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Virtual Abelian varieties of GL2-type
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This paper studies a class of Abelian varieties that are of GL2-
type and with isogenous classes defined over a number field k. We
treat the cases when their endomorphism algebras are either (1) a
totally real field K or (2) a totally indefinite quaternion algebra
over a totally real field K. Among the isogenous class of such an
Abelian variety, we identify one whose Galois conjugates can be
described in terms of actions of Atkin-Lehner operators and the
class group of K. Thus we deduce that such Abelian varieties are
parametrised by finite quotients of certain PEL Shimura varieties.
These new families of moduli spaces are further analysed when
they are of dimension 2. We provide explicit numerical bounds
for when they are surfaces of general type. In addition, for two
particular examples, we show that they are both rational surfaces
by computing the coordinates of inequivalent elliptic points and
studying the intersections of Hirzebruch cycles with exceptional
divisors.

Introduction 904

1 Virtual Abelian varieties of GL2-type 907

2 Moduli space of virtual Abelian varieties 914

3 Classification of Hilbert modular surfaces 925

References 942

This research is supported in part by the National Natural Science Foundation of
China (#11601087), by the Program of Shanghai Academic/Technology Research
Leader (#16XD1400400) and by the General Program of National Natural Science
Foundation of China (#11771086).

903



✐

✐

“14-Wu” — 2020/7/20 — 17:20 — page 904 — #2
✐

✐

✐

✐

✐

✐

904 Chenyan Wu

Introduction

In [18], Ribet considered the modularity problem of elliptic curves defined
over Q̄ whose Gal(Q̄/Q)-conjugates are all isogenous to each other. The case
of CM elliptic curves with such a property was first studied by Gross[6] who
coined the name, Q-curve. Ribet showed that given a non-CM Q-curve C
there exists a simple Abelian variety A of GL2-type (Definition 1.1) defined
over Q having C as a Q̄-quotient. Let E denote the endomorphism algebra
of A. It must be a totally real number field in this case. Recall that the
Tate-ℓ-module VℓA of A is free of rank 2 over E ⊗Q Qℓ. Let λ be a prime
of E lying above ℓ and set VλA = VℓA⊗E⊗QQℓ

Eλ. Then the Galois action
of Gal(Q̄/Q) on A gives rise to a λ-adic representation of degree 2. The
question whether a Q-curve is modular reduces to showing the modularity
of the λ-adic representations associated to A. An affirmative answer is fur-
nished by Serre’s conjecture on mod-ℓ-representations of Gal(Q̄/Q), which
was proved by Khare-Wintenberger[13]. Thus Abelian varieties of GL2-type,
as well as their geometric quotients, are of particular interest in the study
of modularity.

Let k be a number field. Instead of Q-curves, one may as well consider
Abelian varieties B over k̄ whose Gal(k̄/k)-conjugates are isogenous to B.
They are the object of study in this paper in which we generalise several
pieces of related work, in the hope that a version of Serre’s conjecture on
modularity of mod-ℓ-representations of Gal(k̄/k) becomes available in the
future. Our main objective is to construct moduli spaces for these Abelian
varieties. We study Galois orbits of the Abelian varieties and relate them to
the orbits under the actions of class group of the centre of endomorphism
algebra and Atkin-Lehner operators. Much of the difficulty we encounter
arises from having more complex structure of endomorphism algebras and
from having fields with non-trivial class groups. We also estimate the Chern
numbers of the moduli spaces and compute two examples. This can poten-
tially lead to explicit examples of Abelian varieties which may provide a test
ground for the many conjectures involving Abelian varieties, for example,
the BSD conjecture. We will now review the literature and further discuss
our results.

Whereas all elliptic curves are automatically of GL2(Q)-type, there are
many more possibilities for the endomorphism algebras of Abelian varieties.
We will focus on the sub-maximal case, namely (non-CM) Abelian varieties
of GL2-type. Even after this restriction there are still two possibilities which
are commonly known as the case of real multiplication (RM) and the case
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Virtual Abelian varieties of GL2-type 905

of quaternionic multiplication (QM) (c.f. Proposition 1.8). For ease of ex-
position, we first define k-virtuality which captures the notion of having
isogenous Galois conjugates.

Definition 0.1. An Abelian variety B over k̄ is said to be k-virtual if
for all σ ∈ Gal(k̄/k), there exists an isogeny µσ : σB → B such that for all
α ∈ End(B), we have α ◦ µσ = µσ ◦ σα.

For non-CM elliptic curves, the requirement on compatibility with endo-
morphism ring is vacuous and in fact, Q-curve is a short hand for Q-virtual
elliptic curve. The departure from the more traditional nomenclature is to
clarify that the Abelian varieties are only ‘virtually’ defined over k rather
than truly defined over k.

In [15], Pyle extended the result on relation between Q-virtual elliptic
curves and Abelian varieties over Q of GL2-type to that on relation between
Q-virtual Abelian varieties of GL2-type and Abelian varieties over Q of GL2-
type and in [7], Guitart generalised the result to that over arbitrary number
field, but he only considered geometric quotients of the Ribet-Pyle varieties
which have number fields as endomorphism algebra. We first establish an
analogous result when the Abelian variety of GL2-type has QM. We actually
prove the result in a uniform way for both RM and QM case (c.f. Cor. 1.11).
This shows that the study of virtual Abelian varieties of GL2-type can be
transferred to Abelian varieties of GL2-type and vice versa.

We also extend Elkies’s work[4] on the construction of moduli spaces of
k-virtual elliptic curves to the case of k-virtual Abelian varieties of GL2-
type. For each prime ℓ of Q (the endomorphism algebra of a non-CM elliptic
curve C), Elkies associated an ℓ-local tree to C where, roughly speaking,
the vertices represent isomorphism classes of elliptic curves and the edges
represent primitive ℓ-isogenies. Applying a graph theoretic argument, he
showed that in the isogenous class of C there exists one elliptic curve C0

whose Galois conjugates are controlled by a certain level structure on C0.
The observation is that the Galois orbit of C0, which is, a priori, difficult
to describe, is actually contained in its Atkin-Lehner orbit. Thus the mod-
uli spaces are Atkin-Lehner quotients of modular curves with certain level
structure and the k-rational points give rise to k-virtual elliptic curves. For
simple k-virtual Abelian varieties B of GL2-type and for a prime λ of the
centre K of the endomorphism algebra of B, we can construct a λ-local tree
in an analogous way except that the class group of K now plays a subtle
role. Again our formulation treats both the RM and QM cases largely uni-
formly. We show in Theorems 2.19, 2.22 that the moduli spaces are quotients
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of PEL Shimura varieties by the group which is an extension of the Atkin-
Lehner group by the class group of K and the k-rational points give rise to
k-virtual Abelian varieties of GL2-type. We note that Guitart and Molina[8]
worked out the moduli spaces of virtual QM Abelian surfaces and showed
that they are Atkin-Lehner quotients of Shimura curves. As the centre of
the endomorphism algebra in their case is Q which has class number 1, our
case is much more complicated.

The moduli spaces of Q-virtual elliptic curves have been well-studied.
Elkies[4] produced some explicit equations for his moduli spaces which are
quotients of modular curves. González-Lario[5] classified those that are of
genus 0 or 1. Based on their parametrisation, Quer[16] computed explicit
equations of some Q-curves. We attempt to classify our moduli spaces. At
this point, we focus on Abelian surfaces. For moduli spaces of k-virtual RM
Abelian surfaces of GL2(E)-type, the PEL Shimura varieties are disjoint
unions of Hilbert modular surfaces. We then go on to analyse the moduli
spaces along the line started by Hirzebruch[12] and extended by Hirzebruch-
Van de Ven[10] and Hirzebruch-Zagier[11]. A thorough write-up is available
in the book of Van der Geer[20]. Our family of Hilbert modular surfaces
has not been considered in the literature. In this paper, as a first step, we
treat only the case when E has trivial narrow class group and when the
level structure is OE/p for some prime p of OE , and leave the more tech-
nical/interesting cases for the future. Based on the previous results, we are
able to estimate the Chern numbers of the desingularisation of our Hilbert
modular surfaces and to determine explicit bounds on the discriminant of
E and the size of the level structure beyond which the Hilbert modular
surfaces are of general type (Theorem 3.23). By Lang’s conjecture, we do
not expect them to furnish many k-rational points. Thus we turn to exam-
ine the Hilbert modular surfaces associated to E = Q(

√
5) with p = (2) and

E = Q(
√
13) with p = (4 +

√
13). (See Section 3.4 for precise description of

these two Hilbert modular surfaces.) By studying configuration of rational
curves coming from desingularisation and Hirzebruch cycles on these two
Hilbert modular surfaces, we conclude that they are both rational surfaces.
In the process we have computed the explicit coordinates of the inequivalent
elliptic points which for E = Q(

√
13) should be new. The method is due to

Gundlach[9]. However as the discriminant increases, the domain in which
one scans for elliptic points grows much larger than a fundamental domain.
Thus determining inequivalent ones becomes much harder. Further analysis
of the moduli spaces will be part of our future research topic.

The structure of the article is as follows. In Sec. 1, we describe the pos-
sible endomorphism algebras for Abelian varieties of GL2-type and show
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that the geometric factors of simple Abelian varieties over k of GL2-type
are k-virtual Abelian varieties of GL2-type. In Sec. 2 we determine mod-
uli spaces of k-virtual Abelian varieties of GL2-type by extending Elkies’s
local tree constructions. We show that the moduli spaces are quotients of
Hilbert modular surfaces or quaternionic Shimura varieties by the extension
of Atkin-Lehner group by a class group. In Sec. 3, we analyse the cusp and
quotient singularities of the Hilbert modular surfaces in question and esti-
mate their Chern numbers to show that most of them are of general type.
Finally we give two examples where the moduli spaces are rational surfaces
in Sec. 3.4.

1. Virtual Abelian varieties of GL2-type

In this section we define the virtual Abelian varieties of GL2-type and de-
duce some preliminary results. We introduce the notions of GL2-type and
virtuality separately.

1.1. Endomorphism algebras of Abelian varieties of GL2-type

Let k be a field of characteristic 0 and k its algebraic closure. In this article,
k is most often a number field. Let A be an Abelian variety over k. Write
End(A) for its endomorphism ring. The endomorphisms are required to be
defined over k. The ring End(Ak) consists of all potential endomorphisms of
A. The endomorphism algebra End0(A) is defined to be End(A)⊗Z Q. Let
E be a number field. We will consider those Abelian varieties A that admit
a Q-algebra embedding E →֒ End0(A).

Definition 1.1. An Abelian variety A defined over k is said to be of GL2-
type if for some number field E such that [E : Q] = dimA, there is an em-
bedding of Q-algebras E →֒ End0(A). If the number field E is specified, we
say that A is of GL2(E)-type.

We do not require End0(A) to be isomorphic to E, as we intend to
study moduli spaces of Abelian varieties where Abelian varieties with bigger
endomorphism algebras arise naturally and they form special cycles. Now
we make a more general definition.

Definition 1.2. An Abelian variety A defined over k is said to be of
GLn(D)-type if for some division algebra D over Q such that [D : Q] =
2 dimA/n, there is an embedding of Q-algebras D →֒ End0(A).
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We note that in this case the Tate module Vℓ(A) is free of rank n over
D ⊗Q Qℓ. This is the rationale behind the naming.

