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Given a smooth variety X with an action of a finite group G, and a
semiorthogonal decomposition of the derived category, D([X/G]),
of G-equivariant coherent sheaves on X into subcategories equiva-
lent to derived categories of smooth varieties, we construct a similar
semiorthogonal decomposition for a smooth G-invariant divisor in
X (under certain technical assumptions). Combining this proce-
dure with the semiorthogonal decompositions constructed in [18],
we construct semiorthogonal decompositions of some equivariant
derived categories of smooth projective hypersurfaces.
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1. Introduction

1.1. Semiorthogonal decompositions for D([X/G])

Let X be a smooth quasi-projective variety over an algebraically closed
field k of characteristic zero. Suppose G is a finite group acting on X by
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automorphisms. Then there is a decomposition of the Hochschild homology
of the quotient stack [X/G],

(1.1) HH∗([X/G]) ∼=
⊕

λ∈G/∼

HH∗(Xλ)
C(λ),

where G/∼ is the set of conjugacy classes of G, C(λ) is the centralizer of
λ, Xλ ⊂ X is the invariant subvariety of λ, see [18, Lemma 2.1.1]. In [19,
Theorem 1.1], the authors show that the decomposition (1.1) has a motivic
origin in an appropriate sense, and that a similar decomposition exists for
any additive invariant of dg-categories. In [3] a related decomposition of the
equivariant zeta function is given.

In the case when the geometric quotient Xλ/C(λ) is smooth one can
identify HH∗(Xλ)

C(λ) with HH∗(Xλ/C(λ)) (see [18, Proposition 2.1.2]).
Thus, it is natural to ask whether in some cases the above decomposition
can be realized at the level of derived categories of coherent sheaves.

Conjecture A ([18, Conjecture A]). Assume a finite group G acts ef-
fectively on a smooth variety X, and all the geometric quotients Xλ/C(λ)
are smooth for λ ∈ G/∼. Then there is a semiorthogonal decomposition of
the derived category D([X/G]) such that the components C[λ] of this decom-
position are in bijection with conjugacy classes in G and C[λ] ∼= D(Xλ/C(λ)).

This conjecture was verified in [18] in the case where G is a complex
reflection group of types A,B,G2, F4, and G(m, 1, n) acting on a vector
space V , as well as for some actions on Cn, where C is a smooth curve.
Other global results exist for cyclic quotients, see [13, Theorem 4.1] and [14,
Theorem 3.3.2], and for quotients of curves, see [17, Theorem 1.2]. It is shown
in [3, Theorem D] that the above conjecture fails without the assumption
that G acts effectively. Note that we do not expect a natural bijection in
Conjecture A as one can see in simple examples with the action of a cyclic
group (see Example 4.3.3 below).

Because of the results mentioned above on the analogs of the decompo-
sition (1.1), we refer to a semiorthogonal decomposition as in Conjecture A,
as motivic semiorthogonal decomposition.

In all known cases of Conjecture A, the semiorthogonal decompositions
are linear over D(X/G), where X/G is the geometric quotient, i.e., the
Fourier-Mukai kernels giving the components of the semiorthogonal decom-
position live on the fibered products over X/G. We describe this situation
in Definition 1.1.1 below.
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Let us set for brevity X = X/G (we assume that X and X are smooth).
For each conjugacy class λ in G we pick a representative and denote by Xλ ⊂
X the corresponding invariant locus. We set Xλ = Xλ/C(λ) (the geometric
quotient),

(1.2) Zλ = Xλ ×X X.

Note that Zλ is equipped with a natural G-action induced by the G-action
on X, so we have a diagram

[Zλ/G]

Xλ

✛

q λ

[X/G]

p
λ

✲

in which qλ is finite flat (since so is the map X → X/G), while pλ is finite.
For example, for λ = 1 we have X1 = X, C(1) = G, X1 = X/G = X,

Z1 = X, p1 is the identity map, q1 : [X/G] → X/G is the natural projection.
For λ ̸= 1 the scheme Zλ is typically nonreduced (see e.g., Example 3.3.1).

Definition 1.1.1. Let us say that the action of a finite group G on a
smooth quasiprojective variety X satisfies condition (MSOD)1 if

• all the quotients Xλ = Xλ/C(λ) are smooth;

• there exists a collection of objects Kλ in D([Zλ/G]), such that the
corresponding Fourier-Mukai functors

ΦKλ
: D(Xλ) → D([X/G]) : F 7→ pλ∗(Kλ ⊗ q∗λF )

are fully faithful (here the functors pλ∗, ⊗ and q∗λ are derived);

• the corresponding subcategories give a semiorthogonal decomposition

D([X/G]) = ⟨D(Xλ1
), . . . ,D(Xλr

)⟩

with respect to some total ordering λ1, . . . , λr on G/∼.

1MSOD stands for “motivic semiorthogonal decomposition”
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1.2. Restricting (MSOD) to G-invariant divisors and application
to Sn-invariant hypersurfaces

The main observation we make in this paper is that condition (MSOD) is
preserved when passing to sufficiently generic G-invariant divisors. Namely,
we assume that the action of G on X is effective and denote by Xfr ⊂ X the
open subset on which G acts freely. Similarly, for each λ and every connected
component Y ⊂ Xλ, let us denote by W (Y ) the quotient of C(λ) that acts
effectively on Y , and let Y fr ⊂ Xλ denote the open subset on which W (Y )
acts freely. In the case when Xλ is connected we will write Wλ := W (Xλ).

We will impose the following assumption on a divisor H in X:

(∗) for every λ and every connected component Y ⊂ Xλ, H does
not contain Y and H ∩ Y fr is dense in H ∩ Y (in particular,
H ∩Xfr is dense in H).

Theorem 1.2.1. Assume that the pair (X,G) satisfies (MSOD), and let
H ⊂ X be a smooth G-invariant divisor satisfying (∗). Then the pair (H,G)
satisfies (MSOD).

We will deduce this result from Kuznetsov’s base change for semiorthog-
onal decompositions [12].

To get applications of this theorem, one should start with some pairs
(X,G) for which condition (MSOD) is already known. We mostly focus on
the case of the Sn action on An (in which case the semiorthogonal decompo-
sition of the required type was constructed in [18]), and also consider pairs
of the form (C1 × · · · × Cn, G1 × · · · ×Gn), where for each i, Gi is a finite
group acting effectively on a smooth curve Ci.

We combine Theorem 1.2.1 with two simpler procedures: replacing X
by a G-invariant open subset and passing to the quotient by a free action
of Gm. This leads us in the case of [V/Sn], where V = An, to the following
semiorthogonal decomposition for the projective hypersurface given by an
Sn-invariant homogeneous polynomial f .

Note that in this case the conjugacy classes in Sn are numbered by
partitions λ of n. For each λ, we have the corresponding linear subspace Vλ

of invariants and we denote by Wλ the quotient of C(λ) acting effectively on
Vλ (see Sec. 4.1 for details). There is an induced Gm-action on V λ := Vλ/Wλ,
and fλ := f |Vλ

descends to a quasihomogeneous polynomial fλ on V λ. We
denote by Xfλ

⊂ PV λ the corresponding weighted projective hypersurface

stack defined as the quotient of the affine hypersurface fλ = 0 with the origin
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removed, by the action of Gm (here PV λ is the weighted projective space
stack [V λ \ {0}/Gm]).

Theorem 1.2.2. Let f be an Sn-invariant homogeneous polynomial on V =
An, such that the corresponding projective hypersurface Xf = PH(f) ⊂ P(V )
is smooth. Then there exists a semiorthogonal decomposition

D([Xf/Sn]) = ⟨D(Xfλ1

), . . . ,D(Xfλr

)⟩,

where λ1 < · · · < λr is a total order on partitions of n refining the dominance
order.

Note that the decomposition of Theorem 1.2.2 no longer follows the
pattern of Conjecture A since some components of the decompositions are
themselves derived categories of stacks. The only similarity is that in both
cases there is a birational morphism of stacks inducing a fully faithful em-
bedding of derived categories via the pull-back (namely, [X/G] → X/G in
Conjecture A and [Xf/Sn] → Xf

1n
in Theorem 1.2.2), which is then ex-

tended to a semiorthogonal decomposition of the derived category of the
source stack.

