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Mapping class group is generated by

three involutions
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We prove that the mapping class group of a closed connected ori-
entable surface of genus at least eight is generated by three invo-
lutions.

1. Introduction

The mapping class group Mod(Σg) of a closed connected orientable surface
Σg is defined as the group of isotopy classes of orientation–preserving self–
diffeomorphisms of Σg. We are interested in generating Mod(Σg) by the least
number of involutions.

The group Mod(Σg) cannot be generated by two involutions, because,
for example, it contains nonabelian free groups. Thus any generating set
consisting of involutions must contain at least three elements. The purpose
of this paper is to prove that the mapping class group can be generated
generated by three involutions if the genus of the surface is at least eight,
answering a question in [1].

Theorem 1. The mapping class group Mod(Σg) is generated by three in-

volutions if g ≥ 8, and by four involutions for g ≥ 3.

After the works of Luo and Brendle-Farb as explained below, Kass-
abov [11] obtained a generating set consisting of four involutions if g ≥ 7.
He also proved results for lower genus mapping class groups.

For homological reasons as explained in the last section, the groups
Mod(Σ1) and Mod(Σ2) cannot be generated by involutions. Since there
is a surjective homomorphism from Mod(Σg) onto the symplectic group
Sp(2g,Z), the latter group is also generated by three involutions for g ≥ 8.

Corollary 2. The symplectic group Sp(2g,Z) is generated by three involu-

tions for g ≥ 8, and by four involutions for g ≥ 3.
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Here is a brief history of the problem of finding generating sets for
Mod(Σg) with various properties. Dehn [3] obtained a generating set for
Mod(Σg) consisting of 2g(g − 1) Dehn twists. About a quarter century later,
Lickorish [10] showed that it can be generated by 3g − 1 Dehn twists, and
Humphries [6] reduced this number to 2g + 1. He showed, moreover, that
2g + 1 is minimal: the cardinality of every generating set of Mod(Σg) con-
sisting of Dehn twists is at least 2g + 1.

If one does not require generators to be Dehn twists, by using the gener-
ating set obtained by Lickorish, it is easy to find a generating set consisting
of an element of order g and three Dehn twists. It is also possible to get a
generating set with three elements (see Corollary 6 below). Lu [13] obtained
a generating set consisting of three elements, two of which are of finite order.
A minimal generating set was first obtained by Wajnryb [19] who proved
that Mod(Σg) can be generated by two elements; one is of order 4g + 2 and
the other is a product of a right and a left Dehn twist about disjoint curves.
In [12], we showed that Mod(Σg) is generated by an element of order 4g + 2
and a Dehn twist, improving Wajnryb’s result.

The interest in the problem of finding generating sets for the mapping
class group consisting of finite order elements goes back to 1971: Maclach-
lan [15] proved that Mod(Σg) is generated by finitely many elements of orders
2g + 2 and 4g + 2. He deduced from this that the modulus space of Riemann
surfaces of genus g is simply-connected. McCarthy and Papadopoulos [17]
showed that for g ≥ 3 the group Mod(Σg) is generated normally by a single
involution; i.e., it is generated by an involution and its conjugates. Luo [14]
observed that every Dehn twist is a product of six involutions for g ≥ 3.
It then follows from the fact that the mapping class group is generated by
2g + 1 Dehn twists, the group Mod(Σg) can be generated by 12g + 6 invo-
lutions. Luo also asked whether it is possible to generate the mapping class
group by torsion elements, where the number of generators is independent of
the genus (and boundary components in the case the surface has boundary).

Brendle and Farb [1] answered Luo’s question affirmatively by proving
that 6 involutions, and also 3 torsion elements, generate the mapping class
group for g ≥ 3. Kassabov [11] improved this result further, proving that
Mod(Σg) is generated by 4 (resp. 5 and 6) involutions if g ≥ 7 (resp. g ≥ 5
and g ≥ 3). We proved in [12] that the minimal number of torsion generators
of Mod(Σg) is 2, by showing that the mapping class group Mod(Σg) can be
generated by two elements of order 4g + 2. See also [16],[4],[8] and [9] for
generating the mapping class group by torsion elements of various orders.

