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We introduce a process, which we call Levi–Kähler reduction, for
constructing Kähler manifolds and orbifolds from CR manifolds (of
arbitrary codimension) with a transverse torus action. Most of the
paper is devoted to the study of Levi–Kähler reductions of toric CR
manifolds, and in particular, products of odd dimensional spheres.
We obtain explicit descriptions and characterizations of the orb-
ifolds obtained by such reductions, and find that the Levi–Kähler
reductions of products of 3-spheres are extremal in a weighted sense
introduced by G. Maschler and the first author [11], and further
studied by A. Futaki and H. Ono [34].
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Introduction

In recent years there has been considerable interest in the interaction be-
tween Kähler geometry and its odd-dimensional younger cousin, Sasaki ge-
ometry [19]. On the one hand, ideas in Kähler geometry, such as toric
methods or extremal metrics, have led to the development of analogues
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in Sasaki geometry. On the other hand, Sasaki manifolds have a canoni-
cal 1-dimensional foliation generated by the Reeb vector field, which both
provides a construction of Kähler metrics on the leaf space when the latter
is a manifold or orbifold, as well as a “horizontal” generalization of such
quotients when it is not.

Our thesis herein is that these ideas need not be limited to 1-dimensional
foliations. Indeed, any Sasaki manifold has an underlying codimension one
CR structure, whereas CR manifolds arise naturally in arbitrary codimen-
sion [17]. This prompts us to introduce transverse “Reeb foliations” on ar-
bitrary CR manifolds (N,D, J). A theory of such foliations has recently
been developed in [46], but here we focus on the horizontal Kähler geometry
of (D, J), i.e., the Kähler structures induced on the space of (local) leaves
of the Reeb foliation. However, whereas in codimension one, the exterior
derivative of the contact form equips the horizontal distribution D with a
nondegenerate 2-form (which, together with the complex structure J on D,
defines the horizontal Kähler structure on D), in higher codimension, the
non-integrability of D is measured by a 2-form on D with values in TN/D,
called the Levi form LD. In order to construct a Kähler metric on the leaf
space of the Reeb foliation, we therefore need also to choose a nondegenerate
component of LD. This construction, which we call a Levi–Kähler quotient
or a Levi–Kähler reduction (see Definition 6 for more details), is our main
topic of study.

In particular, the Levi form of D must have a nondegenerate component.
Rank 2m distributions D of this type, on manifolds N of dimension 2m+ ℓ,
were studied in a companion paper [8], to which the present work may be
viewed as a sequel, although we do not here rely upon intimate familiarity
with that paper, or its main theorem. Indeed, whereas in [8] we study the
general theory of toric contact manifolds in higher codimension, the applica-
tions in Kähler geometry we develop herein use only the simplest examples:
toric CR submanifolds of flat space, and in particular, products of spheres.
We review the necessary ingredients from [8] in Theorem 1 below.

Our prime contribution in this paper is the construction of new com-
pact toric Kähler orbifolds M , i.e., Kähler orbifolds of real dimension 2m
admitting an isometric hamiltonian action of a real m-torus t/2πΛ, which
have nice curvature properties in the sense pioneered by Calabi [24], as well
as weighted extensions studied in [11, 34]. As we recall in Section 2.1, any
symplectic toric orbifold (M,ω) is classified [14, 29, 44] by the image ∆ of
its momentum map, which is a convex polytope in an m-dimensional real
affine space A modelled on t∗. Explicitly, ∆ is an intersection of half-spaces
Ls ⩾ 0, where s ∈ S indexes the facets (codimension one faces) of ∆, and
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Ls ∈ h, the (m+ 1)-dimensional vector space of affine functions on A. The
linear parts us ∈ t of Ls for s ∈ S generate the normal rays to ∆, defining a
fan Y in t which in turn determines [26, 32] the equivariant biholomorphism
type of any toric ω-compatible complex structure on M . It is convenient to
encode these data in linear maps

L : RS → h and u : RS → t

es 7→ Ls es 7→ us

where RS is the standard real vector space with basis es : s ∈ S. The kernel g
of u is the Lie algebra of a subtorus G of RS/2πZS, and we let λ ∈ g∗ be the
restriction of L to g (which takes values in the constant affine functions, i.e.,
R). Equipping the complexification CS of RS with its standard flat Kähler
structure,M is then equivariantly symplectomorphic to the symplectic quo-
tient of CS by G at momentum level λ [29, 44], whereas the equivariant
biholomorphism type of M defined by Y is given by the GIT quotient of CS

by the complexification of G [25].
However, the metric on M which comes from the Kähler reduction by

G of the flat metric on CS — and which has an elegant expression given
by Guillemin [37] — has not been found to have particularly interesting
curvature properties, except in the simplest case of the complex projective
space (when it defines a Fubini–Study metric). We are thus motivated to
make the following observations. First, the level set Ng,λ := µ−1

g (λ) of the
momentum map of G is a CR submanifold of CS, in fact an intersection of
quadric hypersurfaces, preserved by the natural action of the torus TS :=
RS/2πZS on CS (i.e. Ng,λ is a toric CR manifold). Secondly, since G ≤ TS

acts on Ng,λ with orbits transverse to the CR distribution D, we may regard
the Levi form LD as a g-valued 2-form on D. We find that the λ component
is nondegenerate and induces a Kähler metric on M ∼= Ng,λ/G — in other
words, the data (g, λ) is exactly what we need (see Definition 6) to define
a Levi–Kähler quotient of Ng,λ. While the Levi–Kähler quotient metric on
M associated to the data (g, λ) is in general different from the Guillemin
metric, it may not have nice curvature properties either. There is, however,
a third observation that proves to be decisive. To explain this, note that the
pair (g, λ) plays a dual role in the above construction: it is used both to
define Ng,λ and also to define the transverse group action and momentum
level for the Levi–Kähler quotient. We do not need to use the same pair for
these independent roles: if we introduce a new pair (go, λo), corresponding
to another polytope ∆o which has the same combinatorial type as ∆ (see
Definition 8), and such that (g, λ) defines a Levi–Kähler quotient of the
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toric CR submanifold Ngo,λo
, then we find that the resulting toric orbifold

is equivariantly symplectomorphic to (M,ω) (see Theorem 2), i.e. the pair
(go, λo) gives rise to a ω-compatible toric Kähler metric on M .

