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The Eisenbud-Green-Harris conjecture for

defect two quadratic ideals

Sema Güntürkün and Melvin Hochster

The Eisenbud-Green-Harris (EGH) conjecture states that a homo-
geneous ideal in a polynomial ring K[x1, . . . , xn] over a field K
that contains a regular sequence f1, . . . , fn with degrees ai, i =
1, . . . , n has the same Hilbert function as a lex-plus-powers ideal
containing the powers xai

i
, i = 1, . . . , n. In this paper, we discuss

a case of the EGH conjecture for homogeneous ideals generated by
n+ 2 quadrics containing a regular sequence f1, . . . , fn and give
a complete proof for EGH when n = 5 and a1 = · · · = a5 = 2.

1. Introduction

Let R = K[x1, . . . , xn] be the polynomial ring in n variables over a field K
with the homogeneous lexicographic order in which x1 > · · · > xn and with
the standard grading R =

⊕
i≥0

Ri. We denote the Hilbert function of a Z-

graded R-moduleM by HilbM (i) := dimK Mi, whereMi is the homogeneous
component of M in degree i. When I is a homogeneous ideal of R and M
is R, or I, or R/I, the Hilbert function has value 0 when i < 0. When the
Hilbert function of M is 0 in negative degree, we may discuss the Hilbert
function of M by giving the sequence of its values, and we refer to this
sequence of integers as the O-sequence of M .

In 1927, Macaulay [13] showed that the Hilbert function of any ho-
mogeneous ideal of R is attained by a lexicographic ideal in R. Later, in
Kruskal-Katona’s theorem [11, 12], it is shown that the polynomial ring
R in Macaulay’s result can be replaced with the quotient R/(x21, . . . , x

2
n).

After this result, Clement and Lindström, in [5], generalized the result to
R/(xa1

1 , . . . , xan
n ) if a1 ≤ · · · ≤ an < ∞.

In [7] Eisenbud, Green and Harris conjectured a generalization of the
Clement-Lindström result. Let a = (a1, . . . , an) ∈ N

n, where 2 ≤ a1 ≤ · · · ≤
an.
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Conjecture 1.1 (Eisenbud-Green-Harris (EGHa,n) Conjecture [7]).
If I is a homogeneous ideal in R = K[x1, . . . , xn] containing a regular se-
quence f1, f2, . . . , fn with degrees deg fi = ai, then there is a monomial ideal
L = (xa1

1 , . . . , xan
n ) + J , where J is a lexicographic ideal in R, such that R/L

and R/I have the same Hilbert function.

Although there has been some progress on the conjecture, it remains
open. The conjecture is shown to be true for n = 2 by Richert in [14]. Fran-
cisco [8] shows part of the conjecture in the case of an almost complete
intersection: see Theorem 2.3. Caviglia and Maclagan in [2] prove the re-

sult if ai >
i−1∑
j=1

(aj − 1) for 2 ≤ i ≤ n. The rapid growth required for the

degrees does not yield much insight into cases like the one in which the
regular sequence consists of quadratic forms. When n = 3, Cooper in [6]
proves the EGH conjecture for the cases where (a1, a2, a3) = (2, a2, a3) and
(a1, a2, a3) = (3, a2, a3) with a2 ≤ a3 ≤ a2 + 1.

One of the most intriguing cases is when a1 = · · · = an = 2 for any n ≥ 2,
which is the case for which Eisenbud, Green and Harris originally stated their
conjecture. It is known that the conjecture holds for homogeneous ideals
minimally generated by generic quadrics: the case where charK = 0 was
proved by Herzog and Popescu [10] and the case of arbitrary characteristic
was proved by Gasharov [9] around the same time. There have been several
other results on the EGH conjecture. More recently, the case when every fi,
i = 1, . . . , n, in the regular sequence is a product of linear forms is settled by
Abedelfatah in [1], and results on the EGH conjecture using linkage theory
are given by Chong [4].

In this paper we focus on the case when the degrees of the elements
of the regular sequence are a1 = · · · = an = 2. In [14], Richert claimed that
the conjecture for quadratic regular sequences is true for 2 ≤ n ≤ 5, but this
work has not been published, and other researchers have been unable to
verify this for n = 5 thus far. Chen, in [3], has given a proof for the case
where n ≤ 4 when a1 = · · · = an = 2.

In §2 we recall some definitions and results from the papers of Fran-
cisco [8], Caviglia-Maclagan [2] and Chen [3]. In §3 we study homogeneous
ideals I generated by n+ 2 quadratic forms in n variables containing a
regular sequence of length n, and Theorem 3.17 shows that there is a mono-
mial ideal L = (x21, . . . , x

2
n) + J , where J is a lexicographic ideal in R, such

that R/I and R/L have the same Hilbert function in degree 2 and 3 (i.e.,
EGH(2, ..., 2),n(2) holds: see Definition 2.5). In §4 we give a proof to the claim
of Richert for the quadratic regular sequence case when n = 5.
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2. Background and preliminaries

In this section we recall some definitions and state some known results that
are used throughout the paper.

Definition 2.1. Let u = xa1

1 · · ·xan
n and v = xb11 · · ·xbnn be monomials in R

of the same degree. We say that u is greater than v with respect to the
lexicographic (or lex) order if there exists an i such that ai > bi and aj = bj
for all j < i.

A monomial ideal J ⊆ R is called a lexicographic ideal (or lex ideal) if,
for all degrees d, the d-th degree component of J , denoted by Jd, is spanned
over the base field K by an initial segment of the degree d monomials in the
lexicographic order.

Definition 2.2. Given 2 ≤ a1 ≤ · · · ≤ an, a lex-plus-powers ideal (LPP
ideal) L is a monomial ideal in R that can be written as L = (xa1

1 , . . . , xan
n ) +

J where J is a lex ideal in R.

This definition agrees with the one in [2]. Some authors require that the
xai

i be minimal generators of L, which we do not. However, since we consider
only nondegenerate homogeneous ideals in this paper, i.e., ideals contained
in (x1, . . . , xn)

2, in the case where a1 = · · · = an = 2 it is automatic that
the x2i are minimal generators of the ideal under consideration.

In [8] Francisco showed the following for almost complete intersections.

Theorem 2.3 (Francisco [8]). Let integers 2 ≤ a1 ≤ a2 ≤ · · · ≤ an and
d ≥ a1 be given. Let the ideal I have minimal generators f1, . . . , fn, g where
f1, . . . , fn form a regular sequence with deg fi = ai and g has degree d.
Let L = (xa1

1 , . . . , xan
n ,m) be the lex-plus-powers ideal where m is the great-

est monomial in lex order in degree d that is not in (xa1

1 , . . . , xan
n ). Then

HilbR/I(d+ 1) ≤ HilbR/L(d+ 1).

Note that, necessarily, d ≤
∑n

i=1(ai − 1), since (f1, . . . , fn) contains all
forms of degree larger than that. If a1 = · · · = an = 2, then d ≤ n.