1.3. Outline of paper

In Section 2, after some preliminary material, we review Kuznetsov’s theory
of base change for semiorthogonal decompositions. In Section 3, we prove
Theorem 1.2.1 and discuss the procedure of inducing the semiorthogonal
decomposition on the quotient by an action of a reductive algebraic group.
In Section 4, we consider applications of Theorem 1.2.1. In particular, in
Section 4.2 we prove Theorem 1.2.2. In Section 4.3 we consider applications
related to the stacks [C1 × · · · × Cn/(G1 × · · · ×Gn)], where Gi is a finite
group acting on a smooth curve Ci.
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1.5. Conventions

We work over C. All varieties are assumed to be quasiprojective (in particu-
lar, when a finite group acts on such a variety, the geometric quotient exists).
All stacks are assumed to be quasiprojective DM-stacks in the sense of [10,
Definition 5.5]. All functors are assumed to be derived. We denote by D(X)
(resp., Perf(X)), for X a variety or a stack, the bounded derived category of
coherent sheaves on X (resp., the subcategory of perfect complexes). When
G is an algebraic group acting on a variety X, we denote by [X/G] the
corresponding quotient stack, whereas X/G denotes the geometric quotient
(when it exists). We always denote by P(a1, . . . , an) the weighted projective
space stack obtained as the quotient stack [An \ {0}/Gm], where Gm acts
with the weights (a1, . . . , an).

2. Semiorthogonal decompositions and

base change for stacks

In this section, we will prove a version of Kuznetsov’s base change for
semiorthogonal decompositions of derived categories of stacks.

2.1. Semiorthogonal decompositions

Recall that a semiorthogonal decomposition of a triangulated category T is a
pair A,B of full triangulated subcategories of T such that HomT (B,A) = 0,
and every object t ∈ T fits into an exact triangle

b → t → a → b[1]

where a ∈ A, b ∈ B. In this case, we write T = ⟨A,B⟩. We can iterate this
definition to get semiorthogonal decompositions with any finite number of
components A1, . . . ,An and we write

T = ⟨A1, . . . ,An⟩.

For an overview of semiorthogonal decompositions in algebraic geometry,
see [5, 6].
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2.2. Fourier-Mukai functors

Recall that following [10], we call a DM-stack X quasiprojective if it has
quasiprojective coarse moduli space and is a global quotient of a quasipro-
jective scheme by a reductive algebraic group. For example, the quotient
stack [X/G], where G is a finite group acting on a quasiprojective scheme
X, satisfies these conditions and its coarse moduli space is X/G. By [10,
Prop. 5.1], such a stack has the resolution property, i.e., every coherent
sheaf on it admits a surjective morphism from a vector bundle. Also, such a
stack has an affine diagonal. We denote by D(X ) the bounded derived cate-
gory of coherent sheaves on X and by Perf(X ) ⊂ D(X ) the perfect derived
category.

An object K ∈ D(X × Y), whose support is proper over Y, gives rise to
an exact functor ΦK : Perf(X ) → D(Y) defined by

ΦK(F ) = πY∗(π
∗
XF ⊗K),

where πX : X × Y → X and πY : X × Y → Y are the projections. We will
refer to K as a Fourier-Mukai kernel and ΦK a Fourier-Mukai functor.
Note that this functor also has a natural extension Dqc(X ) → Dqc(Y) to
unbounded derived categories of quasicoherent sheaves, which has the right
adjoint

(2.1) Φ!
K(G) = πX∗Hom(K, π!

YG),

where π!
Y is the right adjoint to πY∗.

The formalism of Fourier-Mukai functors, e.g., as in [9], extends routinely
to the case of smooth DM-stacks (see [2] where Fourier-Mukai functors are
considered in a much more general context).

Note that in the case when X and Y have maps to some DM-stack S,
then it is natural to consider relative Fourier-Mukai functors ΦK associated
with kernels K on X ×S Y, defined in the same way as above. (One gets the
same functor by considering the usual Fourier-Mukai functor associated with
the push-forward of K with respect to the morphism X ×S Y → X × Y.) We
refer to such Fourier-Mukai functors as S-linear since they commute with
tensoring by the pull-backs of objects in Perf(S) (as one can easily see from
the projection formula). Note that the right adjoint functor Φ!

K is also S-
linear (see [11, Lemma 2.34]). Also, under appropriate assumptions, such
relative Fourier-Mukai functors are compatible with pull-backs under a base
change (see Proposition 2.3.3 below).
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2.3. Base change for semiorthogonal decompositions

Here we will recall the result of [12], on the base change for semiorthogonal
decompositions. For our purposes, we need a slight generalization to Deligne-
Mumford stacks. Throughout, X ,Xi,S, T will be quasiprojective DM stacks
in the sense of [10].

The following technical definition plays an important role in the base
change.

Definition 2.3.1. Suppose we have morphisms of quasiprojective DM stacks
f : X → S and φ : T → S. Then the cartesian diagram

(2.2)

XT X

T S

fT

φX

f

φ

is called exact if the natural map φ∗f∗ → (fT )∗φ
∗
X is an isomorphism. In

this case we say that the base change φ : T → S is faithful for the map f .

For example, the cartesian diagram is exact if either f or φ is flat (this
is proved similarly to [11, Corollary 2.23]).

Lemma 2.3.2. Assume the square (2.2) is exact cartesian. Then the perfect
derived category Perf(XT ) is classically generated by objects of the form
φ∗
XF ⊗ f∗

T G with F ∈ Perf(X ) and G ∈ Perf(T ).

1st proof. Arguing as in the case of schemes (see [12, Lemma 5.2]), we see
that it is enough to check that for every coherent sheaf F on XT there exists
a surjection φ∗

XPX ⊗ f∗
T PT → F , where PX (resp., PT ) is a vector bundle

on X (resp., T ). Let us consider the natural map

α : XT = T ×S X → T × X .

Since it is obtained by the base change from the diagonal map of S, α is
affine. Hence, the adjunction map α∗α∗F → F is surjective (since the image
of this map under α∗ is surjective). Since α∗F is the union of its coherent
subsheaves, we can find a coherent sheaf G on T × X with a surjective map
α∗G → F . Now using ample line bundles on the coarse moduli spaces of T
and X , as well as vector bundles on T and X that have faithful action of
the stabilizer subgroups at all geometric points, we can find vector bundles
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PX and PT on X and T , respectively, and a surjection PX ⊗ PT → G (see
[10, Sec. 5.2]). Thus, we get the composed surjection

φ∗
XPX ⊗ f∗

T PT ≃ α∗(PX ⊗ PT ) → α∗G → F.

2nd proof (sketch). Here we use a result of Ben-Zvi, Nadler and Preygel
[2] in the context of derived algebraic geometry. Using [11, Prop. 2.19] it
is easy to see that exactness of a cartesian square is equivalent to its tor-
independence. Hence, the derived fiber product X h

T = X ×L
S T is equivalent

to the fiber product XT . Indeed, let (X
h
T ,A

·) be the derived fiber product.
Then the cohomology sheaves H−∗(A·) are given by Tor−∗

OS
(OX ,OT ) which

vanishes for ∗ ≠ 0.
Now the assertion follows from the equivalence [2, Theorem 1.2]:

Perf(X )⊗Perf(S) Perf(T )
∼
−→ Perf(X h

T )
∼
−→ Perf(XT ). □

Given an S-linear Fourier-Mukai functor ΦK : Perf(X ) → D(Y) with the
kernel K on X ×S Y (with proper support over Y), one can consider a base
change φ : T → S, and the corresponding T -linear Fourier-Mukai functor

ΦKT
: Perf(XT ) → D(YT )

given by the kernel KT obtained as the pull-back of K with respect to the
natural morphism

XT ×T YT → X ×S Y.

The natural question is whether the functors ΦKT
and ΦK are compatible

with the pull-back functors induced by φ. For our purposes the following
criterion will suffice (see [11, Lemma 2.42]).

Proposition 2.3.3. In the above situation assume that the map Y → S
is flat and the base change φ : T → S is faithful for X → S. In addition,
assume that X → S is proper and φ has finite Tor-dimension. Then for
F ∈ D−(X ) and G ∈ D+(Y) (where D−,D+ ⊂ D denote bounded above and
bounded below derived categories), one has

ΦKT
φ∗
X (F ) ≃ φ∗

YΦK(F ),

Φ!
KT

φ∗
Y(G) ≃ φ∗

XΦ
!
K(G).

