The Eisenbud-Green-Harris conjecture for defect two quadratic ideals

Sema Güntürkün and Melvin Hochster

Abstract

The Eisenbud-Green-Harris (EGH) conjecture states that a homogeneous ideal in a polynomial ring $K\left[x_{1}, \ldots, x_{n}\right]$ over a field K that contains a regular sequence f_{1}, \ldots, f_{n} with degrees $a_{i}, i=$ $1, \ldots, n$ has the same Hilbert function as a lex-plus-powers ideal containing the powers $x_{i}^{a_{i}}, i=1, \ldots, n$. In this paper, we discuss a case of the EGH conjecture for homogeneous ideals generated by $n+2$ quadrics containing a regular sequence f_{1}, \ldots, f_{n} and give a complete proof for EGH when $n=5$ and $a_{1}=\cdots=a_{5}=2$.

1. Introduction

Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables over a field K with the homogeneous lexicographic order in which $x_{1}>\cdots>x_{n}$ and with the standard grading $R=\bigoplus_{i \geq 0} R_{i}$. We denote the Hilbert function of a \mathbb{Z} graded R-module M by $\operatorname{Hilb}_{M}(i):=\operatorname{dim}_{K} M_{i}$, where M_{i} is the homogeneous component of M in degree i. When I is a homogeneous ideal of R and M is R, or I, or R / I, the Hilbert function has value 0 when $i<0$. When the Hilbert function of M is 0 in negative degree, we may discuss the Hilbert function of M by giving the sequence of its values, and we refer to this sequence of integers as the O-sequence of M.

In 1927, Macaulay [13] showed that the Hilbert function of any homogeneous ideal of R is attained by a lexicographic ideal in R. Later, in Kruskal-Katona's theorem [11, [12], it is shown that the polynomial ring R in Macaulay's result can be replaced with the quotient $R /\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)$. After this result, Clement and Lindström, in [5], generalized the result to $R /\left(x_{1}^{a_{1}}, \ldots, x_{n}^{a_{n}}\right)$ if $a_{1} \leq \cdots \leq a_{n}<\infty$.

In [7] Eisenbud, Green and Harris conjectured a generalization of the Clement-Lindström result. Let $\underline{\mathbf{a}}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$, where $2 \leq a_{1} \leq \cdots \leq$ a_{n}.

Conjecture 1.1 (Eisenbud-Green-Harris $\left(\mathrm{EGH}_{\mathrm{a}, n}\right)$ Conjecture [7]). If I is a homogeneous ideal in $R=K\left[x_{1}, \ldots, x_{n}\right]$ containing a regular sequence $f_{1}, f_{2}, \ldots, f_{n}$ with degrees $\operatorname{deg} f_{i}=a_{i}$, then there is a monomial ideal $\mathcal{L}=\left(x_{1}^{a_{1}}, \ldots, x_{n}^{a_{n}}\right)+J$, where J is a lexicographic ideal in R, such that R / \mathcal{L} and R / I have the same Hilbert function.

Although there has been some progress on the conjecture, it remains open. The conjecture is shown to be true for $n=2$ by Richert in [14]. Francisco [8] shows part of the conjecture in the case of an almost complete intersection: see Theorem 2.3. Caviglia and Maclagan in [2] prove the result if $a_{i}>\sum_{j=1}^{i-1}\left(a_{j}-1\right)$ for $2 \leq i \leq n$. The rapid growth required for the degrees does not yield much insight into cases like the one in which the regular sequence consists of quadratic forms. When $n=3$, Cooper in [6] proves the EGH conjecture for the cases where $\left(a_{1}, a_{2}, a_{3}\right)=\left(2, a_{2}, a_{3}\right)$ and $\left(a_{1}, a_{2}, a_{3}\right)=\left(3, a_{2}, a_{3}\right)$ with $a_{2} \leq a_{3} \leq a_{2}+1$.

One of the most intriguing cases is when $a_{1}=\cdots=a_{n}=2$ for any $n \geq 2$, which is the case for which Eisenbud, Green and Harris originally stated their conjecture. It is known that the conjecture holds for homogeneous ideals minimally generated by generic quadrics: the case where char $K=0$ was proved by Herzog and Popescu [10] and the case of arbitrary characteristic was proved by Gasharov [9] around the same time. There have been several other results on the EGH conjecture. More recently, the case when every f_{i}, $i=1, \ldots, n$, in the regular sequence is a product of linear forms is settled by Abedelfatah in [1], and results on the EGH conjecture using linkage theory are given by Chong [4].

In this paper we focus on the case when the degrees of the elements of the regular sequence are $a_{1}=\cdots=a_{n}=2$. In [14], Richert claimed that the conjecture for quadratic regular sequences is true for $2 \leq n \leq 5$, but this work has not been published, and other researchers have been unable to verify this for $n=5$ thus far. Chen, in [3], has given a proof for the case where $n \leq 4$ when $a_{1}=\cdots=a_{n}=2$.

In $\S 2$ we recall some definitions and results from the papers of Francisco [8], Caviglia-Maclagan [2] and Chen [3]. In §3 we study homogeneous ideals I generated by $n+2$ quadratic forms in n variables containing a regular sequence of length n, and Theorem 3.17 shows that there is a monomial ideal $\mathcal{L}=\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)+J$, where J is a lexicographic ideal in R, such that R / I and R / \mathcal{L} have the same Hilbert function in degree 2 and 3 (i.e., $\mathrm{EGH}_{(2, \ldots, 2), n}(2)$ holds: see Definition 2.5). In $\S 4$ we give a proof to the claim of Richert for the quadratic regular sequence case when $n=5$.

2. Background and preliminaries

In this section we recall some definitions and state some known results that are used throughout the paper.

Definition 2.1. Let $u=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ and $v=x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}$ be monomials in R of the same degree. We say that u is greater than v with respect to the lexicographic (or lex) order if there exists an i such that $a_{i}>b_{i}$ and $a_{j}=b_{j}$ for all $j<i$.

A monomial ideal $J \subseteq R$ is called a lexicographic ideal (or lex ideal) if, for all degrees d, the d-th degree component of J, denoted by J_{d}, is spanned over the base field K by an initial segment of the degree d monomials in the lexicographic order.

Definition 2.2. Given $2 \leq a_{1} \leq \cdots \leq a_{n}$, a lex-plus-powers ideal (LPP ideal) \mathcal{L} is a monomial ideal in R that can be written as $\mathcal{L}=\left(x_{1}^{a_{1}}, \ldots, x_{n}^{a_{n}}\right)+$ J where J is a lex ideal in R.

This definition agrees with the one in [2]. Some authors require that the $x_{i}^{a_{i}}$ be minimal generators of \mathcal{L}, which we do not. However, since we consider only nondegenerate homogeneous ideals in this paper, i.e., ideals contained in $\left(x_{1}, \ldots, x_{n}\right)^{2}$, in the case where $a_{1}=\cdots=a_{n}=2$ it is automatic that the x_{i}^{2} are minimal generators of the ideal under consideration.

In [8] Francisco showed the following for almost complete intersections.
Theorem 2.3 (Francisco [8]). Let integers $2 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and $d \geq a_{1}$ be given. Let the ideal I have minimal generators f_{1}, \ldots, f_{n}, g where f_{1}, \ldots, f_{n} form a regular sequence with $\operatorname{deg} f_{i}=a_{i}$ and g has degree d. Let $\mathcal{L}=\left(x_{1}^{a_{1}}, \ldots, x_{n}^{a_{n}}, m\right)$ be the lex-plus-powers ideal where m is the greatest monomial in lex order in degree d that is not in $\left(x_{1}^{a_{1}}, \ldots, x_{n}^{a_{n}}\right)$. Then $\operatorname{Hilb}_{R / I}(d+1) \leq \operatorname{Hilb}_{R / \mathcal{L}}(d+1)$.

Note that, necessarily, $d \leq \sum_{i=1}^{n}\left(a_{i}-1\right)$, since $\left(f_{1}, \ldots, f_{n}\right)$ contains all forms of degree larger than that. If $a_{1}=\cdots=a_{n}=2$, then $d \leq n$.

The following corollary is an immediate consequence of Theorem 2.3 above. If $g \in R$ is a nonzero form of degree i we write $g R_{j}$ for the vector space $\left\{g h: h \in R_{j}\right\} \subseteq R_{i+j}$.

Corollary 2.4. Let $I=\left(f_{1}, \ldots, f_{n}, g\right)$ be an almost complete intersection as in Theorem 2.3 above such that $a_{1}=\cdots=a_{n}=2$. Then

$$
\operatorname{dim}_{K}\left(\left(f_{1}, \ldots, f_{n}\right)_{d+1} \cap g R_{1}\right) \leq d
$$

Proof. We can write

$$
\begin{aligned}
\operatorname{dim}_{K} I_{d+1}= & \operatorname{dim}_{K}\left(f_{1}, \ldots, f_{n}\right)_{d+1}+\operatorname{dim}_{K} g R_{1} \\
& -\operatorname{dim}_{K}\left(\left(f_{1}, \ldots, f_{n}\right)_{d+1} \cap g R_{1}\right),
\end{aligned}
$$

where $\operatorname{dim}_{K} g R_{1}=n$. Then by Theorem 2.3, we have

$$
\begin{aligned}
\operatorname{dim}_{K} I_{d+1} & \geq \operatorname{dim}_{K}\left(x_{1}^{2}, \ldots, x_{n}^{2}, x_{1} \cdots x_{d}\right)_{d+1} \\
& =\operatorname{dim}_{K}\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)_{d+1}+n-d
\end{aligned}
$$

Since $\operatorname{Hilb}_{R /\left(f_{1}, \ldots, f_{n}\right)}(i)=\operatorname{Hilb}_{R /\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)}(i)$ for all $i \geq 0$, we can conclude that

$$
\operatorname{dim}_{K}\left(\left(f_{1}, \ldots, f_{n}\right)_{d+1} \cap g R_{1}\right) \leq d
$$

The next statement is a weaker version of the $\mathrm{EGH}_{\underline{\mathbf{a}}, n}$ conjecture. It focuses on the Hilbert function of the given homogeneous ideal only at the two consecutive degrees d and $d+1$ for some non-negative integer d.

Definition $2.5\left(\mathrm{EGH}_{\underline{\mathbf{a}}, \mathbf{n}}(\mathbf{d})\right)$. Following Caviglia-Maclagan in their paper [2], we say that "EGH ${ }_{\mathbf{a}, n}(d)$ holds" if for any homogeneous ideal $I \in$ $K\left[x_{1}, \ldots, x_{n}\right]$ containing a regular sequence of degrees $\underline{\mathbf{a}}=\left(a_{1}, \ldots, a_{n}\right)$, where $2 \leq a_{1} \leq \cdots \leq a_{n}$, there exists a lex-plus-powers ideal \mathcal{L} containing $\left\{x_{i}^{a_{i}}: 1 \leq i \leq n\right\}$ such that

$$
\operatorname{dim}_{K} I_{d}=\operatorname{dim}_{K} \mathcal{L}_{d} \quad \text { and } \quad \operatorname{dim}_{K} I_{d+1}=\operatorname{dim}_{K} \mathcal{L}_{d+1}
$$

Lemma 2.6. The condition $\mathrm{EGH}_{(d, \ldots, d), n}(d)$ on a polynomial ring $K\left[x_{1}, \ldots, x_{n}\right]$ is equivalent to the statement that for the ideal I generated by $n+\delta K$-linearly independent forms of degree d containing a regular sequence, one has that $\operatorname{dim}_{K} I_{d+1} \geq \operatorname{dim}_{K} \mathcal{L}_{d+1}$, where $\mathcal{L}=\left(x_{1}^{d}, \ldots, x_{n}^{d}\right)+J^{\prime}$ and J^{\prime} is minimally generated by the greatest in lex order δ forms of degree d not already in $\left(x_{1}^{d}, \ldots, x_{n}^{d}\right)$.

