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Upper semi-continuity of entropy in

non-compact settings

Godofredo Iommi, Mike Todd, and Ańıbal Velozo

We prove that the entropy map for countable Markov shifts of finite
entropy is upper semi-continuous on the set of ergodic measures.
Note that the phase space is non-compact. We also discuss the
related problem of existence of measures of maximal entropy.

1. Introduction

The entropy map of the continuous transformation T : X → X defined on
a metric space (X, d) is the map µ 7→ hµ(T ) which is defined on the space
of T−invariant probability measures MT , where hµ(T ) is the entropy of µ
(precise definitions can be found in Section 2). The study of the continuity
properties of the entropy map, with MT endowed with the weak∗ topology,
goes back at least to the work of Bowen [Bo1]. In general it is not a con-
tinuous map (see [Wa, p.184]). However, in certain relevant cases it can be
shown that the map is upper semi-continuous, that is, if (µn)n is a sequence
in MT that converges to µ then lim supn→∞ h(µn) ≤ h(µ). For example, if T
is an expansive homemorphism of a compact metric space then the entropy
map is upper semi-continuous, see [Wa, Theorem 8.2] and [Bo1, De, Mi2].
It is also known that if T is a C∞ map defined over a smooth compact
manifold then, again, the entropy map is upper semi-continuous (see [N,
Theorem 4.1] and [Y]). Lyubich [Ly, Corollary 1] proved that the entropy
map is upper semi-continuous for rational maps of the Riemann sphere. In
all the above examples the phase space is compact: in this article we will
drop the compactness assumption on the underlying space.

Markov shifts defined over finite alphabets have been used with re-
markable success to study uniformly hyperbolic systems. Indeed, these sys-
tems possess finite Markov partitions and are, therefore, semi-conjugated to
Markov shifts. See [Bo2] for an example of the wealth of results that can be
obtained with this method. Following the 2013 work of Sarig [Sa2], count-
able Markov partitions have been constructed for a wide range of dynamical
systems defined on compact spaces (see [Bu2, LM, LS, O]). The symbolic
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coding captures a relevant part, though not all, of the dynamics. We stress
that this relevant part is often non-compact. For example, diffeomorphisms
defined on compact manifolds have countable Markov partitions that cap-
ture all hyperbolic measures. These results have prompted a renewed interest
in the ergodic properties of countable Markov shifts.

In this paper we study countable Markov shifts (Σ, σ). More precisely,
the shift on sequences of elements of a countable alphabet in which the
transitions, allowed and forbidden, are described by a directed graph (see
Section 3 for definitions). The space Σ is usually non-compact with respect
to its natural topology. If the alphabet is finite, a so-called subshift of finite
type, and so the space Σ is compact, it is a classical result that the entropy
map is upper semi-continuous [Wa, Theorem 8.2]. In this article we recover
upper semi-continuity in the ergodic case for shifts of finite topological en-
tropy defined on non-compact spaces. Our main result is:

Theorem 1.1. Let (Σ, σ) be a two-sided countable Markov shift of finite
topological entropy. If (µn)n, µ are ergodic measures in Mσ such that (µn)n
converges in the weak* topology to µ then

lim sup
n→∞

h(µn) ≤ h(µ).

That is, the entropy map is upper semi-continuous on the set of ergodic
measures.

This has the following corollary:

Corollary 1.2. Let (Σ+, σ) be a one-sided countable Markov shift of finite
topological entropy. If (µn)n, µ are ergodic measures in Mσ such that (µn)n
converges in the weak* topology to µ then

lim sup
n→∞

h(µn) ≤ h(µ).

That is, the entropy map is upper semi-continuous on the set of ergodic
measures.

The strategy of the proof is the following. First note that if there ex-
ists a finite generating partition of the space such that the measure of its
boundary is zero for every invariant measure, then the entropy map is upper
semi-continuous. This is no longer true for countable generating partitions.
Krieger [Kr] constructed a finite generating partition for each ergodic mea-
sure. More recently, Hochman [H1, H2] constructed finite partitions that are
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generating for every ergodic measure. We can not use the result by Krieger
since we need the same partition for every measure and we can not use
Hochman’s result since his partitions have a large boundary. We overcome
this difficulty by constructing finite generating partitions with no boundary.

If T : X → X is a continuous transformation defined on a compact space
for which the entropy map is upper semi-continuous then there exists a mea-
sure of maximal entropy. Diffeomorphisms of class Cr, for any r ∈ [1,∞)
(in the compact setting), with no measure of maximal entropy have been
constructed by Misiurewicz [Mi1] and Buzzi [Bu1]. These are examples for
which the entropy map is not upper semi-continuous. If the space X is non-
compact, even if the entropy map is upper semi-continuous, measures of
maximal entropy might not exist. Indeed, in the non-compact case the space
of invariant probability measures might also be non-compact and therefore a
sequence of measures with entropy converging to the topological entropy may
not have a convergent subsequence. For instance, consider the geodesic flow
on a non-compact pinched negatively curved manifold. Velozo [V] showed
that in that setting the entropy map is always upper semi-continuous, but
there are examples for which there is no measure of maximal entropy (see for
example [DPPS]). In Section 4 we discuss conditions that guarantee the exis-
tence of measures of maximal entropy. We also address the relation between
upper semi-continuity of the entropy map and thermodynamic formalism.
More precisely, we provide conditions for the existence of equilibrium mea-
sures. Finally, in Section 5 we apply our results to suspension flows.

