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On L' endpoint Kato-Ponce inequality

SEUNGLY OH AND XINFENG WU

We prove that the following endpoint Kato-Ponce inequality holds:
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for all 1 < ¢ < oo, provided s > n/q or s € 2N. Endpoint estimates
for several variants of Kato-Ponce inequality in mixed norm
Lebesgue spaces are also presented. Our results complement and
improve some existing results.

1. Introduction

In [I4], Kato and Ponce proved the commutator estimate
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for p € (1,00) and s > 0, where J* := (1 — A)*/? is the inhomogeneous frac-
tional differential operator. This commutator estimate plays an important
role in the study of Euler and Navier-Stokes equations. Kenig, Ponce, and
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Vega [16] proved the following inequality:

1D*(fg) = fD°g — gD fll - S ND* fll Lo 1Dl o

for s1,s9,s € (0,1) satisfying s; + s2 = s, and % + % = % for p,q,r € (1, 00),
where D?® := (—A)%/? is the homogeneous fractional differential operator.
Various variants and generalizations of this commutator inequality have been
extensively studied in literature (see [3] and the references therein). The
following inequalities are known as Kato-Ponce inequalities, also fractional
Leibniz rules, which are of fundamentally importance in the study of PDE
(see [19] 20] and the references therein):

(1.1) HDs(fg)HLT(R") S HDsfHLP(R")HgHLq(R") + HfHLP(R”)HDSQHL‘I(R")’
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where 1 < p,q,r < oo satisfy % + % = % Christ and Weinstein [6] proved
that holds for s € (0,1), 1 < p,q,r < oo with %—l— é = % Gulisashvili
and Kon [12] showed that both and hold for s >0, 1 < p,q < o0,
1 <r<ocowithl+ % = 1 (see also Grafakos [8]). Bernicot et al [4] extended
to quasi-Banach regime r < 1 under the additional assumption s > n.
Muscalu and Schlag [19] and Grafakos and the first author [10] independently
showed that holds for 1 < p,q < 00,1/2 <r < 00, s > max(n/r —n,0)
or s € 2N, and that the constraint condition on s is sharp. Inequality
was also proved in [10] by the same approach. Note that the proofs of in
the above mentioned works involve square function estimates, vector-valued
maximal inequalities, or Coifman-Meyer multiplier theorem, and hence do
not extend to the case where p,q € {1, c0}.

The case p =g =1r = oo was considered by Grafakos, Maldonado and
Naibo in [9] and completely settled by Bourgain and Li in [5]. Bourgain-
Li’s result that both and hold for p = ¢ =1 = 0o is somewhat
surprising since the Coifman-Meyer bilinear multipliers (or the more gen-
eral bilinear Calder6n-Zygmund operators) are not bounded from L> x L
to L (cf. [I1]). The proof in [5] used new summability techniques involv-
ing a “low frequency to high frequency switch”, thus bypassing the square
function estimates, vector-valued maximal inequalities, and Coifman-Meyer
multiplier theorem.

The first purpose of this article is to study and in the L!
endpoint case p =1 and/or ¢ =1 which were left open by literature. It
is well known that general bilinear singular integral operators and bilinear
maximal operators fail to be bounded from LP x L9 to L" when p = 1 and/or
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q=1 (cf. [11, I7]). However, we prove that the L! endpoint Kato-Ponce
inequalities hold true, which is the content of the following:

Theorem 1.1. Letp=1,1<¢q < o0 and % <r <1 satisfy 1+é:%. If
s> " —n ors € 2N, then both (L.1) and (L.2)) hold.

When p =1 and 1 < g < oo, weak-type estimates corresponding to (|1.1]
and were proved by Grafakos and the first author [10]. Hence Theorem
not only provides the missing (1, 00, 1) endpoint Kato-Ponce inequalities,
but also strengthens the weak-type endpoint estimates in [10].

To prove Theorem [I.T] we shall not only follow the approach of Bourgain-
Li [5], but also use techniques developed in [10] to address the summability is-
sue in the quasi-Banach regime. In fact, the endpoint case (p, ¢, ) = (1,00, 1)
can still be handled using the method given in [5]. However, this method
encounters a road-block when r < 1 due to the failure of Young inequality
in the quasi-Banach regime. We shall establish new linear and bilinear mul-
tiplier estimates on quasi-Banach spaces (see Lemmas and below),
which, combined with the sharp decay estimate in Lemma [2.1] enable us to
overcome the difficulty in the quasi-Banach case.

Combining Theorem with previous results obtained in [5], 10} [19], we
get the Kato-Ponce inequalities for a full range of Lebesgue indices.

Corollary 1.1. Let 1 <p,q < o0, % <r < oo satisfy z%+ 1 % If s>
max(0, * —n) or s € 2N, then both (1.1 and (L.2)) hold.

Q

Motivated by applications in time-dependent partial differential equa-
tions, Torres and Ward [2I] proved that the following Kato-Ponce inequality
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holds for 1 < r,r",p,p,q,q < oo, %—F%: L I%—F%:%, and s >0 and

.
all f,g € S(R™1). Here Dy, ,y denotes the fractional derivatives in (t,z) €
R!*". Recently, Hart, Torres, and the second author extended in [13] to
3 <r,7" < oo provided s € 2N or s > %L — (n 4 1) with 7* := min(r, 1/, 1).
In the present paper, using the method of Bourgain-Li and the techniques
described above, we extend to a full range of indices which allow for
p, 0, q,¢ =1oroco. Let 2/ € R and 2 € R”. Our second main result can be

formulated as follows.
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Theorem 1.2. If 1 <p,p,q,¢ < oo satisfy I%—i— % =1
s € 2N ors > "T—td — (n+d), then it holds that

(1.4) D%y (FDN Lty S WAl o 1 1D )9 L 1o
+ HDfx’,:p)fHLz’,LgHgHLz’,Lg
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for f,g € S(R*9). Moreover, the same result holds when Dfx, 2) 1s replaced
by the inhomogeneous fractional derivative J(Sm, )

Remark 1.3. If s ¢ 2N and s < ¢ — (n + d), then fails. In fact, the
counterexample given in [10, Proof of Theorem 2] also works in the context
of mixed norm Lebesgue spaces, and shows the sharpness of the constraint
condition on s.

Biparameter Kato-Ponce inequality involving partial fractional deriva-
tives was first considered by Muscalu, Pipher, Tao and Thiele in [I8], and
recently studied by Muscalu and Schlag in [19] and by Grafakos and Oh
n [10]. An application of the biparameter Kato-Ponce inequality to KP-I
equation was given by Kenig in [I5]. Recently, Benea and Muscalu [11, 2] and
Di Plinio and Ou [7] considered the following mixed norm version on R**1:

(1.5) 1 D2 D2 gty S 11 o gl DS DG 1
D2 F 1oy DG o 1
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Benea and Muscalu [I] showed first that holds for o, >0, 1<
p,q,p',q¢ < oo, 1<r,r < oosatisfying % + % = % and 1% + 1= % Di Plinio
and Ou [7] extended to 1/2 <1’ < oo provided a > = —1and r > 1.
Benea and Muscalu [2] further extended to the case 1/2 <r',r < oo
provided o > % —1land g8 > max(% —1,0).