Proof. If there is an LPP ideal $\left(x_{1}^{d}, \ldots, x_{n}^{d}\right)+J$, where J is a lex ideal, with the same Hilbert function as I in degrees d and $d+1$, it is clear that J_{d} must be spanned over K by the specified generators of J^{\prime}, so that $\left(x_{1}^{d}, \ldots, x_{n}^{d}\right)+J^{\prime} \subseteq\left(x_{1}^{d}, \ldots, x_{n}^{d}\right)+J$, which implies the specified inequality on the Hilbert functions. Moreover, when that inequality holds we may increase $\mathcal{L}:=\left(x_{1}^{d}, \ldots, x_{n}^{d}\right)+J^{\prime}$ to an LPP ideal with the same Hilbert function as I in degrees d and $d+1$: if $\Delta=\operatorname{Hilb}_{I}(d+1)-\operatorname{Hilb}_{\mathcal{L}}(d+1)$, we may
simply include the greatest (in lex order) Δ forms of degree $d+1$ not already in \mathcal{L}.

Remark 2.7. We shall eventually be focused on $\operatorname{EGH}_{\underline{\mathbf{a}}, n}(d)$ in the case where $a_{1}=\cdots=a_{n}=d=2$, simply referred as $\operatorname{EGH}_{(2, \ldots, 2), n}(2)$ or $\mathrm{EGH}_{\underline{\mathbf{2}}, n}(2)$. We shall routinely make use of this lemma in this case of quadratic regular sequence and $d=2$.

Lemma 2.8 (Caviglia-Maclagan [2]). Fix $\underline{\mathbf{a}}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ where $2 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and set $s=\sum_{i=1}^{n}\left(a_{i}-1\right)$. Then for any $0 \leq d \leq s-1$, $\mathrm{EGH}_{\underline{\mathbf{a}}, n}(d)$ holds if and only if $\mathrm{EGH}_{\underline{\mathbf{a}}, n}(s-1-d)$ holds.
Furthermore, the $\mathrm{EGH}_{\underline{\mathbf{a}}, n}$ conjecture holds if and only if $\mathrm{EGH}_{\underline{\mathbf{a}}, n}(d)$ holds for all degrees $d \geq 0$.

From now on, we always assume $\underline{\mathbf{a}}=\underline{\mathbf{2}}=(2, \ldots, 2)$ for $n \geq 2$, unless it is stated otherwise.

Remark 2.9. For any $n \geq 2, \mathrm{EGH}_{\underline{2}, n}(0)$ holds trivially. In [3, Proposition 2.1], Chen showed that $\mathrm{EGH}_{\underline{\mathbf{2}}, n}(1)$ is true for any $n \geq 2$.

Chen proved the following.
Theorem 2.10 (Chen [3]). The $\mathrm{EGH}_{\underline{2}, n}$ conjecture holds when $2 \leq n \leq 4$.
Chen's proof of this uses Lemma 2.8 above, and the observation that, when $n=4$, to demonstrate that the $\mathbf{E G H}_{\mathbf{2}, 4}$ conjecture is true, it suffices to show that $\mathrm{EGH}_{\underline{2}, 4}(0)$ and $\mathrm{EGH}_{\underline{2}, 4}(1)$ are true.

3. $\mathrm{EGH}_{2, n}(2)$ for defect two ideals

In this section, we focus on the homogeneous ideals in $K\left[x_{1}, \ldots, x_{n}\right]$ for $n \geq$ 5 that are generated by $n+2$ quadratic forms containing a regular sequence. In particular, we study their Hilbert functions in degree 3.

Definition 3.1. If I is a homogeneous ideal minimally generated by $n+\delta$ forms that contain a regular sequence of length n, then I is said to be a defect δ ideal.

Clearly, when $\delta=0$ then I is generated by a regular sequence, it is a complete intersection, and we understand the Hilbert function completely. If $\delta=1$, then I is an almost complete intersection.

Definition 3.2. We call a homogeneous ideal a quadratic ideal if it is generated by quadratic forms.

Let $I=\left(f_{1}, \ldots, f_{n}, g, h\right)$ be a homogeneous ideal minimally generated by $n+2$ quadrics where f_{1}, \ldots, f_{n} form a regular sequence. We call such an ideal a defect two ideal generated by quadrics or simply a defect two quadratic ideal. More generally, if a quadratic ideal is a defect δ ideal, then we call it defect δ quadratic ideal.

Example 3.3. The lex-plus-powers ideal $\mathcal{L}=\left(x_{1}^{2}, \ldots, x_{n}^{2}, x_{1} x_{2}, x_{1} x_{3}\right)$ in R is also a defect two quadratic ideal.

Further, for any homogeneous defect two quadratic ideal I, we have the equality

$$
\operatorname{dim}_{K} I_{2}=n+2=\operatorname{dim}_{K} \mathcal{L}_{2}
$$

Main Question $3.4\left(\mathrm{EGH}_{\underline{2}, n}(2)\right.$ for defect two quadratic ideals). For any $n \geq 5$, is it true that

$$
\operatorname{dim}_{K} I_{3} \geq n^{2}+2 n-5=\operatorname{dim}_{K} \mathcal{L}_{3} ?
$$

An affirmative answer for this question is proved completely in Theorem 3.17 below.

Notation 3.5. Throughout the rest of the paper we write \mathfrak{f} for the ideal $\left(f_{1}, \ldots, f_{n}\right) R$ when f_{1}, \ldots, f_{n} is a regular sequence of quadratic forms, and in the defect δ quadratic ideal case we write \mathfrak{g} for the additional generators $g_{1}, \ldots, g_{\delta}$ of the quadratic ideal. Here, $f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{\delta}$ are assumed to be linearly independent over K. Moreover, henceforth, we write J for the ideal $\mathfrak{f}+\left(g_{1}, \ldots, g_{\delta-1}\right)$. However, when $\delta=1$ or 2 we may write g, h for g_{1}, g_{2}, so that whenever $\delta=2$ we henceforth write J for the ideal $\mathfrak{f}+\left(g_{1}\right)=$ $\mathfrak{f}+(g)$. We denote the graded Gorenstein Artin K-algebra R / \mathfrak{f} by A.

We know that, if $a_{1}=\cdots=a_{n}=\operatorname{deg} g=2$, Theorem 2.3 shows that

$$
\operatorname{dim}_{K} J_{3} \geq n^{2}+n-2
$$

and then Corollary 2.4 gives $\operatorname{dim}_{K}\left(\mathfrak{f}_{3} \cap g R_{1}\right) \leq 2$.
Remark 3.6. In [3, Proposition 3.7] Chen gave a positive answer to the Question 3.4 for defect two quadratic ideals $I=\mathfrak{f}+(g, h)$ if $\operatorname{dim}_{K}\left(\mathfrak{f}_{3} \cap\right.$ $\left.g R_{1}\right)=2$. We shall make repeated use of this fact in the sequel.

In this section we show $\mathrm{EGH}_{2, n}(2)$ for a defect two quadratic ideal $I=$ $\mathfrak{f}+(g, h)$ under the condition that $\operatorname{dim}_{K}\left(\mathfrak{f}_{3} \cap g^{\prime} R_{1}\right) \leq 1$ for all $g^{\prime} \in K g+$ $K h-\{0\}$: this covers all the cases for which Chen's result in Proposition 3.6 is not applicable.

Lemma 3.7. As in Notation 3.5, J is the defect 1 quadratic ideal $\mathfrak{f}+g R$. Then:

$$
\operatorname{dim}_{K} I_{3}=n^{2}+2 n-\operatorname{dim}_{K}\left(\mathfrak{f}_{3} \cap g R_{1}\right)-\operatorname{dim}_{K}\left(J_{3} \cap h R_{1}\right)
$$

Consequently, for the cases that are not covered by the Proposition 3.6 we have:
(i) If $\operatorname{dim}_{K}\left(\mathfrak{f}_{3} \cap g R_{1}\right)=1$ then $\operatorname{dim}_{K} I_{3}=n^{2}+2 n-1-\operatorname{dim}_{K}\left(J_{3} \cap h R_{1}\right)$, and $\mathrm{EGH}_{2, n}(2)$ holds for a defect two quadratic ideal I if and only if $\operatorname{dim}_{K}\left(J_{3} \cap h R_{1}\right) \leq 4$.
(ii) If $\operatorname{dim}_{K}\left(\mathfrak{f}_{3} \cap g R_{1}\right)=0$ then $\operatorname{dim}_{K} I_{3}=n^{2}+2 n-\operatorname{dim}_{K}\left(J_{3} \cap h R_{1}\right)$, and $\mathrm{EGH}_{\underline{2}, n}(2)$ holds for I if and only if $\operatorname{dim}_{K}\left(J_{3} \cap h R_{1}\right) \leq 5$.

Proof. We have:

$$
\begin{aligned}
\operatorname{dim}_{K} I_{3}= & \operatorname{dim}_{K} J_{3}+\operatorname{dim}_{K}\left(h R_{1}\right)-\operatorname{dim}_{K}\left(J_{3} \cap h R_{1}\right) \\
= & \left(\operatorname{dim}_{K} \mathfrak{f}_{3}+\operatorname{dim}_{K}\left(g R_{1}\right)-\operatorname{dim}_{K}\left(\mathfrak{f}_{3} \cap g R_{1}\right)\right) \\
& +n-\operatorname{dim}_{K}\left(J_{3} \cap h R_{1}\right) \\
= & n^{2}+2 n-\operatorname{dim}_{K}\left(\mathfrak{f}_{3} \cap g R_{1}\right)-\operatorname{dim}_{K}\left(J_{3} \cap h R_{1}\right),
\end{aligned}
$$

and then (i) and (ii) are immediate.
Remark 3.8. Let $n=5$, so that $\mathfrak{f}=\left(f_{1}, \ldots, f_{5}\right)$. For a defect two quadratic ideal $I=(\mathfrak{f}, g, h) \subseteq K\left[x_{1}, \ldots, x_{5}\right]$, if $\operatorname{dim}_{K}\left(\mathfrak{f}_{3} \cap g R_{1}\right)=0$ then clearly $\operatorname{dim}_{K}\left((\mathfrak{f}, g)_{3} \cap h R_{1}\right) \leq \operatorname{dim}_{K}\left(h R_{1}\right) \leq 5$, therefore $\mathrm{EGH}_{\underline{\mathbf{2}}, 5}(2)$ holds for such an ideal I. However, we must give an argument to cover all possible cases, that is, when $\operatorname{dim}_{K}\left(\mathfrak{f}_{3} \cap g R_{1}\right)=1$, to be able to confirm $\mathrm{EGH}_{\underline{2}, 5}(2)$ for every defect two quadratic ideal. In the last section, we discuss the EGH conjecture for $n=5$ and $a_{1}=\cdots=a_{5}=2$ in detail.