Here φX : XT → X and φY : YT → Y are the natural projections.
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Proof. This is proved in the same way as [11, Lemma 2.42], by a calculation
on the commutative cube obtained as the product over S of the cartesian
square

X ×S Y Y

X S

with the arrow φ : T → S. One has to observe that all the faces of this cube
are exact cartesian and use the base change. The assumption that φ is of
finite Tor-dimension is used to check that φ∗ commutes with Hom. □

Remark 2.3.4. The condition that Y → S is flat in Proposition 2.3.3 can
be replaced by a weaker condition that φ : T → S is faithful for Y → S
and for X ×S Y → S, as is done in [11, Lemma 2.42]. Note that there is a
slight mistake in the proof of [12, Theorem 6.4] where the above faithfulness
assumption (as well as the assumption of smoothness of S) is omitted.

The following result is similar to (but more special than) [12, Thm. 6.4].

Lemma 2.3.5. Assume that X , Y and S are smooth, S is separated, the
morphisms X → S and Y → S are proper, and the morphism Y → S is flat.
Let ΦK : D(X ) → D(Y) be the S-linear Fourier-Mukai functor associated
with a kernel K in D(X ×S Y), and let φ : T → S be a faithful base change
for both X and Y. Assume that the support of K is proper over X and that
ΦK is fully faithful. Then ΦKT

: Perf(XT ) → D(YT ) is also fully faithful.

Proof. First, we claim that the functor Φ!
K sends D(Y) to D(X ). To this

end we observe that ΦK can be computed as the absolute Fourier-Mukai
functor ΦK′ , where the kernel K′ is given by the push-forward of K with re-
spect to the finite morphism X ×S Y → X × Y (finiteness of this morphism
follows from the finiteness of the diagonal morphism for S). Since X × Y is
smooth, the right adjoint functor Φ!

K′ sends D(Y) to D(X ) (as follows from
formula (2.1)).

Thus, the fact that ΦK is fully faithful on D(X ) implies that the natural
morphism

(2.3) F → Φ!
KΦK(F )

is an isomorphism for F ∈ D(X ).
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Now to check that ΦKT
is fully faithful on Perf(XT ), by Lemma 2.3.2,

it is enough to check that the morphism

F̃ → Φ!
KT

ΦKT
(F̃ )

is an isomorphism for objects of the form F̃ = φ∗
XF ⊗ f∗

T G, where F ∈
Perf(X ) and G ∈ Perf(T ). But this easily follows from T -linearity of our
functors and from Proposition 2.3.3 (note that φ has finite Tor-dimension
since S is smooth):

Φ!
KT

ΦKT
(φ∗

XF ⊗ f∗
T G) ≃ φ∗

XΦ
!
KΦK(F )⊗ f∗

T G,

so the needed assertion follows from the fact that (2.3) is an isomorphism.
□

Suppose we have an S-linear semiorthogonal decomposition

Perf(X ) = ⟨A1, . . . ,Am⟩.

Let us define subcategories AiT ⊂ Perf(XT ) by the formula

AiT = ⟨φ∗
XA⊗ f∗

T G⟩A∈Ai,G∈Perf(T ).

The following two theorems are analogs of [12, Thm. 5.6] and [12, Thm. 6.4].

Theorem 2.3.6. Suppose φ : T → S is faithful for f : X → S. Assume that
there is an S-linear semiorthogonal decomposition

Perf(X ) = ⟨A1, . . . ,Am⟩.

Then the subcategories AiT form a T -linear semiorthogonal decomposition
of the perfect derived category Perf(XT ),

Perf(XT ) = ⟨A1T , . . . ,AmT ⟩.

Proof. As in [12], the semiorthogonality ⟨AiT ,AjT ⟩ for i > j follows from
faithful base change. Now Lemma 2.3.2 implies that the subcategories
A1T , . . . ,AmT generate Perf(XT ), and the assertion follows. □

Theorem 2.3.7. Suppose X and S are smooth, S is separated, the mor-
phism f : X → S is flat and proper, and there is an S-linear semiorthogonal
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decomposition

D(X ) = ⟨D(X1), . . . ,D(Xm)⟩,

where for i = 1, . . . ,m, the stacks Xi are smooth, the maps Xi
fi
✲ S are

proper, and the embedding functors Φi : D(Xi) → D(X ) are given by some
kernels Ki in D(Xi ×S X ). Assume now that φ : T → S is a base change,
faithful for f and for each fi. Set XiT = Xi ×S T . Then the pullbacks KiT

of Ki to XiT ×T XT define fully faithful functors

ΦiT : Perf(XiT ) → Perf(XT ).

and their images give a T -linear semiorthogonal decompositon

Perf(XT ) = ⟨Perf(X1T ), . . . ,Perf(XmT )⟩.

Proof. Let us set Ai = Φi Perf(Xi). By Theorem 2.3.6, we get a semiorthogo-
nal decomposition of Perf(XT ) into the subcategoriesAiT (note thatD(X ) =
Perf(X ) and D(Xi) = Perf(Xi) by smoothness).

Now we observe that for F ∈ Perf(Xi) and G ∈ Perf(T ), we have an
isomorphism

φ∗
X (ΦiF )⊗ f∗

T (G) ≃ ΦiT (φ
∗
Xi
F )⊗ f∗

T (G) ≃ ΦiT (φ
∗
Xi
F ⊗ f∗

iT (G)),

where we used commutation of relative Fourier-Mukai functors with the pull-
back (see Proposition 2.3.3) and T -linearity of ΦiT (and (fiT , φXi

) have the
same meaning for Xi as (f, φ) for X ). Using Lemma 2.3.2 for X and Xi, we
deduce that the image of Perf(XiT ) under ΦiT is exactly AiT ⊂ Perf(XT ).
Finally, by Lemma 2.3.5, the functors ΦiT are fully faithful. □

An easy example of the faithful base change is restricting to an open
subset. In particular, we deduce that condition (MSOD) is preserved when
passing to a G-invariant open subset.

Corollary 2.3.8. Assume that the pair (X,G) satisfies (MSOD), and let
U ⊂ X be a G-invariant open subset. Then the pair (U,G) also satisfies
(MSOD), and the corresponding kernels on Uλ ×U U are obtained as pull-
backs of the kernels on Xλ ×X X.

Proof. To deduce this from Theorem 2.3.7, we observe that U is the preimage
of the open subset U = U/G ⊂ X, and Uλ ⊂ Xλ is the preimage of U under
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the map Xλ → X. Note that the natural map of stacks over [X/G],

[U/G] → [X/G]×X U ≃ [X/G]×X U,

is an equivalence, since it becomes an isomorphism after the base change
X → [X/G].

Thus, we can apply Theorem 2.3.7 to the faithful base change U → X.
Furthermore, we have

(Xλ ×X X)×X U ≃ Xλ ×X U ≃ Xλ ×X U ×U U ≃ Uλ ×U U,

so the new kernels live on the correct spaces. □

2.4. Products

We observe that condition (MSOD) is compatible with products (see [12,
Corollary 5.10] for a more general result).

Lemma 2.4.1. Let G (resp., G′) be a finite group acting on a smooth
variety X (resp., X ′), and assume that condition (MSOD) is satisfied for
(X,G) (resp., (X ′, G′)). Then condition (MSOD) is also satisfied for the
action of G×G′ on X ×X ′.

Proof. Let (λ, λ′) be a conjugacy class in G×G′. The corresponding scheme

Zλ,λ′ = (Xλ ×X ′
λ′)×X×X′ (X ×X ′)

is naturally identified with Zλ × Zλ′ so we can define the kernel Kλ,λ′ on
Zλ,λ′ as the exterior tensor product Kλ ⊠Kλ′ . The corresponding func-
tor sends F ⊠ F ′, where F ∈ D(Xλ), F

′ ∈ D(X ′
λ), to ΦKλ

(F )⊠ ΦKλ′ (F
′).