We take advantage of these observations by following the idea that a
Levi–Kähler reduction of a CR manifold N can be expected to have nice
curvature properties if N does. The simplest examples, in codimension one,
are round CR (2m+ 1)-spheres, which are the toric CR submanifolds as-
sociated to m-simplices, and are circle orbibundles over complex weighted
projective spaces. The Levi–Kähler quotients in this case give rise to the
natural Bochner-flat Kähler metrics on weighted complex projective spaces,
studied in [2, 22, 28, 48], which are also extremal in the sense of [24]. Sim-
ilarly, we show in this paper that the Levi–Kähler quotients of products of
CR spheres provide a natural extension of the Bochner-flat Kähler metrics in
higher codimension: if ∆ is a polytope with the same combinatorial type as
the product of simplices ∆o, we construct (see Theorem 4 and Corollary 2) a
distinguished toric Kähler metric on the toric symplectic orbifold associated
to ∆, obtained as a Levi–Kähler quotient of the toric CR manifold Ngo,λo

associated to ∆o (which as a CR manifold is the product of CR spheres).
The investigation of the curvature properties of this class of toric Kähler
metrics is the main focus of the article.

The product structure on a product N of CR spheres induces distribu-
tions on M and we show that the curvature of M has vanishing Bochner
component on each such distribution, simply because CR spheres have van-
ishing Chern–Moser tensor. For 3-dimensional CR manifolds, the vanishing
of the Chern–Moser tensor is automatic and we compute instead the scalar
curvature of a Levi–Kähler quotient of a product of 3-spheres and observe
that, when the polytope is projectively equivalent to a cube, the Levi–Kähler
quotient metric can be characterized as being extremal in a weighted sense
that was introduced (in a special case) in [11]. More precisely, given a “con-
formal dimension” p ∈ R and a positive function w on a compact symplectic
orbifold (M,ω) whose hamiltonian vector field is quasiperiodic (i.e., it be-
longs to the Lie algebra of a torus T in Ham(M,ω)), we can generalize
the approach of Donaldson [30] and Fujiki [33] to Calabi’s extremal Kähler
metrics [24] by using w−(p−1) as a weight for the formal Fréchet symplectic
structure on the space of T-invariant compatible complex structures. Then
the action of HamT(M,ω) on this space is hamiltonian, and if we weight
the inner product on its Lie algebra of by w−(p+1) then the momentum map
at J may be identified with a modification sJ,w,p of the scalar curvature of
gJ = ω(·, J ·), which is what the scalar curvature of the conformally related
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metric w2gJ would be ifM had dimension p. (The special case when p = 2m
is studied in [11, 34].)

If the polytope ∆ of M is projectively equivalent to a cube, the inter-
sections of opposite facets of ∆ lie in a common hyperplane (and this is a
characterization of projective cubes), so there is a unique affine-linear func-
tion w up to scale which is positive on ∆ and vanishes on the intersections of
opposite facets. We prove in Theorem 6 that the unique (up to equivariant
symplectomorphism) toric metric on (M,ω) for which sJ,w,m+2 is an affine-
linear function is the one arising as a Levi–Kähler quotient of a product
of 3-spheres. We can summarize some of our findings (Theorems 2, 5 and
Corollary 2) as follows.

Theorem A. Let (M,ω) be a compact 2m-dimensional symplectic toric orb-
ifold with Delzant image ∆ ⊆ t∗. Then ∆ has the combinatorics of a product
of simplices if and only if (M,ω) can be obtained as a Levi–Kähler reduction
of a product of odd dimensional CR spheres. In particular, such an orbifold
admits a distinguished compatible Kähler metric hL whose symplectic po-
tential is explicitly given in Theorem 5 below. If, furthermore, the Delzant
image ∆ is a projectively equivalent to a product of 1-dimensional simplices
(i.e., is a projective cube), then hL is an (m+ 2, w)-extremal Kähler met-
ric, where w is the unique (up to scale) positive affine-linear function on t∗

which vanishes at the intersections of all pairs of opposite facets of ∆.

An important source of (smooth) toric Kähler manifolds M whose
Delzant polytope has the combinatorics of a product of simplices — and
to which Theorem A applies — is obtained from the generalized Calabi con-
struction (see [10]), where both the base and the fibre are toric manifolds
with Delzant polytopes having the combinatorics of product of simplices.
This includes the complex Hirzebruch surfaces, holomorphic projective bun-
dles over a projective space, the Bott manifolds recently studied in [21], and,
inductively, rigid toric fibrations where the base and the fibre are one of the
aforementioned smooth complex manifolds. We show that in this special
setting, the Kähler metric corresponding to the Levi–Kahler quotient of the
product of spheres associated to M is obtained from the generalized Calabi
construction, where the metrics on the base and on the fibre are themselves
Levi–Kahler quotients of product of spheres.

Theorem A yields the existence of a canonical weighted extremal metric
on any toric 4-orbifold whose Delzant polytope is a quadrilateral (i.e. with
second Betti number b2(M) = 2) whereas by the results in [6] the existence
of genuine (unweighted) extremal Kähler metrics is generally obstructed.
This motivates a further investigation of the class of (m+ 2, w)-extremal
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Kähler metrics, in the general framework developed in [11]. Notice that in
complex dimension 2, this coincides with the class of weighted extremal
metrics appearing in [11], but in higher dimensions, our approach suggests
a different weight m+ 2 than the conformal generalization 2m proposed
in [11]. This observation has inspired subsequent work [3, 12] which has
elucidated the natural role that the weight m+ 2 plays in Kähler and Sasaki
geometry.

