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On the RO(G)-graded coefficients of

dihedral equivariant cohomology

Igor Kriz and Yunze Lu

We completely calculate the RO(G)-graded coefficients of ordinary
equivariant cohomology where G is the dihedral group of order 2p
for a prime p > 2 both with constant and Burnside ring coefficients.
The authors first proved it for p = 3 and then the second author
generalized it to arbitrary p. These are the first such calculations
for a non-abelian group.

1. Introduction

A 1982 Northwestern conference problem asked for a complete calculation
of the RO(G)-graded cohomology groups of a point for a non-trivial finite
group G (see [12] for definitions and [11] for background). This question
was quickly solved by Stong [14] for cyclic groups Z/p with p prime. Partial
calculations for groups Z/(pn) and (Z/p)n were much more recently done in
[4–7, 9]. In a recent lecture, Peter May [13] emphasized the fact that no case
of a non-abelian group was known to date.

The purpose of this paper is to advance progress in the non-abelian
direction by calculating the RO(G)-graded cohomology coefficients for G =
D2p, dihedral group with 2p elements for p a prime number, with both
Burnside ring A and constant Z coefficients. The constant mackey functor Z
is obtained by taking the quotient of the Burnside ring Mackey functor A by
its augmentation ideal. Burnside Mackey functor is universal among ordinary
RO(G)-graded cohomology theories in the same sense as Z-coefficients are
non-equivariantly (see [3]), and thus were of primary interest historically.
However, for non-trivial groups, the Burnside ring is not a regular ring,
and because of that, passage from Burnside ring to other coefficients is not
immediate. In applications [4, 8], the use of constant coefficients, which are
simpler, prevailed so far.

Kriz acknowledges the support of a Simons Collaboration Grant.
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1110 I. Kriz and Y. Lu

Our main tool is using an explicit D2p-equivariant CW structure on rep-
resentation spheres, which will be described in the next section. We will
state the calculation with constant Z coefficients here, and postpone the
statement with the Burnside ring coefficients till Section 4 below, as it es-
sentially follows from the constant case after some algebraic examinations
of the Burnside rings.

We present G = D2p as

{ζ, τ | ζp = 1, τ2 = 1, ζτ = τζ−1}.

The group G has two one-dimensional representations: the trivial represen-
tation denoted by ϵ and the sign representation denoted by α. The group G
also admits p−1

2 two-dimensional representations, denoted by γi’s, given by

γi : ζ 7→

[
cos(2πip ) − sin(2πip )

sin(2πip ) cos(2πip )

]
, τ 7→

[
1 0
0 −1

]
, 1 ≤ i ≤

p− 1

2
.

We will prove a periodicity result that will exempt us from distinguishing
different two-dimensional representations. Hence the cohomology could be
indexed by kϵ+ ℓα+mγ.

To discuss the Z-coefficient case, it is useful to recall the following cal-
culation due to Stong (see [8, 10]). Denote, for ℓ ≥ 0,

Bℓ = H̃
D2p

∗ (Sℓα,Z) = H̃
Z/2
∗ (Sℓα,Z),(1)

Bℓ = H̃∗
D2p

(Sℓα,Z) = H̃∗
Z/2(S

ℓα,Z).(2)

Proposition 1. Let n denote the grading. We have

Bℓ,n =





Z n = ℓ even

Z/2 0 ≤ n < ℓ even

0 else,

Bℓ,n =





Z n = ℓ even

Z/2 3 ≤ n ≤ ℓ odd

0 else.

We also put

Bℓ,n = B−ℓ,−n, Bℓ,n = B−ℓ,−n for ℓ < 0.
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Equivariant dihedral cohomology 1111

Then (1) and (2) extend to ℓ < 0 by Spanier-Whitehead duality.
Now define sAt and

sAt by

(sAt)n =

{
Z/p when 2s < n < 2t− 1, n ≡ 3 mod 4,

0 else,
(3)

(sAt)n =

{
Z/p when 2s < n < 2t− 1, n ≡ 0 mod 4,

0 else.
(4)

Our main result, the RO(G)-graded (co)homology of a point with coef-
ficients in Z is given by the following

Theorem 2. For m > 0, we have

H
D2p

∗ (Smγ+ℓα,Z) = ℓ−1Aℓ+m[−ℓ+ 1]⊕Bℓ+m[m],(5)

H∗
D2p

(Smγ+ℓα,Z) = ℓAℓ+m[−ℓ+ 1]⊕Bℓ+m[m].(6)

Here [k] denotes shift up by k in homology or cohomology. Note that
since it is often appropriate to identify the cohomological grading with the
nagative of homological, some authors prefer to define shifts in one grading
only; in that case, there would be a negative sign in the square brackets of
one of the formulas (5), (6).