Next, we proceed with two useful lemmas.
Lemma 3.9. Let A be the graded Gorenstein Artin K-algebra R / \mathfrak{f} with $\operatorname{dim}_{K} A_{1}=n$. Let g, h be two quadratic forms such that $g A_{1}=h A_{1}$. Then $\mathrm{Ann}_{A_{1}} g=\mathrm{Ann}_{A_{1}} h$.

Moreover, $\operatorname{Ann}_{A_{i}}(g)=\operatorname{Ann}_{A_{i}}(h)$ if $i \neq n-2$.
Proof. Suppose that the linear annihilator space of $g, \operatorname{Ann}_{A_{1}} g$, has dimension a and $g A_{1}=h A_{1}$. Thus $g A_{1}$ has dimension $n-a$ and clearly $h A_{1}$ and $\mathrm{Ann}_{A_{1}} h$ have dimensions $n-a$ and a, respectively.

Notice that $g A(-2) \cong A / \operatorname{Ann}_{A}(g)$, hence it is Gorenstein and it has a symmetric O-sequence

$$
\left(0,0,1, n-a, e_{4}, e_{5}, \ldots, e_{5}, e_{4}, n-a, 1\right)
$$

where e_{i} denotes the dimension of $[g A]_{i}$ and $e_{i}=e_{n-i+2}$ for $2 \leq i \leq n$. Then the Hilbert function of $A / g A$ is

$$
\left(1, n,\binom{n}{2}-1,\binom{n}{3}-n+a,\binom{n}{4}-e_{4}, \ldots,\binom{n}{3}-e_{5},\binom{n}{2}-e_{4}, a, 0\right)
$$

Since $\operatorname{Ann}_{A}(g) \cong \operatorname{Hom}_{K}(A / g A, A) \cong(A / g A)^{\vee}$, the Hilbert function of $\mathrm{Ann}_{A}(g)$ is

$$
\left(0, a,\binom{n}{2}-e_{4}, \ldots,\binom{n}{4}-e_{4},\binom{n}{3}-n+a,\binom{n}{2}-1, n, 1\right)
$$

Recall that $g A_{1}=h A_{1}, g A_{i}=h A_{i}$ for all $i \geq 2$, so $(g, h) A$ has the Hilbert function

$$
(0,0,2, \underbrace{n-a, e_{4}, \ldots, e_{4}, n-a, 1}_{\text {the same as for } g A}) .
$$

Then the O-sequence of $A /(g, h)$ becomes

$$
\left(1, n,\binom{n}{2}-2,\binom{n}{3}-n+a,\binom{n}{4}-e_{4}, \ldots,\binom{n}{3}-e_{5},\binom{n}{2}-e_{4}, a, 0\right)
$$

and it follows that $\operatorname{Ann}_{A}(g, h)$ has the Hilbert function

$$
\left(0, a,\binom{n}{2}-e_{4}, \ldots,\binom{n}{4}-e_{4},\binom{n}{3}-n+a,\binom{n}{2}-2, n, 1\right)
$$

We know that $\operatorname{Ann}_{A}(g, h)=\operatorname{Ann}_{A}(g) \cap \operatorname{Ann}_{A}(h)$, and in degree $1, \operatorname{Ann}_{A}(g, h)$ has dimension a, so $\operatorname{Ann}_{A}(g, h)=\operatorname{Ann}_{A_{1}}(g)=\operatorname{Ann}_{A_{1}}(h)$. Further, $\operatorname{Ann}_{A}(g)$ and $\operatorname{Ann}_{A}(h)$ are the same in every degrees except in degree $n-2$.

Lemma 3.10. Let g, h be two quadratic forms in a graded Gorenstein Artin K-algebra A such that $g A_{i}=h A_{i}$ and g, h have the same annihilator space V in A_{i} for some $i \geq 1$. Then there exists $g^{\prime} \in K g+K h-\{0\}$ such that

$$
\operatorname{dim}_{K} \operatorname{Ann}_{A_{i}}\left(g^{\prime}\right) \geq \operatorname{dim}_{K} V+1
$$

Proof. Consider the multiplication maps by g and h,

$$
\phi_{g}: A_{i} / V \rightarrow g A_{i} \quad \text { and } \quad \phi_{h}: A_{i} / V \rightarrow h A_{i}
$$

whose images $g A_{i}, h A_{i}$ are subspaces in A_{i+2} and $g A_{i}=h A_{i}$ by assumption. Then there is a automorphism

$$
T: A_{i} / V \rightarrow A_{i} / V
$$

such that $g \ell=h T(\ell)$ for any $\ell \in A_{i} / V$. However, T has at least one nonzero eigenvector u with $T(u)=c u$ for some $c \in K$. Say ℓ_{u} be a form in degree i represented by this eigenvector u in A_{i} and not in the annihilator space V, thus $g \ell_{u}=h c \ell_{u}$. Then there is a quadratic form $g^{\prime}:=g-c h \in K g+K h-$ $\{0\}$ such that g^{\prime} is annihilated by the space V and also by $\ell_{u} \in A_{i} \backslash V$. Hence $\operatorname{dim}_{K} \operatorname{Ann}_{A_{i}}\left(g^{\prime}\right) \geq \operatorname{dim}_{K} V+1$.

From now on, $I=\left(f_{1}, \ldots, f_{n}, g, h\right)=\mathfrak{f}+(g, h)$ is a homogeneous ideal where $\operatorname{dim}_{K}\left(f_{3} \cap g^{\prime} R_{1}\right) \neq 2$ for a quadratic form $g^{\prime} \in K g+K h-\{0\}$, which means that $\operatorname{dim}_{K} g^{\prime} A_{1} \neq n-2$. Therefore $\operatorname{dim}_{K} g^{\prime} A_{1}$ is either n or $n-1$.

Proposition 3.11. For the graded Gorenstein Artin K-algebra A, if $g A_{1}=$ $h A_{1}$ with $\operatorname{dim}_{K} g A_{1}=n-1=\operatorname{dim}_{K} h A_{1}$, that is

$$
\operatorname{dim}_{K}\left(\mathfrak{f}_{3} \cap g R_{1}\right)=\operatorname{dim}_{K}\left(\mathfrak{f}_{3} \cap h R_{1}\right)=1
$$

then $\mathrm{EGH}_{\mathbf{2}, n}(2)$ holds for the homogeneous defect two quadratic ideal $I=$ $\mathfrak{f}+(g, h)$.

Proof. Since $\operatorname{dim}_{K} \operatorname{Ann}_{A_{1}}(g)=\operatorname{dim}_{K} \operatorname{Ann}_{A_{1}}(h)=1$ there is some $g^{\prime} \in K g+$ $K h-\{0\}$ with $\operatorname{dim}_{K} \operatorname{Ann}_{A_{i}}\left(g^{\prime}\right)=2$ by Lemma 3.10. In consequence, $\operatorname{dim}_{K}\left(\mathfrak{f}_{3} \cap g^{\prime} R_{1}\right)=2$, and so we are done by Proposition 3.6.

Proposition 3.12. For the graded Gorenstein Artin K-algebra A, if $\operatorname{dim}_{K} g A_{1}=\operatorname{dim}_{K} h A_{1}=n$, then there exists a quadratic form g^{\prime} in $K g+$ $K h$ with a nonzero linear annihilator in A.

Proof. By assumption $\operatorname{dim}_{K} A_{1}=\operatorname{dim}_{K} g A_{1}=\operatorname{dim}_{K} h A_{1}=n$, and so we may consider again the multiplication maps $\phi_{g}: A_{1} \rightarrow g A_{1}$ and $\phi_{h}: A_{1} \rightarrow$ $h A_{1}$. Then we obtain a automorphism $T: A_{1} \rightarrow A_{1}$ and there exists an nonzero linear form $\ell \in A_{1}$ such that $T(\ell)=c \ell$ for some $c \in K$, that is $g \ell=c h \ell$. Consider $g^{\prime}=g-c h \in K g+K h$. Clearly, $\ell \in \operatorname{Ann}_{A_{1}}\left(g^{\prime}\right)$.

Next we assume that there is a linear annihilator $L \in A_{1}$ of g where $L h \neq$ 0 over the Gorenstein ring $A=R / \mathfrak{f}$. This case may come up either when $\operatorname{dim}_{K} g A_{1}=\operatorname{dim}_{K} h A_{1}=n-1$ and the linear annihilator spaces $\mathrm{Ann}_{A_{1}}(g)$ and $\operatorname{Ann}_{A_{1}}(h)$ are distinct, or when $\operatorname{dim}_{K} g A_{1}=n-1$ and $\operatorname{dim}_{K} h A_{1}=n$.

We shall make repeated use of the following result, which is Lemma 3.3 of Chen's paper 3].

Lemma 3.13 (Chen [3]). If f_{1}, \ldots, f_{n} is a regular sequence of 2-forms in R and we have a relation $u_{1} f_{1}+u_{2} f_{2}+\cdots+u_{n} f_{n}=0$ for some t-forms u_{1}, \ldots, u_{n}, then $u_{1}, \ldots, u_{n} \in\left(f_{1}, \ldots, f_{n}\right)_{t}$. More precisely, we have that $t \geq 2$ and there exists a skew-symmetric $n \times n$ matrix B of $(t-2)$-forms such that $\left(u_{1} u_{2} \cdots u_{n}\right)=\left(f_{1} f_{2} \cdots f_{n}\right) B$.

Proposition 3.14. Let $I=\mathfrak{f}+\mathfrak{g}$ be a defect δ, where $2 \leq \delta \leq n-1$, quadratic ideal of R as in Notation 3.5. If there is a linear form L in $\operatorname{Ann}_{A}\left(g_{1}, \ldots, g_{\delta-1}\right)$ such that $L g_{\delta} \neq 0$ in A, then

$$
\operatorname{dim}_{K}\left(\left(f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{\delta-1}\right)_{3} \cap g_{\delta} R_{1}\right) \leq 3
$$

Chen [3] used an argument involving the Koszul relations on $\left(x_{1}, \ldots, x_{r}\right)$ for $r \leq n$ while introducing another proof for Theorem 2.3. In the proof of this proposition we use a very similar argument.

Proof. As in Notation 3.5, let $J=\mathfrak{f}+\left(g_{1}, \ldots, g_{\delta-1}\right)$, and denote the row vector of the regular sequence f_{1}, \ldots, f_{n} by $\overrightarrow{\mathbf{f}}$ and the row vector of quadratic forms $g_{1}, \ldots, g_{\delta-1}$ by $\overrightarrow{\mathbf{g}}$.