We would expect our results to pass to some systems which are coded
by countable Markov shifts, but with the important caveat that it is not
always straightforward to compare topologies on the shift versus the coded
space, so weak∗ convergence in one space may not imply weak∗ convergence
in the other.
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2. Entropy and generators

This section is devoted to recall basic properties and definitions that will be
used throughout the article. The reader is referred to [Do, P, Wa] for more
details.
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2.1. The weak∗ topology

Let (X, d) be a metric space, we denote by Cb(X) the space bounded con-
tinuous functions φ : X → R. Denote by M(X) the set of Borel probability
measures on the metric space (X, d).

Definition 2.1. A sequence of probability measures (µn)n defined on a
metric space (X, d) converges to a measure µ in the weak∗ topology if for
every φ ∈ Cb(X) we have

lim
n→∞

∫

φ dµn =

∫

φ dµ.

Remark 2.2. In this notion of convergence we can replace the set of test
functions by the space of bounded Lipschitz functions (see [Kl, Theorem
13.16 (ii)]). That is, if for every bounded Lipschitz function φ : X → R we
have

lim
n→∞

∫

φ dµn =

∫

φ dµ.

then the sequence (µn)n converges in the weak∗ topology to µ.

If the space (X, d) is compact then so is M(X) with respect to the
weak∗ topology (see [Pa, Theorem 6.4]). For A ⊂ X denote by int A,A and
∂A the interior, the closure and the boundary of the set A, respectively. The
following result characterises the weak∗ convergence (see [Pa, Theorem 6.1]),

Theorem 2.3 (Portmanteau Theorem). Let (X, d) be a metric space
and (µn)n, µ measures in M(X). The following statements are equivalent:

(a) The sequence (µn)n converges in the weak∗ topology to the measure µ.

(b) If C ⊂ X is a closed set then lim supn→∞ µn(C) ≤ µ(C).

(c) If O ⊂ X is an open set then lim infn→∞ µn(O) ≥ µ(O).

(d) If A ⊂ X is a set such that µ(∂A) = 0 then limn→∞ µn(A) = µ(A).

Let T : (X, d) → (X, d) be a continuous dynamical system, denote by
MT the space of T−invariant probability measures.

Proposition 2.4. Let T : (X, d) → (X, d) be a continuous dynamical sys-
tem defined on a metric space, then

(a) The space MT is closed in the weak∗ topology ([Wa, Theorem 6.10]).
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(b) If X is compact then so is MT with respect to the weak∗ topology (see
[Wa, Theorem 6.10]).

(c) The space MT is a convex set for which its extreme points are the
ergodic measures (see [Wa, Theorem 6.10]). It is actually a Choquet
simplex (each measure is represented in a unique way as a generalized
convex combination of the ergodic measures [Wa, p.153]).

2.2. Entropy of a dynamical system

Let T : (X, d) → (X, d) be a continuous dynamical system. We recall the
definition of entropy of an invariant measure µ ∈ MT (see [Wa, Chapter 4]
for more details).

Definition 2.5. A partition P of a probability space (X,B, µ) is a count-
able (finite or infinite) collection of pairwise disjoint subset ofX whose union
has full measure.

Definition 2.6. The entropy of the partition P is defined by

Hµ(P) := −
∑

P∈P

µ(P ) logµ(P ),

where 0 log 0 := 0.

It is possible that Hµ(P) = ∞. Given two partitions P and Q of X we
define the new partition

P ∨Q := {P ∩Q : P ∈ P, Q ∈ Q}

Let P be a partition of X we define the partition T−1P :=
{

T−1P : P ∈ P
}

and for n ∈ N we set Pn :=
∨n−1

i=0 T
−iP. Recall that a sequence of real num-

bers (an)n is subadditive if for every n,m ∈ N we have an+m ≤ an + am. A
classical result by Fekete states that if (an)n is a subadditive sequence of non-
negative real numbers then the sequence (an/n)n converges to its infimum.
Since the measure µ is T−invariant, the sequence Hµ(P

n) is subadditive.

Definition 2.7. The entropy of µ with respect to P is defined by

hµ(P) := lim
n→∞

1

n
Hµ(P

n)
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Definition 2.8. The entropy of µ is defined by

hµ(T ) := sup {hµ(P) : P a partition with Hµ(P) <∞} .

If the underlying dynamical system considered is clear we write hµ in-
stead of hµ(T ).

2.3. Generators

We now recall the definition and properties of an important concept in
ergodic theory, namely generators.