We would like to focus on the non-CM Abelian varieties. We make precise
what we mean by CM. ‘Potentially CM’ is probably more correct, but we
opt for a shorter name here.

Definition 1.3. An Abelian variety A defined over k is said to be of CM-
type if for some CM algebra E such that [E : Q] = 2 dimA, there is an
embedding of Q-algebras E →֒ End0(Ak̄).

Remark 1.4. 1) Every elliptic curve is automatically of GL2(Q)-type.

2) Sometimes we simply say that E acts on A when we mean that E acts
on A up to isogeny.

The requirement of having a big number field acting on an Abelian vari-
ety is very strong. We investigate its implication. Assume that the Abelian
variety A is isogenous to

m∏

i=1

Ari
i .

where Ai’s are simple Abelian varieties which are pairwise non-isogenous.
Fix a polarisation of A. Then we have the associated Rosati involution on
the endomorphism algebra of A. The endomorphism algebra End0(Ai) is
a division algebra classified by Albert. We refer to the book of Mumford
[14] for details. Set Di = End0(Ai) and let Ki denote the centre of Di and
Ki,0 the set of fixed points of the Rosati involution. Put ei = [Ki : Q] and
d2i = [Di : Ki]. The degree [Ki : Ki,0] is either 1 or 2. Marking the relative
degrees on the diagram, we have

Q Ki Di

Ki,0

ei d2

i

1 or 2
.

Composing the embedding E →֒ End0(A) ∼=
∏m

i=1Mri(Di) with projection
onto each factor Mri(Di), we get embeddings E →֒Mri(Di) for all i. A max-
imal subfield of Mri(Di) has degree rieidi over Q. In addition, the following
constraints are in effect: eidi| dimAi if Di is of type I, II or III; eid

2
i |2 dimAi

if Di is of type IV. The types are as in [14, page 187]. Briefly, an endomor-
phism algebra of type I is a totally real number field, that of type II is a
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totally indefinite quaternion algebra over a totally real number field, that of
type III is a totally definite quaternion algebra over a totally real number
field and that of type IV is a division algebra over a CM field. Write degE
for [E : Q]. Note that

degE =dimA ≥ ri dimAi;

rieidi ≥ degE

for all i. Thus if for any i, eidi ≤ dimAi, we are forced to have m = 1 and A
is isogenous to Ar1

1 with e1d1 = dimA1. In this case A1 has action by a field
of degree equal to dimA1. Thus A1 is a simple Abelian variety of GL2-type.
Now suppose for all i, eidi > dimAi. This can happen only when all Di’s
are of type IV with di = 1 and ei = 2dimAi. In other words all Ai’s have
CM. We have

2ri dimAi ≥ degE = dimA =

m∑

j=1

rj dimAj

for all i. Thus ri dimAi ≥ rj dimAj for all i and j. As a result ri dimAi =
rj dimAj for all i and j and degE = mr1 dimA1. Hence m ≤ 2. When m =
1, A is isogenous to Ar1

1 which is a power of a CM Abelian variety and E is
not a maximal field acting on A. When m = 2, A is isogenous to Ar1

1 ×Ar2
2

with A1 and A2 being CM Abelian varieties such that ri dimAi = rj dimAj ,
E is a maximal field acting on A and furthermore E is a finite field extension
of a CM field.

If furthermore we assume that E is stabilised by the Rosati involution
on A. Then by positivity of Rosati involution, E is either a totally real field
with Rosati involution acting as identity or a CM field with Rosati involution
acting as complex conjugation.

We have shown:

Proposition 1.5. Let A be an Abelian variety of GL2-type over k.

1) If A is not a CM Abelian variety, then A is isogenous to Ar
1 where A1

is a simple Abelian variety of GL2-type and r ∈ Z>0.

2) If A is a CM Abelian variety, then A is isogenous either to Ar
1 where A1

is a simple CM Abelian variety and r ∈ Z>0 or to Ar1
1 ×Ar2

2 where Ai is
a simple CM Abelian variety and ri ∈ Z>0 for i = 1, 2 and r1 dimA1 =
r2 dimA2.
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Remark 1.6. Since obviously E also acts on Ak̄, we also get a description
of the decomposition of A over k̄.

Now we focus on simple Abelian varieties of GL2(E)-type. Their endo-
morphism algebra can be strictly larger than E. Let D denote End0(A), K
the centre of D and K0 the set of fixed points in K of the Rosati involution.
Put e = [K : Q], e0 = [K0 : Q] and d2 = [D : K].

Proposition 1.7. Let A be a simple Abelian variety of GL2(E)-type over
k. Let g = dimA. Then the endomorphism algebra of A must be of one of
the following forms.

1) D = K = E is a totally real number field.

2) D is a division quaternion algebra over a totally real field K with
[K : Q] = g/2 and E is a quadratic extension of K contained in D.

3) D = K = E is a CM field.

4) D is a division quaternion algebra over a CM field K with [K : Q] =
g/2 and E is a quadratic field extension of K contained in D.

5) D = K is a CM field with [K : Q] = 2g and E is a subfield of K with
[K : E] = 2.

Furthermore, if k is algebraically closed, then D cannot be of type III (totally
definite quaternion division algebra over a totally real number field).

Proof. If D is of type I, II or III, then we have the constraint ed|g. When
D is of type I, then d = 1 and e|g. Thus we must have e = g and K = E.
When D is of type II or III, then d = 2 and 2e|g. A maximal subfield of D
is of degree 2e. We must have 2e = g and E must be a quadratic extension
of K. Of course, this can only happen when g is even.

Now assume that D is of type IV. We have the constraint e0d
2|g. A

maximal subfield of D is of degree 2e0d. Thus 2e0d ≥ g. We must have
d = 1 or 2. When d = 1, we deduce from e0|g and 2e0 ≥ g that e0 = g/2 or
g. In the former case, we get D = K = E and this can only occur when g is
even. In the latter case we get that D = K is a CM field with [K : Q]=2g
and E is a subfield of K with [K : E] = 2. When d = 2, we deduce from
4e0|g and 4e0 ≥ g that e0 = g/4. This can only occur when 4|g. In this case,
D is a division quaternion algebra over K which is CM with [K : Q] = g/2
and E is a quadratic extension of K contained in D.

When k is of characteristic 0 and is algebraically closed, then we can
rule out more possibilities. By [19, Proposition 15], D cannot be of type
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III; End0(A) is forced to grow larger. In fact, A is isogenous to A2
1 with A1

CM. □

If furthermore we assume k = C, certain analytic representations ofD on
the Lie algebra of A cannot occur. We summarise the results of [19, Sec. 4].
When D is of type I, II or III, the rational representations of D must contain
all of its inequivalent irreducible representations with the same multiplicity.
Thus E acts on Lie(A) via all of its embeddings into C with each occurring
once. Now assume that D of type IV. Then we have

D ⊗Q R ∼= Md(C)× · · · ×Md(C)

where the product is e0-fold or indexed by the e0 embeddings of K0 into R.
The e0 natural projections account for half the number of the inequivalent
irreducible representations of D. Denote these by χν for ν = 1, . . . , e0. Then
χν and χ̄ν account for all the inequivalent irreducible representations of D.
Let rν (resp. sν) be the multiplicity of χν (resp. χ̄ν) occurring in the analytic
representation of D. We note that in our case, rν + sν = 2g/de which is 2
or 1. Then [19, Prop. 14, 18, 19] says that if

∑
rνsν = 0 or rν = sν = 1 for

all ν, then cases (3) and (4) in Prop. 1.7 cannot occur.
Assume that A and all of its endomorphisms can be defined over R. Then

the analytic representation of D on Lie(AR) must be such that rν = sν = 1.
Then cases (3) and (4) in Prop. 1.7 do not occur. A CM Abelian variety
cannot be defined over a totally real number field, so case (5) is not possible
for such A.

Assume that each of the embedding of E into C occurs exactly once
in the analytic representation of E on Lie(AC). Then this also forces that
rν = sν = 1, ruling out cases (3) and (4). In case (5) which is the case of CM
Abelian variety, for each conjugate pair of embedding of K into C, exactly
one of them occurs. In order for each embedding of E to occur, E has to be
the totally real subfield K0 of K.

Summarising the above, we get:

Proposition 1.8. Let A be a simple complex Abelian variety of GL2(E)-
type over a number field k. Let g = dimA. Assume one of the following.

(a) Each of the embedding of E into C occurs exactly once in the analytic
representation of E on Lie(AC).

(b) A and all of its endomorphisms can be defined over R.

Then we have exactly the following possibilities.
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1) D = K = E is a totally real number field.

2) D is a totally indefinite division quaternion algebra over a totally real
number field K with [K : Q] = g/2 and E is a quadratic extension of
K contained in D.

3) D = K is a CM field with [K : Q]=2g and E is the totally real subfield
K0 of K. This case does not occur when we assume (b).

1.2. Virtual Abelian varieties

We give the definition of virtuality first.

Definition 1.9. Let F be a Galois extension of k contained in k̄. An
Abelian variety B over F is said to be k-virtual if every element of End(Bk̄)
can be defined over F and for all σ ∈ Gal(F/k), there exists an isogeny
µσ : σB → B such that for all α ∈ End0(B), α ◦ µσ = µσ ◦ σα.

Such Abelian varieties arise, for example, in the following fashion.

Lemma 1.10. Let A be a simple Abelian variety over k such that Ak̄ is
isogenous to Br where B is a simple Abelian variety over k̄. Then B is a
k-virtual Abelian variety.

Proof. Fix an isogeny f : Ak̄ → Br. Let σ ∈ Gal(k̄/k). Then we have

σBr
σf←− σAk̄

iσ−→ Ak̄
f−→ Br,

where iσ is the canonical isomorphism. Thus by uniqueness of decomposition,
σB is isogenous to B. Let D = End0(A) and K be the centre of D. Let
D′ = End0(B) and K ′ = Z(End0(B)) be its centre. We have the embeddings

D Mr(D
′)

K K ′

.

As every endomorphism α in D is defined over k, we have σα = i−1
σ ◦ α ◦ iσ.

Now let α ∈ K ′. This can be viewed as an endomorphism (up to isogeny) of
Br by acting diagonally. We note that f−1 ◦ α ◦ f lies in K, so it is defined
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over k. Thus

α ◦ f ◦ iσ ◦ σf−1 = f ◦ (f−1 ◦ α ◦ f) ◦ iσ ◦ σf−1

= f ◦ (iσ ◦ σf−1 ◦ σα ◦ σf ◦ i−1
σ ) ◦ iσ ◦ σf−1

= f ◦ iσ ◦ σf−1 ◦ σα.

This means that the following diagram commutes:

σBr Br

σBr Br

f◦iσ◦σf−1

σα α

f◦iσ◦σf−1

.

This induces a commutative diagram

σB B

σB B

µσ

σα α

µσ

where µσ is an isogeny induced by f ◦ iσ ◦ σf−1. In this sense, µσ is K ′-
equivariant.