Suppose $\operatorname{dim}_{K}\left(J_{3} \cap g_{\delta} R_{1}\right) \geq 4$, and without loss of generality we may assume that

$$
\begin{aligned}
x_{1} g_{\delta} & =\overrightarrow{\mathbf{g}} \cdot \overrightarrow{\ell_{1}}+\overrightarrow{\mathbf{f}} \cdot \overrightarrow{p_{1}} \\
x_{2} g_{\delta} & =\overrightarrow{\mathbf{g}} \cdot \overrightarrow{\ell_{2}}+\overrightarrow{\mathbf{f}} \cdot \overrightarrow{p_{2}} \\
x_{3} g_{\delta} & =\overrightarrow{\mathbf{g}} \cdot \overrightarrow{\ell_{3}}+\overrightarrow{\mathbf{f}} \cdot \overrightarrow{p_{3}} \\
x_{4} g_{\delta} & =\overrightarrow{\mathbf{g}} \cdot \overrightarrow{\ell_{4}}+\overrightarrow{\mathbf{f}} \cdot \overrightarrow{p_{4}}
\end{aligned}
$$

where $\vec{\ell}_{i}$ and \vec{p}_{i} are column vectors of linear forms of lengths $\delta-1$ and n, respectively.

We assume that there is a linear form L such that $L g_{i}=0$ for each $i=1, \ldots, \delta-1$ but $L g_{\delta} \neq 0$ in A. Then we get an $n \times(\delta-1)$ matrix $\left(q_{i, j}\right)=$ $\left(\begin{array}{llll}\overrightarrow{q_{1}} & \overrightarrow{q_{2}} & \cdots & \vec{q}_{\delta-1}\end{array}\right)$ of linear forms such that

$$
L \overrightarrow{\mathbf{g}}=\overrightarrow{\mathbf{f}} \cdot\left(q_{i, j}\right)
$$

We observe that each $x_{i} L g_{\delta}$ is in \mathfrak{f}, and write $x_{i} L g_{\delta}=\overrightarrow{\mathbf{f}} \cdot \vec{Q}_{i}$ where \vec{Q}_{i} is a column of quadratic forms for $i=1,2,3,4$. Therefore:

$$
L g_{\delta}\left(\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4}
\end{array}\right)=\overrightarrow{\mathbf{f}} \cdot\left(\begin{array}{llll}
\overrightarrow{Q_{1}} & \overrightarrow{Q_{2}} & \overrightarrow{Q_{3}} & \overrightarrow{Q_{4}} \tag{1}
\end{array}\right)
$$

Let

$$
M_{1}=\left(\begin{array}{cccccc}
x_{2} & x_{3} & x_{4} & 0 & 0 & 0 \\
-x_{1} & 0 & 0 & x_{3} & x_{4} & 0 \\
0 & -x_{1} & 0 & -x_{2} & 0 & x_{4} \\
0 & 0 & -x_{1} & 0 & -x_{2} & -x_{3}
\end{array}\right)
$$

Note that $\left(\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{4}\end{array}\right) \cdot M_{1}=0$. Multiplying the equation (1) by M_{1} from right gives that $\overrightarrow{\mathbf{f}} \cdot\left(\vec{Q}_{1} \vec{Q}_{2} \vec{Q}_{3} \vec{Q}_{4}\right) \cdot M_{1}=0$, and so all entries are 0 in

$$
\overrightarrow{\mathbf{f}}\left(x_{2} \overrightarrow{Q_{1}}-x_{1} \overrightarrow{Q_{2}} \quad x_{3} \overrightarrow{Q_{1}}-x_{1} \overrightarrow{Q_{3}} \quad x_{4} \overrightarrow{Q_{1}}-x_{1} \overrightarrow{Q_{4}} \quad x_{3} \overrightarrow{Q_{2}}-x_{2} \overrightarrow{Q_{3}} \quad x_{4} \overrightarrow{Q_{2}}-x_{2} \overrightarrow{Q_{4}} \quad x_{4} \overrightarrow{Q_{3}}-x_{3} \overrightarrow{Q_{4}}\right)
$$

By Lemma 3.13, there are alternating $n \times n$ matrices $B_{12}, B_{13}, B_{14}, B_{23}$, B_{24}, B_{34} of linear forms such that

$$
(\underbrace{x_{2} \overrightarrow{Q_{1}}-x_{1} \overrightarrow{Q_{2}}}_{\substack{\text { a column vector } \tag{2}\\
\text { of cubic forms }}} \cdots x_{4} \overrightarrow{Q_{3}}-x_{3} \overrightarrow{Q_{4}})=\left(\begin{array}{lll}
B_{12} \overrightarrow{\mathbf{f}}^{T} & \cdots & B_{34} \overrightarrow{\mathbf{f}}^{T}
\end{array}\right)
$$

Similarly, consider the matrix $M_{2}=\left(\begin{array}{cccc}x_{3} & x_{4} & 0 & 0 \\ -x_{2} & 0 & x_{4} & 0 \\ 0 & -x_{2} & -x_{3} & 0 \\ x_{1} & 0 & 0 & x_{4} \\ 0 & x_{1} & 0 & -x_{3} \\ 0 & 0 & x_{1} & x_{2}\end{array}\right)$ such that $M_{1} \cdot M_{2}=\mathbf{0}$ and multiply equation (2) by M_{2} from right to obtain:

$$
(\underbrace{\left(x_{3} B_{12}-x_{2} B_{13}+x_{1} B_{23}\right)}_{\substack{n \times n \text { matrix of } \\ \text { quadratic forms }}} \overrightarrow{\mathbf{f}}^{T} \cdots\left(x_{4} B_{23}-x_{3} B_{24}+x_{2} B_{34}\right) \overrightarrow{\mathbf{f}}^{T})=\mathbf{0}
$$

Then again by Lemma 3.13, there are alternating $n \times n$ matrices

$$
C_{1}^{123}, \ldots, C_{n}^{123}, C_{1}^{124}, \ldots, C_{n}^{124}, \ldots, C_{1}^{234}, \ldots, C_{n}^{234}
$$

of scalars such that
(3)

$$
\begin{aligned}
& x_{3} B_{12}-x_{2} B_{13}+x_{1} B_{23}=\left(\begin{array}{c}
\overrightarrow{\mathbf{f}} C_{1}^{123} \\
\vdots \\
\overrightarrow{\mathbf{f}} C_{n}^{123}
\end{array}\right) \\
& x_{4} B_{12}-x_{2} B_{14}+x_{1} B_{24}=\left(\begin{array}{c}
\overrightarrow{\mathbf{f}} C_{1}^{124} \\
\vdots \\
\overrightarrow{\mathbf{f}} C_{n}^{124}
\end{array}\right) \\
& x_{4} B_{13}-x_{3} B_{14}+x_{1} B_{34}=\left(\begin{array}{c}
\overrightarrow{\mathbf{f}} C_{1}^{134} \\
\vdots \\
\overrightarrow{\mathbf{f}} C_{n}^{134}
\end{array}\right) \\
& x_{4} B_{23}-x_{3} B_{24}+x_{2} B_{34}=\left(\begin{array}{c}
\overrightarrow{\mathbf{f}} C_{1}^{234} \\
\vdots \\
\overrightarrow{\mathbf{f}} C_{n}^{234}
\end{array}\right)
\end{aligned}
$$

Repeating the previous steps with $M_{3}=\left(\begin{array}{c}x_{4} \\ -x_{3} \\ x_{2} \\ -x_{1}\end{array}\right)$, so that $M_{2} \cdot M_{3}=\mathbf{0}$, we get

$$
\begin{aligned}
& \mathbf{0}=\left(\begin{array}{llllll}
B_{12} & B_{13} & B_{14} & B_{23} & B_{24} & B_{34}
\end{array}\right) M_{2} M_{3} \\
& =\left(\begin{array}{cccc}
\overrightarrow{\mathbf{f}} C_{1}^{123} & \overrightarrow{\mathbf{f}} C_{1}^{124} & \overrightarrow{\mathbf{f}} C_{1}^{134} & \overrightarrow{\mathbf{f}} C_{1}^{234} \\
\vdots & \vdots & \vdots & \vdots \\
\overrightarrow{\mathbf{f}} C_{n}^{123} & \overrightarrow{\mathbf{f}} C_{n}^{124} & \overrightarrow{\mathbf{f}} C_{n}^{134} & \overrightarrow{\mathbf{f}} C_{n}^{234}
\end{array}\right) M_{3}
\end{aligned}
$$

and then for all $i=1,2, \ldots, n$ we obtain

$$
\overrightarrow{\mathbf{f}}\left(x_{4} C_{i}^{123}-x_{3} C_{i}^{124}+x_{2} C_{i}^{134}-x_{1} C_{i}^{234}\right)=0
$$

Then, finally, $x_{4} C_{i}^{123}-x_{3} C_{i}^{124}+x_{2} C_{i}^{134}-x_{1} C_{i}^{234}=0$ for all $i=1,2, \ldots, n$.
Hence,

$$
C_{i}^{123}=C_{i}^{124}=C_{i}^{134}=C_{i}^{234}=0 \text { for all } i=1,2, \ldots, n
$$

Thus, in (3) we get $x_{3} B_{12}-x_{2} B_{13}+x_{1} B_{23}=0$. This shows that x_{3} divides every entry in $x_{2} B_{13}-x_{1} B_{23}$. Therefore we may rewrite $B_{13}=$ $x_{3} \widetilde{B_{13}}+D_{13}$ and $B_{23}=x_{3} \widehat{B_{23}}+D_{23}$, where $\widetilde{B_{13}}$ and $\widetilde{B_{23}}$ are alternating matrices of scalars, D_{13} and D_{23} are alternating matrices of linear forms that do not contain x_{3}, and $x_{2} D_{13}-x_{1} D_{23}=0$. We obtain the following

$$
B_{12}=\frac{1}{x_{3}}\left(x_{2} B_{13}-x_{1} B_{23}\right)=x_{2} \widetilde{B_{13}}-x_{1} \widetilde{B_{23}}
$$

Returning to equation (2), we obtain

$$
x_{2} \overrightarrow{Q_{1}}-x_{1} \overrightarrow{Q_{2}}=B_{12} \overrightarrow{\mathbf{f}}^{T}=\left(x_{2} \widetilde{B_{13}}-x_{1} \widetilde{B_{23}}\right) \overrightarrow{\mathbf{f}}^{T}
$$

Consequently,

$$
x_{1}\left(\overrightarrow{Q_{2}}-\widetilde{B_{23}} \overrightarrow{\mathbf{f}}^{T}\right)=x_{2}\left(\overrightarrow{Q_{1}}-\widetilde{B_{13}} \overrightarrow{\mathbf{f}}^{T}\right)
$$

which tells us that x_{1} divides every entry of $\overrightarrow{Q_{1}}-\widetilde{B_{13}} \vec{f}^{T}$. It follows that

$$
\begin{aligned}
\overrightarrow{\mathbf{f}}\left(\overrightarrow{Q_{1}}-\widetilde{B_{13}} \overrightarrow{\mathbf{f}}^{T}\right) & =\overrightarrow{\mathbf{f}} \overrightarrow{Q_{1}} \\
& =x_{1} L g_{\delta}
\end{aligned} \quad \text { as } \widetilde{B_{13}} \text { is alternating and } \overrightarrow{\mathbf{f} B_{13}} \overrightarrow{\mathbf{f}}^{T}=0
$$

This shows that $L g_{\delta}=\overrightarrow{\mathbf{f}} \frac{1}{x_{1}}\left(\overrightarrow{Q_{1}}-\widetilde{B_{13}} \overrightarrow{\mathbf{f}}^{T}\right) \in\left(f_{1}, \ldots, f_{n}\right)_{3}$, which contradicts our assumption $L \notin \operatorname{Ann}_{A}\left(g_{\delta}\right)$.