As another novel aspect, the explicit form of the Levi–Kähler quotient
metrics on the toric Kähler manifolds whose Delzant polytope is projectively
equivalent to a cube gives rise to an extension of the ambitoric ansatz of
Segre type [5, 6] to arbitrary dimension. This has also been further studied
in [3].

The Levi–Kähler quotient metrics of products of ℓ ⩽ 2 odd dimensional
spheres can also lead to extremal Kähler metrics (in the classical sense of
[24]). As we have already mentioned above, in the case ℓ = 1, the Levi–
Kähler quotients of a CR sphere give rise to the Bochner-flat Kähler metrics
on weighted complex projective spaces, which are extremal [22]. We find
some new extremal Kähler orbifold examples, obtained as the Levi–Kähler
quotient of a product of two CR spheres (ℓ = 2). In particular, the construc-
tion in Section 4.4.2 yields the following result.

Theorem B. There exists a countable family of compact constant scalar
curvature Kähler 6-orbifolds obtained as Levi–Kähler reductions of S5 × S3.

The main results are presented in three courses, which we serve up in
Sections 2, 3 and 4, after presenting some background and preliminary re-
sults in Section 1. The preliminary material reviews the notion of a CR
(2m+ ℓ)-manifold of codimension ℓ and studies infinitesimal CR torus ac-
tions transverse to the CR distribution. These have associated Kähler cones
of dimension 2(m+ ℓ) and so may be viewed as a natural generalization of
Sasaki structures. Such a transverse infinitesimal action of an ℓ-dimensional
abelian Lie algebra g, together with an element λ ∈ g∗ is called a positive
Levi pair if λ ◦ LD is a horizontal Kähler structure on the CR distribution.
A Levi–Kähler reduction is thus obtained when the action of g integrates to
an action of a Lie group G.

Section 2 presents our general results on toric CR submanifolds of CS

and their Levi–Kähler quotients. We first review the elements of toric geom-
etry and combinatorics, and make precise the notion of combinatorial type.
Then we show in Theorem 2 that if (g, λ) is a positive Levi pair associated
to polytope ∆ and N is a toric submanifold of CS with the same combinato-
rial type, then the momentum map of the horizontal Levi–Kähler structure
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(or the Levi–Kähler quotient when that exists) has image ∆. In the case
that N is a toric intersection of quadric hypersurfaces contained in a round
hypersphere, the Levi–Kähler structure can be made explicit, as we show in
Theorem 3.

In Section 3, we study the construction of toric Kähler metrics as Levi–
Kähler quotients of products of spheres. Building on Theorem 2, we charac-
terize such quotients in Theorem 4 as those associated to a polytope with
the combinatorial type of a product of simplices. In turn, Theorem 5 builds
on Theorem 3 by giving explicit formulae for the Levi–Kähler quotients
of ℓ-fold products of spheres and their symplectic and Kähler potentials,
extending the results of [22] in the case ℓ = 1 to arbitrary ℓ. In the re-
mainder of the section, we explore relations between this construction and
other explicit methods in Kähler geometry such as the generalized Calabi
construction [9, 10].

The final Section 4 investigates the curvature properties of a Levi–Kähler
quotient M of a product of spheres N . We discuss here the curvature char-
acterization of such Levi–Kähler quotients, the weighted extremal geometry
they define when the Delzant polytope is a projective cube, as well as the
special cases when the Levi–Kähler quotient is extremal in the usual sense
of [24].

1. Levi–Kähler quotients of CR manifolds

1.1. CR structures of arbitrary codimension

Definition 1. A CR structure (D, J) of rank m and codimension ℓ on a real
(2m+ ℓ)-dimensional manifold N is a real rank 2m distribution D ⊆ TN
equipped with an almost complex structure J : D → D, which satisfies the
integrability conditions

[X,Y ]− [JX, JY ] ∈ C∞(D),

[X, JY ] + [JX, Y ] = J([X,Y ]− [JX, JY ]), ∀X,Y ∈ C∞(D),
(1)

where C∞(D) denotes the sheaf of smooth sections of D; equivalently,

[C∞(D1,0), C∞(D1,0)] ⊆ C∞(D1,0),

where D1,0 ⊆ TN ⊗ C is the subbundle of (1, 0) vectors in D⊗ C.
(N,D, J) is then called a CR manifold (of codimension ℓ).
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The underlying rank 2m distribution D on N may be viewed as a
codimension ℓ generalization of a contact structure on N [8]. The funda-
mental invariant of D is its Levi form LD : ∧2D → TN/D, defined, via
X,Y ∈ C∞(D), by the tensorial expression

(2) LD(X,Y ) = −qD([X,Y ])

where qD : TN → TN/D is the quotient map. The transpose of qD identi-
fies (TN/D)∗ canonically with the annihilator D0 of D, which is a rank ℓ
subbundle of T ∗N . We denote throughout by p : T ∗N → N the cotangent
bundle projection or its restriction to any subbundle of T ∗N such as D0.
The normalization convention for LD is chosen so that for any section α of
D0, the restriction of dα to ∧2D ⊆ ∧2TN is α ◦ LD.

The nondegeneracy locus of D is the open subset

UD := {α ∈ D
0 ∼= (TN/D)∗ | α ◦ LD is nondegenerate}

of D0. If UD ∩D0
z is nonempty then, since nondegeneracy is an open con-

dition, D0
z has a basis α1, . . . , αℓ in UD and so UD ∩D0

z is the complement
of the set where (

∑ℓ
i=1 tiαi) ◦ LD degenerates, which is the cone over a pro-

jective hypersurface VD,z of degree m (the zero set of a homogeneous degree
m polynomial in the ℓ variables t1, . . . , tℓ). In [8], VD ⊆ P(D0) is called the
degeneracy variety of D. Therein it is shown that UD is a canonical “sym-
plectization” of (N,D): UD is the open subset of D0 over which the pullback
of the canonical symplectic form Ω on T ∗N to D0 is nondegenerate.