Theorem 2 and Proposition 1 give a complete calculation of the RO(G)-
graded cohomology of a point with Z coefficients. We will prove Theorem 2
in Section 2, 3 below, and give the discussion of Burnside ring coefficients
in Section 4.

2. Equivariant CW-structure and periodicity

We will write G = D2p from now on. By abuse of notation, in addition to
the generator of D2p, τ will also denote complex conjugation. Also, we shall
write γ = γ1.

Let S(mγi) be the unit sphere of the representation mγi. In this section
we will construct a D2p-equivariant CW structure on each S(mγi). By com-
puting the associated Mackey functor-valued equivariant chain complexes
(meaning the Mackey functor-valued chain complexes given by the fixed
points of the cellular chain complex of the equivariant CW-complex with
respect to subgroups) for different γi’s, we prove that instead of indexing on
all γi’s, it suffices to consider only γ.
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1112 I. Kriz and Y. Lu

The CW structure is obtained by subdividing the standard Z/p-
equivariant cells of S(mγi). We will identify the nonequivariant underly-
ing spaces of all S(mγi)’s with subsets of Cm (by identifying each copy of
γi with a copy of C). Then for S(mγi), ζ ∈ G simply acts by coordinate-
wise ζip multiplication where ζp = e2πi/p. In this context we will see S(mγi)’s
share exactly the same CW decomposition non-equivariantly, with different
D2p-actions.

First observe that the usual free Z/p-equivariant CW-sructure on S(mγi)
has equivariant cells freely generated by the following non-equivariant cells
for 1 ≤ k ≤ m:

{(z1, . . . , zk, 0, . . . , 0) ∈ S(mγi) | zk ∈ [0, 1]},(7)

{(z1, . . . , zk, 0, . . . , 0) ∈ S(mγi) |(8)

zk ∈ [0, 1] · eλi, (p− 1)π/p ≤ λ ≤ (p+ 1)π/p}.

Though both (7) and (8) are stable under the action of τ , they are not
D2p-cells since τ acts non-trivially on them, and not all points of each corre-
sponding open cell have the same isotropy. However it is worth noting that
they can be identified with unit disks of the representations

(9) (k − 1)α+ (k − 1)ϵ, kα+ (k − 1)ϵ,

respectively. This gives a guide on how to subdivide them intoD2p-equivariant
cells. To be precise, we consider the following cells for S(mγi):

Type A.

ak,ℓ, 0 ≤ ℓ ≤ k − 1, 1 ≤ k ≤ m,

generated by

{(z1, . . . , zk, 0, . . . , 0) ∈ S(mγi) |

Im(zℓ) ≥ 0, zℓ+1, . . . , zk−1 ∈ [−1, 1], zk ∈ [0, 1]}.

The cell ak,ℓ has dimension k + ℓ− 1 and has isotropy Z/2 for ℓ = 0 and {e}
for ℓ > 0.

Type B.
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Equivariant dihedral cohomology 1113

bk,ℓ, 0 ≤ ℓ ≤ k − 1, 1 ≤ k ≤ m,

generated by

{(z1, . . . , zk, 0, . . . , 0) ∈ S(mγi) |

Im(zℓ) ≥ 0, zℓ+1, . . . , zk−1 ∈ [−1, 1], zk ∈ [−1, 0]}.

Since it is symmetric to ak,ℓ, the cell bk,ℓ has dimension k + ℓ− 1 and has
isotropy Z/2 for ℓ = 0 and {e} for ℓ > 0.