Regarding the endpoint case, certain weak type estimates corresponding
to were shown in [7] in the case p’ =1 and/or ¢’ = 1 provided p,q >
1, a> % —1 and B >0, but the case p=1 and/or ¢ = 1 remains open.
Moreover, it is unclear whether holds when r = oo and/or 7’ = cc.

We answer these questions by showing that inequality holds for all
1<p,p,q,¢ < oo in all dimensions. Assume 2/ € R% and z € R" in
and denote r* = min(r,7’,1). The last main result of this article is the fol-
lowing;:
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Theorem14 Let1<rr’<oo 1<p,p, q,q'<oosatisfy1+$:land

i

——l—— Ifa>——d0ra€2Nand5>maX(Of n) or 5 € 2N,

then holds

Theorem not only recovers the results obtained in [2], [7] in the non-
endpoint case, but also settles the unsolved endpoint case. Part of the end-
point results in Theorem is even new in the Lebesgue space context,
which complements the bi-parameter inequalities obtained by Muscalu et al
[18], Muscalu-Schlag [19] and Grafakos-Oh [10].

When d =n =1, the conditions on « and § in Theorem coincide
with the ones used in [2] (and [I0, [19] in Lebesgue space context). The
condition on « seems too strong, but, as pointed out in [2], it is sensible for
the mixed derivative variant , which reflects the non-interchangability
of the inside and outside L™ L" norms.

This article is organized as follows. In Section [2] we introduce necessary
notations and prove some lemmas which will be used to show Theorem
Section [3]is devoted to proving the endpoint Kato-Ponce inequalities in The-
orem [1.1I] The proofs of Theorems [I.2] and [1.4] are presented in Section [4

2. Preliminaries and some lemmas

For two positive quantities A and B, we write A < B if there exists a positive
constant C', which does not depend on main parameters, such that A < C'B.
IfA< Band B < A, wewrite A~ B. A> B means A > CB for some large
constant C. We use Zk to denote ), ., for simplicity.

For f e S(R™), define the Fourier transform by f = F[f1(§)
Jor f(x)e™®E dz. For s € R, denote (£)* = (1+|¢[%)*/2. Deﬁne Dsf(f) =
€1 £(£) and Jsf(ﬁ) = (£)F(€) for s> 0. Let ® be a radial non-negative
smooth function defined on R™ which is supported in the ball {|z| < 2} and
satisfies ®(x) = 1 when [z < 1. Define ¥(z) = ®(z) — ®(2x). For each j €
Z, define the frequency localization operators Aj by A; f(f) U(279€) f(€),
S by S;7() = (29 F(E), and A by Ay f = i sics Ak

The following sharp decay estlmate was shown by Muscalu-Schlag [19]
Chapter 2] and Grafakos-Oh [10, Lemmas 1 and 2]), which will be used to
prove our main results.
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Lemma 2.1. [10, [19] Let f € S(R™) and s > 0. Then for any v € [0, 1],
there exists a constant C(n, s, f), independent of y, such that

(" = AP f@) < Clnys, YL+ |2]) "%, Ve eR™

In their proof of L* endpoint Kato-Ponce inequality [5], Bourgain and
Li used the fact that convolution operators with L! kernels are bounded on
L™ for r > 1 due to the Young inequality. However, the L” boundedness fails
in the quasi-Banach case r < 1. In the following two lemmas, we establish
new linear and bilinear multiplier inequalities on L", 0 < r < oo, which allow
us to overcome this difficulty in the quasi-Banach case.

Lemma 2.2. Givenr € (0,00], let 0 = o(§) be a compactly supported func-
tion on R™ satisfying |o(z)| < (14 |x|)~0 for some & > max(n/r,n) and all
x € R™. Then for any k € Z,

Proof. Suppose that o is supported on B(0, M) (the ball centered at origin
of radius M) in R™ for some M > 1. By rescaling, it suffices to prove the
lemma in the case k = 0. In this case, the integrand from above can be
written as

JRERRIGE

S ISkh L (-
Lr(R")

(2.1) o(E)PEh(E)e’ .
We expand o into a Fourier series on a cube [—M, M|™:
a(§) = xB(o,m)(§) Cme M S,
mezn

where the Fourier coefficients ¢y, satisfy the decay estimate: |em| < (14
lm|)~%, ¥V m € Z" by our hypothesis, and hence the above series is absolutely
convergent. The decay estimate on ¢y, also implies that {c¢m }mez- € €7 (Z")
with 7 := min{1, 7} since § > n/r. Plugging the Fourier series of o into (2.1]),
we get

o (O)B(E)RE)™ = Xpoan(€) Y cme ™EB(E)R(E)eE
mezZnr
= > cmSoh(§)e (=),

mezZnr
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where we dropped Xxp(g,1) in front, since it is identically 1 on the support
of ®. Integrating both sides yields

[ o©ihe) < d = 3 cm o (24 5m)
" mezn

From this, using Lemma [4.1| with » = 7" and the fact that {cm}m € €7 (Z"),
we obtain

/ o(&) Soh(©) €7 de| < 3 leml 1S0h 1% S 1ok},

L™ mezn

which implies the desired estimate. O

Lemma 2.3. Let % <r<ooand1<p,q<oo satisfy % = % + %. If 0(¢)
5 a compactly supported C*° function on R™, then for any k € Z, and any
N >

2 mln(r 1)’

‘ [ 0T+ ) ST (€ Brg e T d dndt
5 H 1 - UHLl”Skaf”LpHAkgHLq-

Proof. Suppose supp o C B(0, M) in R™ for some M > 1. By rescaling, it
suffices to show the lemma with £ = 0. Then the integrand from the left side
of the above inequality can be written as

(22) o(t€ + )X (o (D(ZE) F(E) W ()g(m)e .