Definition 2.9. Let (T,X,B, µ) be a dynamical system. A one-sided gen-
erating partition P of (T,X,B, µ) is a partition such that

⋃

∞

n=1 P
n generates

the sigma-algebra B up to sets of measure zero. Analogously, if (T,X,B, µ)
is an invertible dynamical system a two-sided generating partition P of
(T,X,B, µ) is a partition such that

⋃

∞

n=−∞
Pn generates the sigma-algebra

B up to sets of measure zero.

A classical result by Kolmogorov and Sinai [Si] states that entropy can
be computed with either one- or two-sided generating partitions (see also
[Wa, Theorem 4.17 and 4.18] or [Do, Theorem 4.2.2]).

Theorem 2.10 (Kolmogorov-Sinai). Let (T,X,B, µ) be a dynamical
system and P a one-or a two-sided generating partition, then hµ(T )=h(µ,P).

The existence of generating partitions depends on the acting semi-group.
Rohlin [Ro1, Ro2] proved that ergodic (actually aperiodic) invertible sys-
tems of finite entropy have countable two-sided generators. This was later
improved by Krieger [Kr] (see also [Do, Theorem 4.2.3]).

Theorem 2.11 (Krieger). Let (T,X,B, µ) be an ergodic invertible dynam-
ical system with hµ(T ) <∞ then there exists a finite two-sided generator P
for µ. The cardinality of P can be chosen to be any integer larger than ehµ(T ).

Note that in Krieger’s result the generator depends upon the measure.
There are some well known cases in which there exists a finite partition
which is a generator for every measure. For example, if (Σ, σ) is a transitive
two-sided subshift of finite type then the cylinders of length one form a two-
sided generating partition for every invariant measure. Hochman proved that
a uniform version of Krieger result can be obtained (see [H2, Corollary 1.2]).
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Theorem 2.12 (Hochman). Let (T,X,B) be an invertible dynamical sys-
tem with no periodic points and of finite entropy. Then there exists a finite
two-sided partition P that is a generator for every ergodic invariant measure.

2.4. Upper semi-continuity of the entropy

The following well known result (see for example [Do, Lemma 6.6.7]) relates
the existence of finite generating partitions with continuity properties of the
entropy map.

Proposition 2.13. Let (T,X,B) be a dynamical system and P be a finite
two-sided generator for every measure in C ⊂ MT . If for every µ ∈ C we
have that µ(∂P) = 0 then the entropy map is upper semi-continuous in C.

Proof. Let µ ∈ C and P ∈ P. Note that since µ(∂P) = 0 the function ν →
ν(P ) is continuous at µ. Since the partition P is finite, the function defined
in C by

ν → Hν(P) = −
∑

P∈P

ν(P ) log ν(P ),

is continuous at µ. Note that µ(∂P) = 0 implies that µ(∂Pn) = 0. Thus, the
function in C defined by ν → Hν(P

n) is also continuous. Since the function
defined in C by

ν 7→ hν(P) = inf
n

1

n
Hν(P

n)

is the infimum of continuous functions at µ we have that the map ν 7→ hν(P)
is upper semi-continuous at µ. Since P is a uniform generating partition in
C for every ν ∈ C we have hν(T ) = hν(P). Thus, the map

ν 7→ hν(T )

is upper semi-continuous at µ. Since µ ∈ C was arbitrary the result follows.
□

Remark 2.14. Note that if in Proposition 2.13 we have C = MT then the
entropy map is upper semi-continuous in the space of invariant probability
measures.

Remark 2.15. The argument in Proposition 2.13 breaks down if we con-
sider countable (infinite) generating partitions since, in that case, the map
ν → Hν(P) need not to be continuous (see Remark 3.11 or [JMU, p.774]).
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Remark 2.16. Expansive maps defined on compact metric spaces are ex-
amples of dynamical systems having finite generators as in Proposition 2.13
(see [Wa, Theorem 8.2]). We stress that while Theorem 2.12 provides a finite
(uniform) generating partition, in general this does not satisfy the condition
of zero measure boundary.

3. Countable Markov shifts

In this section we define countable Markov shifts, both one-and two-sided
and prove our main results.

3.1. Two-sided countable Markov shifts

Let (Σ, σ) be a two-sided Markov shift defined over a countable alphabet A.
This means that there exists a matrix S = (sij)A×A of zeros and ones such
that

Σ =
{

x ∈ AZ : sxixi+1
= 1 for every i ∈ Z

}

.

Note that the matrix S induces a directed graph on A. Let n ∈ N and
r := (r1, . . . , rn) ∈ An, we say that r is an admissible word if sriri+1

= 1, for
i ∈ {1, . . . , n− 1}. We say that the system is transitive if, given x, y ∈ A,
there exists an admissible word starting at x and ending at y. Let (r1, . . . , rn)
be an admissible word and l ∈ Z, we define the corresponding cylinder set
by

[r1, . . . , rn]l := {x ∈ Σ : xl = r1, xl+1 = r2, . . . , xl+n−1 = rn} .

