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The goal of this paper is to study the subspace of stability condition
ΣE ⊂ Stab(X) associated to an exceptional collection E on a pro-
jective variety X. Following Macr̀ı’s approach, we show a certain
correspondence between the homotopy class of continuous loops in
ΣE and words of the braid group. In particular, we prove that in
the case X = P3 and E = {O,O(1),O(2),O(3)}, the space ΣE is a
connected and simply connected 4-dimensional complex manifold.

1. Introduction

T.Bridgeland introduced the notion of stability condition on a triangulated
category in [Bri07]. The motivation came from Douglas’s work on Π-stability
in string theory ([Dou02]). Bridgeland stability condition also generalizes the
µ-stability for coherent sheaves on projective varieties.

One main result of Bridgeland is that the set of all stability conditions
Stab(D) form a topological space ([Bri07, Theorem 1.2]). Provided that cer-
tain technical conditions are satisfied (local finiteness), Stab(D) is further-
more a smooth manifold.

A few explicit computations of Stab(X) := Stab(Db(Coh(X))) for a
smooth projective variety X have been done. Bridgeland showed that when

C is an elliptic curve, Stab(C) is isomorphic to ˜GL+(2,R) through a free
and transitive action of the latter on the former ([Bri07, Section 9]). E.Macr̀ı
generalized this result to all smooth projective curves with genus greater or
equal to 1 ([Mac07]). The case of X = P1 was computed by S.Okada, who
showed that Stab(P1) ∼= C2. The case of several special surfaces have also
been studied in [Bri08], [Li16]. In general, such explicit results are hard to
obtain, but certain common properties of the topological space Stab(D) have
been found among various examples. For instance, it has been conjectured
that each connected component Σ ⊂ Stab(D) is simply connected or even
contractible.
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946 Zihong Chen

In [Mac07], Macr̀ı studied stability conditions generated by a finite com-
plete exceptional collection of objects. To each complete exceptional collec-
tion E = {E0, . . . , En}, he associates an open subspace of stability conditions
for which E0, . . . , En are stable, denoted by ΘE . He showed that each ΘE is a
connected and simply connected open submanifold of Stab(D) with maximal
dimension. Furthermore, the union of ΘF as F ranges through all iterated
mutations of E , denoted by ΣE , is again connected. In the special case when
D = Db(Coh(P1)) and D = Db(Coh(P2)), Macr̀ı showed that ΣE is in fact
simply connected for each E .

In this paper, we study the simply connectedness of ΣE in a more general
context. In particular, we prove the following proposition, which generalizes
Macr̀ı’s result to an arbitrary triangulated category equipped with an excep-
tional collection satisfying certain conditions (denoted by †, see Section 4).

Proposition 1.1. Fix a triangulated category D. Let E = {E0, . . . , En} be
an exceptional collection satisfying †. Let γ : [0, 1] → ΣE be a continuous
loop with γ(0) = γ(1) ∈ ΘE . Then, up to replacing γ by a homotopic path,
there exists l = ls · · · l1 with li ∈ {L0, . . . ,Ln−1,R0, . . . ,Rn−1} for all i, such
that lE = E, and real numbers 0 = a0 < a1 < · · · < as < as+1 = 1 such that
γ([ak, ak+1)) ⊂ Θlk...l1E for all k = 0, 1, . . . , s.

The motivation for studying exceptional collections satisfying † comes
from the study of coherent sheaves over projective varieties. A well known
such example is the collection E = {O,O(1), . . . ,O(n)} in Db(Coh(Pn)); see
[Bon90].

Using Proposition 1.1, and explicit computations regarding the braid
group action on exceptional collections on P3, we prove the following main
theorem.

Theorem 1.1. Let E be the exceptional collection {O,O(1),O(2),O(3)} on
P3. Then, the subspace ΣE of Stab(P3) is simply connected.

The organization of this paper is as follows: In Section 2 we briefly
review some aspects of Bridgeland stability conditions. In Sections 3 we
summarize some of Macr̀ı’s concepts on stability conditions generated by
a finite exceptional collection. We build up the proof of Proposition 1.1 in
Section 4, and in Section 5 we study the case of P3 and prove our main
theorem. In the appendix, we review some basic facts about homological
algebra and algebraic geometry.
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2. Stability conditions on triangulated categories

This section is a brief summary of [Bri07] and serve as a review for some
basic concepts leading to the definition of Bridgeland stability condition. In
the discussion below, we assume that all triangulated categories are small
and Hom-finite over a fixed field K (i.e. Hom(A,B) is a finite dimensional
vector space for all A,B ∈ D). LetK(D) denote the Grothedieck group of D.

First, we recall the definition of a t-structure.

Definition 2.1. A t-structure on a triangulated category D is the data of
a pair of full subcategories (D≤0, D≥0) satisfying the following conditions:

(TS1) If we denote D≤n = D≤0[−n], and D≥n = D≥0[−n], then D≤0 ⊂
D≤1 and D≥0 ⊃ D≥1.

(TS2) For any x ∈ D≤0, y ∈ D≥1, we have Hom(x, y) = 0.
(TS3) For any x ∈ D, there exists an exact triangle x≤0 −→ x −→ x≥1,

with x≤0 ∈ D≤0 and x≥1 ∈ D≥1.

We define the heart of this t-structure to be A = D≤0
⋂
D≥0, which

turns out to always be an abelian category. We say that the t-structure is
bounded ifD =

⋃
i,j∈ZD

≤i
⋂

D≥j . From now on, unless mentioned otherwise,
we always assume that a t-structure is bounded.

A bounded t-structure is uniquely determined by its heart, and therefore
we can interchange these two concepts. The following lemma tells us that
the heart of a bounded t-structure generalizes the concept ‘filtration by
cohomology’.

Lemma 2.1. Let A ⊂ D be a full additive subcategory of a triangulated
category D. Then A is the heart of a bounded t-structure on D if and only
if the following two conditions hold:

(a) for integers k1 > k2, we have Hom(A[k1], B[k2]) = 0 for all A,B ∈ A.
(b) for every nonzero object E ∈ D there is a finite sequence of integers

k1 > k2 > · · · > kn

and a collection of triangles

0 = E0 E1 E2 · · · En−1 En = E

A1 A2 An

with Ak ∈ A[kj ].
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Now, we give the definition of a stability function on an abelian category
(see [Rud97]), which is historically prior to Bridgeland’s notion of stability
conditions on triangulated categories.

Definition 2.2. A stability function on an abelian category A is a group
homomorphism Z : K(A) → C such that for all 0 ̸= E ∈ A, the complex
number Z(E) lies in the strict upper half plane

H = {reiπφ : r > 0, ϕ ∈ (0, 1]}.

Given a stability function Z, the phase of a nonzero object E is defined
as ϕ(E) := (1/π)arg(Z(E)) ∈ (0, 1]. E is called semistable (stable) if every
0 ̸= A →֒ E satisfies ϕ(A) ≤ ϕ(E) (ϕ(A) < ϕ(E)). Central to the study of
stability functions is the notion of a Harder-Narasimhan filtration.

Definition 2.3. Given a stability function Z : K(A) → C, a Harder-
Narasimhan filtration of a nonzero objects 0 ̸= E ∈ A is a finite chain of
subobjects

0 = E0 →֒ E1 →֒ · · · →֒ En−1 →֒ En = E

such that Fi = Ei/Ei−1 are semistable and

ϕ(F1) > ϕ(F2) > · · · > ϕ(Fn).