The following corollary is an immediate consequence of Theorem 2.3
above. If g ∈ R is a nonzero form of degree i we write gRj for the vector
space {gh : h ∈ Rj} ⊆ Ri+j .

Corollary 2.4. Let I = (f1, . . . , fn, g) be an almost complete intersection
as in Theorem 2.3 above such that a1 = · · · = an = 2. Then

dimK

(
(f1, . . . , fn)d+1 ∩ gR1

)
≤ d.
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Proof. We can write

dimK Id+1 = dimK(f1, . . . , fn)d+1 + dimK gR1

− dimK

(
(f1, . . . , fn)d+1 ∩ gR1

)
,

where dimK gR1 = n. Then by Theorem 2.3, we have

dimK Id+1 ≥ dimK(x21, . . . , x
2
n, x1 · · ·xd)d+1

= dimK(x21, . . . , x
2
n)d+1 + n− d

Since HilbR/(f1, ..., fn)(i) = HilbR/(x2

1
, ..., x2

n)
(i) for all i ≥ 0, we can conclude

that

dimK

(
(f1, . . . , fn)d+1 ∩ gR1

)
≤ d.

□

The next statement is a weaker version of the EGHa,n conjecture. It
focuses on the Hilbert function of the given homogeneous ideal only at the
two consecutive degrees d and d+ 1 for some non-negative integer d.

Definition 2.5 (EGHa,n(d)). Following Caviglia-Maclagan in their pa-
per [2], we say that “EGHa,n(d) holds” if for any homogeneous ideal I ∈
K[x1, . . . , xn] containing a regular sequence of degrees a = (a1, . . . , an),
where 2 ≤ a1 ≤ · · · ≤ an, there exists a lex-plus-powers ideal L containing
{xai

i : 1 ≤ i ≤ n} such that

dimK Id = dimK Ld and dimK Id+1 = dimK Ld+1 .

Lemma 2.6. The condition EGH(d, ..., d),n(d) on a polynomial ring
K[x1, . . . , xn] is equivalent to the statement that for the ideal I generated
by n+ δ K-linearly independent forms of degree d containing a regular se-
quence, one has that dimK Id+1 ≥ dimK Ld+1, where L = (xd1, . . . , x

d
n) + J ′

and J ′ is minimally generated by the greatest in lex order δ forms of degree
d not already in (xd1, . . . , x

d
n).

Proof. If there is an LPP ideal (xd1, . . . , x
d
n) + J , where J is a lex ideal,

with the same Hilbert function as I in degrees d and d+ 1, it is clear
that Jd must be spanned over K by the specified generators of J ′, so that
(xd1, . . . , x

d
n) + J ′ ⊆ (xd1, . . . , x

d
n) + J , which implies the specified inequal-

ity on the Hilbert functions. Moreover, when that inequality holds we may
increase L := (xd1, . . . , x

d
n) + J ′ to an LPP ideal with the same Hilbert func-

tion as I in degrees d and d+ 1: if ∆ = HilbI(d+ 1)−HilbL(d+ 1), we may



✐

✐

“4-Gunturkun” — 2021/1/8 — 17:12 — page 1345 — #5
✐

✐

✐

✐

✐

✐

The EGH conjecture for defect two quadratic ideals 1345

simply include the greatest (in lex order) ∆ forms of degree d+ 1 not already
in L. □

Remark 2.7. We shall eventually be focused on EGHa,n(d) in the case
where a1 = · · · = an = d = 2, simply referred as EGH(2, ..., 2),n(2) or
EGH2,n(2). We shall routinely make use of this lemma in this case of
quadratic regular sequence and d = 2.

Lemma 2.8 (Caviglia-Maclagan [2]). Fix a = (a1, . . . , an) ∈ N
n where

2 ≤ a1 ≤ a2 ≤ · · · ≤ an and set s =
n∑

i=1
(ai − 1). Then for any 0 ≤ d ≤ s− 1,

EGHa,n(d) holds if and only if EGHa,n(s-1-d) holds.
Furthermore, the EGHa,n conjecture holds if and only if EGHa,n(d) holds
for all degrees d ≥ 0.

From now on, we always assume a = 2 = (2, . . . , 2) for n ≥ 2, unless it
is stated otherwise.

Remark 2.9. For any n ≥ 2, EGH2,n(0) holds trivially. In [3, Proposi-
tion 2.1], Chen showed that EGH2,n(1) is true for any n ≥ 2.

Chen proved the following.

Theorem 2.10 (Chen [3]). The EGH2,n conjecture holds when 2 ≤ n ≤ 4.

Chen’s proof of this uses Lemma 2.8 above, and the observation that,
when n = 4, to demonstrate that the EGH2,4 conjecture is true, it suffices
to show that EGH2,4(0) and EGH2,4(1) are true.

3. EGH2,n(2) for defect two ideals

In this section, we focus on the homogeneous ideals in K[x1, . . . , xn] for n ≥
5 that are generated by n+ 2 quadratic forms containing a regular sequence.
In particular, we study their Hilbert functions in degree 3.

Definition 3.1. If I is a homogeneous ideal minimally generated by n+ δ
forms that contain a regular sequence of length n, then I is said to be a
defect δ ideal.

Clearly, when δ = 0 then I is generated by a regular sequence, it is a
complete intersection, and we understand the Hilbert function completely.
If δ = 1, then I is an almost complete intersection.
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Definition 3.2. We call a homogeneous ideal a quadratic ideal if it is gen-
erated by quadratic forms.

Let I = (f1, . . . , fn, g, h) be a homogeneous ideal minimally generated
by n+ 2 quadrics where f1, . . . , fn form a regular sequence. We call such an
ideal a defect two ideal generated by quadrics or simply a defect two quadratic
ideal. More generally, if a quadratic ideal is a defect δ ideal, then we call it
defect δ quadratic ideal.

Example 3.3. The lex-plus-powers ideal L = (x21, . . . , x
2
n, x1x2, x1x3) in R

is also a defect two quadratic ideal.
Further, for any homogeneous defect two quadratic ideal I, we have the

equality

dimK I2 = n+ 2 = dimK L2 .

Main Question 3.4 (EGH2,n(2) for defect two quadratic ideals). For
any n ≥ 5, is it true that

dimK I3 ≥ n2 + 2n− 5 = dimK L3?

An affirmative answer for this question is proved completely in Theo-
rem 3.17 below.

Notation 3.5. Throughout the rest of the paper we write f for the ideal
(f1, . . . , fn)R when f1, . . . , fn is a regular sequence of quadratic forms, and
in the defect δ quadratic ideal case we write g for the additional generators
g1, . . . , gδ of the quadratic ideal. Here, f1, . . . , fn, g1, . . . , gδ are assumed
to be linearly independent over K. Moreover, henceforth, we write J for the
ideal f+ (g1, . . . , gδ−1). However, when δ = 1 or 2 we may write g, h for
g1, g2, so that whenever δ = 2 we henceforth write J for the ideal f+ (g1) =
f+ (g). We denote the graded Gorenstein Artin K-algebra R/f by A.