In order to prove the main results of their papers, Brendle-Farb and
also Kassabov write a Dehn twist as a product of four involutions, and use a
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generating set consisting of a torsion element and three Dehn twists. Instead
of writing a Dehn twist as a product of small number of involutions, it is
easier to write a product of two opposite (a right and a left) Dehn twists
about disjoint curves as a product of two involutions. Therefore, Wajnryb’s
generating set in [19], consisting of an element of order 4g + 2 and a product
of two opposite Dehn twists, looks like a good candidate to use in order
to find a small number of involution generators. However, the element of
order 4g + 2 cannot be written as a product of two (orientation–preserving)
involutions: otherwise, these two involutions would generate a dihedral group
of order 8g + 4 in Mod(Σg). But, it follows from [2, Corollary 2.6] that the
group Mod(Σg) does not contain a dihedral subgroup of order greater than
4g + 4. In order to implement this idea, we find new generating sets for the
mapping class group.

Acknowledgments. I thank UMass-Amherst for its generous support and
wonderful research environment, where this research was completed while I
was visiting on leave from Middle East Technical University in the academic
year 2018–2019. I thank İnanç Baykur for his interest and comments on the
paper, and the referees for their comments.

2. Background and results on mapping class groups

In this article we consider only closed surfaces. Let Σg be a closed connected
oriented surface of genus g embedded in R

3, as illustrated in Figure 1, in
such a way that it is invariant under the two rotations ρ1 and ρ2; ρ1 is the
rotation by π about the z–axis and ρ2 is the rotation by π about the line
y = tan(π/g)z, x = 0. The mapping class group Mod(Σg) of Σg is the group
of isotopy classes of orientation–preserving self–diffeomorphisms of Σg.

Throughout the paper, diffeomorphisms are considered up to isotopy.
Likewise, curves are considered up to isotopy. Simple closed curves are de-
noted by the lowercase letters a, b, c, with indices, while the right Dehn twists
about them by the corresponding capital letters A,B,C. Occasionally, we
write ta for the right Dehn twist about a. For the composition of diffeomor-
phisms, we use the functional notation: fh means that h is applied first. The
notations ai, bi, ci and d1, d2 always denote the curves shown in Figure 1.

Let us review the basic relations among Dehn twists that we need below.
For the proofs the reader is referred to [5].

Conjugation relation: If f : Σg → Σg is a diffeomorphism and if a is a
simple closed curve on Σg, then ftaf

−1 = tf(a).



✐

✐

“6-Korkmaz” — 2020/12/13 — 1:05 — page 1098 — #4
✐

✐

✐

✐

✐

✐

1098 Mustafa Korkmaz

a1

a2

a3

ag
b1

b2

b3

bg

c1

c2

c3

cg−1

cg

R

ρ1

ρ2

z

y

a1

a3

c1

c2

z

y

d2

d1

Figure 1: The curves ai, bi, ci, di, the rotation R and the involutions ρ1 and
ρ2 on the surface Σg.

Commutativity: If a and b are two disjoint simple closed curves on Σg,
then AB = BA.

Lantern relation: This relation was discovered by Dehn [3] in 1930s,
and rediscovered and popularized by Johnson [7] in 1979. Suppose that
x1, x2, x3, x4 are pairwise disjoint simple closed curves on Σg bounding a
sphere S with four boundary components. Let us choose a point Pi on xi for
each i = 1, 2, 3, 4. For j = 1, 2, 3, choose a properly embedded arc γj on S
connecting P4 and Pj , so that they are disjoint in the interior of S (cf. Fig-
ure 2). Suppose that in a small neighborhood of the point P4, the arcs are
read as γ1, γ2, γ3 in the clockwise order. Let yj be the boundary component
of a regular neighborhood of x4 ∪ γj ∪ xj lying on S. Then the Dehn twists
about the seven curves x1, x2, x3, x4, y1, y2, y3 satisfy the lantern relation

X1X2X3X4 = Y1Y2Y3

in the group Mod(Σg).
It was proved by Dehn [3] that the mapping class group Mod(Σg) is

generated by Dehn twists about finitely many nonseparating simple closed
curves. Lickorish also obtained the same result and showed in [10] that it is
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Figure 2: The curves of the lantern relation X1X2X3X4 = Y1Y2Y3 on a
sphere with four boundary components.

generated by the Dehn twists

A1, A2, . . . , Ag, B1, B2, . . . , Bg, C1, C2, . . . , Cg−1

about the curves shown in Figure 1. We state this fact as a theorem by
adding one more Dehn twist for the sake of symmetry.