Type C.

ck, 1 ≤ k ≤ m,

generated by

{(z1, . . . , zk, 0, . . . , 0) ∈ S(mγi) | zk ∈ [0, 1] · eiλ, 0 ≤ λ ≤ π/p}.

The cell ck has dimension 2k − 1 and has isotropy {e}.
It is straightforward to check that these cells give a D2p-equivarant CW

decomposition for each S(mγi), only with different D2p-actions for different
S(mγi)’s.

Based on the equivariant CW-structure, we are ready to write down
the differentials. Note that the CW-structure is regular: the boundaries of
cells attach by homeomorphic embeddings, and hence the nonzero coeffi-
cients of the differentials will always be either 1 or −1. We orient all cells as
submanifolds (with corners) of the complex vector space Cm. The induced
orientation of the boundary of a cell is chosen by the following rule: the in-
duced orientation followed by the outward normal direction together make
up the standard orientation of Cm. For example, the induced orientation of
S1 ⊂ C is going clockwise, hence the incidence number between a2,1 and c1
is −1.

Lemma 3. Given 1 ≤ i ≤ (p− 1)/2, let 1 ≤ j ≤ p− 1 be the multiplicative
inverse of i. Let ζi = ζj. With respect to the CW-structure and orientations
described above, the D2p-equivariant cell chain complex of S(mγi) in the
sense of Bredon [2] has differential

da1,0 = 0
db1,0 = 0

dc1 = ζ
p+1

2

i b1,0 − a1,0
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1114 I. Kriz and Y. Lu

da2,1 = −a2,0 − (1 + ζi + · · ·+ ζ
p−1

2

i )c1 + (ζi + · · ·+ ζ
p−1

2

i )τc1

db2,1 = −b2,0 − (1 + ζi + · · ·+ ζ
p−1

2

i )c1 + (ζi + · · ·+ ζ
p−1

2

i )τc1
dak,0 = ak−1,0 − bk−1,0 k > 1
dbk,0 = ak−1,0 − bk−1,0 k > 1
dak,1 = ak−1,1 − bk−1,1 + (−1)k−1ak,0 k > 2
dbk,1 = ak−1,1 − bk−1,1 + (−1)k−1bk,0 k > 2

For k > 3, 1 < ℓ < k − 1,
dak,ℓ = ak−1,ℓ − bk−1,ℓ + (−1)k−ℓak,ℓ−1 + (−1)k−1τak,ℓ−1

dbk,ℓ = ak−1,ℓ − bk−1,ℓ + (−1)k−ℓbk,ℓ−1 + (−1)k−1τbk,ℓ−1

For k > 2, by abbreviating the action of
∑(p−1)/2

j=1 ζji to σ,

dak,k−1 = −ak,k−2 + (−1)k−1τak,k−2 − (1 + σ)ck−1 + (−1)k−2στck−1

dbk,k−1 = −bk,k−2 + (−1)k−1τbk,k−2 − (1 + σ)ck−1 + (−1)k−2στck−1

Finally, for k > 1,

dck = −ak,k−1 + (−1)kτak,k−1 + ζ
p+1

2

i bk,k−1 + (−1)k−1ζ
p+1

2

i τbk,k−1.

Proof. We present here a computation for the differential of ak,k−1 for k > 2.
By equivariance, it suffices to work on the generator, which is given by

{(z1, . . . , zk, 0, . . . , 0) ∈ S(mγi) | Im(zk−1) ≥ 0, zk ∈ [0, 1]}.

Note that zk is uniquely determined by the values of z1, . . . , zk−1, and the
dimension of the cell is 2k − 2. Hence we only need to consider cells of
dimension 2k − 3 to which ak,k−1 attaches. They are precisely those cells
with zk−1 coordinates lying on the boundary of ak,k−1, namely,

ak,k−2, τak,k−2, ck−1, ζick−1, . . . , ζ
(p−1)/2
i ck−1, ζiτck−1, . . . , ζ

(p−1)/2
i τck−1.