We know that, if a1 = · · · = an = deg g = 2, Theorem 2.3 shows that

dimK J3 ≥ n2 + n− 2

and then Corollary 2.4 gives dimK

(
f3 ∩ gR1

)
≤ 2.

Remark 3.6. In [3, Proposition 3.7] Chen gave a positive answer to the
Question 3.4 for defect two quadratic ideals I = f+ (g, h) if dimK

(
f3 ∩

gR1

)
= 2. We shall make repeated use of this fact in the sequel.
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In this section we show EGH2,n(2) for a defect two quadratic ideal I =
f+ (g, h) under the condition that dimK

(
f3 ∩ g′R1

)
≤ 1 for all g′ ∈ Kg +

Kh− {0}: this covers all the cases for which Chen’s result in Proposition 3.6
is not applicable.

Lemma 3.7. As in Notation 3.5, J is the defect 1 quadratic ideal f+ gR.
Then:

dimK I3 = n2 + 2n− dimK

(
f3 ∩ gR1

)
− dimK

(
J3 ∩ hR1

)
.

Consequently, for the cases that are not covered by the Proposition 3.6
we have:

(i) If dimK

(
f3 ∩ gR1

)
=1 then dimK I3=n2 + 2n− 1− dimK

(
J3 ∩ hR1

)
,

and EGH2,n(2) holds for a defect two quadratic ideal I if and only if
dimK

(
J3 ∩ hR1

)
≤ 4.

(ii) If dimK

(
f3 ∩ gR1

)
= 0 then dimK I3 = n2 + 2n− dimK

(
J3 ∩ hR1

)
,

and EGH2,n(2) holds for I if and only if dimK

(
J3 ∩ hR1

)
≤ 5.

Proof. We have:

dimK I3 = dimK J3 + dimK(hR1)− dimK

(
J3 ∩ hR1

)

=
(
dimK f3 + dimK(gR1)− dimK

(
f3 ∩ gR1

))

+ n− dimK

(
J3 ∩ hR1

)

= n2 + 2n− dimK

(
f3 ∩ gR1

)
− dimK

(
J3 ∩ hR1

)
,

and then (i) and (ii) are immediate. □

Remark 3.8. Let n=5, so that f=(f1, . . . , f5). For a defect two quadratic
ideal I = (f, g, h) ⊆ K[x1, . . . , x5], if dimK

(
f3 ∩ gR1

)
= 0 then clearly

dimK

(
(f, g)3 ∩ hR1

)
≤ dimK(hR1) ≤ 5, therefore EGH2,5(2) holds for such

an ideal I. However, we must give an argument to cover all possible cases,
that is, when dimK

(
f3 ∩ gR1

)
= 1, to be able to confirm EGH2,5(2) for every

defect two quadratic ideal. In the last section, we discuss the EGH conjecture
for n = 5 and a1 = · · · = a5 = 2 in detail.

Next, we proceed with two useful lemmas.

Lemma 3.9. Let A be the graded Gorenstein Artin K-algebra R/f with
dimK A1 = n. Let g, h be two quadratic forms such that gA1 = hA1. Then
AnnA1

g = AnnA1
h.
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1348 S. Güntürkün and M. Hochster

Moreover, AnnAi
(g) = AnnAi

(h) if i ̸= n− 2.

Proof. Suppose that the linear annihilator space of g, AnnA1
g, has dimen-

sion a and gA1 = hA1. Thus gA1 has dimension n− a and clearly hA1 and
AnnA1

h have dimensions n− a and a, respectively.
Notice that gA(−2) ∼= A/AnnA(g), hence it is Gorenstein and it has a

symmetric O-sequence

(0, 0, 1, n− a, e4, e5, . . . , e5, e4, n− a, 1),

where ei denotes the dimension of [gA]i and ei = en−i+2 for 2 ≤ i ≤ n. Then
the Hilbert function of A/gA is

(1, n,

(
n

2

)
− 1,

(
n

3

)
− n+ a,

(
n

4

)
− e4, . . . ,

(
n

3

)
− e5,

(
n

2

)
− e4, a, 0).

Since AnnA(g) ∼= HomK(A/gA,A) ∼= (A/gA)∨, the Hilbert function of
AnnA(g) is

(0, a,

(
n

2

)
− e4, . . . ,

(
n

4

)
− e4,

(
n

3

)
− n+ a,

(
n

2

)
− 1, n, 1).

Recall that gA1 = hA1, gAi = hAi for all i ≥ 2, so (g, h)A has the Hilbert
function

(0, 0, 2, n− a, e4, . . . , e4, n− a, 1︸ ︷︷ ︸
the same as for gA

).

Then the O-sequence of A/(g, h) becomes

(1, n,

(
n

2

)
− 2,

(
n

3

)
− n+ a,

(
n

4

)
− e4, . . . ,

(
n

3

)
− e5,

(
n

2

)
− e4, a, 0),

and it follows that AnnA(g, h) has the Hilbert function

(0, a,

(
n

2

)
− e4, . . . ,

(
n

4

)
− e4,

(
n

3

)
− n+ a,

(
n

2

)
− 2, n, 1).

We know that AnnA(g, h)=AnnA(g) ∩AnnA(h), and in degree 1, AnnA(g, h)
has dimension a, so AnnA(g, h) = AnnA1

(g) = AnnA1
(h). Further, AnnA(g)

and AnnA(h) are the same in every degrees except in degree n− 2. □
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Lemma 3.10. Let g, h be two quadratic forms in a graded Gorenstein Artin
K-algebra A such that gAi = hAi and g, h have the same annihilator space
V in Ai for some i ≥ 1. Then there exists g′ ∈ Kg +Kh− {0} such that

dimK AnnAi
(g′) ≥ dimK V + 1.

Proof. Consider the multiplication maps by g and h,

ϕg : Ai/V → gAi and ϕh : Ai/V → hAi

whose images gAi, hAi are subspaces in Ai+2 and gAi = hAi by assumption.
Then there is a automorphism

T : Ai/V → Ai/V

such that gℓ = hT (ℓ) for any ℓ ∈ Ai/V . However, T has at least one nonzero
eigenvector u with T (u) = cu for some c ∈ K. Say ℓu be a form in degree i
represented by this eigenvector u in Ai and not in the annihilator space V ,
thus gℓu = hcℓu. Then there is a quadratic form g′ := g − ch ∈ Kg +Kh−
{0} such that g′ is annihilated by the space V and also by ℓu ∈ Ai \ V . Hence
dimK AnnAi

(g′) ≥ dimK V + 1. □

From now on, I = (f1, . . . , fn, g, h) = f+ (g, h) is a homogeneous ideal
where dimK

(
f3 ∩ g′R1

)
̸= 2 for a quadratic form g′ ∈ Kg +Kh− {0}, which

means that dimK g′A1 ̸= n− 2. Therefore dimK g′A1 is either n or n− 1.