Thus, computing morphisms between such objects using the Künneth for-
mula, we deduce that the functor ΦKλ⊠Kλ′

is fully faithful on objects of the
form F ⊠ F ′, and hence on all objects. Similarly, we check semiorthogonality
between the images and generation. Thus, we get a semiorthogonal decom-
position of D([X ×X ′/(G×G′)]) with respect to any total ordering of con-
jugacy classes in G×G′ compatible with the partial order (λ1, λ

′
1) ≤ (λ2, λ

′
2)

if λ1 ≤ λ2 and λ′
1 ≤ λ′

2 (where we use the total orders on conjugacy classes
in G and G′ corresponding to the original decompositions). □
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3. G-invariant divisors and proof of Theorem 1.2.1

3.1. Smooth G-invariant divisors

Throughout this section we fix a smooth connected variety X with an effec-
tive action of a finite group G, such that X = X/G is smooth. We denote
by Xfr ⊂ X the open subset on which the action of G is free. Recall that
Xλ ⊂ X denotes the λ-invariant locus in X (where λ runs over a set of rep-
resentatives of conjugacy classes in G), and Xλ = Xλ/C(λ). Note that the
ideal sheaf of Xλ is generated locally by elements of the form λ∗(f)− f ,
with f ∈ OX , and with this subscheme structure Xλ is smooth.

For each λ and every connected component Y ⊂ Xλ, let us denote by
W (Y ) the quotient of C(λ) that acts effectively on Y , and let Y fr ⊂ Xλ

denote the open subset on which W (Y ) acts freely.

Lemma 3.1.1. The morphism X → X = X/G is finite flat of degree |G|.

Proof. It is well known that the morphism X → X/G is finite surjective of
degree |G| (see [16, Ch. II.7]). Since X and X are smooth, it is flat by the
miracle flatness theorem. □

Now let H ⊂ X be a smooth G-invariant divisor. We have the induced
action of G on H, so we can consider varieties H = H/G, Hλ ⊂ H and
Hλ = Hλ/C(λ). It is easy to see that

Hλ = H ∩Xλ,

the scheme-theoretic intersection.
We start by observing that the smoothness of the geometric quotient is

preserved upon passing to a smooth G-invariant divisor.

Proposition 3.1.2. For a smooth G-invariant divisor H ⊂ X, the quotient
H = H/G is smooth.

Proof. Assume first that x ∈ H is a G-invariant point. We can linearize
the action in a formal neighborhood of x in X, so the divisor H will be
a G-invariant hyperplane. Since X/G is smooth at x, G is generated by
pseudo-reflections. Hence, the same is true for the induced action of G on
H, so the quotient H/G is smooth at x.

Now let x ∈ H be arbitrary, and let Stx ⊂ G denote the stabilizer sub-
group of x. By Luna’s étale slice theorem, [15], the map X/Stx → X/G
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is étale near the image of x in X/Stx. Since X/G is smooth, this implies
X/Stx is also smooth at x. Thus, H/Stx is smooth at x, by the previous
argument. Since the mapping H/Stx → H/G is étale at the image of x in
H/Stx, we conclude that H/G is smooth at the image of x (using [8, Theo-
rem 17.11.1]). □

Corollary 3.1.3. For any λ, if Xλ is smooth then Hλ is smooth.

Proof. The scheme Xλ is smooth as the fixed locus of a finite order auto-
morphism in X. Similarly, Hλ is smooth as H is smooth and Hλ is the fixed
locus of λ. Thus, Hλ = H ∩Xλ is a smooth divisor in Xλ, so we can apply
Proposition 3.1.2. □

Lemma 3.1.4. Assume that H ∩Xfr is dense in H. Then the square

H ✲ H

X
❄

✲ X
❄

is exact cartesian.

Proof. Since H (resp., H) is a divisor in X (resp., X), and both X and
X are smooth, by [11, Cor. 2.27], it is enough to check that our square is
cartesian. By Lemma 3.1.1, both maps X → X and H → H are finite flat
of degree |G| (here we use the assumption that H ∩Xfr is dense in H and
Proposition 3.1.2 which assures that H is smooth). The embedding of H
into X factors through X ×X H which is a closed subscheme of X. Thus
H ⊂ X ×X H is a closed embedding of schemes, both of which are finite flat
of degree |G| over H, and the assertion follows. □

Proposition 3.1.5. Assume that for some λ, Xλ is smooth, and that H
satisfies condition (∗) introduced before Theorem 1.2.1. Then both squares
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in the diagram

(3.1)

Hλ
✲ Hλ

✲ H

Xλ

❄

✲ Xλ

❄

✲ X
❄

are exact cartesian.

Proof. By [11, Cor. 2.27], it is enough to check that these squares are carte-
sian. First, we observe that by Lemma 3.1.4, the right square in the diagram

Hλ
✲ H ✲ H

Xλ

❄

✲ X
❄

✲ X
❄

is cartesian. Since Hλ is the scheme-theoretic intersection of Xλ with H,
the left square in this diagram is also cartesian. Hence, the big rectangle
in this diagram, which is the same as the big rectangle in diagram (3.1), is
cartesian.

Next, applying Lemma 3.1.4 to every connected component Y of Xλ, the
group W (Y ) acting on it and the divisor Y ∩Hλ, we get that the left square
is cartesian. Since the map Xλ → Xλ is flat and surjective, and the big
rectangle is cartesian, we derive the same for the right square (by checking
that the map Hλ → Xλ ×X H of Xλ-schemes becomes an isomorphism after
the base change Xλ → Xλ). □

3.2. Proof of Theorem 1.2.1

The condition (MSOD) for (X,G) gives an X-linear semiorthogonal decom-
position of D([X/G]). To deduce from this the same condition for (H,G), we
want to apply Theorem 2.3.7 to the base change of the morphism [X/G] → X
with respect to the morphism H → X, i.e., to X = [X/G], S = X, Xi = Xλ

and T = H.
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Note that by assumption, [X/G], X and Xλ are smooth. Also, the mor-
phisms [X/G] → X/G = X and Xλ → X are proper, so Theorem 2.3.7 is
applicable.

We claim that the corresponding diagram

[H/G] ✲ H

[X/G]
❄

✲ X
❄

is exact cartesian. Indeed, by Lemma 3.1.4 the natural 1-morphism of stacks
[H/G] → [X/G]×X H over [X/G] becomes an isomorphism H → X ×X H
after the base change X → [X/G]. Hence, it is an equivalence.

Also, by Proposition 3.1.5, the base change of Xλ gives us Hλ. Note that
by Corollary 3.1.3, [H/G] and Hλ are smooth. Thus, Theorem 2.3.7 gives
an H-linear semiorthogonal decomposition of Perf([H/G]) = D([H/G]) with
the components Perf(Hλ) = D(Hλ). Furthermore, the kernel on Hλ ×H H
giving the functor D(Hλ) → D([H/G]) is given by the pullback of Kλ. Thus,
all conditions of Definition 1.1.1 are satisfied for the action of G on H. □

3.3. Subschemes Zλ in Xλ × X

The content of this subsection is not used anywhere else in the paper. Here
we discuss certain natural subschemes of Xλ ×X X. In some situations con-
sidered in [18] they are related to the equivariant cohomology of the Springer
fibers.

Assume that G is a finite group acting on a quasiprojective smooth
variety X, such that all Xλ = Xλ/C(λ) are smooth.

For each λ ∈ G/∼, let us define the closed subscheme Zλ ⊂ Xλ ×X X
by

Zλ := Xλ ×X X,

and let Zred
λ ⊂ Zλ be the corresponding reduced subscheme. Note that Zred

λ

is the union of the graphs of the embeddings g : Xλ → X, for g running
over G/C(λ). 2 It is easy to see that Zλ = Zλ/C(λ), where Zλ is defined

by (1.2). Also, we have Z
red
λ = Zred

λ /C(λ) since both are subschemes of Zλ

2Our notation is different from [18] where Zλ denotes the reduced subscheme.
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defined by a nilpotent ideal and since the quotient of a reduced scheme by
a finite group is reduced.

The schemes Z
red
λ play an important role in the work [18]: in the exam-

ples considered in that paper (see also Sec. 4.1 below), the kernels of the
functors defining the semiorthogonal decompositions of D([X/G]) are given

by some vector bundles on Z
red
λ .

The simplest example below shows that Zλ and Zλ are typically nonre-
duced.

Example 3.3.1. Let X = A1, G = Z2 acting on A1 by x 7→ −x. We can
take t = x2 as a coordinate on X/G ≃ A1. Then for λ ̸= 1, Zλ = Zλ ⊂ A1 is
the subscheme corresponding to the ideal (x2).