Using the compact support of ¢ we can expand ¢ into an absolutely
convergent Fourier series:

a(¢) = xB(o,m) (¢ Z Cm eﬁzmc

mezZn

L'r

where the Fourier coefficients ¢y, satisfy

() K, e

1
Mn

|Cm‘

Denoting 7 = min(1,7) and choosing N > -, we have {¢m}mezr € £7(Z")
and

(2.3) [{em }mezn HZT zn) H(l - A)NUHD-



1136 S. Oh and X. Wu

Using the Fourier series expansion of o, we see that (2.2)) is equal to

~

X[0,1] () Z Con€ (t+m §(23¢) £(€) W (1) G(n)e!EHM =

mezZm

where x g, a1)(t€ + 1) was dropped since x g(o,ar)(t§ + 1) = 1 on the support
of X[0.1](t)®(2%¢)¥ (). It follows that

/ /R ot + 1) 55T () Bogln) €' dgdi

= > cm UO( _3f) <x+fwtm> dt}-(AOg) <x—|—2M7rm>.

mezZm

Using Lemma with r’ = r, the Holder and Minkowski integral inequali-
ties, and ([2.3)), we obtain

T

o(t€ + ) S_s 1 (&) Dog(n) ¢EN= de dp dt

Rn«l»n LT
Y 2m r
5t |50 (4 Zem) ] + )
M .
mezZnr Lr La
<111 = 8)Na||7, I1S=s£1I7 [ Aogll .-
Hence the proof of Lemma [2.3]is complete. O

The following interpolation inequality will be frequently used in the proof
of Theorem [L11

Lemma 2.4. If a; < min{2F*A,27%* B} for some a,b, A, B > 0 and every
k € Z, then, for any u > 0, we have {a}rez € (“(Z) and

(2.4) Har}kezllpn S Awts Bt

In particular, if || fxllor < |ag| for some 0 < r < oo and every k € Z, then

b _a
5 Aatv Bato
Lr

> f

keZ
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Proof. For any fixed m € Z and any u > 0,

Hartrezllp S | D 2 FA"+ > 27"FB* | <2mA427""B.

k<m k>m

Choosing m so that 2™ ~ (B/A)a%b yields (2.4)). ) i
Denote 7 = min(r, 1). If |[fullr < lakl, then (I3 fill, < 32¢ el S

lax|”. By (2.4),

b _a
N H{ak}keZHﬁ(Z) < Aetb Bato,
Lr |:|

> f

k

3. Proof of Theorem [1.1]
We first give

Proof of . We will actually prove the Kato-Ponce inequality for the
full range of indices. Let r € [%, 1] and p, ¢ € [1, o] satisfy % = % + % and let
s > max(n/r —n,0) or s € 2N. Using a familiar paraproduct decomposition,
we may write

D*(fg) =Y D*(Sk-sfAkg) + > D*(ApfSk-39) + > D*(ApfAxg)
k K k
=1L+ 1+ I

We first use the multiplier estimate in Lemma [2.2] to treat the high-high
frequency part Is. Denote h = Ay, fAg. Noting that supp h C {1¢] < 2F+4}
we have

h(€) = B2(27F 3 h(€) = (275775 y5h(€),

and therefore
D*(ArfArg)(z) = / €5 D(27F5€) S5 h(€)eiS de
=25 [ o2 S he) e ds

where o1(€) := [£]*®(275¢). If s > max(n/r —n,0), the decay estimate in
Lemma with v=0 gives |o7(2)] < (1+|z[)™° with d=n+s>
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max(n/r,n); this estimate is trivial in the case s € 2N. Applying Lemma [2.2]
with ¢ = o; and Holder’s inequality, we have

1D (AkfAkg)llLr S 2| Akf Argllrr
< 2| Akl | Bug] S 25U S o llgll o

From this and Bernstein’s inequality (see, e.g., [20, p. 333]), we also have

1D (Arf A e < 25 Ak lle |BkgllLe S 271D fll o I D9l -

~

Applying the interpolation inequality in Lemma[2:4with a = b = s we obtain

1/2
130 e S (F e lgllpe | D2 fll e | D2 gl £a)
Sz 1D gl e + [1D* £l o gl -

Next, we consider the low-high frequency part I;. For any two operators
A and B, denote by [A, B] = AB — BA the usual commutator. We write

=) D% SkaflAkg+ f D9 =Y Asyaf D*Agg
K k
=t i1+ fD%g + Lo,

where and in what follows Ay 3 := Ej>k73 Aj.
115 can be estimated in the same way as I3. Indeed, from the estimate

(3.1) 1Ask-sfllr < D 27A;D  fll e S 275D f| o,
j>k—3

we have
IAS k=3 D ApgllLr < 27| D° fl| o | D* gl o

By Bernstein’s inequality, we also have

1A k-3 D*Akgllrr S N1 Ask—3 N0 1D*Akgllpe S 2% F 1o llgl o

Hence the desired estimate for I o follows by applying Lemma [2.4

To estimate I;.1, the crux is the following commutator estimate. Such
estimate was first established by Bourgain and Li [5] in the case p = ¢ =r =
00, based on physical space analysis and Young’s inequality. Their arguments
extend directly to the Banach range of indices r > 1, but fail in the non-
Banach range r < 1. Here we present a new proof relying upon the Fourier
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analytic techniques and bilinear multiplier theorem (Lemma [2.3)), which en-
ables us to obtain the estimate for all 1 < p,q < oo and 1/2 < r < oo.

Proposition 3.1. Let 1/2<r <oo and 1 <p,q < oo satisfy % =
Then for any s >0 and k € Z,

1
Ly

IID*, Sk-3/18kgl 1 < 2" VNIV Sk-sf Lo | Akgll -
Proof. We write

[D*, Sk_sf]Akg = / (1€ +11° = [n]°) Sa_s ] (&) Arg(m)e €D de dyy

Rn+n

1y - |
- /Rn+n </0 E‘tf +7/° dt) Sk—3f(€)Arg(n)e " ETMT de dn.

Noting that, on the support of the integrand, [t& + n| ~ || ~ 2 uni-
formly in ¢ € [0, 1] and hence

d
e+l = s€- (g + )t + n* 2.

Moreover, pick ¢ € S(R") with ¢(¢) =1 for + < |¢| < 4 and supp ¢ C {1 <
€] < 8}. Since p(27%(t£ + 1)) = 1 on the support of the integrand, we may
write [D%, Sk_3f]Arg as

1
/ / € (€ + m)lte + 1l 2p(27* (1€ + )
0 JRetn

o —

X Sp_a (&) Apg(n)e " EEDT de dn dt

1
=20 [ ot e+ e g )
- VSiaf (§)Brg(n)e &) dg dn .

Applying Lemma with (&) = &|€]572p(€),i =1,...,n and f replaced
by Vf, we obtain the desired estimate. O



1140 S. Oh and X. Wu

We continue to estimate I11. By Bernstein, we get that for 0 < e <
min(1,s),

(32)  |VSk=sfller = VD =Sp_sDfllo < > 27079255 A f| 1o
J<k—3

S 28079 Sup 125 £l e 185D £l
J

s—e
s

S2°)

€
s
Lr:

|D* f

Combining this with Lemma [3.1] yields

D", Si-a /) Daglpr S mind2 gl gall Lo 21Dl oS 1D I

Then applying Lemma [2.4] with a = s and b = €, we obtain

s

|D* f

sS—E&
s
Lp

(11D* Akl £

1D°gllzall fllze)=+= (ID° e llglla) =+
S W llze 1D%gllze + [1D° fll e lgll e,

MMl S ([Argll pallfll2e) =+
= (

where the last inequality follows from the convexity of natural log:

(3.3) OlnA+(1-0)InB<In(A+ (1-6)B),
for A,B >0 and 6 € (0,1).