If such a filtration exists, the stability function is said to have the Harder-
Narasimhan property.

As an example, let C be a smooth projective curve. Then, the stability
function Z on Coh(C) defined by Z(E) = −deg(E) + i rank(E) satisfies the
Harder-Narasimhan property.

Remark. Note that both Lemma 2.1 and Definition 2.3 involve certain
kind of filtration by triangles. However, while the former filtration ranges
across different hearts, the latter lies within a single abelian category. In
some sense, a stability condition on a triangulated category is a combina-
tion of the two, an intuition that is made precise by Proposition 2.1.

Definition 2.4. A stability condition σ = (Z,P) on a triangulated cate-
gory D consists of a group homomorphism Z : K(D) → C called the central
charge, and full additive subcategories P(ϕ) for each ϕ ∈ R, satisfying the
following conditions:
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(a) if 0 ̸= E ∈ P(ϕ) then Z(E) ∈ R>0e
iπφ,

(b) for all ϕ ∈ R, P(ϕ+ 1) = P(ϕ)[1],

(c) if ϕ1 > ϕ2 and Aj ∈ P(ϕj) then Hom(A1, A2) = 0,

(d) for each nonzero E ∈ D, there exists a finite sequence of real numbers
ϕ1 > ϕ2 > · · · > ϕn and a collection of triangles

0 = E0 E1 E2 · · · En−1 En = E

A1 A2 An

with Aj ∈ P(ϕj) for all j.

In the above definition, the filtration in (d) is also called a Harder-
Narasimhan filtration, which is unique up to isomorphism. Hence, we may
define ϕ+σ (E) := ϕ1, ϕ

−
σ (E) := ϕn and mσ(E) =

∑
j |Z(Aj)|. The nonzero

objects of P(ϕ) are called semistable in σ of phase ϕ; the simple objects
of P(ϕ) are called stable. In fact, each P(ϕ) is an abelian category ([Bri07,
Lemma 5.2]).

For an interval I, let P(I) denote the extension-closed subcategory gener-
ated by P(ϕ) for ϕ ∈ I. We call the abelian category P((0, 1]) the heart of the
stability condition; in fact, it is the heart of the t-structure (P(≤ 1),P(> 0)).

Proposition 2.1. To give a stability condition on a triangulated category
D is equivalent to giving a bounded t-structure on D and a stability function
on its heart with the Harder-Narasimhan property.

This proposition implies, for instance, that given a smooth projective
curve C, the stability function on Coh(C) given by Z(E) = −deg(E) +
i rank(E) induces a stability condition on Db(Coh(C)).

A stability condition (Z,P) is called locally finite if for each ϕ ∈ R, there
exists ϵ > 0 such that the quasi-abelian category P(ϕ− ϵ, ϕ+ ϵ) is of finite
length. In particular, this implies that P(ϕ) is of finite length, and hence
every semistable object of phase ϕ has a finite Jordan-Hölder filtration with
stable factors of the same phase. We denote the set of all locally finite
stability conditions on D by Stab(D).
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One of the most important feature of Stab(D) is its natural topology
defined as follows. For σ1, σ2 ∈ Stab(D), the function

d(σ1, σ2) = sup
0 ̸=E∈D

{
|ϕ−σ1

(E)− ϕ−σ2
(E)|, |ϕ+σ1

(E)− ϕ+σ2
(E)|,

∣∣∣∣log
mσ1

(E)

mσ2
(E)

∣∣∣∣
}

defines a generalized metric on Stab(D).
Given a stability condition σ = (Z,P), the natural projection (Z,P) 7→

Z induces a continuous map from Stab(D) to HomZ(K(D,C)). Bridgeland
proves that this map in fact a local homeomorphism.

Theorem 2.1. Let D be a triangulated category. For each connected compo-
nent Σ ⊂ Stab(D) there is a linear subspace V (Σ) ⊂ HomZ(K(D),C), with
a well defined linear topology, and a local homeomorphism Z : Σ → V (Σ)
sending (Z,P) to its central charge Z.

Finally, we remark that Stab(D) carries a right action by ˜GL+(2,R),
the universal cover of GL+(2,R), and a left action by Aut(D), the group of
exact autoequivalences of D ([Bri07, Lemma 8.2]).

First note that we can explicitly write ˜GL+(2,R) =

{(T, f) : T ∈ GL+(2,R), f : R → R increasing with

f(ϕ+ 1) = f(ϕ) + 1, and Teiπφ ∈ R>0e
iπf(φ)}.

Given (T, f) ∈ ˜GL+(2,R) and (Z,P) ∈ Stab(D), we define the action by
(T, f) · (Z,P) = (T−1 ◦ Z,P ◦ f). In essence, an action of (T, f) is a relabel-
ing of the phase of (Z,P) (with some rescaling), but the set of semistable
(stable) objects are left unchanged. Therefore, it is often convenient to iden-

tify two stability conditions up to the ˜GL+(2,R) action.
Finally, given Ψ ∈ Aut(D), let ψ denote the induced map onK(D). Then

we define the action by Ψ · (Z,P) = (Z ◦ ψ,Ψ ◦ P). It is clear that this action

commutes with the action of ˜GL+(2,R).

3. Some properties of exceptional objects

In this section, we review the basics of exceptional objects following [Bon90,
Section 2]. We also discuss Macr̀ı’s approach to stability conditions via ex-
ceptional collections in [Mac04], [Mac07].
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As before, let D be a small and Hom-finite triangulated category linear
over some field K. For A,B ∈ D, we define their Hom complex to be

Hom•(A,B) :=
⊕

k∈Z

Homk(A,B)[−k],

where Homk(A,B) := Extk(A,B) := Hom(A,B[k]).

Definition 3.1. (i) An object E ∈ D is called an exceptional object if
Homi(E,E) = 0 when i ̸= 0 and Hom(E,E) = K.

(ii) An ordered collection of exceptional objects {E0, . . . , En} is called an
exceptional collection in D if for all j > i, Hom•(Ej , Ei) = 0. An exceptional
collection consisting of two elements is called an exceptional pair.

Definition 3.2. Let E = {E0, . . . , En} be an exceptional collection. E is
called

• strong, if Homk(Ei, Ej) = 0 for all i, j, with k ̸= 0;

• Ext, if Hom≤0(Ei, Ej) = 0 for all i ̸= j;

• complete, if E generates D by shifts and extensions.

Definition 3.3. Let {E,F} be an exceptional pair. We define the left muta-
tion LEF and the right mutation RFE with the aid of distinguished triangles
in D:

LEF → Hom•(E,F )⊗ E → F,

E → Hom•(E,F )∗ ⊗ F → RFE,

where V [k]⊗ E is defined as E[k]⊕ dimV . Note that under duality of vector
spaces the grading changes sign.

A mutation of an exceptional collection E = {E0, . . . , En} is defined as
a mutation of a pair in this collection:

RiE = {E0, . . . , Ei−1, Ei+1,REi+1
Ei, Ei+2, . . . , En},

LiE = {E0, . . . , Ei−1,LEi
Ei+1, Ei, Ei+2, . . . , En},

for i = 0, 1, . . . , n− 1. By the following proposition (see [Bon90, Section 2]),
a mutation of an exceptional collection is still exceptional, and thus we
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may define mutations on the mutated collection. Composition of mutations
constructed in this way is called an iterated mutation.