Now we augment K ′-equivariance to D′-equivariance. We have a mor-
phism of central simple algebras

D′ → D′

α 7→ σ−1

(µ−1
σ ◦ α ◦ µσ),

as the condition on µσ shows that if α ∈ Z(D′), then σ−1

(µ−1
σ ◦ α ◦ µσ) =

α. By Skolem-Noether Theorem, there exists an element β ∈ D′ such that
σ−1

(µ−1
σ ◦ α ◦ µσ) = β ◦ α ◦ β−1 for all α ∈ D′. Thus α ◦ µσ ◦ σβ = µσ ◦ σβ ◦

σα for all α ∈ D′. Changing the isogeny µσ to µσ ◦ σβ, we getD′-equivariance.
□

Noting how non-CM Abelian varieties of GL2-type decomposes (Prop. 1.5),
we get the following:

Corollary 1.11. Absolutely simple factors of non-CM Abelian varieties of
GL2-type over k are k-virtual Abelian varieties of GL2-type.

Given a simple k-virtual Abelian variety B over k̄ of GL2-type, one can
construct a simple Abelian variety A of GL2-type over k such that it has
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B as an absolutely simple factor. This converse problem has been studied
in [15, 18] over Q and in [7] over arbitrary number field k even though the
definition of GL2-type is more restrictive than here. Their methods generalise
easily to the current case. Thus we just record the result.

Proposition 1.12. Let B be a non-CM k-virtual Abelian variety over k̄ of
GL2-type. Then there exists a non-CM simple Abelian variety A over k of
GL2-type such that Ak̄ is isogenous to a power of B.

2. Moduli space of virtual Abelian varieties

The aim of this section is to determine a moduli space of k-virtual Abelian
varieties of GL2(E)-type up to isogeny. One key step is the construction of
λ-local trees (in the sense of graph theory) for our Abelian varieties where λ
is a finite place of K where K denotes the centre of D = End0(A). Our con-
struction generalises that of Elkies [4] where he associated certain trees to
non-CM elliptic curves. The major difficulty in the case of Abelian varieties
comes from the fact that the endomorphism ring is much more complicated.
We still manage to produce trees whose vertices are k-virtual Abelian vari-
eties of GL2(E)-type up to a certain equivalence relation and whose edges
represent simple isogenies. Via graph theoretic properties of the trees, for a
given k-virtual Abelian Varieties of GL2(E)-type, we can find an isogenous
Abelian variety whose Galois orbit is contained in the (generalised) Atkin-
Lehner orbit. This makes it possible to represent k-virtual Abelian Varieties
by k-points on a quotient of a certain Shimura variety.

2.1. Local trees

After excluding the CM case, there are two cases left for the endomorphism
algebra of an Abelian variety of GL2(E)-type. One is when End0(A) is iso-
morphic to exactly E and the other is when End0(A) is isomorphic to a divi-
sion quaternion algebra D that contains E (c.f. Prop. 1.7). After changing A
to an isogenous Abelian variety, we may assume that End(A) is isomorphic
to OE in the former case and that it is isomorphic to a maximal order of D
in the latter case. Let K be the centre of D. Fix a maximal order OD of D.
We use extensively results on maximal orders over complete discrete valua-
tion ring or over Dedekind domain. One good reference is Reiner’s book[17].
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To unify the construction for the two cases of endomorphism algebras, set

S = OE and R = OE ,

or S = OD and R = OK .

Let A(S) be the category where the objects are Abelian varieties A of GL2-
type such that End(A) ∼= S and the morphisms are S-linear isogenies. As
usual, let TℓA denote the Tate-ℓ-module associated to an Abelian variety
A. Let λ be a prime of R. Write Rℓ for R⊗Z Zℓ, Rλ for the completion
of R at λ and OD,λ for OD ⊗OK

OK,λ. Let ϖλ be a uniformiser of λ. To
avoid confusion, sometimes we write ϖE,λ (resp. ϖK,λ) to indicate which
field we are working with. When λ ramifies in D, set ϖD,λ be a uniformiser
of the prime ideal of OD,λ, i.e., ϖ

2
D,λ = uϖK,λ for some u ∈ O×

D,λ. Set TλA =
TℓA⊗Rℓ

Rλ. This is a free OE,λ-module (resp. free left-OD,λ-module) of rank
2 (resp. 1).

We construct a graph out of A(S) as follows. Fix a prime λ of R. The
vertices are equivalence classes of Abelian varieties in A(S). We say the
Abelian varieties A and B are equivalent if there exists a morphism f : A→
B such that the image of Tλf : TλA→ TλB is ϖn

λTλB for some n ∈ Z≥0.
Write [A]λ for the equivalence class of A. Let d = deg f . Then we have a
morphism g : B → A such that the following diagram commutes:

A B

A

f

[d]A g
.

This induces the commutative diagram for Tate modules:

TλA TλB

TλA

Tλf

d Tλg
.

The image of d is of the form ϖn′

λ TλA for some integer n′ ≥ 0. Thus Tλg has
image ϖn′−n

λ TλA, which shows that the equivalence relation is well-defined.
We note that the Abelian varieties A/A[a] for a running over all ideals of R
correspond to the same vertex in the graph for each λ.

Next we define the edges of the graph. For r ∈ Z>0, set Mr to be

1) (Case E) OE,λ/ϖ
r
E,λOE,λ if S = OE ;
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2) (Case Dram) OD,λ/ϖD,λOD,λ, if S = OD and λ ramifies in D;

3) (Case Dsplit) (OK,λ/ϖ
r
K,λOK,λ)

2, if S = OD and λ splits in D.

When r = 1, then we are quotienting out the maximal left ideal in all
three cases. In case Dram, r can only take the value 1. Connect two ver-
tices [A]λ and [B]λ if there exist representatives A for [A]λ and B for [B]λ
and a morphism f : A→ B such that coker(Tλf) is isomorphic to M1. We
show that the edge is bidirectional. Let d be the degree of f . Then we
get a morphism g : B → A such that [d]A = g ◦ f . Then the image of d is
of the form ϖn′

λ TλA for some integer n′ > 0. Assume we are in Case E.
Then for some choice of OE,λ-basis {e1, e2} of TλA, the image of Tλg is
ϖn′−1

E,λ OE,λe1 ⊕ϖn′

E,λOE,λe2. Thus g factors as the composition of the natu-

ral projection from B to B/B[λn′−1] and a morphism g′ : B/B[λn′−1]→ A
with coker(Tλg

′) ∼= OE,λ/λ. Assume that we are in Case Dram. Then the im-
age of Tλg isϖD,λϖ

n′−1
K,λ TλA. Thus g factors as the composition of the natural

projection from B to B/B[λn′−1] and a morphism g′ : B/B[λn′−1]→ A with
coker(Tλg

′) ∼= OD,λ/ϖD,λOD,λ. Assume that we are in Case Dsplit. Fix an
isomorphism OD,λ

∼= M2(OK,λ). Then for some choice of generators e1, e2 ∈
TλA, image of Tλg is ϖn′−1

K,λ M2(OK,λ)e1 ⊕ϖn′

K,λM2(OK,λ)e2. Thus g factors

as the composition of the natural projection from B to B/B[λn′−1] and a
morphism g′ : B/B[λn′−1]→ A with coker(Tλg

′) ∼= (OK,λ/ϖK,λOK,λ)
2.

Lemma 2.1. Assume that Abelian varieties A and B represent the same
vertex. Then there does not exist a morphism f : A→ B with coker(Tλf)
isomorphic to M1. In particular, there is no loop in the graph.

Proof. Assume that there exists such an f . Since A and B represent the same
vertex, there exists a morphism g : B → A such that Tλg has image ϖn

λTλA
for some n ∈ Z≥0. As the composite g ◦ f lies in the centre of End(A), Tλg ◦
Tλf has image of the form ϖn′

λ TλA for some n′ ∈ Z≥0. This is not possible
if f is such that coker(Tλf) is isomorphic to M1. □

At this point we see that in case Dram each connected component of the
graph consists of 2 vertices connected by an edge and hence is a tree. Recall
that in graph theory, a walk is an alternating sequence of vertices and edges
and a path is a walk in which all edges are distinct and all vertices (except
possibly the first and the last) are distinct.

Lemma 2.2. Exclude Case Dram. Assume that two vertices V0 and Vn

can be connected by a path of length n via vertices V1, V2, . . . and Vn−1.
Then there exists representatives Ai for Vi for i = 0, . . . , n and morphisms
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fi : Ai−1 → Ai for i = 1, . . . , n such that coker(Tλfi) ∼= M1 for i = 1, . . . , n
and that coker(Tλ(fn ◦ · · · ◦ f1)) ∼= Mn.

Proof. When n = 1, the statement is true by construction. Assume the state-
ment holds for all paths with lengths less than n. We get a morphism

g : A1
f2−→ · · · fn−→ An

with coker(fi) ∼= M1 for i = 2, . . . , n and coker(Tλg) ∼= Mn−1 and a mor-
phism f1 : A0 → A1 with coker(Tλf) isomorphic to M1. Consider the coker-
nel of the composite Tλ(g ◦ f1). We separate the two cases.

Assume that we are in Case E. Then coker(Tλ(g ◦ f1)) is an extension
of coker(Tλg) ∼= OE,λ/ϖ

n−1
E,λ OE,λ by coker(Tλf) ∼= OE,λ/ϖE,λOE,λ as OE,λ-

modules. Thus it is isomorphic to

OE,λ/ϖ
n−1
E,λ OE,λ ⊕OE,λ/ϖE,λOE,λ or OE,λ/ϖ

n
E,λOE,λ.

In the former case, we can see that coker(Tλ(f2 ◦ f1)) must be isomorphic to
(OE,λ/ϖE,λOE,λ)

2. This means that A0 and A2 represent the same vertex.
Assume that we are in CaseDsplit. Then coker(Tλ(g ◦ f1)) is an extension

of coker(Tλg) ∼= (OK,λ/ϖ
n−1
K,λOK,λ)

2 by coker(Tλf) ∼= (OK,λ/ϖK,λOK,λ)
2 as

left M2(OK,λ)-modules. If we consider extensions as OK,λ-modules, then
there are 3 possibilities:

(OK,λ/ϖK,λOK,λ ⊕OK,λ/ϖ
n−1
K,λOK,λ)

2, (OK,λ/ϖ
n
K,λOK,λ)

2,

(OK,λ/ϖK,λOK,λ ⊕OK,λ/ϖ
n−1
K,λOK,λ)⊕OK,λ/ϖ

n
K,λOK,λ.

The third one does not occur in the list of left M2(OK,λ)-module extensions.
Similar to the arguments in Case E, the first one will force A0 and A2 to
represent the same vertex, leading to a contradiction.

Thus in both cases we are led to the conclusion that coker(Tλ(g ◦ f1)) ∼=
Mn. □

Proposition 2.3. Each connected component of the graph is a tree.

Proof. We need to show that there is no cycle. Assume that there is a cycle of
length n from the vertex V to V . By Lemma 2.2, there exist A and B in the
equivalence class V and a morphism f : A→ B such that coker(Tλf) ∼= Mn.
This is not possible by Lemma 2.1. Thus there can be no cycle. □

Definition 2.4. Let λ be a prime of R. Each connected component of the
graph constructed above is called a λ-local tree. Let A be an Abelian variety
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in A(S). The λ-local tree containing the vertex [A]λ is called the λ-local tree
associated to A.

If A ∈ A(S) is a k-virtual Abelian variety, then every vertex of the λ-local
tree associated to A is an equivalence class of a k-virtual Abelian variety
and the Galois group Gal(k̄/k) acts on the tree.