Corollary 3.15. Let $I=\mathfrak{f}+\mathfrak{g} \subseteq R$ be a defect δ quadratic ideal with $2 \leq$ $\delta \leq n-1$. Suppose that

$$
\operatorname{Ann}_{A_{1}}\left(g_{1}, \ldots, g_{\delta-1}\right) \backslash \operatorname{Ann}_{A_{1}}\left(g_{\delta}\right) \neq \emptyset
$$

Then

$$
\operatorname{dim}_{K} I_{3} \geq \operatorname{dim}_{K} \mathcal{L}_{3}
$$

where $\mathcal{L}=\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)+\left(x_{1} x_{2}, x_{1} x_{3}, \ldots, x_{1} x_{\delta+1}\right)$ is the defect δ lex-pluspowers ideal of R. That is, $\mathrm{EGH}_{\mathbf{2}, n}(2)$ holds for any defect δ quadratic ideal with property (\dagger).

Proof. Notice that $\operatorname{dim}_{K} \mathcal{L}_{3}=n^{2}+n \delta-\frac{\delta(\delta+3)}{2}$. We use induction on δ. Let $J=\mathfrak{f}+\left(g_{1}, \ldots, g_{\delta-1}\right)$ be the defect $\delta-1$ quadratic ideal.

$$
\begin{aligned}
\operatorname{dim}_{K} I_{3} & =\operatorname{dim}_{K} J_{3}+n-\operatorname{dim}_{K}\left(J_{3} \cap g_{\delta} R_{1}\right) \\
& \geq\left(n^{2}+(\delta-1) n-\frac{(\delta-1)(\delta+2)}{2}\right)+n-3 \\
& =n^{2}+n \delta-\frac{\delta(\delta+3)}{2}+\delta-2 \\
& \geq n^{2}+n \delta-\frac{(\delta)(\delta+3)}{2} .
\end{aligned}
$$

We notice that a special case of Corollary 3.15 when $\delta=2$ shows that the inequality is strict.

Corollary 3.16. Let $I=\mathfrak{f}+(g, h)$ be a defect two ideal generated by quadrics in R. If $\operatorname{Ann}_{A_{1}}(g)=\operatorname{Span}\{L\}$ for some $L \in R_{1}$ and L does not annihilate h in $A=R / \mathfrak{f}$, then

$$
\operatorname{dim}_{K} I_{3} \geq n^{2}+2 n-4>\operatorname{dim}_{K}\left(x_{1}^{2}, \ldots, x_{n}^{2}, x_{1} x_{2}, x_{1} x_{3}\right)_{3}=n^{2}+2 n-5
$$

Proof. The result follows from Proposition 3.14 as

$$
\operatorname{dim}_{K} I_{3}=n^{2}+2 n-\underbrace{\operatorname{dim}_{K}\left(\mathfrak{f}_{3} \cap g R_{1}\right)}_{=\operatorname{dim}_{K} \operatorname{Ann}_{A_{1}}(g)=1}-\underbrace{\operatorname{dim}_{K}\left(J_{3} \cap h R_{1}\right)}_{\leq 3}
$$

which is $\geq n^{2}+2 n-4$.
Finally, we give an affirmative answer to the Main Question 3.4 .
Theorem 3.17. Let $I=\mathfrak{f}+(g, h) \subseteq R=K\left[x_{1}, \ldots, x_{n}\right]$ for $n \geq 5$ be a defect two ideal quadratic ideal. Then

$$
\operatorname{dim}_{K} I_{3} \geq n^{2}+2 n-5
$$

More precisely, $\mathrm{EGH}_{\underline{\mathbf{2}}, n}(2)$ holds for homogeneous defect two quadratic ideals in R for any $n \geq 5$.

Proof. If the given defect two ideal satisfies Proposition 3.6, then, by Chen's result, the theorem is proved.

Assume that $\operatorname{dim}_{K}\left(\mathfrak{f}_{3} \cap g^{\prime} R_{1}\right) \neq 2$ for any $g^{\prime} \in K g+K h \backslash\{0\}$. If $\operatorname{dim}_{K}\left(\mathfrak{f}_{3} \cap g R_{1}\right)=\operatorname{dim}_{K}\left(\mathfrak{f}_{3} \cap h R_{1}\right)=0$, by Proposition 3.12 , we can always
find another quadratic form $g^{\prime} \in K g+K h \backslash\{0\}$ so that g^{\prime} has a linear annihilator in A. Then we can apply Corollary 3.16 . If $\operatorname{dim}_{K}\left(\mathfrak{f}_{3} \cap g R_{1}\right)=$ $\operatorname{dim}_{K}\left(\mathfrak{f}_{3} \cap h R_{1}\right)=1$ and the same linear form annihilates both g and h in A, by Proposition 3.11, we have a situation that contradicts our assumption.

Corollary 3.18. $\mathrm{EGH}_{\underline{\mathbf{2}}, n}(2)$ holds for every defect two ideal containing a regular sequence of quadratic forms.

Proof. This result follows from Lemma 2.6 and Theorem 3.17.

4. The EGH conjecture when $n=5$ and $a_{1}=\cdots=a_{5}=2$

In this section $R=K\left[x_{1}, \ldots, x_{5}\right]$ and $I=\left(f_{1}, \ldots, f_{5}\right)+\left(g_{1}, \ldots, g_{\delta}\right)=\mathfrak{f}+$ \mathfrak{g} is a homogeneous defect δ ideal in R, where f_{1}, \ldots, f_{5} is a regular sequence of quadrics and $\operatorname{deg} g_{j} \geq 2$ for $j=1, \ldots, \delta$. Throughout, we shall write $A:=R / \mathfrak{f}$, which is a graded Gorenstein local Artin ring. We will show the existence of a lex-plus-powers ideal $\mathcal{L} \subseteq R$ containing x_{i}^{2} for $i=1, \ldots, 5$ with the same Hilbert function as I by proving the following main theorem.

Theorem 4.1. The EGH conjecture holds for all homogeneous ideals containing a regular sequence of quadrics in $K\left[x_{1}, \ldots, x_{5}\right]$.

Lemma 2.8 of Caviglia-Maclagan tells us that $\mathrm{EGH}_{\underline{2}, 5}(d)$ holds if and only if $\mathrm{EGH}_{\underline{\mathbf{2}}, 5}(5-d-1)$ holds. Thus it will be enough to show $\mathrm{EGH}_{\underline{\mathbf{2}}, 5}(d)$ when $d=0,1,2$. By Remark 2.9 we know that $\mathrm{EGH}_{\underline{2}, 5}(d)$ is true when $d=$ 0,1 , therefore $\mathrm{EGH}_{\underline{2}, 5}(3)$ and $\mathrm{EGH}_{\underline{\mathbf{2}}, 5}(4)$ both hold as well.

Our goal in this section is to prove $\mathrm{EGH}_{\underline{2}, 5}(2)$ for any homogeneous ideal containing a regular sequence of quadrics: this will complete the proof of $\mathrm{EGH}_{\underline{\mathbf{2}}, 5}$. To achieve this, it suffices to understand $\mathrm{EGH}_{\underline{\mathbf{2}}, 5}(2)$ for quadratic ideals with arbitrary defect δ (but, of course, $\delta \leq 10$, since $\operatorname{dim}_{K} R_{2}=15$), by Lemma 2.6 .

Remark 4.2. As a result of Corollary 3.18, we see that $\mathrm{EGH}_{\underline{2}, n}$ holds for any defect $\delta=2$ quadratic ideal in $K\left[x_{1}, \ldots, x_{n}\right]$ for $n=5$.

To accomplish our goal we will prove $\mathrm{EGH}_{\underline{2}, 5}(2)$ for defect $\delta \geq 3$ quadratic ideals. In the next subsection, we prove that if one knows the case where $\delta=3$, one obtains all the cases for $\delta \geq 4$. In the final subsection we finish the proof by establishing $\mathrm{EGH}_{\underline{2}, 5}(2)$ for $\delta=3$.

Quadratic ideals with defect $\delta \geq 4$

Lemma 4.3. If $\mathrm{EGH}_{\underline{2}, 5}(2)$ holds for all defect three quadratic ideals, then it holds for all quadratic ideals with defect $\delta \geq 4$.

Proof. Let $I=\left(f_{1}, \ldots, f_{5}, g_{1}, g_{2}, g_{3}, g_{4}\right)=\mathfrak{f}+\mathfrak{g} \subseteq R$ be a defect 4 homogeneous ideal generated by quadrics, where f_{1}, \ldots, f_{5} form a regular sequence. By assumption the defect three quadratic ideal $J=\mathfrak{f}+\left(g_{1}, g_{2}, g_{3}\right) \subseteq I$ satisfies $\mathrm{EGH}_{\underline{2}, 5}(2)$, that is, $\operatorname{dim}_{K} J_{3} \geq 31$.

Let $\mathcal{L}=\left(x_{1}^{2}, \ldots, x_{5}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{4}, x_{1} x_{5}\right)$ be the LPP ideal with $\operatorname{dim}_{K} \mathcal{L}_{2}=\operatorname{dim}_{K} I_{2}=9$. Then we get $\operatorname{dim}_{K} I_{3} \geq \operatorname{dim}_{K} J_{3} \geq 31=\operatorname{dim}_{K} \mathcal{L}_{3}$, as we need for the case of defect $\delta=4$.

Now assume $5 \leq \delta \leq 10$. Let ${ }^{\delta} I$ denote an arbitrary defect δ quadratic ideal, and let ${ }^{\delta} \mathcal{L}$ denote the lex-plus-power ideal with defect $\delta \geq 5$. More precisely, ${ }^{\delta} \mathcal{L}:=\left(x_{1}^{2}, \ldots, x_{5}^{2}\right)+\left(m_{1}, \ldots, m_{\delta}\right)$ where m_{i} are the next greatest quadratic square-free monomials with respect to lexicographic order. We need to show that $\operatorname{Hilb}_{R / \delta_{I}}(3) \leq \operatorname{Hilb}_{R / \delta \mathcal{L}}(3)$.

We assume that $\operatorname{Hilb}_{R / \delta_{I}}(3) \geq \operatorname{Hilb}_{R /{ }^{\delta} \mathcal{L}}(3)+1$, and we shall obtain a contradiction.