Note that in the special case λ = 1, we have Z1 = X, which is reduced. It
turns out that the subscheme Z1 = X ×X X ⊂ X ×X is still reduced (and
is equal to the union of the graphs of all g ∈ G acting on X) provided the
action of G is effective.

Lemma 3.3.2. Assume that the action of G on X is effective, and the
schemes X and X/G are smooth. Then Z1 is reduced.

Proof. Since the projection X → X is finite flat, the same is true about the
projection p1 : Z1 → X. Thus, p1∗OZ1

is locally free over OX , in particular,
it is torsion free as an OX -module. Furthermore, the fact that the action of
G is effective implies that Z1 is reduced over a generic point of X. Hence, the
nilradical of OZ1

would give a torsion submodule p1∗OZ1
, so this nilradical

has to be trivial. □

3.4. Passing to the quotient stacks

Note that a general theory of inducing semiorthogonal decompositions on
quotients of varieties by actions of reductive groups is considered in [7]. We
need an analogous result where instead of varieties we consider stacks of the
form [X/G].

Namely, assume that condition (MSOD) holds for a pair (X,G). Assume
in addition that there is a reductive algebraic group G acting onX, such that
the actions of G and G commute and [X/G] is a DM-stack. In particular,
the subvarieties Xλ acquire the action of C(λ)×G and there is an induced
action of G on Xλ = Xλ/C(λ) and on Zλ. This action is compatible with the
projections to Xλ and to X. Assume also that each kernel Kλ in D([Zλ/G])
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comes from an object K̃λ in D([Zλ/(G×G)]). In this case each K̃λ defines
the Fourier-Mukai functor

ΦG

Kλ
: D([Xλ/G]) → D([X/(G×G)])

that fits into a commutative square

D([Xλ/G])
ΦG

Kλ✲ D([X/(G×G)])

D(Xλ)
❄

ΦKλ ✲ D([X/G])
❄

where the vertical arrows are given by forgetting the G-action. In other
words, ΦG

Kλ
is defined by the same formula as ΦKλ

, but we view the result
as an object of the G×G-equivariant derived category.

Lemma 3.4.1. The functors ΦG

Kλ
are fully faithful and their images give a

semiorthogonal decomposition

D([X/(G×G)]) = ⟨D([Xλ1
/G]), . . . ,D([Xλr

/G])⟩.

Proof. For a pair of objects F ,G ∈ D([Xλ/G]), we have a commutative
square

HomD([Xλ/G])(F ,G)
ΦG

Kλ✲ HomD([X/(G×G)])(Φ
G

Kλ
(F),ΦG

Kλ
(G))

HomD(Xλ)
(F ,G)G

forg

❄
ΦKλ✲ HomD([X/G])(ΦKλ

(F),ΦKλ
(G))G

forg

❄

in which the vertical arrows are isomorphisms since G is reductive. Further-
more, since ΦKλ

is fully faithful, the bottom horizontal arrow is an isomor-
phism. Hence, the top horizontal arrow is also an isomorphism, i.e., ΦG

Kλ
is

fully faithful.
Similarly, if Hom(ΦKλ

(·),ΦKµ
(·)) = 0 then by passing to G-invariants,

we deduce that Hom(ΦG

Kλ
(·),ΦG

Kµ
(·)) = 0. Hence, the semiorthogonality still

holds for the images of ΦG

Kλ
.
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Finally, to see that the images of ΦG

Kλ
generate D([X/(G×G)]), we

observe that the right adjoint functors (ΦG

Kλ
)! and Φ!

Kλ
to ΦG

Kλ
and ΦKλ

are still compatible with the forgetful functors, i.e., we have a commutative
diagram

D([X/G×G]) D([Xλ/G])

D([X/G]) D(Xλ)

(ΦG
Kλ

)!

forg forg

Φ!

Kλ

Indeed, for any F ∈ D([X/G×G]), we can define (ΦG

Kλ
)!(F ) by the same

formula for Φ!
Kλ

(see (2.1)) understood in terms of equivariant categories.
Then the above commutative diagram holds and the adjunction follows from
the chain of isomorphisms

HomD([X/G×G])(Φ
G

Kλ
(F ), F ′) ≃ HomD([X/G])(ΦKλ

(F ), F ′)G

≃ HomD(Xλ)
(F,Φ!

Kλ
(F ′))G ≃ HomD([Xλ/G])(F, (Φ

G

Kλ
)!(F ′)).

Now suppose F ∈ D([X/G×G]) is right orthogonal to the images of
ΦG

Kλ
. Then by adjointness, (ΦG

Kλ
)!(F) = 0 for all λ. Thus, using the above

commutative diagram, we obtain that forg(F) is right orthogonal to the
images of all ΦKλ

. Using the original semiorthogonal decomposition, we
conclude that forg(F) = 0. But the forgetful functor is conservative, so
F = 0. □

Remark 3.4.2. The above lemma can also be deduced from the conserva-
tive descent theorem of Bergh and Schnürer [4].

4. Examples of semiorthogonal decompositions obtained

from Theorem 1.2.1

4.1. Motivic decomposition for D([An/Sn])

Now we will focus on the case of the standard action of the symmetric group
Sn on the affine n-space, V = An. In this case V = V/Sn is still the affine
space An and the morphism V → V is given by the elementary symmetric
polynomials.

The conjugacy classes of Sn are labeled by partitions λ = (λ1 ≥ λ2 ≥
· · · ) of n. Recall that the dominance partial ordering ≤ on partitions of n is
defined by λ ≥ µ if λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi for all i ≥ 1. Note that (n)
is the biggest partition and (1n) is the smallest.
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For each partition λ = (λ1 ≥ λ2 ≥ · · · ) of n, we choose as a representa-
tive of the corresponding conjugacy class the permutation (1 · · ·λ1)(λ1 +
1 · · ·λ1 + λ2) · · · The corresponding fixed locus Vλ ⊂ V is isomorphic to
Aℓ(λ), where ℓ(λ) is the length of λ, and the isomorphism is given by

(4.1) (y1, . . . , yℓ) 7→ (y1, . . . , y1︸ ︷︷ ︸
λ1

, y2, . . . , y2︸ ︷︷ ︸
λ2

, . . . , yℓ, . . . , yℓ︸ ︷︷ ︸
λℓ

).

If we write λ exponentially: λ = (1r1 , 2r2 , . . . , prp) (where ri is the mul-
tiplicity of the part i), then we have

C(λ) ≃

p∏

i=1

((Z/iZ)ri ⋊ Sri),

and the quotient of C(λ) that acts effectively on Vλ is the groupWλ ≃
∏

i Sri .
We have

V λ = Vλ/Wλ ≃ A
ℓ(λ) =

p∏

i=1

A
ri ,

and the quotient map Vλ → V λ is the product of maps Ari → Ari given by
the elementary symmetric functions. Under the identiication (4.1), the open
subset V fr

λ ⊂ Vλ, on which Wλ acts freely, is given by

(4.2) V fr
λ = {(y1, . . . , yℓ) | yi ̸= yj whenever λi = λj , i ̸= j}.

Recall that we have the reduced subscheme Zred
λ ⊂ Vλ × V , invariant

under the action of Wλ × Sn (see Sec. 3.3). Explicitly, this is the union
of graphs of all maps Vλ → V : x 7→ σx over σ ∈ Sn/C(λ). The quotient
Zred
λ /Wλ can be identified with the reduced subscheme

Z
red
λ ⊂ Zλ = V λ ×V V

defined as in (1.2). Let us consider the kernels

Kλ = O
Z

red

λ

on Zλ.

Theorem 4.1.1 ([18, Theorem 6.3.1]). For each λ, |λ| = n, the functor
ΦKλ

: D(V λ) → D([V/Sn]) is fully faithful. The images of these functors give
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a semiorthogonal decomposition

D([An/Sn]) = ⟨D(V λ1
), . . . ,D(V λr

)⟩.

for any total ordering λ1 < · · · < λr of partitions of n refining the dominance
order. Thus, condition (MSOD) holds for the action of Sn on An and the
kernels (O

Z
red

λ

).

For each λ, the natural Gm-action on Vλ induces a Gm-action on V λ

such that the morphism Vλ → V λ is Gm-equivariant. We denote by

PV λ = [(V λ \ {0})/Gm]

the corresponding weighted projective space stack. More precisely, for each
λ = (1r1 , 2r2 , . . . , prp), we get the weighted projective space stack

PV λ = P(1, . . . , r1, 1, . . . , r2, . . . , 1, . . . , rp).