Here cells in the orbit of ck−1 are those with Im(zk−1) ≥ 0.
It remains to determine the incidence numbers between ak,k−1 and these

cells. By the rule set above, we could use the basis

(10) (e1, ie1, e2, ie2, . . . , ek−1, iek−1)

to determine the orientation of ak,k−1, and the orientation of τak,k−2 could
be described by

(11) (e1,−ie1, e2,−ie2, . . . , ek−2,−iek−2, ek−1).
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On a point of τak,k−2 that ak,k−1 attaches, the induced orientation is given
by

(12) (e1, ie1, . . . , ek−2, iek−2,−ek−1)

since juxtaposing with outward normal direction −iek−1 gives the same ori-
entation as (10). It is straightforward to compare orientations (11) and (12)
and this gives the sign

dak,k−1 = · · ·+ (−1)k−1τak,k−2 + · · ·

in the formula. All the other computations follow by direct inspection in a
similar way. □

Since Smγi is the unreduced suspension of S(mγi), the D2p-equivariant
CW structure of Smγi is easily derived.

We will next prove that the choice of two-dimensional representation γi
doesn’t matter in the computation of ordinary equivariant cohomology. Let
A denote the Burnside ring Green functor (see [3]).

Proposition 4. Let M be a D2p-Mackey functor. The D2p-stable homotopy
type of the HA-module spectrum HM ∧ Sγi does not depend on the choice
of i.

The proof of this result will occupy the remainder of this section. Let M
be a Mackey functor. Generally, if X is a finite G-CW complex, write

Xn/Xn−1 = Xn+ ∧ Sn

where Xn is the nth skeleton and Xn is a discrete G-set. We have a chain
complex of Mackey functors C∗(X;M) given by

Cn(X;M) = π0(HM ∧Xn+).

It is also true that for any finite G-set S,

Cn(X;M)(S) = M(S ×Xn),

which is the associated Mackey functor, also denoted by MXn
, to a finite

G-set Xn.
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To compute the D2p-Mackey functor-valued chain complex C∗(S
γi ;M)

for constant coefficient Z and Burnside coefficient A, we start with describing
some D2p-Mackey functors. Despite the fact that the group D2p is non-
abelian, its conjugacy relations among subgroups are simple and we can
depict a D2p-Mackey functor M by a diagram of the following form:

M(D2p/e)

  ww
M(D2p/⟨τ⟩)

77

  

M(D2p/⟨ζ⟩)

__

ww
M(D2p/D2p)

__ 77

Example 5. Constant Mackey functor Z.

Z
p

��2xx
Z

1
88

p

��

Z
1

TT

2xx
Z

1

TT
1

88

Example 6. Given a Z[G]-module M , we have fixed-point Mackey functor
M defined by M(G/H) = MH , restriction given by inclusion, and transfer
given by summing over cosets. For example the fixed point Mackey functor
Z[D2p/⟨τ⟩] is given by

Z[D2p/⟨τ⟩]
(1,1,...,1)

  Bvv
p−1
2 Z⊕ Z

A 66

(2,...,2,1)

!!

Z
[1,1,...,1]

aa

2ss
Z

[1,1,...,1]

bb 1
33

Here round brackets stand for row vectors while square brackets stand for
column vectors, and

A =




0 I1
I p−1

2

0

J p−1

2

0


 , B =

[
0 I p−1

2

J p−1

2

2 0 0

]
.
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where In is the n× n identity matrix and Jn is the n× n minor diagonal
identity matrix.

Similarly, the fixed point Mackey functor Z[D2p/e] is given by the fol-
lowing diagram.

Z[D2p/e]
D

!!
(Ip,Ip)ttpZ

[Ip,Ip] 66

(1,1,...,1)

!!

Z[D2p/⟨ζ⟩]
C

aa

(1,1)ss
Z

[1,1,...,1]

bb [1,1] 66

where the matrices are represented by

C = ([1, . . . , 1, 0, . . . , 0], [0, . . . , 0, 1, . . . , 1]),

D = [(1, . . . , 1, 0, . . . , 0), (0, . . . , 0, 1, . . . , 1)].

The matrices above are derived by arranging the order of cells carefully:
The basis of Z[D2p/⟨τ⟩] can be identified with cells generated by a1,0. Re-
calling that ζi acts by 2π/p-rotation, we put a geometric counterclockwise
order on the cells

a1,0, ζia1,0, . . . , ζ
p−1
i a1,0.