Proposition 3.1.

(i) A mutation of an exceptional collection is an exceptional collection.

(ii) A mutation of a complete exceptional collection is complete excep-
tional.

(iii) The following relations hold:

RiLi = LiRi = 1, RiRi+1Ri = Ri+1RiRi+1, LiLi+1Li = Li+1LiLi+1.

Remark. Recall that the (n+ 1)-th Artin braid group An+1 can be defined
via the presentation

An+1 = ⟨σ0, . . . , σn−1 |σiσi+1σi = σi+1σiσi+1 , σiσj = σjσi⟩,

where the first group of relations ranges over i = 0, 1, . . . , n− 1 and the
second group ranges over |i− j| ≥ 2. Therefore, by (iii) of the above propo-
sition, together with the obvious relation LiLj = LjLi for |i− j| ≥ 2, we can
define an action of An+1 on the set of exceptional collections by σi · E = LiE ,
for i = 0, 1, . . . , n− 1.

For an exceptional collection {E0, . . . , En}, let ⟨E0, . . . , En⟩ denote the
full extension-closed subcategory generated by E0, . . . , En.

Lemma 3.1. Let {E0, . . . , En} be a complete Ext-exceptional collection in
D. Then ⟨E0, . . . , En⟩ is the heart of a bounded t-structure.

Corollary 3.1. Let {E0, . . . , En} be a complete Ext-exceptional collection
in D and (Z,P) a stability condition on D. If E0, . . . , En ∈ P((0, 1]), then
⟨E0, . . . , En⟩ = P((0, 1]) and Ei is stable for all i = 0, 1, . . . , n.

Let Q denote the heart ⟨E0, . . . , En⟩ in the above lemma. Since Q is gen-
erated by E0, . . . , En, the Grothendieck groupK(Q) is isomorphic to the free
abelian group Zn+1. In particular, a choice of complex numbers z0, . . . , zn ∈
H determines a stability function on Q with the Harder-Narasimhan prop-
erty sending Ei to zi. By Proposition 2.1, this uniquely determines a locally
finite stability condition on D.

More generally, for a complete exceptional collection E = {E0, . . . , En},
we can find a sequence of integers p = (p0, . . . , pn) such that {E0[p0], . . . ,
En[pn]} is a complete Ext-exceptional collection. Let Qp = ⟨E0[p0], . . . ,
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En[pn]⟩. By the above process, we can construct a stability condition with
Qp as heart by choosing z0, . . . , zn ∈ H and letting Z(Ei[pi]) = zi. If the
image of the central charge is a line, then we call this stability condition
degenerate; otherwise we call it nondegenerate. Define ΘE as the subset of

Stab(D) obtained in such way, up to the action of ˜GL+(2,R). By Corol-
lary 3.1, each Ei is stable for any σ ∈ ΘE . However, a stability condition for
which each Ei is stable need not lie in ΘE .

Lemma 3.2. Let E = {E0, . . . , En} be an exceptional collection and assume
n ∈ {0, 1, 2}. Then the subspace ΘE of Stab(D) is an open, connected and
simply connected (n+ 1)-dimensional submanifold. In fact, it is homeomor-
phic to the space

CE =
{
(m0, . . . ,mn, ϕ0, . . . , ϕn) ∈ R2(n+1) |

mi > 0 for all i and ϕi < ϕj + αi,j for i < j
}
,

where

αi,j = min
i<l1<···<ls<j

{ki,l1 + kl1,l2 + · · ·+ kls,j − s}

and ki,j = mink{Hom
k(Ei, Ej) ̸= 0} (if no such k exists, set ki,j = +∞).

For a proof, see [Mac07, Lemma 3.19]. However, when n ≥ 3, the above
homeomorphism ceases to hold. In fact, we show in the next lemma that
when n = 3 and E is strong exceptional, ΘE is homeomorphic to a subspace
of R8 obtained by removing a countable union of disjoint convex polytopes
from CE .

Lemma 3.3. Let E = {E0, E1, E2, E3} be a strong exceptional collection on
a triangulated category D. Then, the subspace ΘE of Stab(D) is an open, con-
nected and simply connected 4-dimensional complex submanifold. Moreover,
it is homeomorphic to the space

C ′
E = R4

>0 ×

(
UE −

⊔

k∈Z

(UE ∩ V k
E )

)
,

where

UE = {ϕ ∈ R4 |ϕi < ϕj − (j − i− 1) for i < j}

and

V k
E = {ϕ ∈ R4 |ϕ0 > ϕ1 − 1, ϕ2 > ϕ3 − 1, ϕ1 + k ≤ ϕ2 < ϕ3 ≤ ϕ0 + k + 1}.
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The homeomorphism is given explicitly by

F : (Z,P) 7→ (|Z(E0)|, . . . , |Z(E3)|, ϕσ(E0), . . . , ϕσ(E3)).

Proof. It is clear that the image of ΘE under F is contained in R4
>0 × UE .

Assume that σ is a stability condition whose phases satisfy the conditions
of UE . I claim that if in addition ϕσ(E0) ≤ ϕσ(E1)− 1, then σ defines a
stability condition in ΘE . To see this, apply Lemma 3.2 to the exceptional
collection {E1, E2, E3} and obtain integers p1 > p2 > p3 such that the phases
of Ei[pi], 1 ≤ i ≤ 3 lie in some interval (t, t+ 1]. Since ϕ0 ≤ ϕ1 − 1 we can
find an integer p0 greater than p1 such that the phases of Ei[pi], 0 ≤ i ≤
3 lie in some interval (t′, t′ + 1]. Therefore, σ ∈ ΘE . Similarly, if ϕσ(E2) ≤
ϕσ(E3)− 1, then σ ∈ ΘE .

On the other hand, if ϕσ(E1)− 1 < ϕσ(E0) and ϕσ(E3)− 1 < ϕσ(E3),
then σ ∈ ΘE if and only if, when considered modulo Z, [ϕ0, ϕ1] intersects
[ϕ2, ϕ3] at an interior point. Hence, we conclude that F is a bijection. More-
over, it is easy to see that F is indeed a homeomorphism. The fact that ΘE

is a 4-dimensional complex manifold can be proved using a similar argument
in [Mac07, Lemma 3.19].

To complete the proof of the lemma, it suffices to show that UE −⊔
k∈Z(UE ∩ V k

E ) is open, connected and simply connected. It is straightfor-
ward to check that this subspace is open. To prove connectedness and simply
connectedness, we first consider instead the subspaces

UE(−ϵ)−
⊔

k∈Z

(UE(−ϵ) ∩ V
k
E ),

where UE(−ϵ) ⊂ UE is the open subset of UE consisting of points with dis-
tance greater than ϵ from ∂UE , for some fixed constant ϵ > 0 (the minus
sign correspond to the fact that UE(−ϵ) can be thought of as an ‘inward’
neighborhood).