Proposition 3.11. For the graded Gorenstein Artin K-algebra A, if gA1 =
hA1 with dimK gA1 = n− 1 = dimK hA1, that is

dimK(f3 ∩ gR1) = dimK(f3 ∩ hR1) = 1,

then EGH2,n(2) holds for the homogeneous defect two quadratic ideal I =
f+ (g, h).

Proof. Since dimK AnnA1
(g) = dimK AnnA1

(h) = 1 there is some g′ ∈ Kg +
Kh− {0} with dimK AnnAi

(g′) = 2 by Lemma 3.10. In consequence,
dimK

(
f3 ∩ g′R1

)
= 2, and so we are done by Proposition 3.6. □

Proposition 3.12. For the graded Gorenstein Artin K-algebra A, if
dimK gA1 = dimK hA1 = n, then there exists a quadratic form g′ in Kg +
Kh with a nonzero linear annihilator in A.
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Proof. By assumption dimK A1 = dimK gA1 = dimK hA1 = n, and so we
may consider again the multiplication maps ϕg : A1 → gA1 and ϕh : A1 →
hA1. Then we obtain a automorphism T : A1 → A1 and there exists an
nonzero linear form ℓ ∈ A1 such that T (ℓ) = cℓ for some c ∈ K, that is
gℓ = chℓ. Consider g′ = g − ch ∈ Kg +Kh. Clearly, ℓ ∈ AnnA1

(g′). □

Next we assume that there is a linear annihilator L ∈ A1 of g where Lh ̸=
0 over the Gorenstein ring A = R/f. This case may come up either when
dimK gA1 = dimK hA1 = n− 1 and the linear annihilator spaces AnnA1

(g)
and AnnA1

(h) are distinct, or when dimK gA1 = n− 1 and dimK hA1 = n.
We shall make repeated use of the following result, which is Lemma 3.3

of Chen’s paper [3].

Lemma 3.13 (Chen [3]). If f1, . . . , fn is a regular sequence of 2-forms
in R and we have a relation u1f1 + u2f2 + · · ·+ unfn = 0 for some t-forms
u1, . . . , un, then u1, . . . , un ∈ (f1, . . . , fn)t. More precisely, we have that
t ≥ 2 and there exists a skew-symmetric n× n matrix B of (t− 2)-forms
such that (u1 u2 · · · un) = (f1 f2 · · · fn)B.

Proposition 3.14. Let I = f+ g be a defect δ, where 2 ≤ δ ≤ n− 1,
quadratic ideal of R as in Notation 3.5. If there is a linear form L in
AnnA(g1, . . . , gδ−1) such that Lgδ ̸= 0 in A, then

dimK

(
(f1, . . . , fn, g1, . . . , gδ−1)3 ∩ gδR1

)
≤ 3

Chen [3] used an argument involving the Koszul relations on (x1, . . . , xr)
for r ≤ n while introducing another proof for Theorem 2.3. In the proof of
this proposition we use a very similar argument.

Proof. As in Notation 3.5, let J = f+ (g1, . . . , gδ−1), and denote the row
vector of the regular sequence f1, . . . , fn by f⃗ and the row vector of quadratic
forms g1, . . . , gδ−1 by g⃗.

Suppose dimK(J3 ∩ gδR1) ≥ 4, and without loss of generality we may
assume that

x1gδ = g⃗ · ℓ⃗1 + f⃗ · p⃗1

x2gδ = g⃗ · ℓ⃗2 + f⃗ · p⃗2

x3gδ = g⃗ · ℓ⃗3 + f⃗ · p⃗3

x4gδ = g⃗ · ℓ⃗4 + f⃗ · p⃗4
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where ℓ⃗i and p⃗i are column vectors of linear forms of lengths δ − 1 and n,
respectively.

We assume that there is a linear form L such that Lgi = 0 for each
i = 1, . . . , δ − 1 but Lgδ ̸= 0 in A. Then we get an n× (δ − 1) matrix (qi,j) =(
q⃗1 q⃗2 · · · q⃗δ−1

)
of linear forms such that

Lg⃗ = f⃗ · (qi,j).

We observe that each xiLgδ is in f, and write xiLgδ = f⃗ · Q⃗i where Q⃗i is
a column of quadratic forms for i = 1, 2, 3, 4. Therefore:

(1) Lgδ
(
x1 x2 x3 x4

)
= f⃗ ·

(
Q⃗1 Q⃗2 Q⃗3 Q⃗4

)
.

Let

M1 =




x2 x3 x4 0 0 0
−x1 0 0 x3 x4 0
0 −x1 0 −x2 0 x4
0 0 −x1 0 −x2 −x3


 .

Note that
(
x1 x2 · · · x4

)
·M1 = 0. Multiplying the equation (1) by M1

from right gives that f⃗ · (Q⃗1 Q⃗2 Q⃗3 Q⃗4) ·M1 = 0, and so all entries are 0 in

f⃗
(
x2Q⃗1 − x1Q⃗2 x3Q⃗1 − x1Q⃗3 x4Q⃗1 − x1Q⃗4 x3Q⃗2 − x2Q⃗3 x4Q⃗2 − x2Q⃗4 x4Q⃗3 − x3Q⃗4

)

By Lemma 3.13, there are alternating n× n matrices B12, B13, B14, B23,
B24, B34 of linear forms such that

(2)
(
x2Q⃗1 − x1Q⃗2︸ ︷︷ ︸
a column vector

of cubic forms

· · · x4Q⃗3 − x3Q⃗4

)
=

(
B12f⃗

T · · · B34f⃗
T
)

Similarly, consider the matrix M2 =




x3 x4 0 0
−x2 0 x4 0
0 −x2 −x3 0
x1 0 0 x4
0 x1 0 −x3
0 0 x1 x2




such

that M1 ·M2 = 0 and multiply equation (2) by M2 from right to obtain:

(
(x3B12 − x2B13 + x1B23)︸ ︷︷ ︸

n × nmatrix of

quadratic forms

f⃗T · · · (x4B23 − x3B24 + x2B34)⃗f
T
)
= 0.
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Then again by Lemma 3.13, there are alternating n× n matrices

C123
1 , . . . , C123

n , C124
1 , . . . , C124

n , . . . , C234
1 , . . . , C234

n

of scalars such that

x3B12 − x2B13 + x1B23 =



f⃗C123

1
...

f⃗C123
n




x4B12 − x2B14 + x1B24 =



f⃗C124

1
...

f⃗C124
n




x4B13 − x3B14 + x1B34 =



f⃗C134

1
...

f⃗C134
n




x4B23 − x3B24 + x2B34 =



f⃗C234

1
...

f⃗C234
n




(3)

Repeating the previous steps with M3 =




x4
−x3
x2
−x1


, so that M2 ·M3 = 0, we

get

0 = (B12 B13 B14 B23 B24 B34)M2M3

=



f⃗C123

1 f⃗C124
1 f⃗C134

1 f⃗C234
1

...
...

...
...

f⃗C123
n f⃗C124

n f⃗C134
n f⃗C234

n


M3

and then for all i = 1, 2, . . . , n we obtain

f⃗(x4C
123
i − x3C

124
i + x2C

134
i − x1C

234
i ) = 0.