We also put an order on the generators of Z[D2p/⟨τ⟩]
⟨τ⟩ by

ζia1,0 + ζp−1
i a1,0, . . . , ζ

p−1

2

i a1,0 + ζ
p+1

2

i a1,0, a1,0,

and this is why the upper left pair of arrows in the diagram for Z[D2p/⟨τ⟩]
has the given matrix representation.

The basis of Z[D2p/e] can be identified with cells generated by c1. We
arrange them in the following order:

c1, ζic1, . . . , ζ
p−1
i c1, τc1, τζic1, . . . , τζ

p−1
i c1.

The fixed point submodules are endowed with the induced order of basis.

Now fix M = Z. In this case, by the double coset formula, the associated
chain complex of Mackey functors can be calculated as fixed point Mackey
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functos. Hence using the examples above, the Mackey functor-valued D2p-
equivariant chain complexes for Sγi is the following:

Z←− Z[D2p/⟨τ⟩]⊕ Z[D2p/⟨τ⟩]←− Z[D2p/e].

The differentials are derived from Lemma 3. Since the differentials are D2p-
equivariant, we immediately see that all chain complexes for the different
Sγi ’s are isomorphic.

However, the isomorphism is not induced by any D2p-equivariant map
between the representation spheres. To prove Proposition 4 we instead want
to construct a functor H : Ch≥0(Mack)→ DS pG such that

(1). H M = HM .
(2). H C∗(X;M) ≃ X ∧HM .

Construction:

Let H be the composition of the following functors

Ch≥0(Mack)
K
−→ sMack

H
−→ sDS pG

|·|
−→ DS pG

where K is the functor in Dold-Puppe correspondence which is an equiva-
lence of first two categories; H is the Eilenbeg-Maclane functor and | · | is
geometric realization functor. The Eilenberg-Maclane construction is func-
torial; a recent account of this is in [1].

As an example we compute the case when X = G/H+. Then C∗(X;M)
is concentrated on degree 0. All the functors are computable, and we have

H C∗(X;M) = HMG/H ≃ HM ∧G/H+.

The last equivalence can be verified by computing the homotopy groups of
HM ∧G/H+, and using the uniqueness of Eilenberg-MacLane spectra.

In fact, one could make it into an natural isomorphism. By the projection
formula

G⋉H HM ∼= G/H+ ∧HM

and adjunction, it arises from the natural map of H-spectrum HM →
HMG/H induced by inclusion at the coset eH:

M →֒MG/H .

For any finite G-CW complex X, we realize it as a simplicial G-set and
the functor H is constructed as above. Then Proposition 4 follows directly.



✐

✐

“7-Kriz” — 2020/12/1 — 17:06 — page 1119 — #11
✐

✐

✐

✐

✐

✐

Equivariant dihedral cohomology 1119

3. Proof of Theorem 2

In this section we still focus on Z Mackey functor coefficient and will present
a proof of Theorem 2. To do this, first we calculate the D2p-equivariant
homology and cohomology of S(mγ) as Bredon (co)homology. Recall that
there is a cellular filtration on S(mγ) by the Z/p-equivariant cells generated
by (7), (8) of dimension ≤ s. For k ≥ 1, the filtration degree 2k − 1 part is
generated by cells bk,ℓ, ck and the degree 2k − 2 part is generated by cells ak,ℓ.
By using the differentials computed above, the corresponding homological
spectral sequence has the following E1-term:

E1
2k−1,∗ = Bk−1[k − 1], for 1 ≤ k ≤ m

E1
2k,∗ = Bk[k − 1], for 1 ≤ k ≤ m.

The nontrivial differential d1 is also determined by Lemma 3, which is an
isomorphism except for E1

4j,0 → E1
4j−1,0 : Z

p
−→ Z. On the two vertical edges

s = 0, 2m, the terms also survive and the spectral sequence collapses to the
E2 page. In the case of cohomology, one just needs to turn subscripts into
superscipts, mirror the computations by reversing arrows and use restriction
maps of Mackey functors. Thus, we have proved the following

Proposition 7. For m > 0, we have

H
D2p

∗ (S(mγ),Z) = Z⊕ 0Am ⊕Bm[m− 1],

H∗
D2p

(S(mγ),Z) = Z⊕ 0Am ⊕Bm[m− 1].