Note that σ ∈ UE(−ϵ) implies that ϕσ(E0) < ϕσ(E1)− ϵ. In particular,
there exists a constant c > 0, depending only on ϵ, such that

d(UE(−ϵ) ∩ V
k
E , UE(−ϵ) ∩ V

l
E) > c for all k ̸= l,

where d(A,B) = inf{d(x, y) |x ∈ A, y ∈ B}. Therefore, each UE(−ϵ) ∩ V
k
E is

a 4-dimensional real convex polytope (possibly extending to infinity) lying
in the 4-dimensional real convex polytope UE(−ϵ), and their pairwise set
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distance is bounded below by some c > 0. Hence, the subspace

UE(−ϵ)−
⊔

k∈Z

(UE(−ϵ) ∩ V
k
E )

is connected and simply connected, for all ϵ > 0. Letting ϵ→ 0, and using
the fact that π0, π1 commute with direct limit, we conclude that

UE −
⊔

k∈Z

(UE ∩ V k
E )

is also connected and simply connected. □

4. Stability conditions generated by a strong complete

exceptional collection

In this section, we build up the proof of Theorem 1.1. Throughout this
section, let † denote the following condition on an exceptional sequence
E = {E0, . . . , En}:

E is a strong complete exceptional sequence with no orthogonal(❸)

pairs such that its iterated mutations are again strong

complete exceptional.

This notion is similar to the notion of ‘geometric’ or ‘simple’ collection in
[Bri05]. To recall some notations, we let SE denote that set of all iterated mu-
tations of E , and set ΣE =

⋃
F∈SE

ΘF . Note that by Proposition 3.1, complete
exceptionality is preserved by mutations; in general, however, strongness is
not preserved by mutations.

When n = 3, we’ve already seen that the subspace ΘE is an open, con-
nected and simply connected 4-dimensional complex manifold. However, in
order to prove that ΣE is connected and simply connected, we need to ex-
amine more closely how the ΘF ’s are glued together.

Lemma 4.1. Let E = {E0, E1, E2, E3} satisfy the condition †, and let F be
a single mutation of E. Then, ΘE

⋂
ΘF is nonempty and path connected.

Proof. For simplicity, we assume F = R0E , i.e. F = {E1,RE1
E0, E2, E3}.

The proof for other cases is similar. First, consider the stability condition
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σ0 defined by

Z0(E0) = Z0(E2) = 1, Z0(E1) = i, Z0(E3) = 1 + dimHom(E0, E1)i

and

ϕ0(E0) = 0, ϕ0(E1) = 1/2, ϕ0(E2) = 2,

ϕ0(E3) = 1−
1

π
tan−1(dimHom(E0,E1)).

Then, σ0 ∈ ΘE

⋂
ΘF , which proves nonemptyness.

Let σ = (Z,P) be a stability condition. By Proposition 3.17 in [Mac07],
RE1

E0 is stable if ϕσ(E1) < ϕσ(E0) + 1. This, together with Lemma 3.3,
implies that σ ∈ ΘE ∩ΘF if and only if:

(i) ϕσ(E1)− 1 < ϕσ(E0) < ϕσ(E1), ϕσ(E1) < ϕσ(E2)− 1, ϕσ(E1) <
ϕσ(E3)− 2, ϕσ(E2) < ϕσ(E3) and

(ii) there does not exist k ∈ Z such that

ϕσ(E3)− 1 < ϕσ(E2),

ϕσ(E1) + k ≤ ϕσ(E2) < ϕσ(E3) ≤ ϕσ(E0) + k + 1

or

ϕσ(E3)− 1 < ϕσ(E2),

ϕσ(RE1
E0) + k ≤ ϕσ(E2) < ϕσ(E3) ≤ ϕσ(E1) + k + 1.

Let O ⊂ ΘE ∩ΘF be the subset

O = {σ ∈ ΘE ∩ΘF |ϕσ(E2) = ϕσ(E0) + k,

ϕσ(E3) = ϕσ(RE1
E0) + k for some k ∈ Z}.

Clearly any two σ, σ′ ∈ O can be connected by a path in ΘE ∩ΘF . We now
prove that any σ ∈ ΘE ∩ΘF can be connected to an element in O by a path
in ΘE ∩ΘF .

Let σ ∈ ΘE ∩ΘF , and first assume that ϕσ(E2) ≤ ϕσ(E3)− 1. Then,
we can first continuously transform σ, by rotating Z(E3) counterclock-
wise (hence increasing ϕσ(E3)− ϕσ(E2)), to a σ′ such that ϕσ′(E3) =
ϕσ′(RE1

E0) + k for some k ∈ Z. Next, we rotate Z ′(E2) counterclockwise
to obtain a new σ′′ such that ϕσ′′(E2) = ϕσ′′(E0). It is clear that both paths
lie in ΘE ∩ΘF . Finally, assume that σ ∈ ΘE ∩ΘF but ϕσ(E3)− 1 < ϕσ(E2).
Then, we can rotate Z(E3) counterclockwise until ϕ(E3) ≥ ϕ(E2)− 1, and
reduce to the previous case. This shows that ΘE ∩ΘF is path connected. □
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Corollary 4.1. Let E satisfy the condition †, and let F be a single mutation
of E. Then, ΘE

⋃
ΘF is path connected and simply connected.

Proof. ΘE

⋃
ΘF is path connected since ΘE and ΘF are path connected

and ΘE

⋂
ΘF ̸= ∅. Moreover, since ΘE and ΘF are simply connected, and

ΘE

⋂
ΘF path connected, we conclude that ΘE

⋃
ΘF is simply connected by

Seifert-van Kampen theorem. □

Next, we study some boundary conditions of the open subsets ΘE . The
following few lemmas follow the same idea as Lemma 4.7 through Lemma
4.11 in [Mac07].

Lemma 4.2. The closure of ΘE is contained in ΣE .

Proof. Let σ = (Z,P) be a stability condition in ∂ΘE . Then, we can find
integers p0 > p1 > · · · > pn such that {E0[p0], . . . , En[pn]} is Ext-exceptional
and contained in P([0, 1]). Moreover, we already know that each Ei is stable
in any stability condition in ΘE , and hence they are semistable in σ as
semistability is a closed condition. Define Nσ(E , 0) := #{i ∈ {0, 1, . . . , n} :
ϕσ(Ei[pi]) = 0} and Nσ(E , 1) := #{i ∈ {0, 1, . . . , n} : ϕσ(Ei[pi]) = 1}. Since
σ ∈ ∂ΘE , we must have Nσ(E , 0), Nσ(E , 1) ≥ 1.

We first deal with the base case when Nσ(E , 0) = Nσ(E , 1) = 1. Then,
there exists a unique pair (i, j) such that ϕσ(Ei[pi]) = ϕσ(Ej [pj ])− 1 = 0.
The exceptional collection E ′ = {E0[p0], . . . , Ei[pi + 1], . . . , En[pn]} is con-
tained in P((0, 1]), and hence is not Ext (otherwise σ ∈ ΘE). Since p0 >
p1 > · · · > pn are integers, this implies that pi + 1 = pi−1 and thus

Hom(Ei−1[pi−1], Ei[pi + 1]) ∼= Hom(Ei−1, Ei) ̸= 0.