Then, finally, x4C
123
i − x3C

124
i + x2C

134
i − x1C

234
i = 0 for all i = 1, 2, . . . , n.

Hence,

C123
i = C124

i = C134
i = C234

i = 0 for all i = 1, 2, . . . , n.
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Thus, in (3) we get x3B12 − x2B13 + x1B23 = 0. This shows that x3
divides every entry in x2B13 − x1B23. Therefore we may rewrite B13 =
x3B̃13 +D13 and B23 = x3B̃23 +D23, where B̃13 and B̃23 are alternating
matrices of scalars, D13 and D23 are alternating matrices of linear forms
that do not contain x3, and x2D13 − x1D23 = 0. We obtain the following

B12 =
1

x3
(x2B13 − x1B23) = x2B̃13 − x1B̃23

Returning to equation (2), we obtain

x2Q⃗1 − x1Q⃗2 = B12f⃗
T = (x2B̃13 − x1B̃23)⃗f

T .

Consequently,

x1
(
Q⃗2 − B̃23f⃗

T
)
= x2

(
Q⃗1 − B̃13f⃗

T
)

which tells us that x1 divides every entry of Q⃗1 − B̃13f⃗
T . It follows that

f⃗
(
Q⃗1 − B̃13f⃗

T
)
= f⃗Q⃗1 as B̃13 is alternating and f⃗B̃13f⃗

T = 0

= x1Lgδ by equation (1).

This shows that Lgδ = f⃗ 1
x1

(
Q⃗1 − B̃13f⃗

T
)
∈ (f1, . . . , fn)3, which contradicts

our assumption L /∈ AnnA(gδ). □

Corollary 3.15. Let I = f+ g ⊆ R be a defect δ quadratic ideal with 2 ≤
δ ≤ n− 1. Suppose that

(†) AnnA1
(g1, . . . , gδ−1) \AnnA1

(gδ) ̸= ∅.

Then

dimK I3 ≥ dimK L3

where L = (x21, . . . , x
2
n) + (x1x2, x1x3, . . . , x1xδ+1) is the defect δ lex-plus-

powers ideal of R. That is, EGH2,n(2) holds for any defect δ quadratic ideal
with property (†).
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Proof. Notice that dimK L3 = n2 + nδ − δ(δ+3)
2 . We use induction on δ. Let

J = f+ (g1, . . . , gδ−1) be the defect δ − 1 quadratic ideal.

dimK I3 = dimK J3 + n− dimK

(
J3 ∩ gδR1

)

≥

(
n2 + (δ − 1)n−

(δ − 1)(δ + 2)

2

)
+ n− 3

= n2 + nδ −
δ(δ + 3)

2
+ δ − 2

≥ n2 + nδ −
(δ)(δ + 3)

2
.

□

We notice that a special case of Corollary 3.15 when δ = 2 shows that
the inequality is strict.

Corollary 3.16. Let I = f+ (g, h) be a defect two ideal generated by
quadrics in R. If AnnA1

(g) = Span{L} for some L ∈ R1 and L does not
annihilate h in A = R/f, then

dimK I3 ≥ n2 + 2n− 4 > dimK(x21, . . . , x
2
n, x1x2, x1x3)3 = n2 + 2n− 5

Proof. The result follows from Proposition 3.14 as

dimK I3 = n2 + 2n− dimK(f3 ∩ gR1)︸ ︷︷ ︸
=dimK AnnA1

(g)=1

− dimK(J3 ∩ hR1)︸ ︷︷ ︸
≤3

which is ≥ n2 + 2n− 4. □

Finally, we give an affirmative answer to the Main Question 3.4.

Theorem 3.17. Let I = f+ (g, h) ⊆ R = K[x1, . . . , xn] for n ≥ 5 be a de-
fect two ideal quadratic ideal. Then

dimK I3 ≥ n2 + 2n− 5.

More precisely, EGH2,n(2) holds for homogeneous defect two quadratic
ideals in R for any n ≥ 5.

Proof. If the given defect two ideal satisfies Proposition 3.6 , then, by Chen’s
result, the theorem is proved.

Assume that dimK

(
f3 ∩ g′R1

)
̸= 2 for any g′ ∈ Kg +Kh \ {0}. If

dimK

(
f3 ∩ gR1

)
= dimK

(
f3 ∩ hR1

)
= 0, by Proposition 3.12, we can always
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find another quadratic form g′ ∈ Kg +Kh \ {0} so that g′ has a linear an-
nihilator in A. Then we can apply Corollary 3.16. If dimK

(
f3 ∩ gR1

)
=

dimK

(
f3 ∩ hR1

)
= 1 and the same linear form annihilates both g and h

in A, by Proposition 3.11. we have a situation that contradicts our assump-
tion. □

Corollary 3.18. EGH2,n(2) holds for every defect two ideal containing a
regular sequence of quadratic forms.

Proof. This result follows from Lemma 2.6 and Theorem 3.17. □

4. The EGH conjecture when n = 5 and a1 = · · · = a5 = 2

In this section R = K[x1, . . . , x5] and I = (f1, . . . , f5) + (g1, . . . , gδ) = f+
g is a homogeneous defect δ ideal in R, where f1, . . . , f5 is a regular se-
quence of quadrics and deg gj ≥ 2 for j = 1, . . . , δ. Throughout, we shall
write A := R/f, which is a graded Gorenstein local Artin ring. We will show
the existence of a lex-plus-powers ideal L ⊆ R containing x2i for i = 1, . . . , 5
with the same Hilbert function as I by proving the following main theorem.

Theorem 4.1. The EGH conjecture holds for all homogeneous ideals con-
taining a regular sequence of quadrics in K[x1, . . . , x5].

Lemma 2.8 of Caviglia-Maclagan tells us that EGH2,5(d) holds if and
only if EGH2,5(5− d− 1) holds. Thus it will be enough to show EGH2,5(d)
when d = 0, 1, 2. By Remark 2.9 we know that EGH2,5(d) is true when d =
0, 1, therefore EGH2,5(3) and EGH2,5(4) both hold as well.

Our goal in this section is to prove EGH2,5(2) for any homogeneous
ideal containing a regular sequence of quadrics: this will complete the proof
of EGH2,5. To achieve this, it suffices to understand EGH2,5(2) for quadratic
ideals with arbitrary defect δ (but, of course, δ ≤ 10, since dimK R2 = 15),
by Lemma 2.6.

Remark 4.2. As a result of Corollary 3.18, we see that EGH2,n holds for
any defect δ = 2 quadratic ideal in K[x1, . . . , xn] for n = 5.

To accomplish our goal we will prove EGH2,5(2) for defect δ ≥ 3 quadratic
ideals. In the next subsection, we prove that if one knows the case where
δ = 3, one obtains all the cases for δ ≥ 4. In the final subsection we finish
the proof by establishing EGH2,5(2) for δ = 3.
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Quadratic ideals with defect δ ≥ 4

Lemma 4.3. If EGH2,5(2) holds for all defect three quadratic ideals, then
it holds for all quadratic ideals with defect δ ≥ 4.