It may be tempting to try to use the same method for calculating the
reduced D2p-equivariant (co)homology of Σℓα ∧ S(mγ)+ for ℓ ∈ Z, but there
are two difficulties. First, for ℓ > 0, the chain complex we obtain by smash-
ing the CW-complexes cell-wise grows with ℓ. More importantly, for ℓ < 0,
the method actually fails: the Bredon chain complex is not an equivariantly
stable object, and actually does not exist for spectra obtained by desus-
pending by non-trivial representations. There is, of course, a concept of an
equivariant CW-spectrum [11], but any chain complex in this stable context
has to be built directly on the Mackey functor level.

We proceed as follows: Suspend the filtration above by Sℓα. The cor-
responding spectral sequence’s d1 is determined by Sℓα-suspension of the
connecting map F2k+2/F2k+1 → ΣF2k+1/F2k of the triad

(F2k+2, F2k+1, F2k).
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(Note: those are “odd-to-even” connecting maps; by Lemma 3, the “even-
to-odd” connecting maps are 0.) Stably it does not depend on ℓ. Note that
the filtration quotients have the following form:

F2k+1/F2k
∼= D2p ⋉Z/2 S

k+(k+1)α, F2k+2/F2k+1
∼= D2p ⋉Z/2 S

(k+1)+(k+1)α.

Hence the connecting map is a stable D2p-equivariant map

D2p/(Z/2)+ → D2p/(Z/2)+

By adjunction, it is equivalent to a Z/2-equivariant stable map

S0 → D2p/(Z/2)+

which is classified by an element in

(13) A(Z/2)⊕ Z
⊕(p−1)/2

by the Wirthmüller isomorphism (which allows us to switch the source and
target) and the fact that Z/2-equivariantly, the orbit D2p/(Z/2) is a disjoint
union of one fixed point and (p− 1)/2 free orbits. The connecting map is
read off from the attaching maps from ak+1,k to ck, namely from

dak,k−1 = −ak,k−2 + (−1)k−1τak,k−2 − (1 + σ)ck−1 + (−1)k−2στck−1.

This shows that the connecting map does not depend on k, and is in (13)
represented by the element

(1, 1, . . . , 1).

This corresponds to multiplication by p on the constant Mackey functor Z. It
is convenient then to look at the spectral sequence of Σℓ+ℓαS(mγ)+, whose
E1 page is a shift of the conjunction of both cohomology and homology E1

page for S(mγ), and it also collapses to the E2-page. Thus, we obtain

Proposition 8. For m > 0, we have

H
D2p

∗ (ΣℓαS(mγ)+,Z) = Bℓ ⊕Bℓ+m[m− 1]⊕ ℓAℓ+m[−ℓ],

H∗
D2p

(ΣℓαS(mγ)+,Z) = Bℓ ⊕Bℓ+m[m− 1]⊕ ℓAℓ+m[−ℓ].
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Proof of Theorem 2. We use the cofiber sequence

ΣℓαS(mγ)+ → Sℓα → Sℓα+mγ

to finish our computation. Looking at the long exact sequence in homology,
the morphismBℓ → Bℓ is the transfer map p, which is an isomorphism except
in the top dimension when ℓ is even, and this gives an extra Z/p. Besides,
all the other components are shifted up by 1. Hence we have proved that

H
D2p

∗ (Sℓα+mγ ,Z) = Bℓ+m[m]⊕ ℓ−1Aℓ+m[−ℓ+ 1].

In cohomology the restriction maps always give isomorphisms, hence

H∗
D2p

(Sℓα+mγ ,Z) = Bℓ+m[m]⊕ ℓAℓ+m[−ℓ+ 1].
□

Example 9. As an example, we illustrate how to compute

H
D2p

∗ (Σ−4αS(5γ)+,Z).

First we compute the D2p-equivariant homology and cohomology of
S(5γ). The following is the E1 page of the homological spectral sequence for

H
D2p

∗ (S(5γ),Z).

E1 page for H
D2p

∗ (S(5γ),Z).