Putting together the estimates obtained above for I1 1 and I o, we get the
required bound for I;. The term I can be handled in the same way. This

completes the proof of ([1.1f).

Now, let us give

Proof of (1.2]). We begin with the paraproduct decomposition of J*(fg):

> T (Sk-sfAkg) + Y T (AkfSko39) + Y T (Akf Akg) + J*(Sof Sog),
keN keN keN

which we will denote I11 + Il + 115+ I1y.
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We deal with 11 first. Denote h := Syf - Syg and note that h= §§77,
Then

Iy = /Rn(l + IE%)F @(27%) 3h(¢) e de.

Applying Lemmawith k=0and o(¢) = (1+ |£2)2®(273¢), we obtain

[114]

o S S0 fll e 1509l e = ||J7850Jsf‘

pollgllie S NI Fll e lgll Lo,

where the last inequality is due to the fact that (1 + |£]?)~%/2®(¢) € S(R™),
so that J =55y is just a convolution operator with an L' kernel. This estab-
lishes the required estimate for I1y. . R

___We consider next II3. Denoting h:= AgfArg and noting that h =

SQ

iet5h, we have

T3 (Auf Arg) =2 /R (@7 4 [270€)E 927506 Siysh (€)™ de.

Denote oy (€) := (272 4 [£]2)2®(275¢). If s > max(n/r — n,0), Lemma
implies that o satisfy the decay condition of & in Lemma uniformly
in ke N; if s € 2N, direct computations show that for any N € N, (1 +
A)Ngy € L' with L' norm independent of k, which implies the desired uni-
form decay estimate in k. Now, applying Lemma [2.2] with o = oy, we get

17°(Akf Dg)ller S 2% Ak F Il 1ol Argll o,
where the implicit constant is independent of k. Define
ag = 27| A fll 1o | Argll o

if £k > 0 and ai := 0 if £ < 0. Using Bernstein’s inequality and the fact that
\D*fll 1o S IIJ° fll1» which holds for 1 < p < oo (cf. [5, Lemma 2.4]), we have

: k -k
ap S min{2% (| f([ o llgll o 27T f 1 2o 1779 0 -

Applying Lemma [2.4] yields the desired bound for I15.
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It remains to estimate 11, considering symmetry. We write

II =) [J°, Se—sflArg + [T Asog + Y Asp_sfJ Arg
keN keN

=1l 1+ fJ°Asog + 111 ..

11 5 can be treated in the same way as I o in the homogeneous case. For
11, 1, we only prove the following commutator estimate; once this estimate is
established, I, 1 can be handled in the same way as I 1 in the homogeneous
case.

Proposition 3.2. Letr € [%, 1] and p,q € [1,00] satisfy % + % = % Then
for any s >0 and k € N,

(3.4) N[5, Sk—3 1Ak 1 S 28V Argll 1oV Sk 1o

Proof. We begin by writing

7%, Sk_a ] Arg = / (€ + 1) — (0)°) 5ol (€) Bpg(me €D de dn

R2n

- /R </o1 sE- (L + 77>s_2dt>

x Si—sf (€)Arg(n)e €2 dgdn,

Noticing that the support of the integrand forces (t& + 1) ~ |n| ~ 2¥ uni-
formly in ¢ € [0, 1], we may choose ¢ € S(R™) supported on some annulus
so that [J*¥, Sk_3f]Arg can be written as

[ e Ger i+ 2ot + )
X Sp_3 () Apg(n)eED de dn dt

o / /Rn+n "€ + ) P27 (8 +m)) (27 (€ + 1))
- VSk—sf (&) Arg(n)e "+ dg dn dt,

where hi(€) = (272 + |§\2)f2 Note that, for each k € N, the function
Ehi(§)e(€) is C*° and supported on some annulus. Moreover, direct compu-
tations show that hj and its partial derivatives are bounded uniformly in k
within the support of ¢, so that the L! norm of £hy(£)p(€) and its partial
derivatives are bounded uniformly in k. The desired estimate then follows
by applying Lemma ([
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4. Proofs of Theorems [1.2] and [1.4]

In this section, we prove variants of the Kato-Ponce inequality in the mixed
norm context given in Theorems and We begin with some prelimi-
nary lemmas.

4.1. Preliminary tools in mixed Lebesgue setting

We first introduce notations for the sequel. For z € R and 2’ € R, we write
T = (2/,r) € R* We consider in this paper the mixed Lebesgue spaces
Li/LQ(Rd x R™), or simply Lg/Lg(R”+d), or LP'LP for 0 < p,p’ < oo, which
will be defined by the (quasi-)norms

P'/p 1
HfHLZiLg(]Rn#»d) = (/Rd </ |f(a:',$)|pdx) dl’/) .

We shall use Sj, A;, and A; to denote the frequency localization operators
on R" defined in Section and the prime notations S’;, A;, and ﬁ; to
denote the operators on R®. For any r, 7’ > 0, denote 7 = min(1, r) and r* =
min(r, ', 1).

The following lemma provides the subadditivity of L”,L" (quasi-)norms.

Lemma 4.1. [2, Proposition 7] For any r,r’ > 0, we have

|ka <>l
k K

The following lemma is a mixed norm variant of Lemma[2.2] whose proof
is similar to that of Lemma 2.2 and will be omitted.

r*

r*
v .
LT, Ly

v rr
LT, Ly

Lemma 4.2. Given r € (0,00], let o be a compactly supported continuous
function on R" satisfying |5(2',2)| < (1+|(2/,2)])~° for some § > 2.
Then for any k € Z and any h € S(R"*+%),

L 5 ||Skh||L;£L;'

/ o (27K 2R SR (e, )T HE) g
R+

Next, we prove a biparameter extension of Lemma which will play
an important role in the proof of Theorem
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Lemma 4.3. Let r,7’ € (0,00]. Assume that o1 and oo are compactly sup-
ported functions on R? and R™ respectively satisfying

(4.1) o1(@)| S A+ [2)""* and [oa(x)| S (1+ |=) 77,
Vi eRY zeR”

fora >d/r* —dand 8 > n/F —n. Then, for any k, k' € Z and h € S(R™t9),

(4.2)

‘/ (27 o278}, Sch(e O T g < |spsih|

R+ L7 Lr LoLy

an | [ oeransneaea| s]s,,
(14) | et onEhe o <|sd],,,
" L LT Ly, Ly

where Fy (resp. Fa) denotes the partial Fourier transform in x’ (resp. x).