We discuss two cases.
1) If j ̸= i− 1, then in particular, Ei−1[pi−1] ∈ P((0, 1)). By the exact

triangle

Ei−1[pi] → Hom(Ei−1, Ei)⊗ Ei[pi] → REi
Ei−1[pi] → Ei−1[pi−1],

we deduce that REi
Ei−1[pi] ∈ P((0, 1)). Therefore, the collection

{E0[p0], . . . , Ei−2[pi−2], Ei[pi−1],REi
Ei−1[pi], Ei+1[pi+1], . . . , En[pn]}

is Ext-exceptional and contained in P((0, 1]), which implies that σ ∈ ΘRi−1E .
2) If j = i− 1, we do the following. Let σs → σ such that each σs ∈ ΘE

has ⟨E0[p0], . . . , En[pn]⟩ as heart. Since ϕσ(Ei[pi]) = 0, we have ϕs(Ei[pi]) <
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ϕs(El[pl]) for all l ̸= i and s >> 0. By [Mac07, Proposition 3.17], σs induces
a stability condition on Tr(Ei−1, Ei). Let m = dimHom(Ei−1, Ei), then we
know that Tr(Ei−1, Ei) ∼= Db(Pm), where Pm is the quiver with two vertices
andm arrows. Hence, σ induces a stability condition on Db(Pm). By [Mac07,
Lemma 4.2], there exists a stable exceptional pair (Fi−1, Fi) consisting of
shifts of an iterated mutation of (Ei−1, Ei), such that {E0[p0], . . . , Ei−2[pi−2],
Fi−1, Fi, Ei+1[pi+1], . . . , En[pn]} ⊂ P((0, 1]) is Ext.

For general σ, we first find a sequence σs → σ with σs ∈ ΘE satisfying
Nσs

(E , 0) = Nσs
(E , 1) = 1 for all s. By the previous paragraph, we may find

some l1 ∈ {L0, . . . ,Ln−1,R0, . . . ,Rn−1} and integer k1 such that σs ∈ Θl
k1
1 E

for all s. If σ ∈ Θl
k1
1 E

, we are done. Assume otherwise that σ ∈ ∂Θl
k1
1 E

. Then,

we can repeat the above argument by deforming σ in Θl
k1
1 E

, and obtain a

new l2 such that σ ∈ Θl
k2
2 l

k1
1 E

for some integer k2. I claim that this process
will terminate. Indeed, at each step we are constructing a Jordan-Holder
filtration of the Ei’s by semistable objects of the same phase. However, as
σ is locally finite, this process must end within finite steps. □

Corollary 4.2. Let E satisfy the condition † and F an iterated muta-
tion of E. Assume that there exists σ = (Z,P ) ∈ ∂ΘE

⋂
ΘF such that the

image of Z is contained in a line. Then there exists l = ls · · · l1 with li ∈
{L0, . . . ,Ln−1,R0, . . . ,Rn−1} for all i, such that F = lE, and real num-
bers 0 = a0 < a1 < · · · < as < as+1 = 1 and a continuous path γ : [0, 1] →
ΣE such that γ([ak, ak+1)) ⊂ Θlk···l1E for all k = 0, 1, . . . , s and γ(1) = σ.

Proof. By Lemma 4.2, there exists a sequence l1, . . . , ls (with potential
repetitions) with li ∈ {L0, . . . ,Ln−1,R0, . . . ,Rn−1} for all i and σ ∈ ∂ΘE

⋂

Θls···l1E . I claim that ls · · · l1E = F . Indeed, since σ ∈ ΘF is degenerate, the
objects of F are the only stable objects in P((0, 1]). The same holds for
ls · · · l1E , and thus it must agree with F . The statement then follows from
Lemma 4.1. □

The following lemma states that any loop in ΣE can be decomposed into a
sequence of segments such that two adjacent segments ‘differ’ by a single
mutation.

Proposition 4.1. Let γ : [0, 1] → ΣE be a continuous loop with γ(0) =
γ(1) ∈ ΘE . Then, up to replacing γ by a homotopic path, there exists l =
ls · · · l1 with li ∈ {L0, . . . ,Ln−1,R0, . . . ,Rn−1} for all i, such that lE = E,
and real numbers 0 = a0<a1< · · ·<as<as+1 = 1 such that γ([ak, ak+1))⊂
Θlk···l1E for all k = 0, 1, . . . , s.
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Before proving this proposition, we first prove two lemmas.

Lemma 4.3. Let F be an iterated mutation of E and let γ : [0, 1] → ΘE

⋃
ΘF

be a continuous path such that γ([0, 1)) ∈ ΘE and γ(1) ∈ ∂ΘE

⋂
ΘF . Then

there exists γ′ with γ′([0, 1)) ∈ ΘE and γ′(1) ∈ ∂ΘE

⋂
ΘF degenerate for F ,

and some γ′′ ⊂ ΘF , such that γ is homotopic to γ′′ ◦ γ′.

Proof. There exists a continuous sequence Gs ∈
˜GL+(2,R) (setting G0 = id)

such that Gs · γ(1) → σ, where σ ∈ ΘF is a degenerate stability condition.
It is clear that σ ∈ ∂ΘE . Let γ

′′ denote the path Gs · γ(1) → σ, which is
contained in ΘE

⋂
ΘF . Find any path γ′ such that γ′(0) = γ(0), γ′([0, 1)) ⊂

ΘE and γ′(1) = σ, which is possible since ΘE is path connected and ΣE is
locally Euclidean. Since ΘE is simply connected and ΣE is locally Euclidean,
we conclude that γ ∼ γ′′ ◦ γ′. □

Lemma 4.4. Let F be an iterated mutation of E and let γ : [0, 1] → ΘE

⋃
ΘF

be a continuous path such that γ([0, 1)) ∈ ΘE and γ(1) ∈ ∂ΘE

⋂
ΘF is degen-

erate. Then, up to replacing γ by a homotopic path, there exists l = ls · · · l1
with li ∈ {L0, . . . ,Ln−1,R0, . . . ,Rn−1} for all i, such that F = lE, and real
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numbers 0 = a0 < a1 < · · · < as < as+1 = 1 such that γ([ak, ak+1)) ⊂ Θlk···l1E

for all k = 0, 1, . . . , s.

Proof. By Corollary 4.2, we can find l = ls · · · l1 with F = lE , real numbers
0 = a0 < a1 < · · · < as < as+1 = 1 and a continuous path γ′ : [0, 1] → ΣE

such that γ′([ak, ak+1)) ⊂ Θlk···l1E for all k = 0, 1, . . . , s and γ′(1) = σ. Since
ΘE is path connected, we may assume that γ′(0) = γ(0). We need to show
that γ and γ′ are homotopic.

Notice that in the proof of Corollary 4.2, the sequence l1, . . . , ls are cho-
sen such that σ ∈ Θli···l1E for all i, and we terminate at the first s such
that σ ∈ Θls···l1E . In particular, σ ∈ (

⋂s−1
i=0 ∂Θli···l1)

⋂
Θls···l1E . By Lemma

4.1 and the fact that ΣE is locally Euclidean, for each i = 0, 1, . . . , s− 1,
we can find a point xi ∈ Θli···l1E

⋂
Θli+1···l1E

⋂
γ′ and a path γi such that

γi(0) = xi, γi([0, 1)) ⊂ Θli···l1E

⋂
Θli+1···l1E and γi(1) = σ. This shows that γ

is homotopic to γ′, as illustrated in the above figure. □

Proof of Proposition 4.1. Let γ : [0, 1] → ΣE be a continuous loop. Without
loss of generality, we may assume γ(0) = γ(1) ∈ ΘE . Since γ is compact,
we may find real numbers 0 = a0 < a1 < · · · < am < am+1 = 1 and F0 =
E ,F1, . . . ,Fm−1,Fm = E ∈ SE such that γ([ak, ak+1)) ⊂ ΘFk

for all k =
0, 1, . . . ,m. By Lemma 4.3, we may assume that γ(ak) ∈ ∂ΘFk−1

⋂
ΘFk

is
degenerate in Fk, for all k = 1, 2, . . . ,m.

