors, The Einstein Equations and the
Large Scale Behavior of Gravitational Fields, pp. 39–70, Birkhäuser
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