If l = 0 then we omit this in the notation, writing [r1, . . . , rn] in place of
[r1, . . . , rn]0. We endow Σ with the topology generated by the cylinder sets.
Note that, with respect to this topology, the space Σ is non-compact. The
shift map σ : Σ → Σ is defined by (σ(x))i = xi+1. Let Mσ be the set of
σ−invariant probability measures and Eσ ⊂ Mσ the set of ergodic invariant
probability measures.

Each element a ∈ A corresponds either to a transitive component of Σ,
i.e., a maximal subset Σ′ of Σ where there are x ∈ Σ′ with xi = a for some
i, and which is transitive (note that (Σ′, σ) is also Markov); or, if not, to the
wandering set. Since we will be dealing with ergodic measures µn converging
to some µ, we will take a ∈ A such that µ([a]) > 0, and we may assume that
µn([a]) > 0 for all n. Ergodicity implies that our measures are supported on
the transitive component corresponding to a, and thus it is sufficient for our
proofs to assume from here on that our system is transitive.
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The topological entropy of σ is defined by

htop(σ) := lim sup
n→∞

1

n
log

∑

σnx=x

χ[a](x)

= sup {hµ(σ) : µ ∈ Mσ} = sup {hµ(σ) : µ ∈ Eσ} ,

where a ∈ A is an arbitrary symbol and χ[a] is the characteristic function
of the cylinder [a]. By transitivity this definition is independent of a ∈ A.
Gurevich formulated this condition in [Gu1, Gu2] and proved that if (Σ, σ) is
topologically mixing then in fact the limit exists (see also [DS, Remark 3.2]);
he also proved the second and third equalities.1

3.2. Proof of Theorem 1.1

Given a ∈ A we define

Σa := {x ∈ Σ : σkx ∈ [a] for infinitely many positive and negative k ∈ Z}.

Observe that Σa is a Borel σ-invariant subset of Σ. Therefore, the dynamical
system σ : Σa → Σa is well defined. Since (Σ, σ) is a finite entropy system,
so is (Σa, σ).

Remark 3.1. Let µ ∈ Eσ be an ergodic σ-invariant probability measure
such that µ([a]) > 0, then by the Birkhoff ergodic theorem we have µ(Σa) =
1. This is the only point in our proof where we use ergodicity of our measures
of interest. Moreover, since the system is transitive the set Σa is dense in Σ.

The following class of countable Markov shifts that has been studied in
[BBG, Ru1, Sa1] will be of importance in what follows.

Definition 3.2. A loop graph is a graph made of simple loops which are
based at a common vertex and otherwise do not intersect. A loop system is
the two-sided countable Markov shift defined by a loop graph.

Lemma 3.3. The system (Σa, σ) is topologically conjugate to a loop system
(Σ, σ) of finite entropy.

1If the system were not transitive, we could take the supremum of all these
quantities over the transitive components.
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Proof. For every n ∈ N denote by Cn the set of non-empty cylinders in Σ
of the form [a, x1, · · · , xn, a], where xi ̸= a for all i ∈ {1, . . . , n}. Since the
entropy of Σ is finite, the number of elements in Cn is finite. Let cn be
the number of elements in Cn and write Cn = {A1

n, . . . , A
cn
n }. Construct a

loop graph with exactly cn loops of length n+ 1, and denote by Σ the loop
system associated to it. For convenience we denote the vertex of the loop
graph with the letter a. There is a one to one correspondence between Cn

and the non-empty cylinders in Σ of the form [axa], where the word x does
not contain the letter a and it has length n. Denote by Bi

n to the cylinder
in Σ associated to Ai

n.
Note that every x ∈ Σa is of the following form (. . . ax−1ax0ax1a . . . ),

where xi are admissible words that do not contain the letter a. Observe that
for each xi there is a unique corresponding cylinder Ai

ni
. Moreover, for each

Ai
ni

there is a unique corresponding cylinder Bi
ni

in Σ. Finally, for each Bi
ni

there is a unique corresponding admissible word xb

i
in Σ. Following this pro-

cedure we can define a bijective map F : Σa → Σ by F (. . . ax−1ax0ax1a . . . )
= (. . . axb

−1
axb

0
axb

1
a . . . ).

We will now prove that F is a homeomorphism. Let U be an open set
in Σ. Consider a point x ∈ U and define y = F−1(x). To prove the con-
tinuity of F it is enough to check that y is an interior point of F−1(U).
Let [axb

1
axb

2
a · · · axb

ma]h, where h ∈ Z and no xi contains the letter a, be a
cylinder contained in U such that x ∈ U . Note that

F−1([axb

1ax
b

2a · · · ax
b

ma]h) = [ax1ax2a · · · axma]h

Note that y ∈ [ax1ax2a · · · axma]h, [ax1ax2a · · · axma]h ⊂ F−1U and the
cylinder set [ax1ax2a · · · axma]h is open. Therefore, F is continuous. A sim-
ilar argument gives that F−1 is also continuous, therefore F is a homeomor-
phism. By construction we have that σ|Σ◦F = F ◦ σ|Σa

. Since Σa has finite
entropy so does Σ. □

The following result was obtained by Boyle, Buzzi and Gómez [BBG,
Lemma 3.7], they established the existence of a continuous embedding of
a loop system into a subshift of finite type. Let us stress that the relevant
part of the result is the continuity. Borel embeddings have been obtained in
greater generality (see Hochman [H2, Corollary 1.2] or [H1, Theorem 1.5]).