Proof. Let I = (f1, . . . , f5, g1, g2, g3, g4) = f+ g ⊆ R be a defect 4 homoge-
neous ideal generated by quadrics, where f1, . . . , f5 form a regular sequence.
By assumption the defect three quadratic ideal J = f+ (g1, g2, g3) ⊆ I sat-
isfies EGH2,5(2), that is, dimK J3 ≥ 31.

Let L = (x21, . . . , x
2
5, x1x2, x1x3, x1x4, x1x5) be the LPP ideal with

dimK L2 = dimK I2 = 9. Then we get dimK I3 ≥ dimK J3 ≥ 31 = dimK L3,
as we need for the case of defect δ = 4.

Now assume 5 ≤ δ ≤ 10. Let δI denote an arbitrary defect δ quadratic
ideal, and let δL denote the lex-plus-power ideal with defect δ ≥ 5. More
precisely, δL := (x21, . . . , x

2
5) + (m1, . . . , mδ) where mi are the next greatest

quadratic square-free monomials with respect to lexicographic order. We
need to show that HilbR/δI(3) ≤ HilbR/δL(3).

We assume that HilbR/δI(3) ≥ HilbR/δL(3) + 1, and we shall obtain a
contradiction.

Using duality for Gorenstein rings, we know that for 0 ≤ d ≤ 5 we have
that

HilbR/δI(d) = HilbR/f(d)−HilbR/(f:δI)(5− d).

Then, for d = 3, using the assumption we get

HilbR/(f:δI)(2) = HilbR/f(3)−HilbR/δI(3) ≤ 10− (HilbR/δL(3) + 1)

≤ 9−HilbR/δL(3) =





7 if δ = 5,

8 if δ = 6, 7,

9 if δ = 8, 9, 10.

We next show that dimK(f : δI)1 = 0. If there is a nonzero linear form
ℓ ∈ f : δI then dimK AnnA2

ℓA ≥ δ ≥ 5, so we get that dimK A3/ℓA2 ≥ 5. On
the other hand, we see that A3/ℓA2

∼= [R/(f̄1, . . . , f̄4, f̄5, l)]3 where the f̄i
are the images of the fi, and the dimension of [R/(f̄1, . . . , f̄4, f̄5, l)]3 as a
K-vector space is at most 4.

Then we can find a defect γ quadratic ideal γJ ⊆ f : δI for γ = 3, 2, 1 if the
defect of δI is δ = 5 or δ = 6, 7 or δ = 8, 9, 10, respectively. We then have the
inequalities shown below, where the first is obvious as γJ is contained in f : δI
and the second follows by comparison with Hilbert functions of quotients by
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LPP ideals in degree 3 and the fact that, by assumption, EGH2,5(2) holds
for quadratic ideals with defect less than or equal to three.

HilbR/(f:δI)(3) ≤ HilbR/γJ(3)

≤





4 if γJ is a defect γ = 3 quadratic ideal when δ = 5,

5 if γJ is a defect γ = 2 quadratic ideal when 6 ≤ δ ≤ 7,

7 if γJ is a defect γ = 1 quadratic ideal when 8 ≤ δ ≤ 10.

However, each of the cases above contradicts the following equality:

HilbR/(f:δI)(3) = HilbR/f(2)−HilbR/δI(2) = δ.

Thus, we get HilbR/δI(3) ≤ HilbR/δL(3) for any defect δ ≥ 5 quadratic

ideal δI in R. □

Defect three quadratic ideals

Lemma 4.4. Let I = f+ (g1, g2, g3) be a defect three quadratic ideal in the
polynomial ring R. Then, for any 1 ≤ i1 < i2 ≤ 3,

dimK(f : (gi1 , gi2))1 ≤ 1,

and, furthermore, dimK(f : (g1, g2, g3))1 ≤ 1.

Proof. Suppose that dimK(f : (g1, g2))1 ≥ 2, and assume there are ℓ1, ℓ2 ∈ R1

such that ℓig1, ℓig2 ∈ f for both i = 1, 2. Without loss of generality we assume
that ℓ1 = x1 and ℓ2 = x2.

Therefore, we can write (x1, x2, f1, . . . , f5) ⊆ f : (f1, . . . , f5, g1, g2). Then

2 = Hilb(f1, ..., f5,g1,g2)/f(2)

= Hilb
R
/(

f:(f1, ..., f5,g1,g2)
)(5− 2), (by duality)

≤ HilbR/(x1,x2,f1, ..., f5)(3)

= HilbK[x3,x4,x5]/(f̄1, ..., f̄5)(3), (where f̄i is the image of fi in K[x3, x4, x5],)

≤

(
5− 2

3

)
= 1,

which is a contradiction. □

Hence, working in the graded Gorenstein Artin K-algebra A = R/f, we
have from the lemma just above that AnnA1

(g1, g2) is a K-vector space of
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dimension at most one, and, therefore

dimK AnnA1
(g1, g2, g3) ≤ 1

since AnnA1
(g1, g2, g3) ⊆ AnnA1

(g1, g2).

Remark 4.5. By Remark 4.2 we know that for any defect two quadratic
ideal J in R, dimK J3 is at least 30. Then EGH2,5(2) holds for the de-
fect three quadratic ideals I containing a defect two quadratic ideal J with
dimK J3 ≥ 31, as HilbR/I(3) ≤ HilbR/J(3) ≤ 4.

We henceforth focus on defect three quadratic ideals I = f+ (g1, g2, g3)
in R such that every defect two quadratic ideal J ⊆ I containing f has
dimK J3 = 30.

For such defect three quadratic ideals, we observe the following.

Lemma 4.6. Consider the ideal I = (g1, g2, g3)A in the Gorenstein ring
A such that any ideal (gi1 , gi2)A contained in I has degree three component
of dimension dimK(gi1 , gi2)A1 = 5. Assuming that dimK AnnA1

(g1) = 1, we
have that

AnnA1
(g1, g2, g3) = AnnA1

(g1).

Furthermore, if g1A1 is 5-dimensional, that is, there is no linear form
that annihilates g1 in A, then for any quadric g in Kg1 +Kg2 +Kg3 the
vector space gA1 ⊆ A3 is either 3 or 5 dimensional.

Proof. Let dimK AnnA1
(g1) = 1, and let the linear form L annihilate g1 but

not some form g′ ∈ Kg2 +Kg3 in A. We define a defect two quadratic ideal

J = (f1, . . . , f5, g1, g
′) ⊆ f+ (g1, g2, g3)

in R. Hence, by Corollary 3.16, we know already that dimK J3 ≥ 31, which
means that dimK(g1, g

′)A1 = 6. This contradicts our assumption. Thus, L
must be in AnnA1

(g1, g2, g3). □

Recall that the following holds, by Proposition 3.14, when δ = 3.