Definition 2. Let (N,D, J) be a CR manifold (of codimension ℓ). We say
D is Levi nondegenerate if UD has nonempty intersection with each fibre of
p : D0 → N . A (local) section of UD is called a (local) contact form on N .

Note that the Levi form LD satisfies

LD(X,Y ) = −1
2qD([X,Y ] + [JX, JY ])

and hence is J-invariant or “type (1,1)” on D. It follows that hD(X,Y ) :=
LD(X, JY ) is a section of S2D∗ ⊗ TN/D. We say (N,D, J) is Levi definite
if at each z ∈ N there exists α ∈ D0

z such that α ◦ hD ∈ S2D∗
z is positive

definite.

Clearly Levi definite CR manifolds are Levi nondegenerate: more gen-
erally U+

D
:= {α ∈ D0 | α ◦ hD is positive definite} is an open and closed

submanifold of UD.
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Examples 1. (i) A maximally real codimension ℓ submanifold of Cm+ℓ is a
smooth submanifold N ⊆ Cm+ℓ for which D := TN ∩ JTN , where J is the
standard complex structure of Cm+ℓ, has rank 2m (i.e., corank ℓ in TN).
Then (N,D), with the induced action of J on D, is a CR manifold of rank m
and codimension ℓ. A model example, in codimension one, is the unit sphere
S2m+1 in Cm+1.

(ii) If (Ni,Di, Ji) are CR manifolds, with codimensions ℓi, for i ∈
{1, . . . , n}, then so is (

∏n
i=1Ni,D1 ⊕ · · · ⊕Dn, J1 ⊕ · · · ⊕ Jn), with codimen-

sion ℓ = ℓ1 + · · ·+ ℓn and UD =
∏n

i=1 UDi
. In particular, the product of

n = ℓ codimension one CR spheres S2m1+1 × · · · × S2mℓ+1 is a CR manifold
with codimension ℓ.

Remark 1. The Levi form of a CR manifold (N,D, J) is traditionally de-
fined to be the hermitian form hD +

√
−1LD : D×D → C⊗ TN/D; how-

ever it is uniquely determined (given J) by its real or imaginary part, and
the imaginary part is an invariant of the underlying (real) distribution D.
The rank is usually called the CR dimension.

Levi nondegeneracy implies thatX 7→ LD(X, ·) is an injective bundle ho-
momorphism from D to Hom(D, TN/D). This condition, together with the
assumption that LD is surjective onto TN/D, appears in the study [15] of CR
automorphisms of real quadrics Nσ := {(z, w) ∈ Cm+ℓ | ℑ(w) = ℑσ(z, z)},
where σ : Cm × Cm → Cℓ is hermitian and ℑ denotes the imaginary part.
Such quadrics are homogeneous CR manifolds of rank m and codimension
ℓ, with Levi form isomorphic to σ (or ℑσ in our sense).

Levi definiteness extends the codimension one notion of strict pseudo-
convexity.

1.2. Infinitesimal CR actions, generalized Sasaki structures
and Kähler cones

Definition 3. Let (N,D, J) be a CR manifold; then the space cr(N,D, J)
of CR vector fields is the Lie subalgebra of vector fields X on N such that

(3) LXC
∞(D) ⊆ C∞(D) and LXJ = 0.

An (infinitesimal, effective) CR action of a Lie algebra g on (N,D, J) is a
Lie algebra monomorphism K : g → cr(N,D, J). For v ∈ g, we write Kv for
the induced vector field K(v), and we define

κg : N × g → TN ; (z, v) 7→ Kv,z := (Kv)z.
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Let Kg ⊆ TN be the image of κg, i.e., Kg
z := span{Kv,z | v ∈ g}. Since

K : g → cr(N,D, J) is a Lie algebra morphism, Kg is an integrable distribu-
tion.

Example 2. Let π : N →M be a principal G-bundle with connection η :
TN → g, where dimG = ℓ and dimM = 2m. Then D := ker η is a rank 2m
distribution on N , and η induces a bundle isomorphism of TN/D with N ×
g. In this trivialization, the Levi form of D is dη + 1

2 [η ∧ η]g, the pullback
to N of the curvature F η of η. If M has an (integrable) complex structure
J for which F η is J-invariant, the horizontal lift of J to D equips N with a
G-invariant CR structure. For G abelian, this is the principal torus bundle
construction of [47].

SupposeK : g→cr(N,D, J) is an infinitesimal CR action, where (N,D, J)
is CR of codimension ℓ = dim g. Abstracting the infinitesimal geometry of
Example 2, we say the action of g is transversal if the following condition
holds.

Condition 1. At every point of N , D+Kg = TN . Equivalently:

(i) rankKg = ℓ everywhere on N ;

(ii) D ∩Kg is the zero section of TN (and thus TN = D⊕Kg).

The composite qD ◦ κg : N × g → Kg → TN/D is a bundle isomorphism
and so there is a canonically defined 1-form ηg : TN → g, characterized by

ker ηg = D and ∀ v ∈ g, ηg(Kv) = v.

We also denote by ηg the induced map from TN/D to g. For any λ ∈ g∗,
define

ηg,λ : N → D
0 by ηg,λz (X) = ⟨ηgz (X), λ⟩ := λ(ηgz (X)),

so that ηg,λ(Kv) = λ(v) and dηg,λ|
D

= ⟨dηg|
D
, λ⟩ = ηg,λ ◦ LD is the λ-

component of the Levi form of D. When there is no danger of confusion,
we shall omit the index g and denote

η := ηg, ηλ := ηg,λ.