Proof. We only prove (4.2)); the proofs for (4.3) and (4.4) are similar, the
details being omitted. By scaling invariance, it is enough to show (4.2) with

k =k’ = 0. Suppose supp o1 C [-M', M']? and supp o9 C [-M, M]". Ex-
panding o7 and oy into absolutely convergent Fourier series and arguing as
in the proof of Lemma we can derive

/Rn+d O'].(é-/)O'Q(5)5?‘5’0\/5(5/7 g)eigl'w/“‘iﬁ'x dg

~ 27 27
= Z CmC;n/S(l)Soh (fE, + Mm,, x + Mm> s

mezZr m’e74

where ¢, and ¢y are Fourier coefficients of o1 and o9 respectively, and
satisfy

(4.5) | S (L4 ')~ and  Jem| S (14 fml)"7
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with a > d/r* —d and 8 > n/T — n by our hypothesis (4.1)). Taking the L],
norm from both sides and raising to the 7-th power, we get

— 7
(4.6) ‘ [ o €)aa(©spsohe’ ) = view ‘ﬂ
Rrt+d Lr
s o llarar (2T r
< Z |Cm‘ ’Cm/ SOS()h xr + Mm .
meZ",m’ €z Ly
< 'l sh (2 2r "
Nz‘cm’ 0°0 $+Mm7' ;
m’€Z4 Ly
where we used the fact that {cm}m € £7(Z") due to (4.5)).
Note that with our notation, (%) = mln(%, 1) = =20 T) -, and thus

(4.7)

Taking L:,/ " (quasi-)norm from both sides of (.6)), raising to the (r*/7)-th
power and applying (4.7)) yields

r*

/Rn+d, 71 (5/)02(5)@(87 f)eif,'“”/‘*‘iﬁ'ﬂf dg‘

*

/!
.
L Ly

~ ~ o2 T
/ ! / /
< E lemr ™ 11SoSoh (a? + Mm ,
m’€Z3 L LTT’I
v
< 37 (el ||| ShS0h (o e M < lsrsonll”
= |cm’ ’ 0~0 €T +M/m" o~ 0~0 L L
m’cZ3 Lr L; !

where we used that {c,, }m' € ¢ (Z%) in view of (#.5)). This proves (#.2). O

We now present commutator estimates for full and partial fractional
derivatives, which are extensions of Proposition [3.1} The proof is essentially
identical to that of Proposition [3:1] the details being omitted.
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Proposition 4.1. Letr,r' € [%, oo] and p,q,p’,q € [1,00] satisfy % = z% +

% and 1 = % + %. Then for any s,a, 8> 0 and any f,g € S(R"*?), we have

) [sstansl, 2ot ot
(4.8) 2, Si_3f] Ly K9] o 1 VaSy—sf AT
(4.9) H[ Sk' 3f] Ak' ’L LT LY LY Vz’sl,c’f3f|L§iL£’
(4.10) ||1DZ, Sp-s/] AkgHU,UN - HAkgHLi;Lg||vxsk_3f||L5;Lg,

where T = (2',x) € R"4, and Dz, S,f, A%, and Vz denote the operators on
R™+4,

To prove Theorem we need to use bilinear-biparameter Fourier mul-
tipliers 7, with symbol o

TALo ) = [ o€ & nFE. a0
x el € +eEml geqe! dndy’ .

The following result is a biparameter extension of the commutator estimates
in Proposition [3.1]

Proposition 4.2. Let o, 8,p,0',q,q',r,7" satisfy the same assumptions as

in Proposition

(€& sm) = (1€ + 01 = 1) (1€ +nl” = Inl?)
o2(& &' m) = (1€ + /1" = 1€1) (1g +nl° = Inl?) .

and Ty, be the bilinear-biparameter multiplier with symbol o; for j=1,2,
respectively. Then for any k, k' € Z and f,g € S(R"+%),

(4.11) 1T, (Sk—s St Al Bkg) || 1o,

< 2k’(a—1)+k(/3—1)Hvx,vxglfv,igs,:_gf‘ L L Al Ayl Lo Lo
(4.12) T (Al Sicsfy S sdag) |y,

< 2k’(a—1)+k(/3—1)HVxA’,Sk_gf’;,;;Lg VoSt _3Akg]| s
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Proof. Since both estimates can be shown in the same manner we just prove
[4.12)). We express Ty, (S, _3Sk—3f, Aj Arg) as

... / (11" = 1€'1*) (Ie +nl” = 1)

X AL Sp s F(€,6)80_sDpg(n,m)e "€ )= =& e g’y dyy

_ /R /R (n'- /O W (e + ') d7’> (g- /0 hre 4 ) dT)

X Aﬁk\f“}f(é/,g)sllci;kg(n/’ 77)@77"(5/4’7)/)'33/77:(54’77)'33 d£ dé-/ d77 d77/,

where h(¢) := V¢[¢|? and h'((’) := V|¢'|*. Noticing that the support of
integrand above forces

T+l ~ [l ~ 25 and ¢+ 7|~ [¢] ~ 2F,

we may multiply the integrand by o(27%(7¢ +1))¢’ (27%(& + 7'n)) for suit-
able smooth functions ¢ and ¢’ which are supported on annuli in R™ and
R respectively. Take L > 0 to be large enough so that supp ¢ C [~L, L]"
and supp ¢’ C [~L, L]%. Expanding ¢h and ¢'h’ into Fourier series on the
cubes [—L, L]" and [—L, L]? respectively, we have

T(72 (S;c/ 3Sk 3f A;C’Akg) _ Qk/(afl)zk(ﬁfl)

2 2
/ C., - VuSu_3Akg (:n' — %m',x — ng> dr
m GZ” mezn
1
2 2
X / Cm - VAL Sk 3f <:z:' — IT/HII,JZ — 7Tm) dr’,
0 L L

where Cyy, (cg), ce (mn)) and C, = ( /rfﬂl,), . ,cqu,)) denote the Fourier
coefficients of ph and ¢'h’ respectively. For the component functions of ¢h

and ¢'h’ being Schwartz, we see that
Cr| S (14 |m)™™, |CL| S A+ [m')™™, vM>o,

and hence {|Cm|}m € ¢4(Z") and {|Cly |}m € €4(Z%) for all t > 0. Applying
Lemma the Holder and Minkowski inequalities, we obtain the required
estimate as in the proof of Lemma O

Next, we establish biparameter analogs of (i3.2)).
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Lemma 4.4. Let 0 < e <min(1,3),0 < & < min(1,a) satisfy /8 = €'/ a.
Then, for any k € 7 and any f € S(R"*%), we have

(4.13) V2 Sp_ofll e < 20 >||f||m LAY

(4.14) 192865l e S 25091112 Lanﬂf 5

(4.15) ||V VaSp_sSu—sf]| rp, S 2F0-Fk1=E \fHLp ; HD“fo?;f
< DEF, Fo DS DRI

Proof. (4.13]) and (4.14)) can be proven by the same computations as in ((3.2)).
To show (4.15)), we can apply (4.13]) with f replaced by V,Sk_sf, thereby

obtaining

B—e €
k,/ v =
e S 2 TNVLSka fll 2 IV Sk—s DE fII

Applying (4.14) twice, we see that the right hand side above is bounded by

VSt —sVaSk—s f|

B—e
B

B—c £
C2k (1*5 )+k(17€) <”f”Lﬁ/LpHDgf||zp'LP>

B
< (ID2 1,5 D22 11 )
establishing (4.15)). O
We conclude this subsection with a biparameter analog of Lemma

Lemma 4.5. Let aj,b; >0 and A;; be positive quantities for 1 <i,j < 2.