Theorem 3.4 (Boyle, Buzzi, Gómez). A loop system of finite topological
entropy can be continuously embedded in an invertible subshift of finite type.
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Lemma 3.5. Let A and B be disjoint open subsets of Σa. Suppose A1 and
B1 are open subsets of Σ such that A1 ∩ Σa = A and B1 ∩ Σa = B. Then A1

and B1 are disjoint.

Proof. Suppose that A1 and B1 are not disjoint. In this case we can find
a non-empty open set U ⊂ A1 ∩B1. Define V = U ∩ Σa and observe that
V ⊂ A ∩B. Since Σa is dense in Σ we have that V = U ∩ Σa is non-empty,
which contradicts that A and B are disjoint. □

Given an open subset A of Σa we define Â as the largest open subset in
Σ such that Â ∩ Σa = A. Similarly, for a closed subset B of Σa we define B̌
as the smallest closed subset of Σ such that B̌ ∩ Σa = B. The existence of
both Â and B̌ follows from Zorn’s Lemma.

Remark 3.6. If B ⊂ Σa is closed set, then there exists a closed set B1 ⊂ Σ
such that B1 ∩ Σa = B. Since B ⊂ B1, we conclude that B ⊂ B1, where B
is the closure of B in Σ. This implies that B ⊂ B ∩ Σa ⊂ B1 ∩ Σa = B, and
therefore B ∩ Σa = B. Moreover B̌ = B.

Lemma 3.7. Let A be an open and closed subset of Σa. Then Â ⊂ Ǎ, in

particular Â = A.

Proof. Let B := Σa ∖A. Observe that Σ∖ Ǎ is open and that (Σ∖ Ǎ) ∩
Σa = B. By the definition of B̂ it follows that (Σ∖ Ǎ) ⊂ B̂, or equivalently
that Σ∖ B̂ ⊂ Ǎ. Observe that A and B are disjoint open subsets of Σa,
therefore we can use Lemma 3.5 and obtain that Â ⊂ (Σ∖ B̂). All this
together implies that Â ⊂ Ǎ. □

Lemma 3.8. Suppose that R = {R1, . . . , RN} is a partition of Σa such that
the sets Ri, with i ∈ {1, . . . , N}, are open and closed in the topology of Σa.
Then there exists a finite partition R̂ of Σ which induces the partition R on
Σa and µ(∂R̂) = 0 for every probability measure on Σ such that µ(Σa) = 1.

We observe that there is an important step in the proof of this lemma
which uses the density of Σa in Σ, which as in Remark 3.1 follows from
topological transitivity.

Proof. Let R̂ = {R̂1, . . . , R̂N , X}, where X = Σ∖
⋃N

i=1 R̂i. The partition is
well defined since by Lemma 3.5 the sets {R̂1, . . . , R̂N} are disjoint. Ob-
serve that the set X is closed and has empty interior (since Σa is dense in
Σ). Therefore µ(∂X) = µ(X ∖ int X) = µ(X) ≤ µ(Σ∖ Σa) = 0. It follows
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from Lemma 3.7 that µ(∂R̂i) = µ(R̂i ∖ R̂i) = µ(Ri ∖ R̂i). As observed in
Remark 3.6 we have that Ri ∩ Σa = Ri. Therefore

µ(∂R̂i) = µ(Ri ∖ R̂i) = µ((Ri ∩ Σa)∖ R̂i) = µ(Ri ∖ R̂i) = 0. □

Proposition 3.9. Let (µn)n be a sequence of invariant probability measures
converging in the weak∗ topology to a measure µ. If µ(Σa) = 1 and µn(Σa) =
1, for every n ∈ N, then

lim sup
n→∞

hµn
(σ) ≤ hµ(σ).

Proof. It was shown in Lemma 3.3 that there exists a topological conjugacy
F : Σa → Σ between (Σa, σ) and (Σ, σ). From Theorem 3.4 there exists a
topological embedding G : Σ →֒ Σ0, where Σ0 is a subshift of finite type
with alphabet {1, . . . , N}. The partition P = {[1], [2], . . . , [N ]} is a gener-
ating partition of (Σ0, σ) for every invariant probability measure (see [Wa,
Theorem 8.2]). It follows that Q = G−1P is a generating partition for every
σ-invariant measure in Σ. The continuity of G implies that G−1 ([i])) is open
and closed, in particular

∂G−1 ([i]) = G−1 ([i])∖ int G−1 ([i]) = ∅.