Define γk as γ([ak, ak+1]) for k = 0, 1, . . . ,m− 1. By Lemma 4.4, we can
find lk = lsk,k · · · l1,k and real numbers 0 = b0,k < · · · < bsk,k < bsk+1,k = 1
such that Fk+1 = lkFk and γk([bi,k, bi+1,k)) ⊂ Θli,k···l1,kFk

for all i = 0, 1, . . . ,
sk. By combining these as k ranges over 1, 2, . . . ,m, we conclude the proof
of Proposition 4.1. □

Corollary 4.3. With notation as above. If
⋂

F∈SE
ΘE ̸= ∅, then ΣE is sim-

ply connected.

This, for example, implies that Stab(P1) is simply connected.

5. Simply connectedness in the case of P3

In this section, we apply results in the previous section to show the following
theorem.

Theorem 5.1. Let E be the exceptional collection {O,O(1),O(2),O(3)} on
P3. Then, the subspace ΣE of Stab(P3) is simply connected.
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The idea of the proof is as follows.
Using Proposition 4.1, we can associate to any continuous loop γ in ΣE a

‘pattern’, which is a word l = ls · · · l1 with li ∈ {L0, . . . ,Ln−1,R0, . . . ,Rn−1}
for all i. Suppose that the action of A4 on SE is free. This implies that l = 1
and thus l must be a combination of the relations of A4. Hence, it suffices
to check that any loop whose pattern is one of the relations is contractible,
which can be done by some straightforward calculations.

Now we prove that A4 acts freely on the set of iterated mutations of E .
First, let’s recall the following basic facts about the braid group A4. For a
more detailed expository on braid group actions on derived categories, see
[ST01].

Lemma 5.1. 1) The center of A4 is generated by (σ0σ1σ2)
4 = (σ2σ1σ0)

4.
2) The element δ = (σ0σ1σ2)(σ0σ1)σ0 ∈ A4 has the property that δ−1σiδ =
σ2−i for i = 0, 1, 2.

Proof. See [Bri05, Lemma 2.1]. □

Let E = {E0, E1, E2, E3} be an exceptional collection on P3. We define
F = δE to be the left dual collection of E . As an example, the left dual
collection of {O,O(1),O(2),O(3)} is {Ω3(3),Ω2(2),Ω1(1),O}, where Ωk is
the sheaf of holomorphic k-forms on P3. For some technical reasons we will
see later, it is often more convenient to consider the braid action after passing
to the dual collection. Finally, as an abuse of notation, we will use Li (Ri)
interchangeably with σi (σ

−1
i ) for the rest of the section.

Recall that the Euler form on Grothendieck group K(P3) is given by
χ([E], [F ]) =

∑
i(−1)i dimHomi(E,F ). Under the basis {[Ei]} of K(P3)

given by the exceptional collection, the Gram matrix of χ is given by A =
(aij), where aij = dimHom(Ei, Ej) for i, j = 0, 1, 2, 3. By the strong excep-
tionality of E , A in fact takes the form of an upper triangular matrix




1 a01 a02 a03
0 1 a12 a13
0 0 1 a23
0 0 0 1


 .

By Serre duality, we have χ([E], [F ]) = χ([F ], [κE]), where κ = −⊗O(−4)[3]
is the Serre functor on Db(P3). From this we deduce that κ = A−1AT under
the above basis. By [BP94, Lemma 3.1], −κ is unipotent. Explicit compu-
tation via κ = A−1AT shows that the unipotency of −κ is equivalent to the
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following two conditions:

a201 + a202 + a203 + a212 + a213 + a223 − a01a12a02 − a01a13a03(1)

− a02a23a03 − a12a23a13 + a01a12a23a03 − 8 = 0.

(a02a13 − a01a23 − a03a12)
2 = 16.(2)

Let Γ ⊂ Z6 denote the set of integer six-tuples satisfying (1) and (2). Then,
there is a map T : SE → Γ defined by

{F0, F1, F2, F3} 7→ (a01, a02, a03, a12, a13, a23),

where aij = dimHom(Fi, Fj).
Now, we define a group G by its generators and relations:

G := ⟨v, w2, w3 | v
2 = w4

2 = w2
3 = 1, w−1

3 w2w3 = w−1
2 ,

(vw3w
3
2)

3 = 1, (vw3vw
2
2)

2 = 1⟩.

In particular, the subgroup of G generated by w2, w3 is isomorphic to the
dihedral group D8. Moreover, Γ carries a G-action given by

v : (a01, a02, a03, a12, a13, a23) 7→ (a01, a03, a02, a01a03 − a13, a01a02 − a12, a23),

w2 : (a01, a02, a03, a12, a13, a23) 7→ (a03, a13, a23, a01, a02, a12),

w3 : (a01, a02, a03, a12, a13, a23) 7→ (a23, a13, a03, a12, a02, a01).

Lemma 5.2. The map f : A4 → G given by

R0 7→ w2
2vw3, R1 7→ w2vw3w2, R2 7→ vw3w

2
2

is a group homomorphism. Moreover, Tδ is equivariant with respect to f , in
the sense that

Tδ(σ(F)) = f(σ)Tδ(F)

for all σ ∈ A4 and all F ∈ SE .

Proof. Recall that δ = (σ0σ1σ2)(σ0σ1)σ0 ∈ A4 is the element satisfying
δ−1σiδ = σ2−i for i = 0, 1, 2.
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To show that f is a group homomorphism, it suffices to show that it sends
all relations in A4 to the identity in G. The computations are straightfor-
ward. For example,

f(R0R1R0) = (w2
2vw3)(w2vw3w

2
2)(w2vw3)

= (w2
2vw3w2)(w2w3vw2w3v)(vw3)

= w2
2vw

2
2vw2 = w2

2w3vw
2
2vw3w2

= w2(w2w3vw2w3v)vw3w2vw3w2

= f(R1R0R1).

The other two relations can be checked similarly.
To show that Tδ is equivariant, it suffices to check Tδ(σ(F))=f(σ)Tδ(F)

for σ = R0,R1,R2. We will first assume σ = R2. The defining triangle

F0 → Hom(F0, F1)⊗ F1 → RF1
F0 → F0[1]

and the strong exceptionality of R0F = {F1,RF1
F0, F2, F3} implies that

T (R0F) = f(R2)T (F). Therefore,

Tδ(R2F) = TR0(δF) = f(R2)Tδ(F).

The proof for σ = R0 and σ = R1 are similar. □

Proposition 5.1. Let E = {O,O(1),O(2),O(3)}. Then the action of A4

on SE is free.