Theorem 3. (Dehn-Lickorish) The mapping class group Mod(Σg) is

generated by the set {A1, A2, . . . , Ag, B1, B2, . . . , Bg, C1, C2, . . . , Cg}.

It was shown by Humphries [6] that the set

{A1, A2, B1, B2 . . . , Bg, C1, C2 . . . , Cg−1}

suffices to generate the group Mod(Σg). He also proved that this generating
set is minimal, in the sense that 2g or fewer Dehn twists cannot generate
Mod(Σg) if g ≥ 2.

As a corollary to the Dehn-Lickorish Theorem, it is easy to show that
Mod(Σg) can be generated by four elements, and also by three elements.
We state this as the next corollary. To this end, let R be the rotation by
2π/g about the x–axis represented in Figure 1, so that R = ρ2ρ1. Thus,
R(ak) = ak+1, R(bk) = bk+1 and R(ck) = ck+1.

Corollary 4. The mapping class group Mod(Σg) is generated

(i) by the four elements R,A1, B1, C1, and also

(ii) by the three elements R,A1, A1B1C1.
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Proof. The claim (i) follows from Theorem 3 and the fact that Rk conjugates
the Dehn twists A1, B1 and C1 to Ak+1, Bk+1 and Ck+1, respectively. The
claim (ii) then follows from (i) together with the fact that A1B1C1(a1) = b1
and A1B1C1(b1) = c1. □

Although we do not directly use the above corollary, we stated it anyway,
because a version of it is proved in the next section and is used in our proof
of Theorem 1.

3. Three new generating sets for Mod(Σg)

In this section, we obtain three new generating sets for the mapping class
group. The first two generating sets are variations of the generating sets in
Corollary 4. The new generating sets allow us to generate the mapping class
group by a small number of involutions.

Recall that R denotes the 2π/g–rotation of Σg represented in Figure 1.
It is a torsion element of order g in the group Mod(Σg). Our first generating
set is given in the next theorem. For the proof of it, following the idea of
Wajnryb in [19], we employ the lantern relation.

Theorem 5. If g ≥ 3, then the mapping class group Mod(Σg) is generated
by the four elements R,A1A

−1
2 , B1B

−1
2 , C1C

−1
2 .

Proof. Let G denote the subgroup of Mod(Σg) generated by the set

{R,A1A
−1
2 , B1B

−1
2 , C1C

−1
2 }.

Let S denote the set of isotopy classes of nonseparating simple closed curves
on the surface Σg. We define a subset G of S × S as

G = {(a, b) : AB−1 ∈ G}.

It is clear that

• (symmetry) if (a, b) ∈ G , then (b, a) ∈ G ,

• (transitivity) if (a, b) and (b, c) are in G , then so is (a, c), and

• (G–invariance) if (a, b) ∈ G and F ∈ G, then (F (a), F (b)) ∈ G .

Thus G is an equivalence relation on S and is invariant under the action of
G. The last property follows from Ftat

−1
b F−1 = tF (a)t

−1
F (b).
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Notice that by the very definition of G , the set G contains the pairs
(a1, a2), (b1, b2) and (c1, c2). Since

Rk−1(α1, α2) = (αk, αk+1)

for every α ∈ {a, b, c}, the pairs (ak, ak+1), (bk, bk+1) and (ck, ck+1) are con-
tained in G . It follows from the transitivity that the pairs (ai, aj), (bi, bj)
and (ci, cj) are also contained in G for all i, j. (Here, by abusing notation
we write f(a, b) for (f(a), f(b)), and all indices are integers modulo g.)

Since

A1A
−1
2 B1B

−1
2 (a1, a3) = (b1, a3)

and

B1A
−1
3 C1C

−1
2 (b1, a3) = (c1, a3),

we conclude that the pairs (ai, bj), (ai, cj), (bi, cj) are all contained in the set
G as well. As a result of this, we get that if X,Y ∈ {Ai, Bi, Ci}, then the
mapping class XY −1 is contained in the subgroup G.