Therefore ∂Q = ∅. Let R = F−1Q. Then R is a generating partition for
(Σa, σ), ∂R = ∅ and moreover the elements in R are open and closed. From
Lemma 3.8 we construct a partition R̂ of Σ that induces R when restricted
to Σa. Since by assumption the measures µ and (µn)n give full measure
to Σa, Lemma 3.8 implies that µ(∂R̂) = 0. Moreover hµ(σ) = hµ(σ, R̂) and
hµn

(σ) = hµn
(σ, R̂) for every n ∈ N. Indeed, for every σ-invariant probability

measure ν on Σ such that ν(Σa) = 1 we have that the systems (Σ, σ, ν) and
(Σa, σ|Σa

, ν|Σa
) are isomorphic. Therefore

hν(Σ, σ) = hν(Σa, σ) = lim
n→∞

1

n
Hν(R

n),

since R is a generating partition for (Σa, σ). Note that for every n ∈ N and
R̂i1,...,1n

∈ R̂n we have

ν(R̂i1,...,1n
) = ν(R̂i1,...,1n

∩ Σa) = ν|Σa
(Ri1,...,1n

).

Thus hν(σ) = hν(σ, R̂). Therefore, Proposition 2.13 implies that

lim sup
n→∞

hµn
(σ) = lim sup

n→∞

hµn
(σ, R̂) ≤ hµ(σ, R̂) = hµ(σ).

□
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Proof of Theorem 1.1. The above argument proves that if (µn)n is a se-
quence of ergodic measures that converges in the weak∗ topology to the
ergodic measure µ then limn→∞ hµn

(σ) ≤ hµ(σ). Indeed, there exists a ∈ A
such that µ([a]) > 0. Since limn→∞ µn([a]) = µ([a]) > 0, there exists N ∈ N

such that for every n > N we have that µn([a]) > 0. We then use Proposi-
tion 3.9 to get the result. □

3.3. One-sided countable Markov shifts

Let (Σ+, σ) be a one-sided Markov shift defined over a countable alphabet
A. This means that there exists a matrix S = (sij)A×A of zeros and ones
such that

Σ+ =
{

x ∈ AN : sxixi+1
= 1 for every i ∈ N

}

.

The shift map σ : Σ+ → Σ+ is defined by (σ(x))i = xi+1. The entropy of
σ is defined by htop = htop(σ) := sup {hµ(σ) : µ ∈ Eσ}. Note that, as in the
two-sided setting, it is possible to give a definition of entropy computing the
exponential growth of periodic orbits, but for the purposes of this article the
above definition suffices.

Proof of Corollary 1.2. Denote by (Σ, σ) the natural extension of (Σ+, σ)
and by E and E+ the corresponding sets of ergodic measures. There exists
a bijection π : E+ → E such that for every µ ∈ E+ we have that hµ = hπ(µ)
(see [Do, Fact 4.3.2] and [Sa3, Section 2.3]).

Lemma 3.10. Let (µn)n, µ ∈ E+ such that (µn)n converges weak∗ to µ.
Then (π(µn))n converges weak∗ to π(µ).

Proof. Note that in the notion of weak∗ convergence we can replace the set of
test functions by the space of bounded Lipschitz functions (see Remark 2.2).
That is, if for every bounded Lipschitz function φ : Σ → R we have

lim
n→∞

∫

φ dµn =

∫

φ dµ,

then the sequence (µn)n converges in the weak∗ topology to µ. A result by
Daon [Da, Theorem 3.1] implies that for every Lipschitz (the result also holds
for weakly Hölder and summable variations) function φ : Σ → R there exists
a cohomologous Lipschitz function ψ : Σ → R that depends only on future
coordinates. The transfer function can be chosen bounded and uniformly
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continuous. The function ψ can be canonically identified with a Lipschitz
function ρ : Σ+ → R. Thus,

∫

Σ
φ dπ(µn) =

∫

Σ
ψ dπ(µn) =

∫

Σ+

ρ dµn.

Therefore,

lim
n→∞

∫

Σ
φ dπ(µn) = lim

n→∞

∫

Σ+

ρ dµn =

∫

Σ+

ρ dµ =

∫

Σ
φ dπ(µn).

The result now follows. □

Let µn, µ ∈ Eσ be such that (µn)n converges weak∗ to µ. Lemma 3.10
implies that (π(µn))n converges weak∗ to π(µ). Moreover, for every n ∈ N we
have that hπ(µn) = hµn

and hπ(µ) = hµ. Since, by Theorem 1.1, the entropy
map is upper semi-continuous in (Σ, σ) we obtain the result. □

Remark 3.11. The finite entropy assumption in Theorem 1.1 and in Corol-
lary 1.2 is essential as the following example shows. Let (Σ+, σ) be the full
shift on a countable alphabet, note that htop(σ) = ∞. Denote by P the par-
tition formed by the length one cylinders. This is a generating partition.
Let h ∈ R

+ be a positive real number and (an)n be the sequence defined by
an = h

logn for every n > 1. Consider the following stochastic vector

p⃗n :=
(

1− an,
an
n
,
an
n
, . . . ,

an
n
, 0, 0, . . .