Corollary 4.1.2. There is a semiorthogonal decomposition

D([Pn−1/Sn]) ∼= ⟨D(PV λ1
), . . . ,D(PV λr

)⟩.

Proof. This follows from Theorem 4.1.1 by first restricting the semiorthog-
onal decomposition to the open subset An \ {0} ⊂ An using Corollary 2.3.8,
and then applying Lemma 3.4.1 to the natural Gm-equivariant structures on
the corresponding kernels (which are the structure sheaves of Gm-invariant
correspondences). □

4.2. Sn-invariant hypersurfaces

Let f ∈ C[x1, . . . , xn]
Sn be an Sn-invariant polynomial, and let H(f) ⊂ V =

An be the corresponding hypersurface.

Corollary 4.2.1. Let T ⊂ V be an Sn-invariant closed subset containing
the singular locus of H(f). Assume that for every partition λ, such that
Vλ \ T ̸= ∅, the restriction f |Vλ

is not identicially zero and the intersection
H(f |Vλ

) ∩ V fr
λ \ T is dense in H(f |Vλ

) \ T . Then the pair (H(f) \ T, Sn)
satisfies (MSOD), so we have a semiorthogonal decomposition

D([H(f) \ T/Sn]) = ⟨D((H(f |Vλ1
) \ T )/Wλ1

), . . . ,D((H(f |Vλr
) \ T )/Wλr

)⟩

where λ1 < · · · < λr is a total order on partitions of n refining the dominance
order.
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Proof. First, we use Corollary 2.3.8 to prove that condition (MSOD), that
holds for the pair (V, Sn) by Theorem 4.1.1, is inherited by the pair (V \
T, Sn). Next, we want to check condition (∗) for the divisor H(f) \ T in
V \ T . Thus, we need to check that for every partition λ such that (V \ T )λ =
Vλ \ T is nonempty, we have that H(f) \ T does not contain Vλ \ T , and the
intersection H(f) ∩ Vλ \ T = H(f |Vλ

) \ T contains a dense open subset on
which Wλ acts freely. But this follows from our assumption. Hence, we can
apply Theorem 1.2.1 to the smooth divisor H(f) \ T in V \ T to deduce the
result. □

The following simple observation will be useful for us.

Lemma 4.2.2. For a homogeneous Sn-invariant polynomial f , such that
the corresponding hypersurface PH(f) ⊂ Pn−1 is smooth, one has

(4.3) f(1, 1, . . . , 1) ̸= 0.

For any partition λ of n, the restriction fλ := f |Vλ
is not identically zero

and H(fλ) is smooth away from the origin.

Proof. Indeed, consider the morphism

σ : Pn−1 → P(1, 2, . . . , n)

given by the elementary symmetric polynomials. Then the differential of σ
vanishes identically at the Sn-invariant point (1 : 1 : · · · : 1). But H(f) is the
preimage of a hypersurface under σ. Since P(H(f)) is smooth, we deduce
that f(1, . . . , 1) ̸= 0.

Since (1, . . . , 1) ∈ Vλ, from (4.3) we get that the restriction fλ := f |Vλ
is

not identically zero. Furthermore, H(fλ) \ {0} is the fixed locus of a permu-
tation acting on H(f) \ {0}, hence, it is smooth. □

Now we are ready to prove Theorem 1.2.2. Recall that in this theorem we
assume that f is a homogeneous Sn-invariant polynomial such that PH(f)
is smooth.

Proof of Theorem 1.2.2. We would like to apply Corollary 4.2.1 with T =
{0} to get condition (MSOD) for the pair (H(f) \ {0}, Sn). Let λ be a par-
tition of n. By Lemma 4.2.2, the restriction fλ := f |Vλ

is not identically
zero. Next, let us check that H(fλ) ∩ V fr

λ \ {0} is dense in H(fλ) \ {0}. In
the case dimVλ ≤ 1, we have H(fλ) \ {0} = ∅. Thus, due to the description
(4.2) of V fr

λ , it is enough to check that for dimVλ ≥ 2, no component of the
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hypersurface H(fλ) ⊂ Vλ is contained in a hyperplane yi = yj for some i ̸= j
such that λi = λj .

In the case when the degree of f is 1, it is proportional to x1 + · · ·+ xn,
so this is clear. Now assume that deg(f) > 1. By Lemma 4.2.2, H(fλ) is
smooth away from the origin. Thus, if dimVλ ≥ 3 then H(fλ) is irreducible
(since each irreducible component of H(fλ) has dimension ≥ 2 and H(fλ) \
{0} is smooth), so it cannot be contained in any hyperplane. If dimVλ = 2
then λ has only two parts (λ1, λ2). In the case λ1 ̸= λ2 the statement is
empty, so we only have to check the assertion for λ = (n/2, n/2) assuming
that n is even. But in this case the non-free locus is the line spanned by
(1, . . . , 1), so the assertion follows from (4.3).

Thus, we obtain that the pair (H(f) \ {0}, Sn) satisfies (MSOD). It re-
mains to use Lemma 3.4.1 to pass to the quotients by Gm. □

The semiorthogonal decomposition given by Theorem 1.2.2 is usually
not motivic since its components are derived categories of some quotient
stacks. The biggest component of the semiorthogonal decomposition of
D([PH(f)/Sn]) corresponds to the partition λ = (1n) and is the image of
the pull-back functor with respect to the natural morphism of stacks

π : [PH(f)/Sn] → PH(f) ⊂ P(1, 2, . . . , n),

where f is f viewed as a quasihomogeneous polynomial on An/Sn (so the
target of π is the weighted projective stacky hypersurface). The morphism
π fits into a Cartesian diagram

[H(f) \ {0}/Sn]
π̃
✲ H(f) \ {0}

[PH(f)/Sn]

Gm

❄ π
✲ PH(f)

Gm

❄

in which the vertical arrows are Gm-torsors and the top horizontal arrow is
the coarse moduli map for the action of Sn on H(f) \ {0}. Note that the fact
that the pull-back functor under π is fully faithful can be directly deduced
from the above diagram. Indeed, by the projection formula, it is enough to
check that Rπ∗O ≃ O. By the base change formula, this reduces to a similar
assertion for the morphism π̃ : [H(f)/Sn] → H(f), which is the map from
a quotient stack by Sn to the corresponding geometric quotient H(f). For
this morphism we have R>0π̃∗O = 0, and the isomorphism π̃∗O ≃ O follows



✐

✐

“8-Lim” — 2021/1/11 — 18:38 — page 1489 — #25
✐

✐

✐

✐

✐

✐

Equivariant derived categories of invariant divisors 1489

from the fact that the algebra of functions O(H(f)) is identified with the
subalgebra of Sn-invariants, O(H(f))Sn .

Example 4.2.3 (S3-invariant plane curves). Let C = PH(f) ⊂ P2 be
an S3-invariant smooth plane curve of degree d. Since in this case f(1, 1, 1) ̸=
0 by Lemma 4.2.2, for the partition (3), we getH(f̄(3)) = {0}. Hence, the cor-
responding component in the semiorthogonal decomposition of D([C/S3]) is
zero and can be skipped. Let us consider contributions of the two remaining
partitions, (13) and (2, 1).

(13): We have identifications V(13) = V , V (13)
∼= A3

1,2,3, where the subscripts
indicate the Gm-weights. The vanishing locus of f̄(13), PH(f̄(13)) will
give a smooth stacky curve in P(1, 2, 3).

(2, 1): We have identifications V (2,1) = V(2,1) = {y = z} ⊂ V , and f(2,1) is the
restriction of f to this plane. Since H(f(2,1)) is smooth away from
the origin, it is the union of d lines through the origin, say l1, . . . , ld.
The projectivization is the union of d distinct points p1, . . . , pd in the
projective line PV 2,1.

Thus, we have a semiorthogonal decomposition

(4.4) D([C/S3]) = ⟨D(PH(f̄(13))),D(p1), . . . ,D(pd)⟩

In the case d = 3, i.e., when C is an elliptic curve, we can be even more
precise about the piece corresponding to (13). Namely, in this case

f(x, y, z) = αe31 + βe1e2 + γe3,

where e1, e2, e3 are elementary symmetric functions in x, y, z. Furthermore,
we have γ ̸= 0 (otherwise, C would contain the line e1 = 0). Thus, the equa-
tion f = 0 gives a way to express e3 in terms of e1 and e2. Hence, PH(f̄(13))
is the weighted projective line stack P(1, 2).