Definition 2.5. Let A be a k-virtual Abelian variety in A(S). Set Oλ(A)
to be the Gal(k̄/k)-orbit {[σA]λ|σ ∈ Gal(k̄/k)} contained in the λ-local tree.

A priori, the Galois orbit Oλ(A) associated to a k-virtual Abelian variety
A is hard to describe. However for some special vertices in the tree the Galois
orbit is essentially contained in the Atkin-Lehner orbit which we will describe
below. We recall a definition from graph theory.

Definition 2.6. For a finite subset U of vertices of a tree, the centre of U
is defined to be the central edge or central vertex on any one of the longest
paths connecting two vertices in U .

Remark 2.7. There are possibly multiple longest paths, but they give the
same centre. Thus the centre is well-defined.

Definition 2.8. The λ-centre associated to a k-virtual Abelian variety A ∈
A(S) is defined to be the centre of the Galois orbit Oλ(A) in the λ-local tree.

Since the Galois orbit Oλ(A) is Galois stable, we have:

Proposition 2.9. The λ-centre of k-virtual Abelian variety A ∈ A(S) is
fixed under the action of Gal(k̄/k). (If the centre is an edge it can possibly
be flipped.) Furthermore the vertices in the Galois orbit Oλ(A) are at the
same distance to (the nearer vertex of) the λ-centre.

We consider the λ-centres that are central edges.

Proposition 2.10. The set of central edges associated to a k-virtual Abelian
variety A ∈ A(S) is an S-linear isogeny invariant. Thus it is an invariant
for the λ-local tree.

Proof. Suppose the λ-centre associated to A is an edge. Let B ∈ A(S) be
an Abelian variety that is S-linearly isogenous to A. We need to show that
the λ-centre of B is the same edge.
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First we note that there exists an element in Gal(k̄/k) that exchanges the
two vertices connected by the central edge. Otherwise all Galois conjugates
of A would be on one side of the edge, contrary to the fact that this edge
is central. Once we have an edge which is flipped under Galois action there
can be no fixed vertices or other fixed edges in the tree. Since the λ-centre
associated to B is fixed under Galois action, it must be the same edge that
is the λ-centre for A. □

Remark 2.11. Central vertices are not necessarily isogeny invariants. For
example we can take an Abelian variety A ∈ A(OE) over k and take B =
A/C where C is a k-subgroup of A isomorphic to OE/λ. Then obviously the
central vertices, [A]λ and [B]λ, are not the same vertex by construction.

Definition 2.12. Let A ∈ A(OE) be a k-virtual Abelian variety. Set Σ(A)
to be the set of primes λ of OE such that the λ-centre of A is an edge.

There is an analogous definition for k-virtual Abelian varieties inA(OD).
We note that for each prime λ of OK , there exists a unique prime ideal λ̃ of
OD that lies above λ[17, Theorem 22.4]. The λ-central edge associated to A
determines a maximal left ideal Mλ of OD that belongs to λ̃, in the sense
that λ̃ is the annihilator of OD/Mλ in OD[17, Theorem 22.15].

Definition 2.13. Let A ∈ A(OD) be a k-virtual Abelian variety. Set Σ(A)
to be the set of maximal left idealsMλ of OD determined by the λ-central
edges of A.

Remark 2.14. To unify the notation, we also write Mλ for λ in case
A ∈ A(OE).

Lemma 2.15. The set Σ(A) is a finite set and for almost all λ’s, [A]λ is
its own λ-centre.

Proof. The Abelian varieties σA for σ in Gal(k̄/k) end up in the same equiv-
alence class as A, as long as λ does not divide the degree of the isogenies
µσ’s between the Galois conjugates. Thus there are only finitely many λ’s
such that the λ-centre associated to A can be an edge. □

For each Mλ ∈ Σ(A) we choose one of the vertices Vλ on the central
edge and for each Mλ /∈ Σ(A) we just use the central vertex Vλ. The path
connecting [A]λ to Vλ describes the ‘λ’-part of an isogeny. Thus the chosen
vertices give rise to an Abelian variety A0 isogenous to A. As the vertices are
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equivalence classes of Abelian varieties, we cannot distinguish the Abelian
varieties A0 from A0/A0[a] for integral ideals a of R, or in terms of Serre
tensor (c.f. for example [2, Sec. 1.7.4]), from A0 ⊗R a for fractional ideals a of
R. These Abelian varieties are exactly the ones that correspond to the vertex
[A0]λ for each λ. We note that if a is principal, then A0 ⊗R a is isomorphic
to A0. Thus the set of these vertices Vλ determines an Abelian variety up to
the action of the class group Cl(R).

Now let A0 be an Abelian variety such that [A0]λ = Vλ for all prime λ of
R. The finitely many central edges determine a level structure on A0. This
is an embedding

⊕Mλ∈Σ(A0)S/Mλ →֒ A0.

For A0 ∈ A(OE), the left-hand side is isomorphic to OE/ ∩λ∈Σ(A0) λ or
OE/

∏
λ∈Σ(A0)

λ. For A0 ∈ A(OD), the left-hand side is isomorphic to
OD/ ∩Mλ∈Σ(A0)Mλ, since the Mλ’s belong to distinct primes of OK . By
Prop. 2.9, the Galois conjugates of A0 must correspond to the central ver-
tices or the vertices on the central edges. In other words, isogenies from the
Galois conjugates to A0 are controlled by the level structure. Thus we have
shown:

Theorem 2.16. For every k-virtual Abelian variety A ∈ A(S), there exists
a k-virtual Abelian variety A0 ∈ A(S) which is S-linearly isogenous to A
and a level structure

η : S/ ∩Mλ∈Σ(A0)Mλ →֒ A0

such that for all σ ∈ Gal(k̄/k), there exist some ideal I of R and an S-
linearly isogeny A0 → σA0 ⊗R I with kernel contained in the image of η.

2.2. Shimura Varieties of PEL type

The analysis in the previous subsection leads us to consider PEL Shimura
varieties that classify Abelian varieties A with endomorphism ring that con-
tains S and with level structure S/N →֒ A where N is a full left ideal of S
that is square-free, in the sense that Nλ is either Sλ or a maximal ideal of
Sλ. We separate the discussion into two cases.

2.2.1. Abelian varieties with OE-action. Consider Abelian varieties
of dimension [E : Q] with OE-action. The moduli spaces of Abelian varieties
of dimension [E : Q] with endomorphism algebra E and a prescribed analytic
representation of E were studied by Shimura[19]. We restrict to the case
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where E is totally real. This is not a restriction if we are in the situation (a)
of Prop. 1.8. Then the PEL Shimura varieties are Hilbert modular varieties
that classify Abelian varieties A with real multiplication E and with level
structure OE/n →֒ A where n is a square-free ideal of OE . We describe more
precisely the moduli problem below.

For a fractional ideal a of OE , let GL(OE ⊕ a) denote the subgroup of
GL2(E) that stabilises the lattice OE ⊕ a (with action on the right). Let
A be an Abelian variety such that there is an embedding ι : OE → End(A).
Let NS(A) denote the Néron-Severi group of A. Let tx denote the translation
by x map for A. Then We have an embedding

NS(A)→ Hom(A, Â)

L 7→ ϕL : x 7→ t∗xL ⊗ L−1

with image being the set of the symmetric elements in Hom(A, Â). Set
NSE(A) to be the set of L ∈ NS(A) such that ϕL ◦ α = α̂ ◦ ϕL for all α ∈
OE with α̂ being the dual endomorphism Â→ Â. The action of OE on
Hom(A, Â) induces an action of OE on NSE(A) , making it into an OE-
module of rank 1. In other words, NSE(A) is isomorphic to a fractional ideal
of OE .

Let c run over a set of representatives of the narrow class group Cl+(E)
of E. For each embedding ι : E →֒ R, we fix an ordering of c⊗ι R and thus
get a notion of positivity on c. We consider Abelian variety A of dimension
g := [E : Q] with

• ι : OE →֒ End(A) such that the induced action of E on Lie(A)C is
given by the g embeddings of E into C,

• a weak polarisation NSE(A)
∼=−→ c that maps polarisations to positive

elements in c,

• a level structure η : OE/n →֒ A.

The isomorphism classes of such complex Abelian varieties are parame-
trised by the complex points of the Hilbert modular variety

Y0(n)(C) = GL2(E) \(H±)g ×GL2(AE,f )/U0(n).

where the compact open subgroup U0(n) of GL2(AE,f ) is defined to be the
product of GL(OE,λ ⊕OE,λ) ∩GL(OE,λ ⊕ n−1OE,λ) over all finite places λ
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of E. Let U∞ be the stabiliser of (i, . . . , i) ∈ H+. The determinant map

GL2(E) \GL2(AE)/U∞U0(n)→ E× \A×
E/A

+
E,∞

∏

λ∤∞
O×

E,λ.

shows that Y0(n)(C) has #Cl+(E) connected components.
Now we bring the local trees into play. As A⊗OE

I’s for I ∈ Cl(E)
correspond to the same vertex in each λ-local tree, we need to consider the
action of Cl(E) on Y0(n). The action of Cl(E) on the isogeny A→ A′ with
A,A′ ∈ A(E) and kernel isomorphic to OE/n is given by

(A→ A′) 7→ (A⊗OE
I → A′ ⊗OE

I).

This changes the polarisation module c to cI−2. We also need to consider
the flipping of central edges in λ-local trees. For each λ|n we get an action:

wλ : (A
f−→ A′) 7→ (A/η(OE/λ)→ A′/f(A[λ])).

As another application of wλ gives (A/A[λ]→ A′/A′[λ]), we see that it is an
involution on Cl(E) \Y0(n).

Definition 2.17. Define the extended Atkin-Lehner group to be the group
generated by Cl(E) and wλ’s for λ|n and denote it by W̃E,n. Set Y +

0 (n) =
W̃E,n \Y0(n).

With this, we can paraphrase Theorem 2.16 above:

Theorem 2.18. Let A ∈ A(OE) be a k-virtual Abelian variety. Then there
exists an Abelian variety A0 that is OE-linearly isogenous to A such that the
Galois orbit Gal(k̄/k).A0 is contained in the extended Atkin-Lehner orbit
W̃E,n.A0.

Thus by construction, A0 is a k-rational point on Y +
0 (n). On the other

hand take a k-rational point of Y +
0 (n) and we get a set Σ of Abelian varieties

in Y0(n) that lie above it. They are isogenous to each other. Take any one of
them, say A0. Then its Gal(k̄/k)-conjugates are still in the set Σ and they
are OE-linearly isogenous to A0 by construction. This means that A0 is a
k-virtual Abelian variety of GL2(E)-type, even though it may possibly have
strictly larger endomorphism algebra than E.

We have shown
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Theorem 2.19. Every k-point on the Hilbert modular variety Y +
0 (n) gives

rise to a k-virtual Abelian variety of GL2(E)-type. Conversely for any k-
virtual Abelian variety A of GL2(E)-type with endomorphism algebra iso-
morphic to E there exists a k-virtual Abelian variety of GL2(E)-type A0

that is E-linearly isogenous to A such that it corresponds to a k-rational
point on Y +

0 (n(A)) with n(A) =
∏

λ∈Σ(A) λ.