We now use the lantern relation to conclude that G contains one, and
hence all, of the Dehn twist generators given in Theorem 3.

It is easy to check that the diffeomorphism

(B2A
−1
1 )(C1A

−1
2 )(C2A

−1
1 )

maps (b2, a1) to (d1, a1), and the diffeomorphism

(B3A
−1
1 )(C2A

−1
1 )(A3A

−1
1 )(B3A

−1
1 )

maps (d1, a1) to (d2, a1). Since both of these two diffeomorphisms are con-
tained in the subgroup G, it follows now from the transitivity and the G-
invariance of G that D1A

−1
1 and D2C

−1
1 are contained in G.

Note that a1, c1, c2, a3 bound a sphere with four boundary components.
The Dehn twists about these four curves and about the curves a2, d1, d2
given in Figure 1 satisfy the lantern relation

A1C1C2A3 = A2D1D2,

which may be rewritten as

A3 = (A2C
−1
2 )(D1A

−1
1 )(D2C

−1
1 ).

Since each factor on the right-hand side is contained in the subgroup G, the
Dehn twist A3 is also contained in G. Now from the fact that AiA

−1
3 , BiA

−1
3 ,
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CiA
−1
3 are in G, we conclude that G contains all generators Ai, Bi and Ci

of Mod(Σg) given in Theorem 3. Consequently, G = Mod(Σg).
This concludes the proof of the theorem. □

Theorem 6. If g ≥ 3, then the mapping class group Mod(Σg) is generated
by the three elements R,A1A

−1
2 , A1B1C1C

−1
2 B−1

3 A−1
3 .

Proof. Let us denote by H the subgroup of Mod(Σg) generated by the set

{R,A1A
−1
2 , A1B1C1C

−1
2 B−1

3 A−1
3 }.

It suffices to prove that H contains B1B
−1
2 and C1C

−1
2 .

It follows from

• R(a1, a2) = (a2, a3),

• A1B1C1C
−1
2 B−1

3 A−1
3 (a1, a2) = (b1, a2),

• A1B1C1C
−1
2 B−1

3 A−1
3 (b1, a2) = (c1, a2),

• R(b1, a2) = (b2, a3) and

• R(c1, a2) = (c2, a3)

that the elements

• A2A
−1
3 ,

• B1A
−1
2 ,

• C1A
−1
2 ,

• B2A
−1
3 and

• C2A
−1
3

are contained in H. Now we have

• B1B
−1
2 = B1A

−1
2 ·A2A

−1
3 ·A3B

−1
2 ∈ H and

• C1C
−1
2 = C1A

−1
2 ·A2A

−1
3 ·A3C

−1
2 ∈ H.

It follows from Theorem 5 that H = Mod(Σg), completing the proof. □

Theorem 7. If g ≥ 8, then the mapping class group Mod(Σg) is generated
by the three elements ρ1, ρ2 and B1A2C3C

−1
4 A−1

6 B−1
7 .



✐

✐

“6-Korkmaz” — 2020/12/13 — 1:05 — page 1103 — #9
✐

✐

✐

✐

✐

✐

Mapping class group is generated by three involutions 1103

+
+

+

−
−

−

b1

b7

a2

a6

c3

c4

+

+

+−

−

− +

+

+−

−

−

+
+

+

−
−

−

+
+

+

−−

−

+
+

−

−

+

+−

−
+

+−

−

F1 F2 F3

F4F5

F6 F7 F8

R F2F1

R−1

F4F3

R F7F6

Figure 3: Proof of Theorem 7 for g = 8.

Proof. Let F1 = B1A2C3C
−1
4 A−1

6 B−1
7 and let N denote the subgroup of

Mod(Σg) generated by the set

{ρ1, ρ2, F1}.

Then the rotation R = ρ2ρ1 is in N . By Theorem 5, it suffices to prove that
N contains the elements A1A

−1
2 , B1B

−1
2 and C1C

−1
2 .