In general, the derived category of PH(f̄(13)) has a semiorthogonal de-
composition with the main component given by the derived category of the
coarse moduli, which is C/S3, and some exceptional objects supported at
the stacky points. Thus, the semiorthogonal decomposition (4.4) can be re-
fined to a decomposition with the main component D(C/S3) followed by
exceptional objects. The obtained decomposition of D([C/S3]) matches the
one constructed in [17] since the special fibers of the projection C → C/S3

are either orbits of the points p1, . . . , pd, corresponding to λ = (2, 1), or the
points of C mapping to the two stacky points of P(1, 2, 3).
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Note that if d < 6 then the geometric quotient of PH(f̄(13)) is rational,
so in this case the category D([C/S3]) has a full exceptional collection.

Some features of the above example occur in a more general situation.
Below we use the power sum polynomials

pi(x1, . . . , xn) = xi1 + · · ·+ xin.

Proposition 4.2.4. Let f(x1, . . . , xn) be a generic Sn-invariant homoge-
neous polynomial of degree d > 0.
(i) Let λ be a partition of n such that all parts of λ are distinct. Then the
stack [PH(fλ)] is actually a smooth projective variety.
(ii) Now assume that λ has one part of multiplicity 2 and all the other parts
have multiplicity 1. Then the same conclusion as in (i) holds provided the
degree d is even.

Proof. (i) For a generic Sn-invariant f , the hypersurfaceH(f) ⊂ V is smooth
away from the origin, hence, the same is true for H(fλ), the fixed locus of
a permutation acting on H(f). Since PV λ is the usual projective space, the
assertion follows.
(ii) We have coordinates (x, y; z1, . . . , zp) on Vλ, so that the embedding ιλ :
Vλ →֒ V has form

ιλ : (x, y; z1, . . . , zp) 7→ (x, y, . . . , x, y; z1, . . . , z1, . . . , zp, . . . , zp),

where (x, y) is repeated l times, each zj is repeated mj times, so that
(l,m1, . . . ,mp) are all the distinct parts of λ, and l (resp., mj) occur with
multiplicity 2 (resp., 1) in λ. Set p1 = x+ y, p2 = x2 + y2, so that (p1, p2),
(zj) are the coordinates on V λ. It is enough to check that PH(fλ) does
not contain stacky points of PV λ, i.e., the points with p1 = 0 and all zj = 0.
Thus, it is enough that fλ does not vanish at the point of Vλ with x = −y = 1
and zj = 0. Note that

p2(x1, . . . , xn)|ιλ(1,−1;0,...,0) ̸= 0.

Therefore, the same is true for any power of p2, and hence, for a generic
Sn-invariant polynomial of even degree. □

In the next proposition we show that some components of the semiorthog-
onal decomposition of Theorem 1.2.2 are derived categories of weighted pro-
jective space stacks.
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Proposition 4.2.5. Let f(x1, . . . , xn) be an Sn-invariant homogeneous
polynomial of degree d ≤ n such that PH(f) is smooth, and such that in the
expression of f as a polynomial in p1, . . . , pn the coefficient of pd is nonzero.
Then for a partition λ = (1r1 , 2r2 , . . . , prp), such that rl ≥ d for some l, the
stack [PH(fλ)] is isomorphic to the weighted projective space stack with the
weights obtained by removing one weight d from the sequence

(1, . . . , r1, 1, . . . , r2, . . . , 1, . . . , rp).

Proof. Let y1, . . . , yrl , z1, . . . , zN be the coordinates on Vλ, where y1, . . . , yrl
are the coordinates corresponding to the parts of λ equal to l, so that in
the embedding Vλ →֒ V each of coordinates y1, . . . , yrl is repeated l times
(see (4.1)). Note that the coordinates on V λ are given by the functions
(pi(y1, . . . , yrl))1≤i≤rl , as well as some symmetric functions in other groups
of variables. Since rl ≥ d, pd(y1, . . . , yrl) is one of the coordinates on V λ.

It suffices to check that pd(y1, . . . , yrl) occurs with nonzero coefficient in
fλ. Indeed, then we can use fλ to express the coordinate pd(y1, . . . , yrl) in
terms of other coordinates on V λ, which gives our assertion. We have

f(x1, . . . , xn) = α · pd(x1, . . . , xn) + g(x1, . . . , xn),

where g is a polynomial in (pi(x1, . . . , xn))1≤i<d. Hence, the restriction of g
to Vλ is expressed in terms of coordinates of weight < d on V λ, so it does
not contribute to the coefficient of pd(y1, . . . , yrl). Furthermore, we have

pd(y1, . . . , y1︸ ︷︷ ︸
l

, . . . , yrl , . . . , yrl︸ ︷︷ ︸
l

, z1, . . .)

= l · pd(y1, . . . , yrl) mod(Czd1 + · · ·+ CzdN ).

Hence, the coefficient of pd(y1, . . . , yrl) in fλ is equal to l · α. In particular,
this coefficient is nonzero, as required. □

Corollary 4.2.6. The conclusion of Proposition 4.2.5 holds for any Sn-
invariant homogeneous polynomial f of degree d ≤ 3 such that PH(f) is
smooth.

Proof. The case d = 1 is trivial. In the case d = 2, we have

f = αp2 + βp21,
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while in the case d = 3, we have

f = αp3 + βp1p2 + γp31,

In both cases α ̸= 0, since otherwise f would be reducible. Hence, we can
apply Proposition 4.2.5. □

In the case of cubic forms in ≤ 6 variables, we obtain from Theorem 1.2.2
the following decompositions of Sn-equivariant derived categories.

Proposition 4.2.7. Let f(x1, . . . , xn) be a generic Sn-invariant homo-
geneous cubic polynomial, where n ≤ 5. Then D([PH(f)/Sn]) has a full
exceptional collection. For n = 6, there is an exceptional collection in
D([PH(f)/S6]) such that its right orthogonal is equivalent to D(E), where
E is the elliptic curve given by the cubic f(3,2,1) in PV(3,2,1) ≃ P2.

Proof. First of all, we observe that for n ≤ 5, a partition λ of n can have at
most two distinct parts, while for n = 6 the only partition with 3 distinct
parts is (3, 2, 1).

By Corollary 4.2.6, if λ has a part of multiplicity ≥ 3 then the corre-
sponding piece in the semiorthogonal decomposition of Theorem 1.2.2 is
the derived category of the weighted projective space stack, so it has a full
exceptional collection (see [1, Sec. 2]).

Now we claim that all partitions with at most two distinct parts, each
of mulitplicity at most 2, lead to subcategories generated by exceptional
collections. We prove this case by case. Note that the partition λ = (n) does
not contribute to the semiorthogonal decomposition since f(1, . . . , 1) ̸= 0.
Case λ = (l, l). Then Vλ has coordinates x, y and V λ has coordinates p1 =
x+ y, p2 = x2 + y2. The unique stacky point of the weighted projective line
stack PV λ = P(1, 2) is given by p1 = 0. Note that p3 = x3 + y3 is divisible
by p1, so fλ vanishes at this point. It follows that PH(fλ) is the union of
one point and of one stacky point with the automorphism group Z/2. The
derived category of such stacky point splits as the direct sum of two derived
categories of the usual point.
Case λ = (l1, l2), where l1 > l2. Then fλ is a cubic on the 2-dimensional
space Vλ, with isolated singularity at the origin, so PH(fλ) is the union of
three distinct points.
Case λ = (l, 1, 1) with l > 1 or λ = (2, 2, 1). Then Vλ has coordinates
x, y, z, whereWλ = S2 swaps x and y, so that V λ has coordinates p1 = x+ y,
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p2 = x2 + y2 and z, and PV λ = P(1, 1, 2). The cubic fλ should have form

fλ = p2(αz + βp1) + C(p1, z),

where C(p1, z) is a binary cubic form. It is easy to see that for generic Sn-
invariant f , one has α ̸= 0, so we can make the change of variables z1 = αz +
βp1. Furthermore, C(p1, z) is not divisible by z1, since fλ has an isolated
singularity at 0. Thus, rescaling the variables, we can bring f to the form

fλ = p2z1 + z1Q(p1, z1) + p31,

where Q is a binary quadratic form. Now taking u = p2 +Q(p1, z1) as a new
variable of weight 2, we get

fλ = uz1 + p31.