If K integrates to an action of a connected Lie group G on N , then
Condition 1(i) implies that the G-action is locally free, so that M := N/G
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is a compact orbifold. Condition 1(ii) then ensures that D is isomorphic to
the pullback of TM to N , and hence G-invariant data on D descend to M .
Invariant components of the Levi form provide examples of such data.

In codimension one, a transversal CR action is essentially a CR Reeb
vector field, or equivalently, a compatible Sasaki structure, which makes the
symplectic cone Kähler.

To generalize this to arbitrary codimension, note that the total space D0

of p : D0 → N inherits from T ∗N a tautological 1-form τ : using the exact
sequence

(4) 0 → p∗D0 → TD0 p∗→ p∗TN → 0,

we have that τα = α ◦ p∗ : TαD0 → R for any α ∈ D0, where p∗ is the deriva-
tive of the cotangent bundle projection p : T ∗N → N , here restricted to D0.
Thus τ is the restriction to D0 of the Liouville 1-form on T ∗N . We further
set ΩD = dτ , which is the pullback of the tautological symplectic form on
T ∗N to D0.

Any X ∈ C∞(TN) has a lift to a hamiltonian vector field X̃ on T ∗N
with p∗(X̃) = X and hamiltonian fX = τ(X̃), i.e., fX(α) = τα(X̃) = α(X);
furthermore {fX , fY } = f[X,Y ]. (Explicitly, dfX = −ΩD(X̃, ·), where X̃α =
α∗(Xz)− (LXα)z for any extension of α ∈ T ∗

zN to a local section.) If X ∈
cr(N,D, J), then X̃ is tangent to D0 ⊆ T ∗N .

Observation 1. Let K : g → cr(N,D, J) be an infinitesimal CR action of
g on (N,D) and define

µg : D
0 → g∗ by ⟨µg(α), v⟩ = α(Kv) ∀α ∈ D

0, v ∈ g.

Then the lift of K to T ∗N preserves D0, and the induced infinitesimal ac-
tion K̃ is hamiltonian on UD with momentum map µg|UD

; in particular

⟨dµg(K̃v), w⟩ = −⟨µg, [v, w]g⟩ for all v, w ∈ g.

This is immediate. Now (p, µg) : D
0 → N × g∗ is a bundle isomorphism

with inverse ψg(z, λ) := ⟨ηz, λ⟩: if α = ⟨ηz, λ⟩ for some λ ∈ g∗ and z ∈ N ,
then µg(α) = λ.

Lemma 1. Let τ be the tautological 1-form on D0. Then

(5) (ψ∗
gτ)(z,λ)(X + a) = ⟨η(X), λ⟩,
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and hence

(6) (ψ∗
gΩ

D)(z,λ)(X + a, Y + b) = ⟨a, η(Y )⟩ − ⟨b, η(X)⟩+ ⟨dη(X,Y ), λ⟩.

Proof. Since τα(Z) = α(p∗(Z)),

(ψ∗
gτ)(z,λ)(X + a) = τ⟨ηz,λ⟩

(

(ψg)∗(X + a)
)

= ⟨η(X), λ⟩.

Hence ψ∗
gτ = ⟨p2, p∗1η⟩, where p1 and p2 are the first and second projections

of N × g∗, which yields (5). Now

ψ∗
gΩ

D = ψ∗
gdτ = d(ψ∗

gτ) = ⟨dp2 ∧ p∗1η⟩+ ⟨p2, p∗1dη⟩,

which yields (6). □

For (z, v) ∈ N × g, let J(z,v) be the complex structure on T(z,v)(N × g) =
TzN ⊕ g defined by

J(z,v)(X + w) = JXD +Kw,z − η(X)

where XD denotes the Dz-component of X ∈ TzN = Dz ⊕ (Kg)z.

Lemma 2. The almost complex structure J is integrable if and only if g
is abelian.

Proof. Let X,Y be vector fields on N with η(X) and η(Y ) constant and let
u, v ∈ g∗; as vector fields on N × g, these are constant in the g direction.
First observe that

NJ (X,Y ) = [X,J Y ] + [JX,Y ]− J ([X,Y ]− [JX,J Y ])

= [X, JY D] + [JXD, Y ]− J [X,Y ]D

+ η([X,Y ]) + J [JXD, JY D]

= 0,

since [X,Y ]D = [XD, Y D] + [Kη(X), Y
D] + [XD,Kη(Y )]. Next

JNJ (u, Y ) = J ([u,J Y ] + [J u, Y ]) + [u, Y ]− [J u,J Y ]

= J [Ku, Y ]D − η([Ku, Y ])− [Ku, JY
D − η(Y )] = 0.

Finally,

JNJ (u, v) = J ([u,J v] + [J u, v]) + [u, v]− [J u,J v]
= [Ku,Kv] = K[u,v],
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which vanishes for all u, v ∈ g iff g is abelian. □

Using η to identify Kg with N × g, we observe that

(7) T(z,λ)(N × g∗) ∼= Dz ⊕ g⊕ g∗ and T(z,v)(N × g) ∼= Dz ⊕ g⊕ g;

in these terms, (ψ∗
gΩ

D)(z,λ) is the sum of ⟨dηz, λ⟩ and the standard symplec-
tic structure on g⊕ g∗, while J(z,v) is the sum of the complex structure J on
Dz and the standard complex structure on g⊕ g. Thus if g is abelian and we
identify N × g with N × g∗ using a symmetric positive definite bilinear form
ζ on g, we obtain a Kähler structure on the open subset of (z, λ) ∈ N × g∗

with ψg(z, λ) ∈ U+
D
.