)

,

where the term an/n appears n times. Let µn be the Bernoulli measure
defined by p⃗n. Note that the sequence (µn)n converges in the weak∗ topology
to a Dirac measure δ1 supported on the fixed point at the cylinder C1. Note
that

Hµn
(P) = −(1− an) log(1− an)− an log an − an log

1

n
.

Therefore,

lim
n→∞

Hµn
(P) = h > 0 = Hδ1(P).

The above example shows that the map ν → Hν(P) need not to be continu-
ous for countable generating partitions. Moreover, since the measures µn are
Bernoulli we have that hµn

(σ) = Hµn
(P), and therefore the above argument
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shows that the entropy map is not upper semi-continuous:

lim
n→∞

hµn
(σ) = h > 0 = hδ1(σ).

In other words, the entropy map could fail to be upper semi-continuous for
general dynamical systems defined on non-compact spaces, even if there ex-
ists a uniform (countable) generating partition with no boundary. The con-
struction of the above example is based on examples constructed by Walters
([Wa, p.184]) and by Jenkinson, Mauldin and Urbański [JMU, p.774]. This
example also shows that the entropy map is not upper semi-continuous even
if we consider a sequence of measures for which their entropy is uniformly
bounded.

4. Measures of maximal entropy

A continuous map T : (X, d) → (X, d) defined on a compact metric space for
which the entropy map is upper semi-continuous has a measure of maximal
entropy. Indeed, from the variational principle there exists a sequence of
ergodic invariant probability measures (µn)n such that limn→∞ hµn

(T ) =
htop(T ). Since the space of invariant measures MT is compact, there exists
an invariant measure µ which is an accumulation point for (µn)n. It follows
from the fact that the entropy map is upper semi-continuous that

htop(T ) = lim
n→∞

hµn
(T ) ≤ hµ(T ).

Therefore, µ is a measure of maximal entropy. For countable Markov shifts
the variational principle holds (see [Gu1, Gu2]) and the entropy map is upper
semi-continuous (see Theorem 1.1 and Corollary 1.2), however the spaceMσ

is no longer compact. Despite this, under a convergence assumption we can
prove the existence of measures of maximal entropy. Indeed, Corollary 1.2
provides a new proof of the following result by Gurevich and Savchenko [GS,
Theorem 6.3].

Proposition 4.1. Let (Σ, σ) be a finite entropy countable Markov shift.
Let (µn)n be a sequence of ergodic measures such that limn→∞ hµn

(σ) =
htop(σ). If (µn)n converges in the weak∗ topology to an ergodic measure µ
then hµ(σ) = htop(σ).

It might happen that there is a sequence (µn)n with limn→∞ hµn
(σ) =

htop(σ), but (µn)n does not converge in the weak∗ topology. Examples of
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countable Markov shifts with this property have been known for a long
time. In [Ru2] a simple construction of a Markov shift of any given entropy
with no measure of maximal entropy is provided. In [Gu3, GN] examples are
constructed of finite entropy countable Markov shifts having a measure of
maximal entropy µmax and sequences of ergodic measures (µn)n, (νn)n with
limn→∞ hµn

(σ) = limn→∞ hνn
(σ) = htop(σ) such that (µn)n converges in the

weak∗ topology to µmax and (νn)n does not have any accumulation point.
The continuity properties of the entropy map also have consequences

in the study of thermodynamic formalism. Let (Σ+, σ) be a transitive one-
sided countable Markov shift of finite entropy and φ : Σ+ → R a continu-
ous bounded function of summable variations. That is

∑

∞

n=1 varn(φ) <∞,
where

varn(φ) := sup {φ(x)− φ(y) : xi = yi, i ∈ {1, . . . , n}} .

Sarig (see [Sa3] for a survey on the topic) defined a notion of pressure in
this context, the so called Gurevich pressure, that we denote by P (φ). He
proved the following variational principle

P (φ) = sup

{

hµ(σ) +

∫

φ dµ : µ ∈ Mσ

}

= sup

{

hµ(σ) +

∫

φ dµ : µ ∈ Eσ

}

A measure µ ∈ Mσ such that P (φ) = hµ(σ) +
∫

φ dµ is called equilibrium
measure. It directly follows from Corollary 1.2 that

Proposition 4.2. Let (Σ+, σ) be a finite entropy countable Markov shift
and φ : Σ → R a bounded function of summable variations. Let (µn)n be a
sequence of ergodic measures such that limn→∞

(

hµn
(σ) +

∫

φ dµn
)

= P (φ).
If (µn)n converges in the weak∗ topology to an ergodic measure µ then P (φ) =
hµ(σ) +

∫

φ dµ.