It is easy to see that PH(fλ) is isomorphic to the weighted projective line
stack P(1, 2). Namely, there is an isomorphism given by

P(1, 2) → PH(fλ) : (t : v) 7→ (u = v3, z1 = −t3, p1 = vt).

Case λ = (2, 2, 1, 1). Then we have coordinates x1, y1, x2, y2 on Vλ, and
Wλ = S2 × S2 permutes x1 with y1 and x2 with y2. Set p1(i) = xi + yi,
p2(i) = x2i + y2i . Then the cubic fλ has form

fλ = p2(1)z1 + p2(2)z2 + C(p1(1), p1(2)),

where z1 and z2 are some linear forms in p1(1), p1(2). It is easy to see that
for generic f , the linear forms z1 and z2 will be linearly independent, so we
can view p2(1), p2(2), z1, z2 as independent variables. Now adding to p2(i)
appropriate quadratic expressions of z1, z2, we can rewrite fλ as

fλ = u1z1 + u2z2,

where u1, u2, z1, z2 are independent variables (deg(ui) = 2, deg(zi) = 1).
Thus, we can identify PH(fλ) with P(1, 2)× P1 via the isomorphism
P(1, 2)× P1 → PH(fλ),

(t : v), (s1 : s2) 7→ (u1 = vs1, u2 = vs2, z1 = ts2, z2 = −ts1).

Thus, for n ≤ 6, all of the subcategories corresponding to λ ̸= (3, 2, 1)
admit full exceptional collections. The remaining subcategory corresponding
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to λ = (3, 2, 1) (for n = 6) is equivalent to D(E), where E is the elliptic curve
given by f(3,2,1). □

Remark 4.2.8. Using Corollary 4.2.6 we see that for an Sn-invariant non-
degenerate quadric f , the components of the semiorthogonal decomposition
of Theorem 1.2.2 are either smooth projective quadrics (for partitions with
distinct parts) or weighted projective space stacks (for the remaining par-
titions). In particular, in this case D([PH(f)/Sn]) has a full exceptional
collection.

4.3. Products of curves

First, let us consider the case of an action of a finite group G on a smooth
curve (we assume that the action is effective). Note that in this case the quo-
tient C/G is smooth (since passing to invariants of a finite group preserves
normality) and the stabilizer subgroup Stx of every point x ∈ C is cyclic.
Let

R = D1 ⊔ · · · ⊔Dr ⊂ C

be the decomposition into G-orbits of the ramification locus of the projection
π : C → C/G. Then each Di is a fiber of π and the stabilizer of a point in
Di is isomorphic to Z/miZ. Then the proof of [17, Thm. 1.2] implies that
for each i, there is an exceptional collection of G-equivariant sheaves on C,

(4.5) (ωC |Di
, ω⊗2

C |Di
, . . . , ω⊗mi−1

C |Di
),

and if Ai ⊂ D([C/G]) is the subcategory generated by this collection, then
there is a semiorthogonal decomposition

(4.6) D([C/Y ]) = ⟨A1, . . . ,Ar, π
∗D(C/G)⟩,

where π∗ : D(C/G) → D([C/G]) is the pull-back functor. More precisely, in
[17] a different decomposition was considered,

(4.7) D([C/Y ]) = ⟨π∗D(C/G),B1, . . . ,Br⟩,

with Ai = ωC ⊗ Bi, from which (4.6) is obtained by mutation. Also, in [17]
it was shown that each Bi is generated by the exceptional collection

(O(mi−1)Di
, . . . ,O2Di

,ODi
),

which can be mutated into (ODi
,O(−Di)|Di

, . . . ,O(−(mi − 2))|Di
). The col-

lection (4.5) inAi is obtained from the latter collection by tensoring with ωC .
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This leads to the following result.

Proposition 4.3.1. Let G be a finite group acting effectively on a smooth
curve C. Then condition (MSOD) is satisfied, where the kernel corresponding
to λ = 1 is the structure sheaf of the graph of π.

Proof. We claim that the semiorthogonal decomposition (4.6) (or (4.7)) can
be restructured to get the decomposition required by (MSOD). Namely, (4.6)
consists of the image of the pull-back functor π∗ : D(C/G) → D([C/G]),
along with mi − 1 exceptional objects supported on Di, for i = 1, . . . , r. On
the other hand, for (MSOD) to hold, for each conjugacy class representative
g ̸= 1, and each C(g)-orbit in Cg, we need to have one exceptional object
in D([C/G]) supported on the corresponding G-orbit in C. The fact that
the numbers of exceptional objects supported on each G-orbit match was
proved in [18, Rem. 4.3.2]. □

Using Lemma 2.4.1 we deduce the following

Corollary 4.3.2. Let C1, . . . , Cn be smooth curves, and for each i, let Gi

be a finite group acting effectively on Ci. Then condition (MSOD) holds for
the action of G1 × · · · ×Gn on C1 × · · · × Cn.

Example 4.3.3. For the standard action of the cyclic group µd on A1, the
geometric quotient is isomorphic to A1

d, where the subscript d indicates the
Gm-weight, so that the quotient map π : A1 → A1

d is given by x 7→ xd. We
have a semiorthogonal decomposition

D([A1/µd]) = ⟨Op ⊗ χd−1, . . . ,Op ⊗ χ, π∗D(A1
d)⟩,

where Op denotes the structure sheaf of the origin, and χ : µd → Gm is the
character given by the natural embedding.

Now, for positive integers d1, . . . , dk, let us consider the natural action
of G = µd1

× · · · × µdk
on Ak (where the ith factor acts on the ith coordi-

nate). By Corollary 4.3.2, we have a motivic semiorthogonal decomposition
of D([Ak/G]). We can describe explicitly the components of this decompo-
sition as follows. The fixed locus of an element of g = (z1, . . . , zk) ∈ G is
isomorphic to the affine space Ang , where ng is the number of trivial compo-
nents of g . The geometric quotient by C(g) = G is πg : A

ng → A
ng

dg
, where

dg is a multi-index giving weights for the Gm-action (dg is the set of di for
which zi = 1). Let ιg : A

ng →֒ Ak denote the natural embedding. Then the
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composite functor

ιg∗ ◦ π
∗
g : D(A

ng

dg
) → D([Ak/G])

is fully faithful.
For each i, let ζdi

be a dith primitive root of unity. For

g = (ζm1

1 , . . . , ζmk

k ) ∈ G,

where 0 ≤ mi < di, we define the character χg of G by setting

χg = χm1

1 · · ·χmk

k ,

where χi : G → Gm is given by the ith projection.
Then the functors giving the semiorhogonal decomposition of D([Ak/G])

(numbered by g ∈ G) are

(ιg∗ ◦ π
∗
g)⊗ χg : D(A

ng

dg
) → D([Ak/G]),

ordered lexicographically with respect to the reverse order on each set
{0, . . . , di − 1}. Thus, we have a semiorthogonal decomposition

D([Ak/G]) = ⟨D(pt)⊗ χd1−1
1 · · ·χdk−1

k , . . . , π∗D(Ak
d1,...,dk

)⟩.

As before, we can delete the origin in all the affine spaces and pass
to Gm-equivariant categories yielding a semiorthogonal decomposition of
D([Pk−1/G]) indexed by the elements of G. The components of this semi-
orthogonal decomposition will be the weighted projective space stacks P(dg).

We can also apply Theorem 1.2.1 to get, as in Section 4.2, a semiorthog-
onal decomposition of D([PH(f)/G]), where f is a G-invariant homoge-
neous polynomial on Ak. More precisely, we have to assume that PH(f)
is smooth and that restrictions of f to certain coordinate subspaces are
nonzero. Namely, in the case when there exists an index i with di = 1, we
have to assume the nonvanishing of the restriction of f to the subspace where
all coordinates with di > 1 are set to zero. In the case when all di > 1, we
have to assume that the restriction of f to each coordinate line is nonzero.

For example, if d1 > 1, d2 = · · · = dk = 1, and f = xd1

1 − g(x2, . . . , xk),
then PH(f) is a cyclic cover of Pk−2 and our decomposition of
D([PH(f)/µd1

]) matches the one given by Kuznetsov-Perry in [13, Theo-
rem 4.1].
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