Proposition 1. Let (N,D, J) be a codimension ℓ CR manifold, and g a
transversal CR action of an (ℓ-dimensional) abelian Lie algebra g with a
(positive definite) inner product. Then U+

D
⊆ N × g∗ has a canonical Kähler

metric on which g defines an infinitesimal isometric hamiltonian action
whose momentum map is the projection p2 : N × g∗ → g∗.

Proof. Lemmas 1 and 2 imply that U+
D

is Kähler. The hamiltonian vector
field generated by the component ⟨p2, v⟩ of p2 is the pullback of Kv, which
clearly preserves the complex structure J , hence the metric h onN × g∗. □

Definition 4. Let (N,D, J) be Levi definite, and let g be an (ℓ-dimensional)
abelian Lie algebra. Then a g-Sasaki structure on N is a transversal infinites-
imal CR action of g together with an inner product ζ on g; given such an
action, we say (N,D, J, g, ζ) is a codimension ℓ Sasaki manifold with gen-
eralized Kähler cone U+

D
.

Example 3. A basic example of codimension ℓ Sasaki manifold (N,D,
J, g, ζ) is obtained by taking N = H where H is a compact simple Lie group
and G ⩽ H a maximal ℓ-dimensional torus with Lie algebra g. In this case,
the root decomposition

h⊗ C = (g⊗ C)⊕
⊕

α∈R+

(

hα ⊕ h−α

)

,

where g⊗ C is the corresponding Cartan subalgebra of h⊗ C and R+ is a
set of positive roots, gives rise to a G-invariant CR structure J on N defined
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by (D⊗ C)1,0e
∼=
⊕

α∈R+
hα. Equivalently, we have that

D ∼= N ×
⊕

α∈R+

mα,

where mα is the J-invariant 2-dimensional real part of h−α ⊕ hα. Further-
more, we can take ζ to be, up to sign, the restriction of the Killing form of
h to g. The general theory of simple Lie groups yields that for any x ∈ g,
and u, v ∈ D, the Levi form LD satisfies

ζ(LD(u, v), x) = −ζ([u, v], x) =
∑

α∈R+

−iα(x)ζ(Juα, vα),

where uα and vα are the projections of u and v to the subspace mα, respec-
tively. Thus, U+

D
∼= N × g∗+ where

g+ := {x ∈ g | ∀α ∈ R+, −iα(x) > 0}

is the positive Weyl chamber, and g∗+ is its image under ζ.

1.3. CR torus actions and Levi–Kähler quotients

Definition 5. An infinitesimal CR action K : tN → cr(N,D, J) of an
abelian Lie algebra tN on a CR manifold (N,D, J) is called an infinites-
imal CR torus action, and is said to be a CR torus action if it integrates to
an effective (i.e., faithful) action of a compact torus TN = tN/2πΛN , where
ΛN is the lattice of generators of the circle subgroups of TN . If g ⩽ tN is
a subalgebra such that K : g → cr(N,D, J) satisfies Condition 1, we refer
to Kg and its integral submanifolds as the associated Reeb distribution and
Reeb foliation transverse to D.

Given an infinitesimal CR torus action K : tN → cr(N,D, J), let

κ := κtN : N × tN → TN, with κ(z, v) = Kv,z, and

µ := µtN : D0 → t∗N , with ⟨µ(α), v⟩ = α(Kv),

so that (p, µ) : D0 → N × t∗N is the pointwise transpose of qD ◦ κ : N × tN →
TN/D.

Definition 6. An ℓ-dimensional subalgebra ι : g →֒ tN and an element λ ∈
g∗ \ 0 together form a Levi pair (g, λ) for an infinitesimal CR torus action
K if:



✐

✐

“1-Apostolov” — 2021/2/13 — 0:48 — page 1579 — #15
✐

✐

✐

✐

✐

✐

Levi–Kähler reduction and toric geometry 1579

• g acts transversally on N via K, i.e., Kg := span{Kv,z | v ∈ g} satisfies
Condition 1.

Let η : TN → g be the connection 1-form of g, ηλ := ⟨η, λ⟩, and hD,λ :=
dηλ|

D
(·, J ·). Then (D, hD,λ, J) is called a Levi structure and we say that

(g, λ) or (D, hD,λ, J) is

• nondegenerate if ηλ is a contact form, i.e., hD,λ is nondegenerate on D;

• positive if hD,λ is positive definite on D.

We say (N,D, J,K) is Reeb type if it admits a nondegenerate Levi pair, and
if positive, we say that (N,D, J, g, λ) or (N,D, J, hD,λ) is Levi–Kähler.

If K is a CR torus action of TN and g is the Lie algebra of a closed sub-
groupG of TN , thenN/G, with the Kähler metric induced by (hD,λ, J, dη

λ|
D
)

is called the Levi–Kähler quotient of (N,D, J) by (g, λ).

If N is compact, {λ ∈ g∗ \ 0 | (g, λ) is a Levi pair} is an open cone
Cg ⊆ g∗.

Example 4. Going back to Example 3, we take G = TN . Then for any
λ ∈ g∗+, (g, λ) defines a nondegenerate positive Levi pair on N and the cor-
responding Levi–Kähler quotient is the flag manifold M = H/G endowed
with the H-invariant Kähler structure (gλ, J) with constant scalar curva-
ture. The Kähler–Einstein structure on M corresponds to the special choice
λ =

∑

α∈R+
−iα.

Let (g, λ) be a Levi pair. For any v ∈ tN , (dηλ)(Kv, ·) = −d(ηλ(Kv)).
We may thus view ηλ(Kv) = ⟨µ(ηλ), v⟩ as the “horizontal momentum” of
Kv with respect to the Levi structure (D, dηλ|

D
). Observe that if v ∈ g,

ηλz (Kv) = ⟨v, λ⟩, which vanishes for v ∈ kerλ ⊆ g. Hence z 7→ µ(ηλz ) ∈ t∗N
takes values in (kerλ)0 ∼= (tN/ kerλ)

∗.