2.2.2. Abelian varieties with OD-action. Next consider Abelian va-
rieties of dimension [D : Q]/2 with OD-action where OD is a maximal order
of OD. In the situation of Prop. 1.8, D must be a totally indefinite quater-
nion algebra over a totally real field K. This is the case we will pursue. We
consider the PEL Shimura varieties that parametrise Abelian varieties with
OD-action with level structure OD/N where N is a full left ideal of S that is
square-free, in the sense that Nλ is either OD,λ or a maximal ideal of OD,λ.
Fix a positive anti-involution † on D that fixes K element-wise. Let A be
an Abelian variety with ι : OD → End(A). We consider the subset NSD(A)
of NS(A) that is compatible with D along with the anti-involution. In other

words, NSD(A) consists of L ∈ NS(A) such that ι̂(α) ◦ ϕL = ϕL ◦ ι(α†). As
NS(A) embeds into the symmetric part of Hom(A, Â), we see that NSD(A)
is an OK-module of rank 1. Let c run over a set of representatives of the
narrow class group Cl+(K) of K. As in the previous case we have a no-
tion of positivity on c. Thus we consider Abelian varieties A of dimension
g := 2[K : Q] with

• ι : OD →֒ End(A) such that the action of D on Lie(A)C is the direct
sum of the standard representation composed with the g/2 embedding
of D into M2(C) respectively;

• a weak polarisation NSD(A)
∼=−→ c that maps polarisations to positive

elements in c,

• a level structure η : OD/N → A.

Let G be the algebraic group over K determined by G(K) = D×. The
isomorphism classes of such Abelian varieties are parametrised by the C-
points of the quaternionic Shimura variety

Sh0(N )(C) := G(K) \(H±)g ×G(AK,f )
×/U0(N )

where U0(N ) is the product of U0(N )λ over finite places λ of K defined
as follows. When λ ramifies in D, set U0(N )λ to be O×

D,λ; when λ splits
in D and OD/λOD is not a composition factor of OD/N , set U0(N )λ to
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be GL2(OK,λ); when λ splits in D and OD/λOD is a composition factor of
OD/N , set U0(N )λ to be subgroup of GL2(OK,λ) with lower-left element in
ϖK,λOK,λ. The reduced norm map

G(K) \G(AK)/U∞U0(N )→ K× \A×
K/A+

K,∞
∏

λ∤∞
O×

K,λ.

is surjective by Eichler’s theorem and this shows that Sh0(N )(C) has
#Cl+(K) connected components.

Now we bring the local trees into play. As A⊗OK
I’s for I ∈ Cl(K)

correspond to the same vertex in each λ-local tree, we need to consider the
action of Cl(K) on Sh0(N ). The action of Cl(K) on the isogeny A→ A′

with kernel isomorphic to OE/N is given by

(A→ A′) 7→ (A⊗OK
I → A′ ⊗OK

I).

This changes the polarisation module c to cI−4. We also need to consider
the flipping of central edges in λ-local trees. For each λ in the support of
OD/N , we get an action:

wλ : (A
f−→ A′) 7→ (A/η(OD/Mλ)→ A′/f(A[λ])).

whereMλ is the ‘λ-part’ of N such that OD/Mλ
∼= OD,λ/Nλ. As another

application of wλ gives (A/A[λ]→ A′/A′[λ]), we see that it is an involution
on Cl(K) \Sh0(N ).

Definition 2.20. Define the extended Atkin-Lehner group to be the group
generated by Cl(K) and wλ’s for λ in the support of OD/N and denote it
by W̃N . Set Sh+(N ) = W̃N \Sh0(N ).

The analogous theorems for the quaternionic case are as follows.

Theorem 2.21. Let A ∈ A(OD) be a k-virtual Abelian variety. Then there
exists an Abelian variety A0 that is OD-linearly isogenous to A such that
the Galois orbit Gal(k̄/k).A0 is contained in the extended Atkin-Lehner orbit
W̃N .A0.

Theorem 2.22. Every k-point on the quaternionic Shimura variety Sh+(N )
gives rise to a k-virtual Abelian variety of GL1(D)-type. Conversely for any
k-virtual Abelian variety A of GL1(D)-type with endomorphism algebra iso-
morphic to D, there exists a k-virtual Abelian variety A0 of GL1(D)-type
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that is D-linearly isogenous to A such that it corresponds to a k-rational
point on Sh+(N (A)) with N (A) = ∩M∈Σ(A)M.

3. Classification of Hilbert modular surfaces

We would like to apply the Enriques-Kodaira classification to our moduli
spaces of k-virtual Abelian varieties when they are Hilbert modular surfaces.
The main reference is van der Geer’s book[20]. See also the many works of
Hirzebruch and his joint works with Van de Ven or Zagier on Hilbert mod-
ular surfaces that date before it, for example, [10–12]. According to Lang’s
conjecture, we do not expect to have many rational points on varieties of
general type. Thus such classification will give us some rough idea where
k-virtual Abelian varieties can be found in more abundance. More detailed
analysis of the Hilbert modular varieties and the quaternionic Shimura va-
rieties will be part of our future work.

In this section, we will focus on the case where E is a real quadratic
field with narrow class number 1 and study the Hilbert modular surfaces
Y +
0 (p) where p is a prime ideal of E. This assumption is always in effect.

To avoid too much repetition, we will omit it from our statements. We keep
the notation from Sec. 2.

First we note some implications of the assumption that |Cl+(E)| = 1.
Suppose E = Q(

√
D) where D is the discriminant. Then D is necessarily

either a prime congruent to 1 modulo 4 or D = 8. The torsion-free part of
the group of units O×

E is generated by an element with norm equal to −1.
Thus in our case PSL2(OE) = PGL+

2 (OE). Let Γ
E
0 (p) denote the subgroup

of elements in PSL2(OE) whose lower-left entry is congruent to 0 modulo p.
Since, a fortiori, the class group of E is trivial, the group W̃E,p in Defini-
tion 2.17 is a group of order 2. For the sake of brevity, we will denote it by
W . More precisely, let p = (ϖp) with ϖp chosen to be totally positive. Then
W is generated by the involution on H2 given by the action of the element
wp =

(
0 1

−ϖp 0

)
. Hence Y +

0 (p) is isomorphic to WΓE
0 (p) \H2.

Let Ȳ +
0 (p) be the compactification of Y +

0 (p) which is given by
WΓE

0 (p) \H2 ∪ P1(E). Let X+
0 (p) denote the minimal desingularisation of

Ȳ +
0 (p). The book of van der Geer[20] on Hilbert modular surfaces does not

consider level structure, so it does not cover our case. However we do rely
heavily on its techniques. We are able to show that most surfaces in ques-
tion are of general type. We will also give some examples of surfaces that
are not of general type. First we review how one resolves singularities on the
surfaces and then estimate the Chern numbers.
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3.1. Cusp singularities

For ΓE
0 (p) \H2 ∪ P1(E) there are two inequivalent cusps 0 and ∞. They

are identified via the Atkin-Lehner operator wp. The isotropy group of the
unique inequivalent cusp ∞ in WΓE

0 (p) is equal to that in PSL2(OE), as
WΓE

0 (p) contains all of those elements in PSL2(OE) that are of the form(
a b
0 d

)
. Thus the type of the cusp singularity is the same as that for PSL2(OE)

and the isotropy group is equal to

{(
ϵ µ
0 ϵ−1

)
∈ SL2(E) : ϵ ∈ O×

E , µ ∈ OE

}
/{±I}(3.1)

∼=
{(

ϵ µ
0 1

)
∈ GL+

2 (E) : ϵ ∈ O×+
E , µ ∈ OE

}

∼= OE ⋊O×+
E .

By [20, Chapter II] we have the minimal resolution of singularity resulting
from toroidal embedding and the exceptional divisor consists of a cycle of
P1’s or of one rational curve with one ordinary double point.

Definition 3.1. Let C1, . . . , Cm be rational curves on a non-singular sur-
face and let b1, . . . , bm be integers. If m ≥ 2, we require that C1, . . . , Cm are
non-singular. If m = 1, we require that C1 is a rational curve with one or-
dinary double point. Set C0 = Cm. We say C1, . . . , Cm form a cycle of type
[b1, . . . , bm]◦ if the following hold.

1) Whenm ≥ 3, the intersection number Ci.Cj is equal to 1, if |i− j| = 1,
to −bi if i = j and to 0 otherwise;

2) Whenm = 2, the intersection number Ci.Cj is equal to 2, if |i− j| = 1,
to −bi for i = j;

3) When m = 1, the intersection number C1.C1 is equal to −b1 + 2.

3.2. Elliptic fixed points

Now consider the inequivalent elliptic fixed points of WΓE
0 (p) on H2. More

generally we consider the elliptic fixed points of PGL+
2 (E). Suppose z =

(z1, z2) is fixed by α = (α1, α2) in the image of PGL+
2 (E) in PGL+

2 (R)
2.

Then

αj .zj =
ajzj + bj
cjzj + dj

= zj
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for j = 1 or 2 where αj =
( aj bj
cj dj

)
. Solving the equation we get

(3.2) zj =
aj − dj
2cj

+
1

2|cj |
√

tr2(αj)− 4 det(αj).

Transform zj to 0 via the möbius transformation ζj 7→ ζj−zj
ζj−z̄j

of C. Then the
isotropy group of zj acts as rotation around 0 on each factor C. The action

of αj transfers to that of γjαjγ
−1
j where γj =

( 1 −zj
1 −z̄j

)
. A little computation

shows that

γjαjγ
−1
j = (zj − z̄j)

−1

(
−aj z̄j + czj z̄j + djzj − bj 0

0 ajzj − cjzj z̄j − dj z̄j + bj

)
.

Using the equation that zj satisfies we get that the above is equal to

(zj − z̄j)
−1

(
(aj − cjzj)(zj − z̄j) 0

0 (aj − cj z̄j)(zj − z̄j)

)
.

Thus the rotation angle is twice the argument θj of aj − cjzj which satisfies

(3.3) cos θj =
tr(αj)

2
√

det(αj)
, cj sin θj < 0.

The isotropy group of an elliptic point is cyclic.

Definition 3.2. We say that the quotient singularity at (z1, z2) ∈ H2 is of
type (n; a, b) if after transferring (z1, z2) to (0, 0) as above, a generator of
the isotropy group acts as (w1, w2) 7→ (ζanw1, ζ

b
nw2) where ζn is a primitive

n-th root of 1.

Remark 3.3. Of course, some types are equivalent. We may require that
at least one of a and b is coprime to n. When a is coprime to n, we may
require that a is equal to 1 by changing the chosen primitive n-th root of
1. In fact, in the situation we encounter later, both a and b will be coprime
to n. Then the quotient singularity is an isolated singularity. It is shown in
[20, Section 6, Chapter II] that the exceptional divisor in the resolution of
cyclic quotient singularity is a chain of P1’s. The table on page 65 of [20]
gives some explicit examples.

Definition 3.4. Let C1, . . . , Cd be non-singular rational curves on a sur-
face S. Assume that C2

i = −ci for i = 1, . . . , d, Ci−1.Ci = 1 for i = 2, . . . , d
and that the rest of the intersection numbers involving these non-singular



✐

✐

“14-Wu” — 2020/7/20 — 17:20 — page 928 — #26
✐

✐

✐

✐

✐

✐

928 Chenyan Wu

rational curves are 0. Then we say that C1, . . . , Cd form a chain of type
[c1, . . . , cd].