If
‘ak7k/| 5 min{Qka1+k‘/a/1A11’ Q—ka2+k’a’1A21’ Qkal_k/a/zA127 2—ka2—k"a’2A22}
for every k, k' € Z, then {ag s} ez € (4(Z?) for all u> 0 and

’ ’ ’ ’ ’ ’
(a1+a2)(a)+ab) S, A?i%Aa;alAalazAgéal.

(416) ||{ak k’}k K’ 04(Z.2)

If for some r,7" € (0, 00], || fix|

LrLe S < lakw|, VE, k' € Z, then

(a1+az2)(a)+ay)
20y 4G2a) raiah ga10%
E Jrk S A A A P A

K.k

T
LT, Ly,
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Proof. To prove (4.16]), we may assume u < co. For any m, m}, m}, € Z, we
have

Ik n e g z2)

5 § : 2ua1k+ua1k Aqfl‘i‘ § : Qualukfuazk A’fg

k<m,k’<m} k<m,k'>m/]

g |~

+ Z 2—ua2k+ua’1k/Agl + Z 2—ua2k—ua’2k/A12LQ
k>m,k'<m/ k>m,k'>m}
S 2a1m(2a’1m1A11 _}_Qfagm’lAm) 4 27a2m(2a1m’2A21 + 27a’2m2A22).

Choosing m} and mj such that

2m/1 ~ (Alg/Au)”l1+a/2 and 2m’2 ~ (AQQ/AQl)“/1+“/2

gives

/

/ ’ ’
a ay as ay

< gmay ATHG gTHE | g-may g TG g THT
H{ak,k’}k,k’ ”gu(zz) S2 All A12 +2 A21 A22 , VmeZ.

Now, optimizing the above inequality in m yields (4.16]).

It ||f/€,k’ ||L:'/L; S; |ak,l€’|7 then by Lemma and ‘ )

1
S g bprllpe oy S (AT R AGS™ AG 2 AG™ ) Tl

v T
L, Ly

Z Sk

kK

concluding the proof. O

4.2. Proof of Theorem [1.2]

Using Lemma and , Theorem can be proven by the same argu-
ments given in the proof of aside from the norms involved (LP norms
replaced by LP LP norms and triangle inequality replaced by Lemma [2.4)).
We omit the details. O
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4.3. Proof of Theorem [1.4]

By the paraproduct decomposition we write:

DD (fg

We will deal with I1, I, I3, I7, and Ig separately, and leave out Iy, I5, Ig, I3

by symmetry.

4.3.1. Estimate for Ig.

write

h(e &) = o

ZDQ (Sr—3Sk—3f AL Arg)
+ Z DS DB (A}, Sk_3fSh_3Akg)
+ Z D2 DE(A} S5 f A}, Arg)
+ Z D& DA(S,, ALfAL Sk_39)
+3 " DS DH( A ALf Sk _5Sk—39)
+ Z D& DB( ;,Aku’kJ,SkaQ)
T Z DD (Sh, s ApfALARg)
+ ZD“ DI (A} Avf St _30kg)

+ Z D& D2 (A ARfAL Arg)

::Il—i---'—l—fg.

Assume that «, 8 satisfy a > d/r* —d and 3 >
max(0,n/r — n). We shall apply inequality (£.2) with h := AL AL f A;,Awkg
to estimate Iy. Noting that supp h(&, &) C {|¢/| < 28 +4, |¢| < 28T}, we may

,(2_]“'_55')‘1)(2_k_5€)521+55k+5ﬁ(5,7 £)-

Therefore Dg,Dgﬁ(a:’, x) can be written as

/R (ereere) (1ghee )
— 2ak’+6k/ 0'1(2_k,€/)0'2(2_k€)
Rd+"L

o —

—

St o5 Skash(€, €)™ T de! dg

St o5 Skash(€, €)™ T de! de,
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where o (¢') = |¢/|2®(275¢') and 0(€) = |£]P®(275¢). By Lemma
or() S A+ )~ foa@)| S (1 + fa) "

Note that these estimates hold trivially when a € 2N and 8 € 2N. Then by
(4.2) and Hoélder’s inequality,

oo (st 00 55

LT L
< 2R A A A B

7‘/ T
L7 Ly

S 2akl+’8k”A//Akf‘ = ALk’

N

’
p' rp ’
Lo L LY Lg

The Bernstein inequality gives

arp S min {2 £ gl s 275 DS o 1D 1

2ak’—ﬁkHD5f 8
Lq'Lq} ’

Dzg
Now, applying Lemma with a1 = a2 = 8 and a} = df, = a, we obtain

Lr' Lp Lq’Lq’
B ] I e

ngqﬁOWmmMMWWﬁNmmW%MMW%wMM

1
1
La'ra) ’

4.3.2. Estimate for Iy. To simplify the presentation, it will be beneficial
to argue using Fourier symbols. For F,G € S(R"*%), we write DS, DI(F-G)
as a bilinear-biparameter Fourier multiplier with symbol ¢/ + 7/|%|¢ + n|? :

X Hng

’LG/LQ HD;'DngLP’LP HDS’DQQ

from which the desired bound follows.

(4.17)  D%DP(FG)(z',x) = /

R2(n

LR S A CRIIEURD)
x el €4+ Emlgel e ay! dn.
We decompose the symbol |¢' + 7/|*|¢ + n|® as

1€+ 0|1 1€+ 0] = o1+ 7| (1€+1I° — n]?)
+ (1€ + 71> = 1) )P + 1| )P,
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where o1 = (|¢' +7'|* — [7|*)(I€ + n|® — |n|?). This leads to a decomposi-
tion of the operator:

DS DY(FG) = T,,(F,G) + D}, FIDg.G + Dy, FID]G + FD§, D} G,

where T,, denotes the bilinear-biparameter multiplier with symbol o;. Ap-
plying this decomposition with F' = S}, ,S,_3f and G = A}, Ag, and using
Sp=1—Aspand ), A =1, we get

I = ETO.l (Sp_3Sk—3f ALALg)
Kok

+ [ DIDY, Sk s f1DS Akg =Y (DY, Ao —3Sk—3f1 DA} Akg
k .k’

+ | Y IDS, Sl s [IDJALg = > (DS, Sp_5Ask—3f1 D5 A} Arg

+Y St 5Sk-3f D% DE AL Arg
k. k'
= I+ (P10 P -1+ IF.