Stratagem 1. For any pair (g, λ) with g ⊆ tN and λ ∈ g∗ \ 0, the quotient
tN/ kerλ is an extension by R of the quotient tN/g. To allow (g, λ) to vary,
it is convenient to fix this extension h → t (where h and t are abelian Lie
algebras of dimensions m+ 1 and m); then the commutative diagram

0 ✲ g
ι
✲ tN

uN
✲ t ✲ 0

0 ✲ R

λ
❄ ε

✲ h

LN
❄ d

✲ t

w

w

w

✲ 0.
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of short exact sequences associates pairs (g, λ), with tN/ kerλ ∼= h, to sur-
jective linear maps LN : tN → h (thus g is the kernel of uN := d ◦ LN , and
λ is induced by LN |g).

Let ε⊤ : h∗ → R be the transpose of ε, and let A ⊆ h∗ be the affine
subspace (ε⊤)−1(1) of h∗, modelled on t∗; then h may be identified with the
affine linear functions ℓ : A → R, whence dℓ ∈ t is the linear part of ℓ ∈ h.

By Observation 1, K lifts to an infinitesimal hamiltonian action on UD

with momentum map µ|UD
. If (g, λ), defined by LN : tN → h, is a Levi pair,

then the map µλ : N → A ⊆ h∗, determined uniquely by the formula

(8) ⟨µλ(z),LN (v)⟩ = ηλz (Kv)

for all z ∈ N and v ∈ tN , will be called the horizontal momentum map of
(D, dηλ|

D
). Equivalently the diagram

N
ηλ
✲ UD

h∗

µλ
❄ L⊤

N✲ t∗N

µ
❄

commutes, i.e., L⊤
N ◦ µλ = µ ◦ ηλ.

Observation 2. Let (N,D, J,K) be a CR manifold of Reeb type, and let
(g, λ) be a nondegenerate Levi pair, where g is the Lie algebra of a subtorus G
of TN . Then M := N/G, equipped with the 2-form induced by dηλ|

D
, is the

symplectic quotient µg
−1(λ)/G of UD by the lifted G-action; it is therefore a

compact symplectic orbifold with a hamiltonian action of T = TN/G whose
momentum map is induced by the G-invariant map µλ : N → A ⊆ h∗ defined
in (8).

Let K = KtN = imκ,

E := im(p, µ) ⊆ N × t∗N and Θ := E0 = ker(qD ◦ κ) = κ−1(D) ⊆ N × tN .

If rankD = 2m, then rankK ∩D ⩽ m, and hence dim tN ⩽ m+ ℓ.

Proposition 2. Let K : tN → cr(N,D, J) be an infinitesimal CR torus ac-
tion. Then K ∩D is an integrable distribution, i.e., LD(X,Y ) = 0 for all
X,Y ∈ K ∩D.
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Proof. For any v, w ∈ tN and any section α of D0,

dα(Kv,Kw) = (LKv
α)(Kw)− (LKw

α)(Kv).

Hence if X =
∑

i fiKvi
and Y =

∑

j gjKwj
are sections of K ∩D (for func-

tions fi and gj on N), then

(α ◦ LD)(X,Y ) = dα(X,Y ) =
∑

i fi(LKvi
α)(Y )−

∑

j gj(LKwj
α)(X) = 0

since Kv preserves D0 for any v ∈ tN . □

Remark 2. If (g, λ) is a nondegenerate Levi pair then (p, µg) : D
0 → N ×

g∗, with µg := ι⊤ ◦ µ, is an isomorphism. In particular, (p, µ) injects, i.e., E
is a rank ℓ subbundle of N × t∗N (with E∗ ∼= (N × tN )/Θ ∼= TN/D). Equiva-
lently, the transpose qD ◦ κ surjects (pointwise), i.e., K ∩D has codimension
ℓ in K. Conversely, this suffices for the local existence (i.e., on an open neigh-
bourhood of each point of N) of a transversal subalgebra ι : g →֒ tN , hence
also a Levi pair: UD is open with nonempty fibres, so we can find λ ∈ g∗

such that ηλ is locally a contact form.

This remark prompts the following.

Definition 7. We say (N,D, J,K) is locally Reeb type if qD ◦ κ surjects
and infinitesimally toric CR if it is locally Reeb type with dim tN = m+ ℓ.

On any open set where rankK = m+ ℓ, (N,D,K) is locally Reeb type.

Proposition 3. Let (N,D, J,K) be an infinitesimally toric CR manifold
and let No be the open subset where rankK = m+ ℓ, and Uo

D
its inverse

image in UD ⊆ D0.
Then UD is an infinitesimal toric symplectic manifold under the lift

K̃, with momentum map µ : UD → t∗N defined by ⟨µ(α), v⟩ = α(Kv), where
α ∈ UD ⊆ T ∗N and Kv := K(v) for v ∈ tN . Further, there are angular coor-
dinates ϕ : Uo

D
→ tN , defined up to additive constants, with ΩD = ⟨dµ ∧ dϕ⟩

and ker dϕ = p−1
∗ (J(K ∩D)) (restricting p : D0 → N to Uo

D
).

Proof. The first part is immediate from Observation 1. By Proposition 2,
K ∩D is an integrable rank m subbundle of D, hence so is J(K ∩D) by
the J-invariance of the Levi form, and TNo = K ⊕ J(K ∩D). The 1-form
β : TNo → tN defined by kerβ = J(K ∩D) and β(Kv) = v is therefore closed.
It is not exact, but by definition of No, the local primitives (which are de-
fined up to additive constants) pull back to Uo

D
to give ϕ. □
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In terms of the short exact sequence (4) restricted to Uo
D
, we have

0 ✲ p∗D0 ✲ ker dϕ ✲ p∗J(K ∩D) ✲ 0

0 ✲ p∗D0

w

w

✲ TUo
D

❄ p∗
✲ p∗TNo

❄

✲ 0,

where for any α ∈ Uo
D
, (dµ)α(ker dϕ) = t∗N , and (dµ)α(p

∗D0) = µ(D0
p(α)) =

Ep(α). This identifies (dµ)α(p∗J(K ∩D)) with Θ∗
p(α).