Let F2 denote the conjugation of F1 by R:

F2 = RF1R
−1 = B2A3C4C

−1
5 A−1

7 B−1
8 .
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It is easy to show that

F2F1(b2, a3, c4, c5, a7, b8) = (a2, a3, c4, c5, b7, b8),

so that F3 = A2A3C4C
−1
5 B−1

7 B−1
8 is contained in N .

Now let

F4 = R−1F3R = A1A2C3C
−1
4 B−1

6 B−1
7 .

It can also be shown that

F4F3(a1, a2, c3, c4, b6, b7) = (a1, a2, c3, c4, c5, b7).

Hence, the subgroup N contains the element

F5 = A1A2C3C
−1
4 C−1

5 B−1
7 .

Therefore,

F−1
4 F5 = B6C

−1
5 ∈ N.

By conjugating this element by powers of R we see that N contains the
elements Bi+1C

−1
i . In particular, B2C

−1
1 ∈ N , and hence ρ2(B2C

−1
1 )ρ2 =

B1C
−1
1 ∈ N . It follows that BiC

−1
i ∈ N for all i. Now, we have

• B1B
−1
2 = (B1C

−1
1 )(C1B

−1
2 ) ∈ N , and

• C1C
−1
2 = (C1B

−1
2 )(B2C

−1
2 ) ∈ N .

It remains to show that A1A
−1
2 ∈ N .

Let

F6 = F1(C
−1
3 C4)(B7C

−1
6 )

= B1A2A
−1
6 C−1

6

and let

F7 = RF6R
−1

= B2A3A
−1
7 C−1

7 .

Since C3C
−1
4 = R2(C1C

−1
2 )R−2 is in N , the elements F6 and F7 are also

in N .
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It can be verified that

F7F6(b2, a3, a7, c7) = (a2, a3, a7, c7)

so that N contains the element

F8 = A2A3A
−1
7 C−1

7 .

Thus we get that

F8F
−1
7 = A2B

−1
2

is in N . By conjugating this with powers of R we see that AiB
−1
i is in N

for all i. Therefore

• A1A
−1
2 = (A1B

−1
1 )(B1B

−1
2 )(B2A

−1
2 )

is contained in N . Consequently, N = Mod(Σg).
This completes the proof of the theorem. □

4. Involution generators

Recall that an involution in a group G is an element of order 2. If ρ is an
involution in G conjugating x to y, then ρx ̸= y and

(ρxy−1)2 = ρxy−1ρxy−1 = yx−1xy−1 = 1.

Thus we have the following elementary but useful lemma.

Lemma 8. If ρ is an involution in a group G and if x and y are elements

in G satisfying ρxρ = y, then ρxy−1 is an involution.

Consider now the surface Σg of genus g ≥ 3. Since ρ2(a1) = a2 and since
the involution ρ2ρ1ρ2 maps (a1, b1, c1) to (a3, b3, c2), we have

ρ2A1ρ2 = A2 and (ρ2ρ1ρ2)(A1B1C1)(ρ2ρ1ρ2) = A3B3C2.

It now follows from Lemma 8 that

ρ2A1A
−1
2 and ρ2ρ1ρ2A1B1C1C

−1
2 B−1

3 A−1
3

are involutions.
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Let ρ3 = R3ρ1R
−3. For g ≥ 8, we have

ρ3B1A2C3ρ3 = B7A6C4,

so that ρ3B1A2C3C
−1
4 A−1

6 B−1
7 is an involution.

Finally, we state and prove our main result.

Theorem 9. Let Σg be the closed connected oriented surface of genus g.
Then the mapping class group Mod(Σg) is generated by the involutions

(1) ρ1, ρ2 and ρ3B1A2C3C
−1
4 A−1

6 B−1
7 if g ≥ 8, and

(2) ρ1, ρ2, ρ2A1A
−1
2 , ρ2ρ1ρ2A1B1C1C

−1
2 B−1

3 A−1
3 if g ≥ 3.

Proof. The proof follows at once from Theorem 7, Theorem 6 and the fact
that R = ρ2ρ1. □

Since the first homology groups of Mod(Σ1) and Mod(Σ2) are isomorphic
to the cyclic group Z12 and Z10 respectively, these two mapping class groups
cannot be generated by involutions. In fact, the group Mod(Σ1) is isomorphic
to SL(2,Z) and −I is the only element of order two in SL(2,Z), where I
denotes the identity matrix. It was shown by Stukow [18] that the subgroup
of Mod(Σ2) generated by involutions is of index five.
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