Using duality for Gorenstein rings, we know that for $0 \leq d \leq 5$ we have that

$$
\operatorname{Hilb}_{R / \delta_{I}}(d)=\operatorname{Hilb}_{R / \mathfrak{f}}(d)-\operatorname{Hilb}_{R /\left(\mathfrak{f}:{ }^{\delta} I\right)}(5-d)
$$

Then, for $d=3$, using the assumption we get

$$
\begin{aligned}
\operatorname{Hilb}_{R /\left(\mathfrak{f}: \delta^{\delta}\right)}(2) & =\operatorname{Hilb}_{R / \mathfrak{f}}(3)-\operatorname{Hilb}_{R / \delta_{I}}(3) \leq 10-\left(\operatorname{Hilb}_{R /{ }^{\delta} \mathcal{L}}(3)+1\right) \\
& \leq 9-\operatorname{Hilb}_{R / \delta^{\delta} \mathcal{L}}(3)= \begin{cases}7 & \text { if } \delta=5, \\
8 & \text { if } \delta=6,7, \\
9 & \text { if } \delta=8,9,10 .\end{cases}
\end{aligned}
$$

We next show that $\operatorname{dim}_{K}\left(\mathfrak{f}:{ }^{\delta} I\right)_{1}=0$. If there is a nonzero linear form $\ell \in \mathfrak{f}:{ }^{\delta} I$ then $\operatorname{dim}_{K} \operatorname{Ann}_{A_{2}} \ell A \geq \delta \geq 5$, so we get that $\operatorname{dim}_{K} A_{3} / \ell A_{2} \geq 5$. On the other hand, we see that $A_{3} / \ell A_{2} \cong\left[R /\left(\bar{f}_{1}, \ldots, \bar{f}_{4}, \bar{f}_{5}, l\right)\right]_{3}$ where the \bar{f}_{i} are the images of the f_{i}, and the dimension of $\left[R /\left(\bar{f}_{1}, \ldots, \bar{f}_{4}, \bar{f}_{5}, l\right)\right]_{3}$ as a K-vector space is at most 4 .

Then we can find a defect γ quadratic ideal ${ }^{\gamma} J \subseteq \mathfrak{f}:{ }^{\delta} I$ for $\gamma=3,2,1$ if the defect of ${ }^{\delta} I$ is $\delta=5$ or $\delta=6,7$ or $\delta=8,9,10$, respectively. We then have the inequalities shown below, where the first is obvious as ${ }^{\gamma} J$ is contained in $\mathfrak{f}:{ }^{\delta} I$ and the second follows by comparison with Hilbert functions of quotients by

LPP ideals in degree 3 and the fact that, by assumption, $\mathrm{EGH}_{\underline{2}, 5}(2)$ holds for quadratic ideals with defect less than or equal to three.

$$
\begin{aligned}
& \operatorname{Hilb}_{R /(\mathfrak{f}: \delta)}(3) \leq \operatorname{Hilb}_{R /{ }^{\gamma} J}(3) \\
\leq & \left\{\begin{array}{l}
4 \text { if }{ }^{\gamma} J \text { is a defect } \gamma=3 \text { quadratic ideal when } \delta=5, \\
5 \\
\text { if } \gamma^{\gamma} J \text { is a defect } \gamma=2 \text { quadratic ideal when } 6 \leq \delta \leq 7, \\
7 \text { if } \gamma^{\gamma} J \text { is a defect } \gamma=1 \text { quadratic ideal when } 8 \leq \delta \leq 10 .
\end{array}\right.
\end{aligned}
$$

However, each of the cases above contradicts the following equality:

$$
\operatorname{Hilb}_{R /\left(\mathfrak{f}: \delta_{I}\right)}(3)=\operatorname{Hilb}_{R / \mathfrak{f}}(2)-\operatorname{Hilb}_{R /{ }^{\delta} I}(2)=\delta
$$

Thus, we get $\operatorname{Hilb}_{R / \delta_{I}}(3) \leq \operatorname{Hilb}_{R /{ }^{\mathcal{L}}}(3)$ for any defect $\delta \geq 5$ quadratic ideal ${ }^{\delta} I$ in R.

Defect three quadratic ideals

Lemma 4.4. Let $I=\mathfrak{f}+\left(g_{1}, g_{2}, g_{3}\right)$ be a defect three quadratic ideal in the polynomial ring R. Then, for any $1 \leq i_{1}<i_{2} \leq 3$,

$$
\operatorname{dim}_{K}\left(\mathfrak{f}:\left(g_{i_{1}}, g_{i_{2}}\right)\right)_{1} \leq 1,
$$

and, furthermore, $\operatorname{dim}_{K}\left(\mathfrak{f}:\left(g_{1}, g_{2}, g_{3}\right)\right)_{1} \leq 1$.
Proof. Suppose that $\operatorname{dim}_{K}\left(\mathfrak{f}:\left(g_{1}, g_{2}\right)\right)_{1} \geq 2$, and assume there are $\ell_{1}, \ell_{2} \in R_{1}$ such that $\ell_{i} g_{1}, \ell_{i} g_{2} \in \mathfrak{f}$ for both $i=1,2$. Without loss of generality we assume that $\ell_{1}=x_{1}$ and $\ell_{2}=x_{2}$.

Therefore, we can write $\left(x_{1}, x_{2}, f_{1}, \ldots, f_{5}\right) \subseteq \mathfrak{f}:\left(f_{1}, \ldots, f_{5}, g_{1}, g_{2}\right)$. Then

$$
\begin{aligned}
2 & =\operatorname{Hilb}_{\left(f_{1}, \ldots, f_{5}, g_{1}, g_{2}\right) / \mathfrak{f}}(2) \\
& =\operatorname{Hilb}_{R /\left(\mathfrak{f}:\left(f_{1}, \ldots, f_{5}, g_{1}, g_{2}\right)\right)}(5-2), \text { (by duality) } \\
& \leq \operatorname{Hilb}_{R /\left(x_{1}, x_{2}, f_{1}, \ldots, f_{5}\right)}(3) \\
& =\operatorname{Hilb}_{K\left[x_{3}, x_{4}, x_{5}\right] /\left(\overline{f_{1}}, \ldots, \bar{f}_{5}\right)}(3), \quad \text { (where } \bar{f}_{i} \text { is the image of } f_{i} \text { in } K\left[x_{3}, x_{4}, x_{5}\right], \text {) } \\
& \leq\left(\begin{array}{c}
5 \\
-2 \\
3
\end{array}\right)=1,
\end{aligned}
$$

which is a contradiction.
Hence, working in the graded Gorenstein Artin K-algebra $A=R / \mathfrak{f}$, we have from the lemma just above that $\operatorname{Ann}_{A_{1}}\left(g_{1}, g_{2}\right)$ is a K-vector space of
dimension at most one, and, therefore

$$
\operatorname{dim}_{K} \operatorname{Ann}_{A_{1}}\left(g_{1}, g_{2}, g_{3}\right) \leq 1
$$

since $\operatorname{Ann}_{A_{1}}\left(g_{1}, g_{2}, g_{3}\right) \subseteq \operatorname{Ann}_{A_{1}}\left(g_{1}, g_{2}\right)$.
Remark 4.5. By Remark 4.2 we know that for any defect two quadratic ideal J in $R, \operatorname{dim}_{K} J_{3}$ is at least 30 . Then $\mathrm{EGH}_{\underline{2}, 5}(2)$ holds for the defect three quadratic ideals I containing a defect two quadratic ideal J with $\operatorname{dim}_{K} J_{3} \geq 31$, as $\operatorname{Hilb}_{R / I}(3) \leq \operatorname{Hilb}_{R / J}(3) \leq 4$.

We henceforth focus on defect three quadratic ideals $I=\mathfrak{f}+\left(g_{1}, g_{2}, g_{3}\right)$ in R such that every defect two quadratic ideal $J \subseteq I$ containing \mathfrak{f} has $\operatorname{dim}_{K} J_{3}=30$.

For such defect three quadratic ideals, we observe the following.
Lemma 4.6. Consider the ideal $\mathcal{I}=\left(g_{1}, g_{2}, g_{3}\right) A$ in the Gorenstein ring A such that any ideal $\left(g_{i_{1}}, g_{i_{2}}\right) A$ contained in \mathcal{I} has degree three component of dimension $\operatorname{dim}_{K}\left(g_{i_{1}}, g_{i_{2}}\right) A_{1}=5$. Assuming that $\operatorname{dim}_{K} \operatorname{Ann}_{A_{1}}\left(g_{1}\right)=1$, we have that

$$
\operatorname{Ann}_{A_{1}}\left(g_{1}, g_{2}, g_{3}\right)=\operatorname{Ann}_{A_{1}}\left(g_{1}\right)
$$

Furthermore, if $g_{1} A_{1}$ is 5-dimensional, that is, there is no linear form that annihilates g_{1} in A, then for any quadric g in $K g_{1}+K g_{2}+K g_{3}$ the vector space $g A_{1} \subseteq A_{3}$ is either 3 or 5 dimensional.

Proof. Let $\operatorname{dim}_{K} \operatorname{Ann}_{A_{1}}\left(g_{1}\right)=1$, and let the linear form L annihilate g_{1} but not some form $g^{\prime} \in K g_{2}+K g_{3}$ in A. We define a defect two quadratic ideal

$$
J=\left(f_{1}, \ldots, f_{5}, g_{1}, g^{\prime}\right) \subseteq \mathfrak{f}+\left(g_{1}, g_{2}, g_{3}\right)
$$

in R. Hence, by Corollary 3.16, we know already that $\operatorname{dim}_{K} J_{3} \geq 31$, which means that $\operatorname{dim}_{K}\left(g_{1}, g^{\prime}\right) A_{1}=6$. This contradicts our assumption. Thus, L must be in $\operatorname{Ann}_{A_{1}}\left(g_{1}, g_{2}, g_{3}\right)$.

Recall that the following holds, by Proposition 3.14 , when $\delta=3$.
Proposition 4.7. Let $I=\mathfrak{f}+\left(g_{1}, g_{2}, g_{3}\right) \subseteq K\left[x_{1}, \ldots, x_{5}\right]$ be a defect 3 quadratic ideal. As usual, let $A=R / \mathfrak{f}$. If there is a linear form $L \in$ $\operatorname{Ann}_{A}\left(g_{1}, g_{2}\right)$ such that $L \notin \operatorname{Ann}_{A}\left(g_{3}\right)$, then

$$
\operatorname{dim}_{K}\left(\left(\mathfrak{f}+\left(g_{1}, g_{2}\right)\right)_{3} \cap g_{3} R_{1}\right) \leq 3
$$

When a defect three quadratic ideal I satisfies the condition of the above proposition, we notice a sharp bound for $\operatorname{Hilb}_{R / I}(3)$.