0 1 2 3 4 5 6 7 8 9

−5

−4

−3

−2

−1

0 Z 0 0 Z Z 0 0 Z Z 0

Z/2 Z/2 Z/2 Z/2 Z/2

Z/2 Z/2 Z/2 Z/2

Z/2 Z/2 Z/2

Z/2 Z/2

Z/2

pp pp



✐

✐

“7-Kriz” — 2020/12/1 — 17:06 — page 1122 — #14
✐

✐

✐

✐

✐

✐

1122 I. Kriz and Y. Lu

The differential d1 is a multiplication by p when there is a Z in the
target (which is supported by ck, k even). The exception is filtration degree
2m− 1 = 9, where there is no differential with that target, and filtration
degree 0, where there is no differential with that source. There is no room
for higher differentials for dimensional reasons. Hence the spectral sequence
collapses to the E2 page. The two vertical edges and the t = 0 line give the
three summands in Proposition 7.

The following is the E1 page of the cohomological spectral sequence.

E1 page for H∗
D2p

(S(5γ),Z).

0 1 2 3 4 5 6 7 8 9

−2

−1

0 Z 0 0 Z Z Z/2 Z/2 Z Z Z/2

Z/2 Z/2

Z/2

pp pp

Now let us suspend by −4− 4α. Since the filtration on S(5γ) is given
by

S0, Sα, S1+α, . . . , S4+4α, S4+5α,

the filtered quotients are given by

S−4−4α, S−4−3α, S−3−3α, . . . , S−1, S0, Sα.

The following is the E1 page, which is a shift of a juxtaposition of the dual
of a truncation (at filtration degree 7) of the cohomological E1 page and a
truncation (at filtration degree 1) of the homological E1 page.
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E1 page for H̃
D2p

∗ (Σ−4−4αS(5γ)+,Z).

0 1 2 3 4 5 6 7 8 9

−1

0

1

0ZZZ/2 0 ZZ 0

Z/2

Z/2Z

Z/2

pppp

E2 page for H̃
D2p

∗ (Σ−4−4αS(5γ)+,Z).

0 1 2 3 4 5 6 7 8 9

−1

0

1

00Z/p0 0 0Z/p 0

Z/2

0Z

Z/2

4. Burnside ring coefficients

In this section we will apply the procedure above to deal with the Burnside
ring coefficient A. The difference is somewhat minor here due to the fact that
most of the cells are free and therefore the computation differs only in a few
dimensional degrees. We denote the Burnside rings additively by A(Z/2) =
Z{1, t2}, A(Z/p) = Z{1, tp}, A(D2p) = Z{1, t2, tp, t2p} where ti denotes the
orbit of cardinality i. The Burnside Mackey functor A is depicted as

Z
1 7→tp

!!1 7→t2uu
Z{1, t2}

t2 7→2

44

1 7→tp,t2 7→t2p

!!

Z{1, tp}
tp 7→p

``

(1,tp) 7→(t2,t2p)vv
Z{1, t2, tp, t2p}

tp 7→1+ p−1

2
t2,t2p 7→pt2

aa
t2p 7→2tp

66
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Now we compare the associated Mackey functor-valued chain complex
for different Sγi ’s. By remembering the isotropy in the Z case, we simply
replace Z by the corresponding Burnside ring. For example the Mackey
functor AD2p/⟨τ⟩ is

pZ
1 7→tp

��1 7→t2ww
A(Z/2)⊕ p−1

2 Z

t2 7→2

55

1 7→tp,t2 7→t2p

!!

Z ∼= A(1)

tp 7→p

]]

(1,tp) 7→(t2,t2p)xx
A(Z/2)

tp 7→1+ p−1

2
t2,t2p 7→pt2

aa
t2p 7→2tp

88

Since all restriction and transfer maps in the associated Mackey functors
are induced from the ones in A, if we again order equivariant cells carefully,
then the maps are the same. The differential is also induced from equivariant
differential on the cellular level, so the chain complexes

A←− AD2p/⟨τ⟩ ⊕AD2p/⟨τ⟩ ←− AD2p/⟨e⟩

are all equivalent, and we also have periodicity for the Burnside ring coeffi-
cients.