Proposition 4.7. Let I = f+ (g1, g2, g3) ⊆ K[x1, . . . , x5] be a defect 3
quadratic ideal. As usual, let A = R/f. If there is a linear form L ∈
AnnA(g1, g2) such that L /∈ AnnA(g3), then

dimK

(
(f+ (g1, g2))3 ∩ g3R1

)
≤ 3.
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When a defect three quadratic ideal I satisfies the condition of the above
proposition, we notice a sharp bound for HilbR/I(3).

Corollary 4.8. Given a defect three quadratic ideal I = f+ (g1, g2, g3) in
R = K[x1, . . . , x5], and, as usual, let A = R/f, which is a graded Gorenstein
Artin ring. If dimK AnnA1

(g1, g2) = 1 and AnnA1
(g1, g2, g3) = 0 then

dimK I3 ≥ 32 > dimK L3,

where L = (x21, . . . , x
2
5, x1x2, x1x3, x1x4) and dimK L3 = 31.

Proof. By assumption there is a linear form in AnnA(g1, g2), say L, such
that L does not annihilate g3. Hence, Proposition 4.7 gives us dimK

(
(f+

(g1, g2))3 ∩ g3R1

)
≤ 3. Then we get

dimK(f+ (g1, g2, g3))3 = dimK(f+ (g1, g2))3 + dimK g3R1

− dimK

(
(f+ (g1, g2))3 ∩ g3R1

)

≥ 30 + 5− 3 = 32 > 31 = dimK L3 . □

Proposition 4.9. Suppose that for all quadratic forms g in Kg1 +Kg2,
the subspace gA1 of A3 is a 3-dimensional. If dimK(g1, g2)A1 = 5, then
dimK AnnA1

(g1, g2) = 1.

We first state the following observation in a linear algebra setting, which
will be useful for the proof Proposition 4.9.

Lemma 4.10. Let S, T be linear transformations from V to W , both n-
dimensional vector spaces over K, such that rank(S) = rank(T ) = rank(S −
T ) = r, and the kernels of S, T are disjoint. Then the images of S and T
are contained in the same (3r − n)-dimensional subspace of W .

Proof. V0 = ker(S − T ) is (n− r)-dimensional. S and T are injective on
V0, since for v ∈ V0, S(v) = 0 iff T (v) = 0, and Ker(S) ∩Ker(T ) = 0. Thus,
S(V0) = T (V0) is an (n− r)-dimensional space in S(V ) ∩ T (V ). Since
S(V ), T (V ) are r-dimensional and overlap in a space of dimension at least
n− r, S(V ) + T (V ) has dimension at most r + r − (n− r) = 3r − n. □

Proof of Proposition 4.9. Assume that dimK AnnA1
(g1, g2) = 0. Since all

quadratic forms g in Kg1 +Kg2 are such that gA1 ⊆ A3 has vector space
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dimension 3, we have from Lemma 4.10 with n = 5, r = 3, that (Kg1 +
Kg2)A1 ⊆ A3 is at most 4-dimensional. Consequently,

dimK [A/(g1, g2)A]3 = dimK [R/f+ (g1, g2)]3 ≥ 6,

contradicting EGH2,5(2) for defect 2 quadratic ideals. Hence,

dimK AnnA1
(g1, g2) = 1. □

Proposition 4.11. Let I = f+ (g1, g2, g3) be a defect three quadratic ideal
in R = K[x1, . . . , x5]. If dimK AnnA1

(g1, g2, g3) = 0 then HilbR/I(3) ≤ 4.

Proof. First, by Remark 4.5 we note that it suffices to consider any defect
two quadratic ideal J ⊆ I with HilbR/J(3) = 5.

Suppose that dimK AnnA1
(g1, g2, g3) = 0. Then, clearly, no gi, for i =

1, 2, 3 has a 1-dimensional linear annihilator space in A, since, otherwise, by
Lemma 4.6, we obtain that dimK AnnA1

(g1, g2, g3) = 1, which contradicts
our assumption. Thus, for the rest of the proof we may assume that each
giA1, i = 1, 2, 3, is either 3 or 5 dimensional.

If all forms g in Kg1 +Kg2 +Kg3 are such that dimK gA1 = 3 then we
can find two independent quadratic forms whose linear annihilator spaces
intersect in 1-dimensional space, and the result follows from Corollary 4.8.

Let g1A1 be a 5-dimensional subspace of A3 and suppose for every g ∈
Kg2 +Kg3, gA1 has dimension either 3 or 5.

We complete the proof by obtaining a contradiction. We assume that
HilbR/I(3) = 5. In other words, the space W = (Kg1 +Kg2 +Kg3)A1 ⊆ A3

is 5-dimensional. Then we get W = g1A1 = (Kg2 +Kg3)A1.
Consider the multiplication maps by g1, g2 and g3 from A1 to the sub-

space W of A3. By adjusting the bases of A1 and W we can assume the
matrix of g1 is the identity matrix I5 of size 5. Denote the matrices of g2 and
g3 by α and β, respectively. We can assume that α and β are both singular,
and so have rank 3, by subtracting the suitable multiples of I5 from them if
they are not singular.

We see that all matrices zI5 + xα+ yβ must have at most two eigenval-
ues, otherwise we can form a linear combination whose kernel is 1-dimen-
sional, which corresponds to a quadratic form with 1-dimensional linear
annihilator space. Then there are two main cases: one is that every matrix
in the space spanned by I5, α and β has one eigenvalue. The other is that
almost all matrices in the form zI5 + xα+ yβ have two eigenvalues, since
the subset with at most one eigenvalue is Zariski closed.
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Define D(x, y, z) = det(zI5 − xα− yβ), a homogeneous polynomial in
x, y, z of degree 5 that is monic in z. Note that D is also the characteristic
polynomial, in z, of xα+ yβ. Notice that the singular matrices in the sub-
space of 5× 5 matrices spanned by I, α and β are defined by the vanishing
of D.

If the determinant D is square-free (as the characteristic polynomial in
z), then the ideal (D) is a radical ideal and it cannot contain a nonzero
polynomial of degree less than 5, which contradicts the fact that all size 4
minors of a singular matrix must vanish, since in our situation these singular
matrices have rank 3. Therefore the size 4 minors, whose degrees are at most
4, are in the radical (D).

If the determinant D is not square-free, then its squared factor must be
linear or quadratic: in the latter case the other factor is linear, so that in
either case D has a linear factor, say z − ax− by.

Consider the independent matrices α′ = aI5 − α, β′ = bI5 − β. Then we
think of any linear combination of them, say rα′ + sβ′ = r(aI5 − α) + s(bI5 −
β) = (ar + bs)I5 − rα− sβ. As z − ax− by is a factor of D(x, y, z), and
hence, D vanishes for x = r, y = s, z = ar + bs. This means that every linear
combination of α′ and β′ is singular. Therefore, we can replace α, β by α′

and β′ and so we can assume that we are in the case where every linear
combination of the two non-identity matrices is singular, and, if not 0, of
rank 3. By Lemma 4.10, this implies that the kernels of α′ and β′ cannot be
disjoint, so we are done by Proposition 4.9 and Corollary 4.8. □

Finally, we complete the proof of Theorem 4.1 by showing EGH2,5(2) for
every defect three quadratic ideal I = f+ (g1, g2, g3) in R = K[x1, . . . , x5]
when there is a nonzero linear form L ∈ AnnA(g1, g2, g3) in the following
proposition.