Note that the thermodynamic formalism of a two-sided countable Markov
shift can be reduced to the one-sided case (see [Sa3, Section 2.3]).

5. Suspension flows

Let (Σ, σ) be a finite entropy countable Markov shift and let τ : Σ → R
+

be a locally Hölder potential bounded away from zero. Consider the space
Y = {(x, t) ∈ Σ× R : 0 ≤ t ≤ τ(x)}, with the points (x, τ(x)) and (σ(x), 0)
identified for each x ∈ Σ. The suspension flow over Σ with roof function τ is
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the semi-flow Φ = (φt)t∈R on Y defined by φt(x, s) = (x, s+ t) whenever s+
t ∈ [0, τ(x)]. Denote byMΦ the space of flow invariant probability measures.
Let

(5.1) Mσ(τ) :=

{

µ ∈ Mσ :

∫

τ dµ <∞

}

.

It follows directly from results by Ambrose and Kakutani [AK] that the map
R : Mσ → MΦ, defined by

R(µ) =
(µ× Leb)|Y
(µ× Leb)(Y )

,

where Leb is the one-dimensional Lebesgue measure, is a bijection. Denote
by EΦ the set of ergodic flow invariant measures. Let F : Y → R be a con-
tinuous function. Define ∆F : Σ → R by

∆F (x) :=

∫ τ(x)

0
F (x, t) dt.

Kac’s Lemma states that if ν ∈ MΦ is an invariant measure that can be
written as

ν =
µ× Leb

(µ× Leb)(Y )
,

where µ ∈ Mσ, then
∫

Y

F dν =

∫

Σ∆F dµ
∫

Σ τ dµ
.

The following Lemma describes the relation between weak∗ convergence in
MΦ with that in Mσ.

Lemma 5.1. Let (νn), ν ∈ MΦ be flow invariant probability measures such
that

νn =
µn × Leb
∫

τ dµn
and ν =

µ× Leb
∫

τ dµ

where (µn)n, µ ∈ Mσ are shift invariant probability measures. If sequence
(νn)n converges in the weak∗ topology to ν then

(µn)n converges in the weak∗ topology to µ and lim
n→∞

∫

τ dµn =

∫

τ dµ.
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Proof. Assume first that (νn)n converges in the weak∗ topology to ν. Let
f : Σ → R be a bounded continuous function. Following Barreira, Radu and
Wolf [BRW] there exists a continuous function F : Y → R such that

(5.2) f(x) = ∆F (x) :=

∫ τ(x)

0
F (x, t) dt.

Indeed, define F (x, t) : Y → R by

F (x, t) :=
f(x)

τ(x)
ψ′

(

t

τ(x)

)

,

where ψ : [0, 1] → [0, 1] is a C1 function such that ψ(0) = 0, ψ(1) = 1 and
ψ′(0) = ψ′(1) = 0. Note that since τ is bounded away from zero, F (x, t) is
continuous and bounded. Therefore

lim
n→∞

∫

F dνn =

∫

F dν.

By Kac’s Lemma we have that

(5.3) lim
n→∞

∫

∆F dµn
∫

τ dµn
=

∫

∆F dµ
∫

τ dµ
.

In particular if f = 1 is the constant function equal to one, we obtain

(5.4) lim
n→∞

∫

τ dµn
∫

τ dµ
= 1.

Let f : Σ → R be a bounded continuous function, then it follows from equa-
tions (5.2), (5.3) and (5.4) that

lim
n→∞

∫

f dµn =

∫

f dµ.

Therefore (µn) converges weak
∗ to µ. □

Proposition 5.2. If (νn)n is a sequence of ergodic measures in EΦ con-
verging to an ergodic measure ν, then

lim sup
n→∞

hνn
(Φ) ≤ hν(Φ).
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Proof. Let (νn)n be a sequence in EΦ that converges in the weak∗ topology to
ν ∈ EΦ. Note that there exists a sequence of ergodic measures (µn)n ∈ Mσ

and µ ∈ Mσ ergodic such that

νn =
µn × Leb

(µn × Leb)(Y )
and ν =

µ× Leb

(µ× Leb)(Y )
.

By Abramov’s formula [Ab], for any ν ′ ∈ MΦ, with ν
′ = µ′×Leb

(µ′×Leb)(Y ) we have
that

hν′(Φ) =
hµ′(σ)
∫

τ dµ′
.

Recall that by Lemma 5.1 we have that νn → ν in the weak∗ topology implies
that µn → µ in the weak∗ topology and limn→∞

∫

τ dµn =
∫

τ dµ. Since
htop(σ) <∞ by Theorem 1.1 or Corollary 1.2 we have that

lim sup
n→∞

hµn
(σ) ≤ hµ(σ).

Therefore,

lim sup
n→∞

hνn
(Φ) = lim sup

n→∞

hµn
(σ)

∫

τ dµn
=

lim supn→∞ hµn
(σ)

∫

τ dµ
≤

hµ(σ)
∫

τ dµ
= hν(Φ).

□
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