Denote, for ℓ ≥ 0,

Bℓ = H̃
Z/2
∗ (Sℓα, A),(14)

B
ℓ = H̃∗

Z/2(S
ℓα, A).(15)

Denote by IZ/2 the kernel of the restriction A(Z/2)→ A(1), and by JZ/2 the
cokernel of the induction A(1)→ A(Z/2). Both IZ/2 and JZ/2 are clearly
isomorphic to Z. We can repeat the computations via spectral sequences to
obtain the following

Proposition 10. (Stong [8, 10]) For ℓ ≥ 0, we have

Bℓ,n =





JZ/2 n = 0

Z n = ℓ even

Z/2 0 < n < ℓ even

0 else,
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B
ℓ,n =





IZ/2 n = 0

Z n = ℓ even

Z/2 3 ≤ n ≤ ℓ odd

0 else.

By setting

Bℓ,n = B
−ℓ,−n, B

ℓ,n = B−ℓ,−n for ℓ < 0

the result extends to ℓ < 0 by Spanier-Whitehead duality.
Using Lemma 3, similar computations give the results parallel to Propo-

sition 7.

Proposition 11. For m > 0, we have

H
D2p

∗ (S(mγ), A) = A(Z/2)⊕ 0Am ⊕Bm[m− 1],

H∗
D2p

(S(mγ), A) = A(Z/2)⊕ 0Am ⊕B
m[m− 1].

To compute suspensions by ℓα, we need to see what the attaching fmap

D2p/(Z/2)+ → D2p/(Z/2)+

induces on A. In terms of Z/2-equivariant stable map

S0 → D2p/(Z/2)+,

it induces

A(Z/2)→ A(Z/2)

1 7→ 1 +
p− 1

2
t2, t2 7→ pt2.

Thus, it is injective, and its cokernel is Z/p, just as with Z coefficients. Hence

Proposition 12. For m > 0, we have

H
D2p

∗ (ΣℓαS(mγ)+, A) = Bℓ ⊕Bℓ+m[m− 1]⊕ ℓAℓ+m[−ℓ],

H∗
D2p

(ΣℓαS(mγ)+, A) = B
ℓ ⊕B

ℓ+m[m− 1]⊕ ℓAℓ+m[−ℓ].
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Finally, to get the (co)homology of Sℓα+mγ , we look at the cofiber se-
quence again. Denote

Cℓ = H̃
D2p

∗ (Sℓα, A),(16)

C
ℓ = H̃∗

D2p
(Sℓα, A).(17)

Also denote by J
Z/p
D2p

the cokernel of the induction A(Z/p)→ A(D2p), and

by I
Z/p
D2p

the kernel of the restriction A(D2p)→ A(Z/p). Both are isomorphic
to Z⊕ Z as groups. Since the Weyl group of Z/2 ⊂ D2p is itself and it acts
trivially on the Burnside ring A(Z/p), spectral sequence computation shows
that

Proposition 13. For ℓ ≥ 0, we have

Cℓ,n =





J
Z/p
D2p

n = 0

A(Z/p) n = ℓ even

A(Z/p)/2 0 < n < ℓ even

0 else,

C
ℓ,n =





I
Z/p
D2p

n = 0

A(Z/p) n = ℓ even

A(Z/p)/2 3 ≤ n ≤ ℓ odd

0 else.

For ℓ < 0, put

Cℓ,n = C
−ℓ,−n, C

ℓ,n = C−ℓ,−n.

Note that we have short exact sequences

0→ Bℓ

ind
Z/2
D2p

−−−−→ Cℓ → Bℓ → 0,

and

0→ B
ℓ → C

ℓ
res

D2p
Z/2

−−−−→ B
ℓ → 0.

Therefore
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Theorem 14. For m > 0, we have

H
D2p

∗ (Smγ+ℓα, A) = Bℓ ⊕ ℓ−1Aℓ+m[−ℓ+ 1]⊕Bℓ+m[m],

H∗
D2p

(Smγ+ℓα, A) = B
ℓ ⊕ ℓAℓ+m[−ℓ+ 1]⊕B

ℓ+m[m].
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