Corollary 4.8. Given a defect three quadratic ideal $I=\mathfrak{f}+\left(g_{1}, g_{2}, g_{3}\right)$ in $R=K\left[x_{1}, \ldots, x_{5}\right]$, and, as usual, let $A=R / \mathfrak{f}$, which is a graded Gorenstein Artin ring. If $\operatorname{dim}_{K} \operatorname{Ann}_{A_{1}}\left(g_{1}, g_{2}\right)=1$ and $\operatorname{Ann}_{A_{1}}\left(g_{1}, g_{2}, g_{3}\right)=0$ then

$$
\operatorname{dim}_{K} I_{3} \geq 32>\operatorname{dim}_{K} \mathcal{L}_{3}
$$

where $\mathcal{L}=\left(x_{1}^{2}, \ldots, x_{5}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{4}\right)$ and $\operatorname{dim}_{K} \mathcal{L}_{3}=31$.
Proof. By assumption there is a linear form in $\operatorname{Ann}_{A}\left(g_{1}, g_{2}\right)$, say L, such that L does not annihilate g_{3}. Hence, Proposition 4.7 gives us $\operatorname{dim}_{K}((\mathfrak{f}+$ $\left.\left.\left(g_{1}, g_{2}\right)\right)_{3} \cap g_{3} R_{1}\right) \leq 3$. Then we get

$$
\begin{aligned}
\operatorname{dim}_{K}\left(\mathfrak{f}+\left(g_{1}, g_{2}, g_{3}\right)\right)_{3}= & \operatorname{dim}_{K}\left(\mathfrak{f}+\left(g_{1}, g_{2}\right)\right)_{3}+\operatorname{dim}_{K} g_{3} R_{1} \\
& -\operatorname{dim}_{K}\left(\left(\mathfrak{f}+\left(g_{1}, g_{2}\right)\right)_{3} \cap g_{3} R_{1}\right) \\
\geq & 30+5-3=32>31=\operatorname{dim}_{K} \mathcal{L}_{3} .
\end{aligned}
$$

Proposition 4.9. Suppose that for all quadratic forms g in $K g_{1}+K g_{2}$, the subspace $g A_{1}$ of A_{3} is a 3-dimensional. If $\operatorname{dim}_{K}\left(g_{1}, g_{2}\right) A_{1}=5$, then $\operatorname{dim}_{K} \operatorname{Ann}_{A_{1}}\left(g_{1}, g_{2}\right)=1$.

We first state the following observation in a linear algebra setting, which will be useful for the proof Proposition 4.9.

Lemma 4.10. Let S, T be linear transformations from V to W, both ndimensional vector spaces over K, such that $\operatorname{rank}(S)=\operatorname{rank}(T)=\operatorname{rank}(S-$ $T)=r$, and the kernels of S, T are disjoint. Then the images of S and T are contained in the same $(3 r-n)$-dimensional subspace of W.

Proof. $V_{0}=\operatorname{ker}(S-T)$ is $(n-r)$-dimensional. S and T are injective on V_{0}, since for $v \in V_{0}, S(v)=0$ iff $T(v)=0$, and $\operatorname{Ker}(S) \cap \operatorname{Ker}(T)=0$. Thus, $S\left(V_{0}\right)=T\left(V_{0}\right)$ is an $(n-r)$-dimensional space in $S(V) \cap T(V)$. Since $S(V), T(V)$ are r-dimensional and overlap in a space of dimension at least $n-r, S(V)+T(V)$ has dimension at most $r+r-(n-r)=3 r-n$.

Proof of Proposition 4.9. Assume that $\operatorname{dim}_{K} \operatorname{Ann}_{A_{1}}\left(g_{1}, g_{2}\right)=0$. Since all quadratic forms g in $K g_{1}+K g_{2}$ are such that $g A_{1} \subseteq A_{3}$ has vector space
dimension 3, we have from Lemma 4.10 with $n=5, r=3$, that $\left(K g_{1}+\right.$ $\left.K g_{2}\right) A_{1} \subseteq A_{3}$ is at most 4-dimensional. Consequently,

$$
\operatorname{dim}_{K}\left[A /\left(g_{1}, g_{2}\right) A\right]_{3}=\operatorname{dim}_{K}\left[R / \mathfrak{f}+\left(g_{1}, g_{2}\right)\right]_{3} \geq 6
$$

contradicting $\mathrm{EGH}_{\underline{\mathbf{2}}, 5}(2)$ for defect 2 quadratic ideals. Hence,

$$
\operatorname{dim}_{K} \operatorname{Ann}_{A_{1}}\left(g_{1}, g_{2}\right)=1
$$

Proposition 4.11. Let $I=\mathfrak{f}+\left(g_{1}, g_{2}, g_{3}\right)$ be a defect three quadratic ideal in $R=K\left[x_{1}, \ldots, x_{5}\right]$. If $\operatorname{dim}_{K} \operatorname{Ann}_{A_{1}}\left(g_{1}, g_{2}, g_{3}\right)=0$ then $\operatorname{Hilb}_{R / I}(3) \leq 4$.

Proof. First, by Remark 4.5 we note that it suffices to consider any defect two quadratic ideal $J \subseteq I$ with $\operatorname{Hilb}_{R / J}(3)=5$.

Suppose that $\operatorname{dim}_{K} \operatorname{Ann}_{A_{1}}\left(g_{1}, g_{2}, g_{3}\right)=0$. Then, clearly, no g_{i}, for $i=$ $1,2,3$ has a 1 -dimensional linear annihilator space in A, since, otherwise, by Lemma 4.6, we obtain that $\operatorname{dim}_{K} \operatorname{Ann}_{A_{1}}\left(g_{1}, g_{2}, g_{3}\right)=1$, which contradicts our assumption. Thus, for the rest of the proof we may assume that each $g_{i} A_{1}, i=1,2,3$, is either 3 or 5 dimensional.

If all forms g in $K g_{1}+K g_{2}+K g_{3}$ are such that $\operatorname{dim}_{K} g A_{1}=3$ then we can find two independent quadratic forms whose linear annihilator spaces intersect in 1-dimensional space, and the result follows from Corollary 4.8.

Let $g_{1} A_{1}$ be a 5 -dimensional subspace of A_{3} and suppose for every $g \in$ $K g_{2}+K g_{3}, g A_{1}$ has dimension either 3 or 5 .

We complete the proof by obtaining a contradiction. We assume that $\operatorname{Hilb}_{R / I}(3)=5$. In other words, the space $W=\left(K g_{1}+K g_{2}+K g_{3}\right) A_{1} \subseteq A_{3}$ is 5 -dimensional. Then we get $W=g_{1} A_{1}=\left(K g_{2}+K g_{3}\right) A_{1}$.

Consider the multiplication maps by g_{1}, g_{2} and g_{3} from A_{1} to the subspace W of A_{3}. By adjusting the bases of A_{1} and W we can assume the matrix of g_{1} is the identity matrix \mathbb{I}_{5} of size 5 . Denote the matrices of g_{2} and g_{3} by α and β, respectively. We can assume that α and β are both singular, and so have rank 3 , by subtracting the suitable multiples of \mathbb{I}_{5} from them if they are not singular.

We see that all matrices $z \mathbb{I}_{5}+x \alpha+y \beta$ must have at most two eigenvalues, otherwise we can form a linear combination whose kernel is 1-dimensional, which corresponds to a quadratic form with 1-dimensional linear annihilator space. Then there are two main cases: one is that every matrix in the space spanned by \mathbb{I}_{5}, α and β has one eigenvalue. The other is that almost all matrices in the form $z \mathbb{I}_{5}+x \alpha+y \beta$ have two eigenvalues, since the subset with at most one eigenvalue is Zariski closed.

Define $D(x, y, z)=\operatorname{det}\left(z \mathbb{I}_{5}-x \alpha-y \beta\right)$, a homogeneous polynomial in x, y, z of degree 5 that is monic in z. Note that D is also the characteristic polynomial, in z, of $x \alpha+y \beta$. Notice that the singular matrices in the subspace of 5×5 matrices spanned by \mathbb{I}, α and β are defined by the vanishing of D.

If the determinant D is square-free (as the characteristic polynomial in z), then the ideal (D) is a radical ideal and it cannot contain a nonzero polynomial of degree less than 5 , which contradicts the fact that all size 4 minors of a singular matrix must vanish, since in our situation these singular matrices have rank 3. Therefore the size 4 minors, whose degrees are at most 4 , are in the radical (D).

If the determinant D is not square-free, then its squared factor must be linear or quadratic: in the latter case the other factor is linear, so that in either case D has a linear factor, say $z-a x-b y$.

Consider the independent matrices $\alpha^{\prime}=a \mathbb{I}_{5}-\alpha, \beta^{\prime}=b \mathbb{I}_{5}-\beta$. Then we think of any linear combination of them, say $r \alpha^{\prime}+s \beta^{\prime}=r\left(a \mathbb{I}_{5}-\alpha\right)+s\left(b \mathbb{I}_{5}-\right.$ $\beta)=(a r+b s) \mathbb{I}_{5}-r \alpha-s \beta$. As $z-a x-b y$ is a factor of $D(x, y, z)$, and hence, D vanishes for $x=r, y=s, z=a r+b s$. This means that every linear combination of α^{\prime} and β^{\prime} is singular. Therefore, we can replace α, β by α^{\prime} and β^{\prime} and so we can assume that we are in the case where every linear combination of the two non-identity matrices is singular, and, if not 0 , of rank 3. By Lemma 4.10, this implies that the kernels of α^{\prime} and β^{\prime} cannot be disjoint, so we are done by Proposition 4.9 and Corollary 4.8.

Finally, we complete the proof of Theorem 4.1 by showing EGH $\mathbf{E V}_{2}$ (2) for every defect three quadratic ideal $I=\mathfrak{f}+\left(g_{1}, g_{2}, g_{3}\right)$ in $R=K\left[x_{1}, \ldots, x_{5}\right]$ when there is a nonzero linear form $L \in \operatorname{Ann}_{A}\left(g_{1}, g_{2}, g_{3}\right)$ in the following proposition.

Proposition 4.12. Let $I=\mathfrak{f}+\left(g_{1}, g_{2}, g_{3}\right)$ be a defect three quadratic ideal in R. If $\operatorname{Ann}_{A_{1}}\left(g_{1}, g_{2}, g_{3}\right)$ is a 1-dimensional K-subspace of A_{1}, say $K L$, then

$$
\operatorname{Hilb}_{R / I}(3)=4
$$

Proof. The proof of this proposition will be completed as soon as we prove the following lemmas 4.13 and 4.15 along with propositions 4.14 and 4.16 below.

Lemma 4.13. Let L be a nonzero linear form in $\operatorname{Ann}_{A}\left(g_{1}, g_{2}, g_{3}\right)$. Then one of the quadratic forms f_{i} in the regular sequence has the linear factor L.