We shall treat Ifl, e ,IlF separately. We start with If that does not
contain any commutators. Using S = 1 — A again, we further decompose

I =f-D3DJg—> ALy 3f -DEDIALG =Y Asp sf - DEDJArg
K’ k
+Y AL gAsisf - DEDEN Ag = I — I — I 4+ I
kK

The estimate for I f ! is trivial. Using Bernstein’s inequality and ({3.1), I f 4

can be handled in the same way as Iy and the same bound can be derived.
For IlF 3 applying the Holder and Bernstein inequalities, we obtain

|askarpeDing| S 2B sl 1 | ARDE Gl o o = .
It follows from Bernstein’s inequality and ({3.1]) that

D% DPg

—Bk
e 27| D2

LQ’L«I} ’

. k
ar S min {27 £]| 1,1 D3 g i
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Applying Lemma with a = b = 3, we obtain the desired bound. I 1F 2 can
be treated similarly.
We tackle next I which closely resembles estimates from Section 3| By

Proposition
D2, Si-s D2 Mg LS 2O Buglle I VaSiosf s =t b
For ¢ € (0, 8), it follows from (4.14) and Bernstein’s inequality that

b S win {2 D2 g1l o all o 1

B—e
—k 5
24| pe Dol £l

Ly LP}

Then applymg Lemma [2.4] with @ = 8 and b = ¢ yields the desired estimate
for IB. IP can be treated similarly, the details being omitted.

Let us now estimate I}, I¢ and I, which contain double summations.
To estimate I {4, we use inequality to get

HT01 (51;'—35k—3f, A;Akg)| L™ L
< OIHEDN L V0 SksSks fl| o 1 | Ak Ak o o

= fdk,k/.

Utilizing (4.15) and Bernstein’s inequality, ay ;s is majorized by a constant
multiple of

B—e

ol £l o D5 1 o

min {2’“5+’“/°‘HfhmpHgHquLq, Y| D2 g

ke+k’
275 Dl L qu\fHL,J LpllDﬂfHLp Lo

B— 6 B— 8)5
‘Lq LquHLp ' Lp “Daf‘|Lp Lp

(B—e)e
DRI D D2 p| }

2 K<k DIDgg

P[P Ly’ Lp
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Applylng Lemma [L.5| with (a1, a2) = (8,¢) and (a}, ay) = (o, ') and recall-
1ng = 6’ we get

(B+e)(a+e’)
L L

— ag
S U g o llgll )™ (HDa’gHLq L4Hf||Lp Lp”DafHLp Lp>

1]

pe’
<||D gl sl 712 L IDEFIE, Lp)

575)5 B—e)e 2 QB
(HDﬁDa/g‘Lq LquHLp Lr HDO‘fHLP Lr HDﬁfHLp Lp HDa D/BfHLp Lp>

= 1150 L gl oI DS gl155 L D IS LpHD 9l Te Lo

< | DEFIGS 1 |1 DEDS gl LI DS DL FIT 1o

Therefore HI s ’

11 18 bounded by a constant multiple of

ee’ aB
&)(ate’ (B+e)(ate’)
(102 D2l ollgllr ) 7 (1l ol DEDE gl )
Be’
B (a (B+e)(ate’) (B+e)(ate’)
% (1029l l DAl 1) T (105 F o 11Dl ) 7
Using the convexity of natural log in (3.3]) (noticing that the sum of the four
exponents is equal to 1), the required estimate for I f‘ follows.

We now estimate 1. Applying (4.10) with f replaced by Asp_3f and
g by D A} g and using Bernstein’s inequality, we see that

I[DF, Asr—3Sk—3f1D3 A Argll 01,
is bounded by a constant multiple of

2k'a+k(ﬁfl) HA%AkQ‘

VacSkf?»A;k/—sf‘

La' La Lo Le = Ck,k’-

It follows from (|4.14]) and Bernstein’s inequality that
: kB+kK kB—k'
Ch,k S mm{2 - aHfHLP/LP”g”Lq/Lq’ 2k? NDZ SN o o 1 D2 gl Lo Lo

—ke+k' o
27 r R DY gl o Lq||f||Lp Lp|!DBf||Lp L

D% D29l e 12103 £ DS D21,

27]687]6/04
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Applying Lemma [4.5 with (a1,a2) = (8,¢) and (a,d}) = (a, @) we obtain

20(B+e)
IIE N0 S W ollgll o ) (DS 1l Lo 1o |1 DS gl por 1)
B—e B af
9 (HngHLmHfIILi/LpHDﬁfH ;;,Lp)
B—¢ s e ap
9 <HD3‘1D§9HMUHD?Z/fHLﬁ/LPHD%DIinprp>
= 119 19155 LIPS gllSs LIPS F19%, I1DE g%
x | DEFl19s  IIDEDSgl|%% , 1D D2 Fl19S, .
Consequently

e B
e ( €)
1€ S (192 D2 F I ollglzorse) ™ (11l oI DEDS Gl 1)
% (1Dl o Lol D2 o) 7

B
% (D2 fll o I DGl ) 7

from which the desired bound follows by applying (3.3).
This concludes all estimates for I7.

4.3.3. Estimate for I,. We write D% DJ(FGQ) as a bilinear-biparameter
multiplier in (4.17) and decompose its symbol as

€+ 1| + 0| = o2+ €1(1€ +1I° — n]?)
+ P + 01> = 1€1*) + €% ),

where ag 1= (|¢/ + 7| — [¢/|*)(|¢ +n]® — |n|?). This leads to a decomposi-
tion of the multiplier:

DY DS(FG) =T,,(F,G) + [D?, D% F|G + [D%, D:G]F + D& F DG,

where T,,, denotes the bilinear Fourier multiplier with symbol 5. Applying
this identity with F' = A}, Si_s3f and G = S}, _3Argand using Sy, =1 — Ay,




1156 S. Oh and X. Wu

and ), Ap =1, we get

Z To, (A4 Sk—sf, Sio_3Dkg) + Y _[DY, D% S_3f1Akg
k

Z (D2, D3 AL Sk—s fIAL 3Arg+ Y _[DS, DS} 9] AL f
k,/

Z ., DJ oSt —38kg| A Asg—s f

+ Z DAY Sy_sf - D2Sh, sArg
k' k

=+ + 1P -1F 4+ I

The terms IQB and 12D involve single summations and can easily be es-

timated as in Section (3 by usmg Proposition and (| - Lem-
mas [4.4] and [2.4 . We leave out £ by Symmetry, and treat IS, and 1Y

separately
We begin with the first term I3, By inequality (#.12)), we get

| T (A Sk 3f,s,g, 3869 oo e
<2k’/(0¢ 1)+k‘ Hv A//Sk 3f‘

= ak7k/.