Remark 3.5. With this definition we can be more precise about the ex-
ceptional divisor coming from the resolution of cyclic quotient singularity.
For cyclic quotient singularity of type (n; 1, 1), the exceptional divisor is of
type [n]; for quotient singularity of type (n; 1,−1), the exceptional divisor
is of type [2, . . . , 2] where 2 appears n− 1 times.

Definition 3.6. Let Γ be a discrete subgroup of PGL+
2 (R)

2. Let a±n (Γ)
denote the number of Γ-inequivalent elliptic points of type (n; 1,±1). When
n = 2, simply set a2(Γ) = a+2 (Γ) = a−2 (Γ).

Now we restrict to the elliptic fixed points of ΓE
0 (p). For there to be any,

we need tr2(αj) < 4 det(αj) = 4 for j = 1, 2 for some α ∈ ΓE
0 (p). For varying

discriminant D of the real quadratic field E, the only possible values tr(αj)
can assume are:

0,±1,±
√
2,±
√
3, (1±

√
5)/2.

Then from the expression (3.3) for cos(θj), we get:

Lemma 3.7. When the discriminant D is greater than 12, the elliptic ele-
ments of ΓE

0 (p) can only be of order 2 or 3.

3.3. Estimation of Chern numbers

LetX0(p) be the minimal desingularisation of ΓE
0 (p) \H2 ∪ P1(E). Then it is

simply-connected since there is no non-trivial Hilbert modular form of weight
(2, 0) or (0, 2)[20, Lemma 6.3]. The Atkin-Lehner operator w extends to an
involution on X0(p) which has at least one fixed point. Thus we see that the
quotient X+

0 (p) is simply-connected. Equivalently X+
0 (p) is a surface with

vanishing irregularity. We rely on the table [1, Table 10, Page 244] which
gives the Enriques-Kodaira classification for minimal surfaces. For easier
reference, we record in Table 1 the rows where the first Betti number b1
can possibly be zero. Let ci be the i-th Chern class. The Chern class ci(S)
of a surface S is the Chern class of the tangent bundle. Let χ denote the
Euler characteristic and pa denote the arithmetic genus. It is not known if
X+

0 (p) is a minimal surface. As blowing down an exceptional curve increases
c21(X

+
0 (p)) by 1 and leaves χ = (c21(X

+
0 (p)) + c2(X

+
0 (p)))/12 invariant, we

have the following criterion.
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Class of Surface Kodaira Dimension c21 c2
minimal rational surface −∞ 8 or 9 4 or 3

Enriques surface 0 0 12
K3 surface 0 0 24

minimal honestly elliptic surface 1 0 ≥ 0
minimal surface of general type 2 > 0 > 0

Table 1: Classification of surfaces.

Proposition 3.8. Let S be a nonsingular algebraic surface with vanishing
irregularity. If χ > 1 and c21(S) > 0, then S is of general type.

Now we will estimate the Chern numbers of X+
0 (p). We begin by defining

the local Chern cycle.

Definition 3.9. Let S be a normal surface with isolated singular points
and let S′ be its desingularisation. Suppose p is a singular point on S and
the irreducible curves C1, . . . , Cm on S′ form the resolution of p. Then the
local Chern cycle of p is defined to be the unique divisor Z =

∑m
i=1 aiCi with

rational numbers ai such that the adjunction formula holds:

Z.Ci − Ci.Ci = 2− 2pa(Ci).

Remark 3.10. We can be precise about what the exceptional divisors are
for cyclic quotient singularities and cusp singularities.

For cyclic quotient singularity of type (n; 1, 1), the exceptional divisor
is of type [n] and consists of one non-singular rational curve C1; the lo-
cal Chern cycle is (1− 2/n)C1. For quotient singularity of type (n; 1,−1),
the exceptional divisor consists of a chain of non-singular rational curves
C1, . . . , Cn−1 of type [2, . . . , 2]; the local Chern cycle is 0.

For cusp singularity, the exceptional divisor consists of a cycle of rational
curves C1, . . . , Cm of type [b0, . . . , bm]◦ for some integer m ≥ 1; the local
Chern cycle is

∑m
i=1Ci.

As we will make frequent comparison to the surfaces associated to the
full Hilbert modular group PSL2(OE), we set up some notation to facilitate
the analysis. Let Γ ⊂ PGL+

2 (R)
2 be commensurable with PSL2(OE). Set YΓ

to be the quotient Γ \H2 and let XΓ be the minimal desingularisation of
Γ \H2. In this notation our Hilbert modular surface X+

0 (p) is XWΓE
0
(p). As
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is computed on page 64 of [20] we have the following with a slight change of
notation:

Theorem 3.11. The Chern numbers for XΓ are given as follows:

c21(XΓ) = 2 vol(Γ \H2) + c+
∑

a(Γ;n; a, b)c(n; a, b),(3.4)

c2(XΓ) = vol(Γ \H2) + l +
∑

a(Γ;n; a, b)

(
l(n; a, b) +

n− 1

n

)
(3.5)

where a(Γ;n; a, b) is the number of quotient singularity of Γ \H2 of type
(n; a, b); for a quotient singularity of type (n; a, b), c(n; a, b) is the self-
intersection number of the local Chern cycle, l(n; a, b) is the number of curves
in the resolution; c is the sum of the self-intersection number of the local
Chern cycles of cusp singularities and l is sum of number of curves in the
resolution of cusps.

We also record a theorem of Siegel on the volume of Hilbert modular
varieties. See [20, Theorem IV.1.1].

Theorem 3.12. Let E be a totally real field of degree n over Q. Let ω be
the invariant volume form on Hn:

(−1)n 1

(2π)n
dx1 ∧ dy1

y21
∧ · · · ∧ dxn ∧ dyn

y2n
.

Then

(3.6) vol(PSL2(OE) \H2) :=

∫

PSL2(OE) \H2

ω = 2ζE(−1).

Now we will estimate the Chern numbers under the assumption thatD >
12. This ensures that we only have elliptic points of type (2; 1, 1) or (3; 1,±1)
for ΓE

0 (p) and hence only elliptic points of type (2; 1, 1), (3; 1,±1), (4; 1,±1)
or (6; 1,±1) for WΓE

0 (p). From [20, II. 6] as summarised in Remark 3.5,
we know how the elliptic points are resolved and can compute the self-
intersection number of local Chern cycles. Thus after we plug in the values,
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equation (3.4) reads

c21(XWΓE
0
(p)) =

1

2
[PSL2(OE) : Γ

E
0 (p)]4ζE(−1) + c− 1

3
a+3 (WΓE

0 (p))

− a+4 (WΓE
0 (p))−

8

3
a+6 (WΓE

0 (p));

c2(XWΓE
0
(p)) =

1

2
[PSL2(OE) : Γ

E
0 (p)]2ζE(−1) + l

+

(
1 +

1

2

)
a2(WΓE

0 (p)) +

(
1 +

2

3

)
a+3 (WΓE

0 (p))

+

(
2 +

2

3

)
a−3 (WΓE

0 (p)) +

(
1 +

3

4

)
a+4 (WΓE

0 (p))

+

(
3 +

3

4

)
a−4 (WΓE

0 (p)) +

(
1 +

5

6

)
a+6 (WΓE

0 (p))

+

(
5 +

5

6

)
a−6 (WΓE

0 (p)).

(3.7)

First we estimate c2(XWΓE
0
(p)).

Lemma 3.13 ([20, Section VII.5, eq. (1)]). For all fundamental dis-
criminant D, ζE(−1) > D3/2

360 .

As a2, a
±
3 , a

±
4 , a

±
6 and l are non-negative, we get

Proposition 3.14. c2(XWΓE
0
(p)) > (N p+ 1)D

3/2

360 .

Now we estimate c21(XWΓE
0
(p)). The self-intersection number c of the local

Chern cycle at the cusp is equal to that for PSL2(OE) as the isotropy group
for the unique cusp in WΓE

0 (p) is the same as that in PSL2(OE). Thus we
use the results from [20] directly. There the quantity c is shown to be equal
to the negative of the length of the cycle in [20, eq. (7), II.5] and the length
satisfies the inequality below [20, eq. (2), VII.5]:

(3.8) c > −1

2

∑

|x|<
√
D

σ0

(
D − x2

4

)
:= −1

2

∑

x2<D,x2≡D (mod 4)

∑

a>0,a|D−x2

4

1.

Combining the inequality with that in [20, Lemma VII.5.3], we get the fol-
lowing lemma. Note that the condition that E has narrow class number 1 is
in effect.
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Lemma 3.15. The self-intersection number c of the local Chern cycle of
the cusp singularity satisfies

(3.9) c > −1

2
D1/2

(
3

2π2
log2(D) + 1.05 log(D)

)
.

Then we estimate a2 and a±3 .

Definition 3.16. Let h(D) denote the class number of the quadratic field
Q(
√
D) where D is a fundamental discriminant.

Lemma 3.17 ([20, Lemma VII.5.2]). If −∆ < −4 is a fundamental

discriminant then h(−∆) ≤
√
∆
π log∆.

The following is from [20, page 17]. The other cases listed there are ruled
out because E is assumed to have the narrow class number 1.

Lemma 3.18. If D > 12, then

a2(PSL2(OE)) =h(−4D)

a+3 (PSL2(OE)) =
1

2
h(−3D).

(3.10)

Combining the above two lemmas we get:

Lemma 3.19. If D > 12, then

a2(PSL2(OE)) ≤
√
4D

π
log(4D)

a+3 (PSL2(OE)) ≤
√
3D

2π
log(3D).

(3.11)

Now we put in level structure.

Lemma 3.20. If D > 12 then

a2(Γ
E
0 (p)) ≤

3
√
4D

π
log(4D)

a+3 (Γ
E
0 (p)) ≤

3
√
3D

2π
log(3D).

(3.12)

Proof. Let z be an elliptic point of PSL2(OE) with isotropy group generated
by g =

(
a b
c d

)
. We have coset decomposition of PSL2(OE) = ∪αΓE

0 (p)δα ∪
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ΓE
0 (p)δ∞, where δα =

(
1 0
α 1

)
with α ∈ OE running through a set of represen-

tatives of OE/p and δ∞ =
(

0 1
−1 0

)
. This elliptic point corresponds to several

ΓE
0 (p)-inequivalent points: δαz’s and δ∞z. All elliptic points for ΓE

0 (p) must
be one of those. To see which ones of δαz’s are elliptic points for ΓE

0 (p), we
just need to check if δαgδ

−1
α is in ΓE

0 (p), since we are dealing with elliptic
points of type (2; 1, 1) and (3; 1,±1) only. This is equivalent to checking if
c− (d− a)α− bα2 is in p. In Fp, the equation c− (d− a)α− bα2 = 0 has at
most two solutions unless c, a− d, b ∈ p. Now we claim that it is not possible
to have c, a− d, b ∈ p. If the claim holds then only two of δαz’s can be ellip-
tic points for ΓE

0 (p). Adding in the point δ∞z, we get at most three elliptic
points for ΓE

0 (p) lying over z. Thus the number of elliptic points of a given
type can increase to at most threefold that for PSL2(OE). Combining with
the inequalities of Lemma 3.19, we get the inequalities in the statement of
this lemma.