Proof. The dual collection of E is δE = {Ω3(3),Ω2(2),Ω1(1),O}, with
T (δE) = (4, 6, 4, 4, 6, 4). The stabilizer subgroup of this tuple isG(4,6,4,4,6,4) =
⟨w2, w3⟩ ⊂ G. Next, from f(R2R1R0) = w2 we deduce that imf = ⟨w2, vw3⟩
⊂ G.

I claim that ker f = ⟨(R2R1R0)
4⟩ = Z(A4). To prove this, it suffices

to show that A4/Z(A4) is isomorphic to imf , which is isomorphic to the
abstract two-generator group given byG′ = ⟨v′, w2 : w

4
2 = 1, v′2w2

2v
′−2 = w2

2,
(v′w3

2)
3 = 1⟩ (under the obvious identification vw3 ↔ v′, w2 ↔ w2). Then,

the map f : A4 → G is equivalent to f ′ : A4 → G′ defined by R0 7→ w2
2v

′,
R1 7→ w2v

′w2,R2 7→ v′w2
2. However, f

′ has an explicit inverse f ′−1 : G′ →
A4/Z(A4) given by v′ 7→ (R2R1R0)

2R0, w2 7→ R2R1R0. This shows that
A4/Z(A4) ∼= imf .

Assume that some σ ∈ A4 fixes E . In particular, f(σ) must also fix
Tδ(E) = (4, 6, 4, 4, 6, 4). Therefore, f(σ) ∈ imf

⋂
G(4,6,4,4,6,4) = ⟨w2, vw3⟩

⋂
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⟨w2, w3⟩=⟨w2⟩. Since ker f=⟨(R2R1R0)
4⟩, this implies that σ=(R2R1R0)

k

for some integer k.
[Bon90, Theorem 4.1] tells us that (R2R1R0)

4 acts on an exceptional col-
lection by twisting by the anticanonical bundle. Thus, σ4 = (R2R1R0)

4k =
−⊗O(4k). By assumption, however, σ4 also fixes E , which is clearly impossi-
ble unless k = 0. Hence, the stabilizer subgroup of E = {O,O(1),O(2),O(3)}
is trivial. Since A4 acts transitively on SE , and in particular, all stabilizer
subgroups are conjugate to each other, we conclude that the action of A4

on SE is free. □

Proof of Theorem 5.1. Let E = {O,O(1),O(2),O(3)}, and fix a continuous
loop γ : [0, 1] → ΣE . By Proposition 4.1, there exists l = ls · · · l1 with li ∈
{L0,L1,L2,R0,R1,R2} for all i, such that lE = E , and real numbers 0 =
a0 < a1 < · · · < as < as+1 = 1 such that γ([ak, ak+1)) ⊂ Θlk···l1E for all k =
0, 1, . . . , s. Since the action of A4 on SE is free, we must have

l = (h1r
±1
1 h−1

1 )(h2r
±1
2 h−1

2 ) · · · (hsr
±1
s h−1

s ),

where each hi is a word in {L0,L1,L2,R0,R1,R2}, and each ri is one of
R0R1R0L1L0L1, R1R2R1L2L1L2 or R0R2L0L2. It is clear that any loop
with pattern of the form hh−1, where h is a word in {L0,L1,L2,R0,R1,R2},
is contractible. Therefore, it remains to show that any continuous loop
with pattern one of {R0R1R0L1L0L1,R1R2R1L2L1L2,R0R2L0L2} is con-
tractible.

If l = RiRi+1RiLi+1LiLi+1, i = 0, 1, the proof is the same as in the case
of P2 proved in [BM11, Lemma 7.8]. So we consider the case l = R0R2L0L2.
By assumption, γ runs through the regions

ΘE → ΘL2E → ΘL0L2E → ΘR2L0L2E → ΘE .

Let F = {F0, F1, F2, F3} be any collection satisfying †. We wish to show
that ΘF

⋂
ΘL2F

⋂
ΘL0L2F ̸= ∅. By a similar argument as in Lemma 4.1, a

stability condition σ = (Z,P) lies in ΘF

⋂
ΘL2F

⋂
ΘL0L2F if and only if the

following conditions hold:
(i) ϕσ(F1)− 1 < ϕσ(F0) < ϕσ(F1), ϕσ(F3)− 1 < ϕσ(F2) < ϕσ(F3),

ϕσ(F0) < ϕσ(F2)− 2
(ii) there does not exists k ∈ Z such that

ϕσ(F1) + k ≤ ϕσ(F2) < ϕσ(F3) ≤ ϕσ(F0) + k + 1
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or

ϕσ(F1) + k ≤ ϕσ(LF2
F3) < ϕσ(F2) ≤ ϕσ(F0) + k + 1

or

ϕσ(F0) + k ≤ ϕσ(LF2
F3) < ϕσ(F2) ≤ ϕσ(LF0

F1) + k + 1.

Now, define a stability condition σ0 as follows: Z0(F0) = 1, Z0(F1) = i,
Z0(F2) = 1 + ϵi, Z0(F3) = − dimHom(F0, F1) + i and ϕ0(F0) = 0, ϕ0(F1) =
1/2, ϕ0(F2) = 2 + 1

π tan−1(ϵ), ϕ0(F3) = 3− 1
π cot−1(dimHom(F0,F1)), where

0 < ϵ < 1/ dimHom(F2, F3) is a constant. Then, we have σ0 ∈ ΘF

⋂
ΘL2F

⋂

ΘL0L2F , and hence shows nonemptyness. A similar argument shows that
ΘF

⋂
ΘR2F

⋂
ΘR0R2F ̸= ∅.

This implies that up to homotopy, we can assume that γ lies in ΘE

⋃

ΘL0L2E , as illustrated in the figure below.

At this point, we might expect to show that ΘE

⋃
ΘL0L2E is simply

connected by showing that ΘE

⋂
ΘL0L2E is path connected. However, this

is not true. The region ΘE

⋂
ΘL0L2E corresponds to the loci

(i) ϕσ(E1)− 1 < ϕσ(E0) < ϕσ(E1), ϕσ(E3)− 1 < ϕσ(E2) < ϕσ(E3),
ϕσ(E0) < ϕσ(E3)− 2 and ϕσ(LE0

E1) < ϕσ(E2)− 2,
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(ii) there does not exist k ∈ Z such that

ϕσ(E1) + k ≤ ϕσ(E2) < ϕσ(E3) ≤ ϕσ(E0) + k + 1

or

ϕσ(E0) + k ≤ ϕσ(LE2
E3) < ϕσ(E2) ≤ ϕσ(LE0

E1) + k + 1,

whose path connected components are in bijection with Z. Nevertheless, this
can be remedied by allowing paths that goes through

ΘE ∩ (ΘR2L0L2E ∪ΘL0L2E) = (ΘE ∩ΘL0E) ∪ (ΘE ∩ΘL0L2E).

Consider the subset O ⊂ ΘE

⋃
ΘL0L2E defined by

O = {σ ∈ ΘE ∩ΘL0L2E |ϕσ(E2) = ϕσ(E0) + k,

ϕσ(E3) = ϕσ(LE0
E1) + k + 1 for some k ∈ Z}.