Proposition 4.12. Let I = f+ (g1, g2, g3) be a defect three quadratic ideal
in R. If AnnA1

(g1, g2, g3) is a 1-dimensional K-subspace of A1, say KL,
then

HilbR/I(3) = 4.

Proof. The proof of this proposition will be completed as soon as we prove
the following lemmas 4.13 and 4.15 along with propositions 4.14 and 4.16
below.

Lemma 4.13. Let L be a nonzero linear form in AnnA(g1, g2, g3). Then
one of the quadratic forms fi in the regular sequence has the linear factor L.



✐

✐

“4-Gunturkun” — 2021/1/8 — 17:12 — page 1362 — #22
✐

✐

✐

✐

✐

✐
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Proof of lemma. As g1, g2, g3 ∈ AnnA2
(L) ⊆ A2 for L ∈ AnnA1

(g1, g2, g3) we
know that

dimK AnnA2
(L) ≥ 3.

This tells us that dimK LA2 ≤ 7, which implies

(4) dimK(A3/LA2) = dimK [A/LA]3 ≥ 3

as dimK A3 = 10.
Assume that L = x5 and let f̄i be the image of fi modulo x5 .
Suppose that f̄ = (f̄1, f̄2, f̄3, f̄4, f̄5) is an almost complete intersection in

the polynomial ring K[x1, x2, x3, x4]. Thus,

A/LA ∼=
K[x1, . . . , x5]

f+ (x5)
∼=

K[x1, x2, x3, x4]

f̄
.

However, using the Francisco’s result for almost complete intersections
[8], we know that

dimK

[K[x1, x2, x3, x4]

f̄

]
3
≤ 2 = dimK

[ K[x1, x2, x3, x4]

(x21, x
2
2, x

2
3, x

2
4, x1x2)

]
3
.

This contradicts (4).
Hence the images of fi modulo L form a regular sequence in

K[x1, . . . , x4], that is, one of them has a linear factor x5. □

As a result of the claim, after a suitable change of variables, we may as-
sume that the linear annihilator is L = x5 and may consider I in two possible
forms: either I is in the form of (5) in Case 1 below, where f1, f2, f3, f4, x1x5
is the regular sequence, or I is as in (6) in Case 2 below, where f1, f2, f3,
f4, x

2
5 form a quadratic regular sequence in I.

Case 1. Suppose that f5 = x1x5. Then we can assume that g1 = x1x2, g2 =
x1x3, g3 = x1x4. Furthermore, after we alter the fi by getting rid of all
the terms containing x1 except x21, we may assume that the defect three
quadratic ideal I looks like

(5) I = (f1, f2, f3, f4 + cx21, x1x5, x1x2, x1x3, x1x4),

where f1, f2, f3, f4 form a regular sequence in K[x2, x3, x4, x5] and c ∈ K,
c ̸= 0.
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Proposition 4.14. Let I=(f1, f2, f3, f4 + cx21, x1x5, x1x2, x1x3, x1x4) be
a defect three quadratic ideal in R where f1, f2, f3, f4 is an K[x2, x3, x4, x5]-
sequence. Then

HilbR/I(3) = 4 = HilbR/L(3)

where L = (x21, . . . , x
2
5, x1x2, x1x3, x1x4).

Proof. One can easily see that I contains all cubic monomials divisible by x1
since x1xi∈I for all i=2, 3, 4, 5 and f4 is a quadratic form inK[x2, x3, x4, x5],
therefore x1f4 ∈ I and so is x31. Thus, the Hilbert functions of R/I and
k[x2, x3, x4, x5]

/
I ∩K[x2, x3, x4, x5] agrees in degree 3. So

HilbR/I(3) = Hilb
K[x2,x3,x4,x5]

/
I∩K[x2,x3,x4,x5]

(3)

= Hilb
K[x2,x3,x4,x5]

/
(f1, f2, f3, f4)

(3) = 4.
□

Case 2. Suppose that f5 = x25 by altering the variables and generators, and
then we can assume that g1 = x1x5, g2 = x2x5, g3 = x3x5. As we did in the
case above, we get rid of all the terms containing x5 except x4x5 in the fi,
and so the defect three quadratic ideal can be written as follows:

(6) I = (f1, f2, f3, f4 + cx4x5, x
2
5, x1x5, x2x5, x3x5),

where f1, f2, f3, f4 form a regular sequence in K[x1, x2, x3, x4] and c ∈ K.

Lemma 4.15. Let a = (f1, f2, f3, f4 + cx4x5, x
2
5) : (x1x5, x2x5, x3x5) be

the colon ideal in R. Then we have HilbR/a(2) = 6.

Proof. It suffices to show dimK a2 = 9.
We know that x1x5, x2x5, x3x5, x4x5, x

2
5 are all in a2, and f1, f2, f3,

f4 ∈ a2 as well. Thus we see that dimK a2 ≥ 9.
If there is another independent quadratic form in a, it must be in

K[x1, x2, x3, x4], as we have all quadratic monomials containing x5, so call it
Q in K[x1, x2, x3, x4]. Then we consider the cubic form H = x5Q. Clearly H
is not in the R1-span of f1, f2, f3, f4, x

2
5, therefore we can define the ideal

J = (f1, f2, f3, f4, x
2
5, H), which is an almost complete intersection in R.

Then we get dimK

(
(f1, f2, f3, f4, x

2
5)4 ∩ HR1

)
≥ 4 as x1H,x2H,x3H and

x5H are in (f1, f2, f3, f4, x
2
5)4, but by Corollary 2.4 this dimension must

be at most 3. This proves that there cannot be such a quadratic form Q
in a. □
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Proposition 4.16. Let I=(f1, f2, f3, f4 + cx4x5, x
2
5, x1x5, x2x5, x3x5) be

a defect three quadratic ideal in R where f1, f2, f3, f4 is an K[x1, x2, x3, x4]-
sequence. Then

HilbR/I(3) = 4 = HilbR/L(3)

where L = (x21, . . . , x
2
5, x1x2, x1x3, x1x4).

Proof. Using the duality of Gorenstein algebras, again we can obtain

HilbR/I(3) = HilbR/(f1, f2, f3, f4+cx4x5, x2

5
)(3)−HilbR/a(5− 3),

where a is the colon ideal (f1, f2, f3, f4 + cx4x5, x
2
5) : I.

Then proof is done, since HilbR/(f1, f2, f3, f4+cx4x5, x2

5
)(3) = 10 and

HilbR/a(2) = 6 by the above lemma. □

This finishes the proof of Proposition 4.12 and hence the proof of The-
orem 4.1. □
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