It remains to prove our claim. Assume otherwise, i.e., c, a− d, b ∈ p.
Since g is elliptic and D > 12, we conclude from Sec. 3.2 that a+ d can only
take the values 0,±1. From ad− bc = 1, we find that a2 ≡ 1 (mod p). Thus
a ≡ ±1 (mod p). We may change the matrix that represents g so that a ≡ 1
(mod p). Thus also d ≡ 1 (mod p). Using ad− bc = 1 again, we must have
a+ d ≡ 2 (mod p2). Since the value of a+ d is 0 or ±1, p2 divides (2) or (3),
but (2) and (3) do not ramify in E as D > 12. We get a contradiction. □

Lemma 3.21. Suppose D > 12. Then

1) a+4 (WΓE
0 (p)) = 0 unless (2) is inert in OE and p = (2);

2) when (2) is inert in OE and p = (2),

a+4 (WΓE
0 (p)) ≤

3
√
4D

π
log(4D);

3) a+6 (WΓE
0 (p)) = 0 and

1

3
a+3 (WΓE

0 (p)) ≤
√
3D

4π
log(3D)

unless (3) is inert in OE and p = (3);

4) when (3) is inert in OE and p = (3),

1

3
a+3 (WΓE

0 (p)) +
8

3
a+6 (WΓE

0 (p)) ≤
4
√
3D

π
log(3D).
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Proof. We check the rotation factor (3.3)

cos θj =
tr(αj)

2
√

det(αj)

associated to an elliptic element α ∈WΓE
0 (p). In order to have a point with

isotropy group of order 4 inWΓE
0 (p) we must have cos θj = ±

√
2
2 . AsD > 12,

this can only happen when p = (2) and det(αj) = ϖp modulo squares in
OE . In order to have a point with isotropy group of order 6 in WΓE

0 (p) we

must have cos θj = ±
√
3
2 . As D > 12, this can only happen when p = (3) and

det(αj) = ϖp modulo squares in OE .
The Atkin-Lehner operator w exchanges some of the ΓE

0 (p)-inequivalent
(3; 1, 1)-points which result in (3; 1, 1)-points for WΓE

0 (p) and fixes the rest
of the points which result in (6; 1, 1)-points for WΓE

0 (p). Thus we get

(3.13) 2a+3 (WΓE
0 (p)) + a+6 (WΓE

0 (p)) = a+3 (Γ
E
0 (p)).

It is easy to see that

1

3
a+3 (WΓE

0 (p)) +
8

3
a+6 (WΓE

0 (p)) ≤
8

3
a+3 (Γ

E
0 (p)).

Combining with Lemma 3.20, we get our estimate.
The Atkin-Lehner operator exchanges some of the ΓE

0 (p)-inequivalent
(2; 1, 1)-points which result in (2; 1, 1)-points for WΓE

0 (p) and fixes the rest
of the points which result in (4; 1, 1)-points for WΓE

0 (p). All (4; 1, 1)-points
for WΓE

0 (p) arise in this way, but we may get extra (2; 1, 1)-points WΓE
0 (p)

not arising in this way. Thus we have

(3.14) a+4 (WΓE
0 (p)) ≤ a+2 (Γ

E
0 (p)).

Combining with Lemma 3.20, we get our estimate. □

Combining all these inequalities (Lemmas 3.13, 3.15, 3.21) we finally
arrive at an estimate for c21(X

+
0 (p)).
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Proposition 3.22. Suppose D > 12. Then

c21(X
+
0 (p)) > (N p+ 1)

D3/2

180
− 1

2
D1/2

(
3

2π2
log2D + 1.05 logD

)
(3.15)

−
{

1
4π

√
3D log(3D) if p ̸= (3)

4
π

√
3D log(3D) if p = (3)

−
{
0 if p ̸= (2)
3
π

√
4D log(4D) if p = (2).

Now that we have inequalities for c21 and c2 of the Hilbert modular
surfaces, we can check for what values of D and n these are of general type.
For a given D, we may bound c more precisely by using (3.8).

Theorem 3.23. Suppose D > 12 and Cl+(Q(
√
D)) = 1. Set n = N p+ 1.

Then the Hilbert modular surface X+
0 (p) is of general type if D or n is suf-

ficiently large or more precisely if the following conditions on D and n are
satisfied:

D ≥ 853 or D = 313, 337, 353, 409, 433,
449, 457, 521, 569, 593, 601, 617, 641,
653, 661, 673, 677, 701, 709, 757, 769,
773, 797, 809, 821, 829

no constraint on n

D = 241 n > 3

D = 193 n > 3

D = 157, 181, 277, 349, 373, 397, 421,
541, 613

p ̸= (2)

D = 233, 281 p ̸= (3)

D = 149, 173, 197, 269, 293, 317, 389,
461, 509, 557

p ̸= (2), (3)

D = 137 n > 3 and p ̸= (3)

D = 113 n > 4 and p ̸= (3)

D = 109 n > 4 and p ̸= (2)

D = 101 n > 3 and p ̸= (2), (3)

D = 97 n > 6

D = 89 n > 5 and p ̸= (3)

D = 73 n > 7

D = 61 n > 6
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D = 53 n > 7 and p ̸= (3)

D = 41 n > 12

D = 37 n > 12

D = 29 n > 15

D = 17 n > 32

D = 13 n > 41

Proof. We note that n = N p+ 1 ≥ 3. By Prop. 3.14, as long as D > 127,
c2(XWΓE

0
(p)) > 12. Next we give a rough estimate for D so that c21(XWΓE

0
(p))

> 0 by using the inequality (3.15). When p ̸= (2) or (3), as long as D >
414, we have c21(XWΓE

0
(p)) > 0. When p = (2), as long as D > 849, we have

c21(XWΓE
0
(p)) > 0. When p = (3), as long as D > 384, we have c21(XWΓE

0
(p)) >

0. The numerical computation was done in SageMath[3]. We also used it to
produce a list of discriminants of real quadratic fields with narrow class
number 1. Here is the list up to 853 which is the smallest one that is greater
than 849:

5, 8, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181,

193, 197, 233, 241, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 409,

421, 433, 449, 457, 461, 509, 521, 541, 557, 569, 593, 601, 613, 617, 641, 653, 661,

673, 677, 701, 709, 757, 769, 773, 797, 809, 821, 829, 853.

Thus for D ≥ 853 and any p we always have c2(XWΓE
0
(p)) > 12 and

c21(XWΓE
0
(p)) > 0. By Prop. 3.8, these are surfaces of general type.

Next we compute for each of the discriminant D in the list, a suffi-
cient condition on n (or on p) so that c21(XWΓE

0
(p)) + c2(XWΓE

0
(p)) > 12 and

c21(XWΓE
0
(p)) > 0 are satisfied. We may use the sharper bound (3.8) for the

intersection number c of local Chern cycles. We note that the formula (3.15)
for estimating c21 branches when we have p = (2), (3). Under the constraint
of our theorem, (2) is split if and only if D ≡ 1 (mod 8), (2) is inert if and
only if D ≡ 5 (mod 8); (3) is split if and only if D ≡ 1 (mod 3) and (3) is
inert if and only if D ≡ 2 (mod 3). For those D’s with inert primes (2) or
(3), we compute the values of c21 and c2 to check if we get surfaces of general
type or not. The numerical results are summarised in the table. □

Remark 3.24. We are providing a sufficient condition for the Hilbert mod-
ular surface X+

0 (p) = XWΓE
0
(p) to be of general type. More precise analysis is
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needed to determine the exact type of a givenX+
0 (p). We give some examples

in the Sec. 3.4.

3.4. Examples

The two examples give rational surfaces.

3.4.1. D = 5. Let E = Q(
√
5). The Galois conjugation is denoted by ∗.

By the algorithm[20, eq. (3) on page 38], the cusp resolution at infinity
of Ȳ +

0 (p) is a cycle of type [3]◦, i.e., a rational curve with an ordinary
double point and with self-intersection number −1. To find the WΓE

0 (p)-
inequivalent elliptic points, we first consider the PSL2(OE)-inequivalent el-
liptic points which were worked out in [9, Satz 1]. Let ε = (1 +

√
5)/2 and

ε∗ = (1−
√
5)/2. We list the type of the elliptic point and a generator of the

isotropy group:

(2; 1, 1),
(

0 1
−1 0

)
(2; 1, 1),

(
0 −ε∗

−ε 0

)

(3; 1, 1),
(

0 1
−1 1

)
(3; 1,−1),

(
0 −ε∗

−ε 1

)

(5; 1, 3),
(

0 1
−1 ε

)
(5; 1, 2),

(
1 −ε∗

ε∗ −ε∗
)
.

We have coset decomposition PSL2(OE) = ∪αΓE
0 (p)δα ∪ ΓE

0 (p)δ∞ where
δα =

(
1 0
α 1

)
with α ∈ OE running through a set of representatives of OE/p

and δ∞ =
(

0 1
−1 0

)
. Let z be an elliptic point for PSL2(OE) and γ ∈ PSL2(OE)

be a generator of the isotropy group. Then δα.z (resp. δ∞.z) is an elliptic
points for ΓE

0 (p) if and only if δαγδ
−1
α (resp. δ∞γδ−1

∞ ) lies in ΓE
0 (p). Write γ

as
(
a b
c d

)
. It is easy to check that δαγδ

−1
α ∈ ΓE

0 (p) if and only if bα2 + (d−
a)α− c ∈ p and that δ∞γδ−1

∞ ∈ ΓE
0 (p) if and only if b ∈ p. Once we get the

ΓE
0 (p)-inequivalent elliptic points, we need to check how the Atkin-Lehner

operator w acts on them. We will work this out with a more specific p.

p = (2). The Hilbert modular surface X+
0 (p) is a rational surface. We

explain below. We get the following inequivalent elliptic points for ΓE
0 (p).

Instead of writing out their coordinates, we write down the type and a
generator of the isotropy subgroup of ΓE

0 (p) that fixes each elliptic point.
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The coordinates can be recovered by (3.2).

(2; 1, 1),

(
−1 1
−2 1

)
(2; 1, 1),

(
−1 −ε∗
−2ε 1

)

(3; 1, 1),

(
−ε 1

−2(1 + ε) 1 + ε

)
(3; 1, 1),

(
−ε∗ 1

−2(1 + ε∗) 1 + ε∗

)

(3; 1,−1),
(

ε∗ −ε∗
−2ε ε

)
(3; 1,−1),

(
1 + ε∗ −ε∗
2ε∗ −ε∗

)
.

It can be checked directly that the Atkin-Lehner operator w fixes the two
(2; 1, 1)-points respectively. Since there cannot exist elliptic points of type
(6; 1,±1) for WΓE

0 (p), we see that w must exchange the two (3; 1, 1)- (resp.
(3; 1,−1)-) points. We get one (4; 1, 1)-, one (4; 1,−1)-, one (3; 1, 1)-, one
(3; 1,−1)- and possibly some new (2; 1, 1)-points.

We consider certain Hirzebruch cycles on the Hilbert modular surface.
Set

(3.16) F̃B =

{
(z1, z2) ∈ H2 ∪ P1(E) :

(
z2 1

)
B

(
z1
1

)
= 0

}

where B is a skew-Hermitian matrix in M2(E), i.e., tB∗ = B. Let FB denote
the strict transform in X+

0 (p) of the image of F̃B in Y +
0 (p).