Then, any stability condition in ΘE ∩ΘL0L2E can be connected to O by a
path in ΘE ∩ΘL0L2E , and any two stability conditions in O can be connected
by a path in ΘE ∩ (ΘR2L0L2E ∪ΘL0L2E). This, together with Lemma 4.1,
proves that ΘE ∩ (ΘR2L0L2E ∪ΘL0L2E) is path connected. By Corollary 4.1
and Seifert Van-Kampen theorem, we deduce that ΘE ∪ΘR2L0L2E ∪ΘL0L2E

is simply connected, and hence any such γ can be contracted. □

Appendix

Some homological algebra

We first briefly review some basics of derived functors and derived categories.
For a more detailed introduction, we refer the readers to Chapter 2 and 10
of [Wei94].

Let A be an abelian category with enough injectives, i.e. for every object
A ∈ A, there exists an injective object I and a monomorphism A →֒ I. In
particular, this implies that every object A has an injective resolution A →֒
I•. As an example, the abelian category CohX on a projective variety X
has enough injectives.

Definition 5.1. Let F : A → B be a left exact functor between two abelian
categories with A having enough injectives. We can define the right derived
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functors RiF (i ≥ 0) as follows. For each A ∈ A, choose an injective resolu-
tion A →֒ I• and define

RiF (A) = H i(F (I•)).

Note that since 0 → F (A) → F (I0) → F (I1) is exact, we always have
R0F ∼= F . It is an important fact that the definition of a right derived functor
does not depend on the choice of the injective resolution. The proof of this
is essentially the following: for any two injective resolutions of an object A,
there exists a ‘lift’ from one to the other that is unique up to chain homotopy.

Let (X,OX) be a ringed space and let F ,G be OX -modules. We denote
by Hom(F ,G) the homomorphism group of OX -modules, and H om(F ,G)
the sheaf Hom construction. For fixed F , Hom(F , ·) is a left exact functor
from ModOX

to Ab, and H om(F , ·) is a left exact functor from ModOX

to ModOX
. Therefore, we may define their respective right derived functors

as Exti(F , ·) and Exti(F , ·). As another example, the global section func-
tor Γ(X, ·) is left exact from ModOX

to Ab, and its right derived functors
are just the sheaf cohomologies H i. It is a famous theorem that when X
is a quasicompact and separated scheme and when F ∈ CohX, the derived
functor definition of sheaf cohomology agrees with Čech cohmology.

Now we describe the construction of (bounded)derived category of an
abelian category A, which consists of three stages:

1) We first consider the category of bounded cochain complexes Cb(A),
whose objects are cochain complexes E• such that H i(E) = 0 for all but
finitely many i, and morphisms are cochain maps.

2) The homotopy category Kb(A) is defined to have the same objects
as Cb(A), but two morphisms f•, g• : E• → F • are identified if they are
homotopic, i.e. if there exists maps hi : Ei → F i−1 such that fi − gi = d ◦
hi − hi+1 ◦ d.

3) Finally, the bounded derived category Db(A) is defined by ‘inverting’
all quasi-isomorphisms, i.e. chain maps that induce isomorphisms on each
cohomology group. Formally, this process is called localization of a category,
see [Wei94, Section 10.3].

In fact, Db(A) can be shown to be a triangulated category, equipped
with the standard shift functor and whose distinguished triangles are given
by the mapping cone construction.

Derived categories and derived functors, as their names suggest, are
closely related. One way to motivate the derived functor construction from



✐

✐

“1-Chen” — 2020/11/28 — 1:10 — page 968 — #24
✐

✐

✐

✐

✐

✐

968 Zihong Chen

a derived category perspective is the following. If F : A → B is a func-
tor between two abelian categoies, then F naturally extends to functors
Cb(F ) : Cb(A) → Cb(B) and Kb(F ) : Kb(A) → Kb(B). The reason is that
the relations defining chain complexes and homotopies are both functorial.
In contrast, however, F does not itself define a functor from Db(A) to Db(B)
unless F is exact. But is there a natural way to extend F to derived cat-
egories? The answer to this question is exactly(no pun intended) derived
functors.

Before we give the construction, we need the following proposition about
injective objects in an abelian category.

Proposition 5.2. Let A be an abelian category. Then the following hold:
1) If A• ∈ Db(A) and I• a bounded complex consists of injectives, then

HomDb(A)(A
•, I•) = HomKb(A)(A

•, I•).

2) Suppose A has enough injectives, then

Db(A) ∼= Kb(I),

where Kb(I) is the full subcategory of Kb(A) whose objects are bounded
complexes consisting of injectives.

For a proof of this proposition, see [Wei94, Section 10.4]. In 2), the
equivalence of categories is given by sending a complex to the total complex
of its Cartan-Eilenberg resolution. Given this proposition, we can define the
derived functor of F : A → B as the composition

Db(A) ∼= Kb(I) → Kb(B) → Db(B),

where the middle map is Kb(F ), and the last map is simply passing to the
localization. It can be easily verified that for A• ∈ Db(A) concentrated in
degree 0, then the definition of derived functor we just gave is the same as
the ‘naive’ definition given at the beginning of this section.

Another useful application of Proposition 5.2 is the following lemma.

Lemma 5.3. For A ∈ A, A[i] denote the complex whose (−i)-th entry is
A and zero everywhere else. Then, for any E,F ∈ A, we have

HomDb(A)(E,F [i]) =

{
0 for i < 0

Exti(E,F ) for i ≥ 0
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Serre duality

Definition 5.2. Let S be a graded ring and (ProjS,OProjS) be the usual

proj construction. Define the Serre twsiting sheaf O(1) as M̂ where Mn =

Sn+1. Similarly, define O(d) as M̂ where Mn = Sn+d.

In the above definition, it is easy to verify that O(d) = O(1)⊗d. Let
Pn
C
= ProjC[x0, . . . , xn] denote the projective n-space over C.

Theorem 5.2. (i) H0((Pn,OPn(m)) is a vector space of dimension
(
n+m
m

)

if m ≥ 0.
(ii) Hn((Pn,OPn(m)) is a vector space of dimension

(
−m−1

−n−m−1

)
if m ≤

−n− 1.
(iii) H i((Pn,OPn(m)) = 0 otherwise.
(iv) The natural map

H0(Pn,OPn(m))×Hn(Pn,OPn(−m− n− 1)) → Hn(Pn,OPn(−n− 1))

is a perfect pairing.

Proof. See [Har77, Chapter III, Theorem 5.1]. □

In fact, Theorem 5.2(iv) is a special case of a general principle called
Serre duality. Before stating Serre duality, we first recall that for any ringed
space X, Hom(OX , ·) and Γ(X, ·) represent the same functor. As a result,
their derived functor are also identical, i.e. Exti(OX , ·) = H i(X, ·).

Let X = Pn
C
, and let ωX =

∧nΩX/k
∼= O(−n− 1) be the canonical bun-

dle. By Theorem 5.2, we have Hn(X,ωX) ∼= C.

Theorem 5.3. Let F be a coherent sheaf over X. Then, the natural pairing

Exti(F , ωX)×Hn−i(X,F) → Hn(X,ωX) ∼= C

is perfect for all 0 ≤ i ≤ n. As a consequence, there is a natural isomorphism

Exti(F , ωX) ∼= Hn−i(X,F)∗

for each 0 ≤ i ≤ n.

Proof. See [Har77, Chapter III, Theorem 7.6]. □

In the language of derived category, the above theorem says that −⊗
ωX [n] is a Serre functor on DbCoh(X).
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