Var S,’C_?)Akg‘

L*' Lr Ld [a

By iterative applications of Lemma[4.4 and Bernstein’s inequality, we derive

G < min {2’“ﬁ+k’aufuwugmq,

1D% 9

2k67k/s’ HDa

||gHanLq

2—k5+k/’/0¢”D gHLq LquHLp LPHD,Bf

[3 —z

‘LP "Lp?

2~ M=k DI D3, 1Dz

f”Lp/Lp fHLp Lr

< D2 D25 D2l Lq}
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where € and &’ satisfy 0 < e < min(1, 3), 0 <&’ < min(l,a) and 5 = <. Ap-
plying Lemma [4.5 with (a1, a2) = (8,¢) and (a},d}) = (o, ), we have

(B+e)(a+e’)
L™ L

, el e ag
S Ul 2o o lloll o o)™ (HDi‘/flle'Lp||g||L§Lq||D§/g||Eq'Lq>

125

Be
(HD ol sl 12 IDEFIE, Lp)

€ — < </ Oéﬂ
9 (I!DﬁD%inp/LpHDafHLp DS Dl 5, D )

= 1155 o gl Lol DS 91155 L | D2 A1
< | D2gll5 L IIDE A1 1o 1DE D gl 11D DEFIISS 1

Hence HI2A‘

1~ - 1s controlled by a constant multiple of

—as ___ Bt
(11 oD D2l 1) 77 (IDEDE A 19 )

ap

€€l
% (1029l 2o 2ol DE o) 7 (1D fll o o DIl ) 77

which gives the desired bound for I3!, in view of (3.3)).
Next, let us consider I$. Applying inequality (4.10) with f replaced by
DS A}, f and g replaced by AL, g, we get

I[DE, DS AL, Sk—s FIAL 4 _5Akgll o e
5 2ak/+(1871)kuvxsk_3A/ /f’

!/ .=
e Lp >k’—3Akg‘ La'La Ck,k'-

By Lemma FIZII and Bernstein’s inequality, we see that ¢ ;s is bounded by
Cmin {2 £l 1, gl o o 2975 DS £

—ke+k’
27kt D gl LquHLp LpHDfoHLp Lo

2750 D% D2l DSy, | DS DS [

LP’LPHD:?’Q | Lo

which is exactly the same majorizing term appearing in the estimate for I 1C .
Thus the required bound for IQC follows along the same lines.
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Finally, we treat IZ. Using S,_3 = 1 — A3, we may write
I =Dy fDig—) DA fDIN 39— DUAsksf DiAkg
k
E3 DAL A s DIAL A
k' K

U A L LIy F 2

The estimate for Ifl is trivial. Since the terms Ifz, .753 and 154 can be
similarly estimated we just treat Ig 4. By Bernstein’s inequality,

DAL As s f DEAL,_3Akgl| L g

S 2k/a+kﬂ||A/ /A>k—3f||Lp/Lp ||A/>k,_3Akg||Lq/Lq = ?k,k/.

Using Bernstein’s inequality again and a mixed norm version of (3.1)) we get

Frp S min <2’“'a*’“ﬁ||f||w||g||Lq/Lq,

27 M| DY £l v LPIID“
XN DL o 1o

Kk a—
yKo ’CBHD;foHWHDstﬁgHM),

from which the required bound follows from Lemma and (3.3)). This
concludes all estimates for I.

4.3.4. Estimates for Is and I;. To estimates I3, we assume that o >
d/r* —d and 8 > max(0,n/r —n). Write

ZD“DB (A4 Sp_sf - Al Arg) = ZD (D, AL Si_sf1AL Akg
4 Z D% (ASisf - DI Avg)
=: I§4 + Iég.

To estimate Ig‘, we establish the following lemma.
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Lemma 4.6. Leta, 8, p,p,q,q 7, 7" satisfy the conditions of Theorem|[1.4).
Then

| D2 D, AL Ses AL A

5 2ak’+(5—1)k’ Hz\/;AkgHquLq HA;C/Va:Skf?)f‘

Lr'Lp*

Proof. This is a corollary of inequalities (4.2) and (4.10). Indeed, denote
fk,k’ = A;C,Skfgf, 9k k' = AZ,AIQQ, and h = hk,k’ = [Dafk,k’]gk,k’- Then

n(e,€) = /Rwd(\flﬁ — [0l®) o (€ = € = m)Grw () dndny.

By the support properties of ﬂ; and g/, we may write

(€, €) = B/ (27F ) B(27F5€)SL, o Shrsh(€, ),

and hence D% h(2,x) can be expressed as
= / 27K 100 (2T ) 2@ ) S k(€ €)' dgde
Rnt+d

Applying with o1 (&) = [€|*®'(275¢') and 02(&) = ®(27%€), we get

| e D2, AL Se s 18 Akg|| S 2% D2, AL Sk-s 18T Ag]

L L

The desired estimate then follows by utilizing (4.10) with f replaced by Ay, f
and g replaced by A, g. O

Let us return to estimate 5'. By Lemma

HDg’[D57A/’Sk—Bf]A;ngkgHLr’Lr
S, 2ak/+(ﬁil)kHZ§Ak9HL . HA//VSk_gf‘

Lo Lp
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We denote the right hand side by Ek,k" Using Bernstein’s inequality and

([4.14), we deduce that

g S min <2“'€'*5’“ngm HfHLwLm

k'—ek
“ } Ly’ Lp Lr' Lp?
2 Hfll L2

2" ak_wkHDaf”Lp LP”D gHLq "La»

o DRI L IDEDS 1], )

2fak:’fsk

’Df D2g

The required estimate for I{,f‘ then follows by Lemma and the convexity
of natural log.
For If, we decompose it as

P = ZDO‘ ( f-DBAT g ) -3 by (A;,A>H - DﬁAN’,Akg)
::13]’31—1—[?],32. o

We ‘consider Ing only as IB1 can be treated similarly Denote h = AGASg_sf -
D? A’ ,Arg. By the support property of .7:1h we can write

Fih(€,x) = ' (27 =5 Fi (S}, sh)(€, z),
and therefore
D& (A} Asy_3f DAL Arg)
= o¥e / 27 R0 (277 ¢ ) Fi(Sp 4 5h) (€, x)e g
Rd

Applying ([.3) with o = |- [*®'(275.), the Holder and Bernstein inequali-
ties, we get

1D (A% Asksf - DEA, Akg) e
< 2klOLJFkBHA/ /A>k—3f||Lp’Lp||A%/Akg”Lq’Lq~

Note that the right hand side satisfies the same estimate as ?k,k' (which
was previously used in estimating If *). The required estimate for If 2 then

follows along the same lines. I7 can be treated similarly.
This concludes the proof of Theorem O
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