Let B =
(

0
√
5ε∗√

5ε 0

)
. The (3; 1,−1)-point can be represented by (−(

√
5 +

i
√
3)ε∗/4, (

√
5 + i

√
3)ε/4), so obviously it lies on FB. The (4; 1,−1)-point

can be represented by ((1 + i)/(2ε), (−1 + i)/(−2ε∗)). After applying trans-
lation by

(
1 −1
0 1

)
, we get the ΓE

0 (p)-equivalent elliptic point ((−
√
5 + i)/(2ε),

(−
√
5 + i)/(−2ε∗)). Thus we see that the (4; 1,−1)-point also lies on FB.

The stabiliser ΓB of F̃B in ΓE
0 (p) consists of those elements γ such that

tγ∗Bγ = ±B. Thus ΓB is the degree 2 extension of the group

(3.17)
{(

a b
c d

)
∈ ΓE

0 (p) : a, d ∈ Z, c ∈ 2ε
√
5Z, b ∈ ε∗

√
5Z

}

generated by
(√

5 2ε∗

2ε
√
5

)
. The stabiliser Γ̃B of F̃B in WΓE

0 (p) is a degree 2

extension of ΓB by
(

2 ε∗
√
5

2ε
√
5 −4

)
. Note that the group (3.17) is isomorphic

to ΓQ
0 (10) which is the congruence subgroup of SL2(Z) with lower-left entry

congruent to 0 modulo 10. As ΓQ
0 (10Z) \H ∪ P1(Q) is isomorphic to P1, the

non-singular model of FB is isomorphic to P1. Let sw denote the involution
on Ȳ +

0 (p) induced by swapping coordinates on H2: (z1, z2) 7→ (z2, z1). It can
be extended to an involution on X+

0 (p). If (z1, z2) is a point satisfying (3.16)
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then (z2, z1) is ΓE
0 (p)-equivalent to (z1, z2) via

(−ε∗
ε

)
. This means that

sw fixes FB point-wise. This, in turn, implies that FB is non-singular. We
conclude that FB is a non-singular rational curve.

Recall that the cusp resolution is formed by gluing copies of C2. Follow-
ing the method in [20, V.2] we can determine the local equation of FB on
each copy of C2. On the k-th copy of C2 the coordinates are related by

2πizj = A
(j)
k−1 log(uk) +A

(j)
k log(vk)

where zj denote the coordinate on the j-th copy ofH for j = 1, 2 and (uk, vk)
denote the coordinates of the k-th copy of C2 for k ∈ Z. For the case at hand,
we take A0 = 1 and A1 = (3−

√
5)/2 which form a Z-basis of OE . Other

values of Ak’s are omitted. Recall that a(j) denote the image of a ∈ E via
the j-th embedding to R. Then on the 1-st copy of C2, the equation of
FB becomes u1 = v1. There is no intersection with coordinate axes in other
copies of C2. Thus FB intersects the cusp resolution at the origin of the
1-st copy of C2 which corresponds to the ordinary double point on the cusp
resolution. Thus the intersection number of FB with the cusp resolution is
2. By [20, Corollary 4.1], we get

c1(X
+
0 (p)).FB = 2vol(Γ̃B \H) +

∑

x

Zx.FB

where the sum runs over all singularities x of Y +
0 (p) and Zx denotes the

local Chern cycle of x. The volume

vol(Γ̃B \H) =
1

4
vol(ΓQ

0 (10) \H) =
18

4
vol(SL2(Z) \H) = 9ζQ(−1) = −

3

4
.

Here ζQ denotes the Riemann zeta function. The local Chern cycles needed
in the computation can be looked up in Remark 3.10. Thus we find

c1(X
+
0 (p)).FB = −3

2
+

1

3
· n3 +

1

2
· n4

where n3 is the number of (3; 1, 1)-points that FB passes through and n4

is the number of (4; 1, 1)-points that FB passes through. As intersection
numbers are integers, we are force to have n3 = 0 and n4 = 1 and thus
c1(X

+
0 (p)).FB = 1. By the Adjunction formula, F 2

B = −1. We get a linear
configuration of non-singular rational curves with self-intersection numbers
−2, −1, −2, where the (−2)-curves come from desingularity of the (3; 1,−1)-



✐

✐

“14-Wu” — 2020/7/20 — 17:20 — page 940 — #38
✐

✐

✐

✐

✐

✐

940 Chenyan Wu

and the (4; 1,−1)-points mentioned above. After blowing down FB we ac-
quire two intersecting (−1)-curves and this shows that the surface X+

0 (p) is
a rational surface by the rationality criterion[20, VII.2.2].

3.4.2. D = 13. We adopt essentially the same notation as in the previous
example. Now the quadratic field is E = Q(

√
13). The Galois conjugation

is denoted by ∗. We will regard E as a subfield of R. Set ε = (3 +
√
13)/2

to be a fundamental unit. The cusp resolution at the infinity of Ȳ +
0 (p) is of

a configuration of type [5, 2, 2]◦. We label the non-singular rational curves
occurring in the cusp resolution as S0, S1 and S2. Following the method in
[9], we can locate all the PSL2(OE)-inequivalent elliptic points. We review
the process briefly. First we can compute that the y-coordinates of an elliptic
fixed point z = (z1, z2) in the fundamental domain given as in [9] satisfies

1 ≤
(
17

8

)2

+ (y1y2)
2 +

13

16
(y1y2),

or, in other words,

(3.18) y1y2 ≥ (−17 + 2
√
94)/16 > 0.149.

Consider the elliptic fixed points of order 2. Assume it is fixed by the
matrix

(
a b
c d

)
∈ PSL2(OE). We may assume that c < 0. From (3.18) and

(3.2), we deduce that |cc∗| ≤ 6. Thus up to a unit c is either 1, 4−
√
13 or

2. In the fundamental domain, we have ε−2 ≤ y1/y2 < ε2 and (x1, x2) lies in
the set

P := {(u+ v
√
13, u− v

√
13)| − 1/2 < u ≤ 1/2,−1/4 < v ≤ 1/4}.

Thus c can take the following values:

(3.19) − 1,−ε, (1−
√
13)/2, (−5−

√
13)/2,−2,−2ε.

For each of these values we find all values a and d in OE such that a+ d = 0
and ((a− d)/2c, (a∗ − d∗)/2c∗) lies in the set P. Then we determine the
value for b ∈ OE by ensuring the determinant is 1.

Finally we need to check which ones are PSL2(OE)-conjugate matri-
ces and keep only one of those. We summarise the results below. A set
of PSL2(OE)-inequivalent (2; 1, 1)-points is given by the fixed point of the
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following matrices: (
0 1
−1 0

)
,

(
0 −ε∗
−ε 0

)
.

Next we consider the elliptic fixed points of order 3. We use the same
notation as in the case of order 2. Again c can only take the values in
(3.19). A similar process produces the matrices whose fixed points form a
set of PSL2(OE)-inequivalent points of order 3. We can check which ones
are (3; 1, 1)-points and which ones are (3; 1,−1)-points by (3.3). A set of
PSL2(OE)-inequivalent (3; 1, 1)-points is given by the fixed point of the fol-
lowing matrices: (

0 1
−1 1

)
,

(
ε 2

−1− ε 1− ε

)
;

a set of PSL2(OE)-inequivalent (3; 1,−1)-points is given by the fixed point
of the following matrices:

(
−ε 2(ε− 1)
−ε ε+ 1

)
,

(
−1 ε− 1

ε∗ − 1 2

)
.

It is easy to find the ΓE
0 (p)-inequivalent elliptic points from right coset

decomposition PSL2(OE) = ∪αΓE
0 (p)δα ∪ ΓE

0 (p)δ∞ where δα =
(
1 0
α 1

)
with

α ∈ OE running through a set of representatives of OE/p and δ∞ =
(

0 1
−1 0

)
.

p = (4 +
√
13). We list the type and one generator of isotropy group for

each ΓE
0 (p)-inequivalent elliptic point:

(3; 1, 1),

(
−1 1
−3 2

)
(3; 1, 1),

(
1− ε∗ 2
−1− ε∗ ε∗

)

(3; 1,−1),
(

1 + ε ε
−2(ε− 1) −ε

)
(3; 1,−1),

(
2 1− ε∗

1− ε −1

)
.

There is no (2; 1, 1)-point. Since there cannot be any elliptic points with
isotropy group of order 6 for WΓE

0 (p) acting on H2, the Atkin-Lehner oper-
ator w must exchange the two (3; 1, 1)-points (resp. (3; 1,−1)-points).

Now consider the curve F̃B on WΓE
0 (p) \H2 defined as in (3.16) and

set B =
(

0 4−
√
13

−4−
√
13 0

)
. Define FB analogously. The stabiliser Γ̃B of F̃B in

WΓE
0 (p) consists of elements of the form

{(
a b
c d

)
∈ ΓE

0 (p) : a, d ∈ Z, c ∈ (4 +
√
13)Z, b ∈ (4−

√
13)Z

}
.

Thus we find that FB is birational to ΓQ
0 (3Z) \H which is of genus 0. The

Atkin-Lehner operator sends F̃B to F̃B′ with B′ =
(

0 1
−1 0

)
. The latter is
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obviously point-wise stable under the swapping operator sw which is the
involution on Ȳ +

0 (p) induced by swapping coordinates on H2: (z1, z2) 7→
(z2, z1). Thus FB is a non-singular rational curve. We can compute how
FB intersects with the cusp resolution. Following the notation of [20, V.2],
we have A−1 = (5 +

√
13)/2, A0 = 1, A1 = (5−

√
13)/2 and A2 = 4−

√
13.

Then FB has local equation u2 = 1 on the 2-nd copy of C2 and FB′ has local
equation u0 = 1 in the 0-th copy of C2. Thus the intersection number of FB

with the cusp resolution is 2.
As before we have

(3.20) c1(X
+
0 (p)).FB = 2vol(F ′

B) +
∑

Zx.FB

where Zx is the local Chern cycle at a singular point x. Thus we get

c1(X
+
0 (p)).FB = 2vol(ΓQ

0 (3Z) \H) + 2 +
1

3
· n3

= −4

3
+ 2 +

1

3
· n3

with n3 the number of (3; 1, 1)-points that FB passes through. As there is just
one (3; 1, 1)-point, we are forced to have n3 = 1 and thus c1(X

+
0 (p)).FB = 1.

By Adjunction formula F 2
B = −1. Thus we get a linear configuration of

[−2,−2,−1,−3] where the (−2)-curves are S1 and S2 from the cusp resolu-
tion, the (−1)-curve is FB and the (−3)-curve is from the resolution of sin-
gularity of the (3; 1, 1)-point. After blowing down FB and S2 consecutively,
we get two intersecting (−1)-curves. Again by the rationality criterion[20,
VII.2.2], we conclude that WΓE

0 ((4 +
√
13)) \H2 is a rational surface.
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(2004).

[16] J. Quer, Q-curves and abelian varieties of GL2-type, Proc. London
Math. Soc. (3) 81 (2000), no. 2, 285–317.

[17] I. Reiner, Maximal Orders, Academic Press [A subsidiary of Harcourt
Brace Jovanovich, Publishers], London Mathematical Society Mono-
graphs, No. 5, London-New York, (1975).

[18] K. A. Ribet, Abelian varieties over Q and modular forms, in: Algebra
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