Proof of lemma. As $g_{1}, g_{2}, g_{3} \in \operatorname{Ann}_{A_{2}}(L) \subseteq A_{2}$ for $L \in \operatorname{Ann}_{A_{1}}\left(g_{1}, g_{2}, g_{3}\right)$ we know that

$$
\operatorname{dim}_{K} \operatorname{Ann}_{A_{2}}(L) \geq 3
$$

This tells us that $\operatorname{dim}_{K} L A_{2} \leq 7$, which implies

$$
\begin{equation*}
\operatorname{dim}_{K}\left(A_{3} / L A_{2}\right)=\operatorname{dim}_{K}[A / L A]_{3} \geq 3 \tag{4}
\end{equation*}
$$

as $\operatorname{dim}_{K} A_{3}=10$.
Assume that $L=x_{5}$ and let \bar{f}_{i} be the image of f_{i} modulo x_{5}.
Suppose that $\overline{\mathfrak{f}}=\left(\bar{f}_{1}, \bar{f}_{2}, \bar{f}_{3}, \bar{f}_{4}, \bar{f}_{5}\right)$ is an almost complete intersection in the polynomial ring $K\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$. Thus,

$$
A / L A \cong \frac{K\left[x_{1}, \ldots, x_{5}\right]}{\mathfrak{f}+\left(x_{5}\right)} \cong \frac{K\left[x_{1}, x_{2}, x_{3}, x_{4}\right]}{\overline{\mathfrak{f}}}
$$

However, using the Francisco's result for almost complete intersections [8], we know that

$$
\operatorname{dim}_{K}\left[\frac{K\left[x_{1}, x_{2}, x_{3}, x_{4}\right]}{\overline{\mathfrak{f}}}\right]_{3} \leq 2=\operatorname{dim}_{K}\left[\frac{K\left[x_{1}, x_{2}, x_{3}, x_{4}\right]}{\left(x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{4}^{2}, x_{1} x_{2}\right)}\right]_{3}
$$

This contradicts (4).
Hence the images of f_{i} modulo L form a regular sequence in $K\left[x_{1}, \ldots, x_{4}\right]$, that is, one of them has a linear factor x_{5}.

As a result of the claim, after a suitable change of variables, we may assume that the linear annihilator is $L=x_{5}$ and may consider I in two possible forms: either I is in the form of (5) in Case 1 below, where $f_{1}, f_{2}, f_{3}, f_{4}, x_{1} x_{5}$ is the regular sequence, or I is as in (6) in Case 2 below, where f_{1}, f_{2}, f_{3}, f_{4}, x_{5}^{2} form a quadratic regular sequence in I.

Case 1. Suppose that $f_{5}=x_{1} x_{5}$. Then we can assume that $g_{1}=x_{1} x_{2}, g_{2}=$ $x_{1} x_{3}, g_{3}=x_{1} x_{4}$. Furthermore, after we alter the f_{i} by getting rid of all the terms containing x_{1} except x_{1}^{2}, we may assume that the defect three quadratic ideal I looks like

$$
\begin{equation*}
I=\left(f_{1}, f_{2}, f_{3}, f_{4}+c x_{1}^{2}, x_{1} x_{5}, x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{4}\right) \tag{5}
\end{equation*}
$$

where $f_{1}, f_{2}, f_{3}, f_{4}$ form a regular sequence in $K\left[x_{2}, x_{3}, x_{4}, x_{5}\right]$ and $c \in K$, $c \neq 0$.

Proposition 4.14. Let $I=\left(f_{1}, f_{2}, f_{3}, f_{4}+c x_{1}^{2}, x_{1} x_{5}, x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{4}\right)$ be a defect three quadratic ideal in R where $f_{1}, f_{2}, f_{3}, f_{4}$ is an $K\left[x_{2}, x_{3}, x_{4}, x_{5}\right]$ sequence. Then

$$
\operatorname{Hilb}_{R / I}(3)=4=\operatorname{Hilb}_{R / \mathcal{L}}(3)
$$

where $\mathcal{L}=\left(x_{1}^{2}, \ldots, x_{5}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{4}\right)$.
Proof. One can easily see that I contains all cubic monomials divisible by x_{1} since $x_{1} x_{i} \in I$ for all $i=2,3,4,5$ and f_{4} is a quadratic form in $K\left[x_{2}, x_{3}, x_{4}, x_{5}\right]$, therefore $x_{1} f_{4} \in I$ and so is x_{1}^{3}. Thus, the Hilbert functions of R / I and $k\left[x_{2}, x_{3}, x_{4}, x_{5}\right] / I \cap K\left[x_{2}, x_{3}, x_{4}, x_{5}\right]$ agrees in degree 3 . So

$$
\begin{aligned}
\operatorname{Hilb}_{R / I}(3) & =\operatorname{Hilb}_{K\left[x_{2}, x_{3}, x_{4}, x_{5}\right] / I \cap K\left[x_{2}, x_{3}, x_{4}, x_{5}\right]}(3) \\
& =\operatorname{Hilb}_{K\left[x_{2}, x_{3}, x_{4}, x_{5}\right] /\left(f_{1}, f_{2}, f_{3}, f_{4}\right)}(3)=4 .
\end{aligned}
$$

Case 2. Suppose that $f_{5}=x_{5}^{2}$ by altering the variables and generators, and then we can assume that $g_{1}=x_{1} x_{5}, g_{2}=x_{2} x_{5}, g_{3}=x_{3} x_{5}$. As we did in the case above, we get rid of all the terms containing x_{5} except $x_{4} x_{5}$ in the f_{i}, and so the defect three quadratic ideal can be written as follows:

$$
\begin{equation*}
I=\left(f_{1}, f_{2}, f_{3}, f_{4}+c x_{4} x_{5}, x_{5}^{2}, x_{1} x_{5}, x_{2} x_{5}, x_{3} x_{5}\right) \tag{6}
\end{equation*}
$$

where $f_{1}, f_{2}, f_{3}, f_{4}$ form a regular sequence in $K\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ and $c \in K$.
Lemma 4.15. Let $\mathfrak{a}=\left(f_{1}, f_{2}, f_{3}, f_{4}+c x_{4} x_{5}, x_{5}^{2}\right):\left(x_{1} x_{5}, x_{2} x_{5}, x_{3} x_{5}\right)$ be the colon ideal in R. Then we have $\operatorname{Hilb}_{R / \mathfrak{a}}(2)=6$.

Proof. It suffices to show $\operatorname{dim}_{K} \mathfrak{a}_{2}=9$.
We know that $x_{1} x_{5}, x_{2} x_{5}, x_{3} x_{5}, x_{4} x_{5}, x_{5}^{2}$ are all in \mathfrak{a}_{2}, and f_{1}, f_{2}, f_{3}, $f_{4} \in \mathfrak{a}_{2}$ as well. Thus we see that $\operatorname{dim}_{K} \mathfrak{a}_{2} \geq 9$.

If there is another independent quadratic form in \mathfrak{a}, it must be in $K\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$, as we have all quadratic monomials containing x_{5}, so call it Q in $K\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$. Then we consider the cubic form $H=x_{5} Q$. Clearly H is not in the R_{1}-span of $f_{1}, f_{2}, f_{3}, f_{4}, x_{5}^{2}$, therefore we can define the ideal $J=\left(f_{1}, f_{2}, f_{3}, f_{4}, x_{5}^{2}, H\right)$, which is an almost complete intersection in R. Then we get $\operatorname{dim}_{K}\left(\left(f_{1}, f_{2}, f_{3}, f_{4}, x_{5}^{2}\right)_{4} \cap H R_{1}\right) \geq 4$ as $x_{1} H, x_{2} H, x_{3} H$ and $x_{5} H$ are in $\left(f_{1}, f_{2}, f_{3}, f_{4}, x_{5}^{2}\right)_{4}$, but by Corollary 2.4 this dimension must be at most 3. This proves that there cannot be such a quadratic form Q in \mathfrak{a}.

Proposition 4.16. Let $I=\left(f_{1}, f_{2}, f_{3}, f_{4}+c x_{4} x_{5}, x_{5}^{2}, x_{1} x_{5}, x_{2} x_{5}, x_{3} x_{5}\right)$ be a defect three quadratic ideal in R where $f_{1}, f_{2}, f_{3}, f_{4}$ is an $K\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ sequence. Then

$$
\operatorname{Hilb}_{R / I}(3)=4=\operatorname{Hilb}_{R / \mathcal{L}}(3)
$$

where $\mathcal{L}=\left(x_{1}^{2}, \ldots, x_{5}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{4}\right)$.
Proof. Using the duality of Gorenstein algebras, again we can obtain

$$
\operatorname{Hilb}_{R / I}(3)=\operatorname{Hilb}_{R /\left(f_{1}, f_{2}, f_{3}, f_{4}+c x_{4} x_{5}, x_{5}^{2}\right)}(3)-\operatorname{Hilb}_{R / \mathfrak{a}}(5-3),
$$

where \mathfrak{a} is the colon ideal $\left(f_{1}, f_{2}, f_{3}, f_{4}+c x_{4} x_{5}, x_{5}^{2}\right): I$.
Then proof is done, since $\operatorname{Hilb}_{R /\left(f_{1}, f_{2}, f_{3}, f_{4}+c x_{4} x_{5}, x_{5}^{2}\right)}(3)=10$ and $\operatorname{Hilb}_{R / \mathfrak{a}}(2)=6$ by the above lemma.

This finishes the proof of Proposition 4.12 and hence the proof of Theorem 4.1 .

References

[1] A. Abedelfatah, On the Eisenbud-Green-Harris conjecture, Proc. Amer. Math. Soc. 143 (2015), no. 1, 105-115.
[2] G. Caviglia and D. Maclagan, Some cases of the Eisenbud-Green-Harris conjecture, Math. Res. Lett. 15 (2008). no. 4, 427-433.
[3] R.-X. Chen, Some special cases of the Eisenbud-Green-Harris conjecture, Illinois J. Math. 56 (2012), no. 3, 661-675.
[4] K. F. E. Chong, An Application of liaison theory to the Eisenbud-GreenHarris conjecture, J. Algebra 445 (2016), 221-231.
[5] G. Clements and B. Lindström, A generalization of a combinatorial theorem of Macaulay, J. Combinatorial Theory 7 (1969), 230-238.
[6] S. M. Cooper, Subsets of complete intersections and the EGH conjecture, Progress in Commutative Algebra 1, de Gruyter, Berlin (2012), pp. 167-198.
[7] D. Eisenbud, M. Green and J. Harris, Higher Castelnuovo theory, Journées de Géométrie Algébrique d'Orsay (Orsay, 1992), Astérisque 218 (1993), 187-202.
[8] C. Francisco, Almost complete intersections and the lex-plus-powers conjecture, J. Algebra 276 (2004), no. 2, 737-760.
[9] V. Gasharov, Hilbert functions and homogeneous generic forms II, Compositio Math. 116 (1999), no. 2, 167-172.
[10] J. Herzog and D. Popescu, Hilbert functions and generic forms, Compositio Math. 113 (1998), no. 1, 1-22.
[11] G. Katona, A theorem for finite sets, Theory of Graphs (P. Erdös and G. Katona, eds.), Academic Press, New York (1968), 187-207.
[12] J. Kruskal, The number of simplices in a complex, Mathematical Optimization Techniques (R. Bellman, ed.), University of California Press, Berkeley/Los Angeles (1963), pp. 251-278.
[13] F. Macaulay, Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc. 26 (1927), 531-555.
[14] B. P. Richert, A study of the lex plus powers conjecture, J. Pure Appl. Algebra 186 (2004), no. 2, 169-183.

Department of Mathematics and Statistics, Amherst College Seeley Mudd Bldg., 31 Quadrangle Drive, Amherst, MA 01002, USA E-mail address: sgunturkun@amherst.edu

Department of Mathematics, University of Michigan 530 Church Street East Hall, Ann Arbor, MI 48109, USA
E-mail address: hochster@umich.edu
Received February 1, 2019
Accepted June 15, 2019