A subalgebra ι : g →֒ tN satisfying Condition 1 splits the exact sequence

0 ✲ E ✲ No × t∗N
✲ Θ∗ ✲ 0

i.e., ker ι⊤ ∼= t∗ is transverse to Ez for all z ∈ No. Thus µ(Uo
D
) ⊆ t∗N is foliated

by its intersection with the m-dimensional family Ez of ℓ-dimensional linear
subspaces of t∗N .

Remark 3. The Levi–Kähler quotient of N by (g, λ) is the Kähler quotient
of any TN -invariant, ΩD compatible metric ĝ on U+

D
whose pullback to

µ−1
g (λ) ∼= N is the orthogonal sum of a metric on Kg and the metric hD,λ

on D. We may assume ĝ has angular coordinates dϕ on Uo,+
D

= Uo
D
∩ U+

D
,

so that it is determined uniquely there by the induced TN -invariant metric
on ker dϕ ∼= No × t∗N , which descends to a metric G on µ(Uo,+

D
) ⊆ t∗N . Since

hD,cλ = c hD,λ for c ∈ R+, we assume G is homogeneous of degree 1 on t∗N ,
i.e., as an S2tN -valued function on µ(Uo,+

D
), it is homogeneous of degree

−1. Examples of such metrics include the generalized Kähler cone metrics
(Definition 4).

If (g, λ) is given by LN : tN → h, then the Levi–Kähler quotient metric
depends only on the pullback of G to L⊤

N (A) = (ι⊤)−1(λ), an affine subspace
transverse to E .

2. Levi–Kähler reduction in toric geometry

2.1. Polytopes, fans, combinatorics, and toric contact manifolds

Suppose that (N,D, J,K) is a toric CR manifold of rank m and codi-
mension ℓ, under a (real) torus TN = tN/2πΛN with (abelian) Lie algebra
tN = ΛN ⊗Z R.

The theory of effective actions of tori [14, 36] implies that for any
subtorus H ⩽ TN ,

N(H) := {z ∈ N | H = StabTN
(z)} ⊆ NH := {z ∈ N | H ⊆ StabTN

(z)}
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is an open submanifold of a closed submanifold ofN , and ifN(H) is nonempty
then N(H) is dense in NH . The connected components of N(H) and their
closures in N are called open and closed orbit strata of (N,K). Let ΦN be
the set of closed orbit strata, partially ordered by inclusion, and letNs : s ∈ S

index the closed orbit strata stabilized by a circle. The 1-dimensional Lie
algebra of Ns has a primitive generator vs ∈ ΛN ⊆ tN , unique up to sign.
We refer to ΦN as the combinatorics of N ; it is a “poset over S”.

Definition 8. A poset (partially ordered set) over a set S is a set Φ
equipped with a partial ordering (reflexive antisymmetric transitive rela-
tion) and a map S → Φ. A morphism Φ → Φ′ of posets over S is an order
preserving map whose composite with the map S → Φ is the map S → Φ′.
We say Φ and Φ′ have the same combinatorial type if they are isomorphic
as posets over S. The combinatorics arising in toric geometry are typically
isomorphic to subposets of the power set P (S) or its opposite P (S)op, which
are posets over S under inclusion or reverse inclusion respectively, with the
map from S being the singleton map s 7→ {s}.

To illustrate this, we start, as in Stratagem 1, with an exact sequence

0 → R
ε→ h

d→ t → 0

of vector spaces, viewed as an extension of abelian Lie algebras with dim t =
m, and let A := (ε⊤)−1(1) be the corresponding m-dimensional affine sub-
space of h∗. Recall that a convex polytope ∆ in A is a subset of the form

∆ := {ξ ∈ A | ∀s ∈ S, Ls(ξ) ⩾ 0}

where S is a finite set, and Ls ∈ h (an affine function on A) for each s ∈ S.

Remark 4. The combinatorics Φ∆ of ∆ is the poset over S of closed faces of
∆. More precisely, for ξ ∈ A, let Sξ = {s ∈ S | Ls(ξ) = 0}; we assume that

∆ ⊆ A has nonempty interior ∆̊ (so for ξ ∈ ∆̊, Sξ = ∅) and that for any
s ∈ S, there exists ξ ∈ ∆ with Sξ = {s} (otherwise we may discard s without
changing ∆). The map sending S ⊆ S to

FS := {ξ ∈ ∆ | S ⊆ Sξ} = {ξ ∈ ∆ | ∀s ∈ S, Ls(ξ) = 0}

restricts to an isomorphism from {Sξ ∈ P (S)op | ξ ∈ ∆} to Φ∆ over S. Any
closed face is thus the intersection of the facets Fs := F{s} containing it:
FS =

⋂

s∈S Fs. We assume that the empty face is an element of Φ∆, so that
FS ∈ Φ∆ for all S ∈ P (S).
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Given a compact convex polytope ∆ ⊆ A, the positive span R+∆ is a
cone in h∗; the dual cone to ∆ is

∆∗ := {L ∈ h | ∀ξ ∈ ∆, L(ξ) ⩾ 0},

and its projection onto t defines a decomposition Y of t, called the associated
(complete) fan, into a union of polyhedral cones

CS := {dL ∈ t | ∀ξ ∈ ∆, L(ξ) ⩾ 0

with equality for all ξ ∈ FS} = span{us | s ∈ S}

corresponding to the faces FS of ∆. These cones form a poset ΦY over
S under inclusion, and a (complete) fan Y is uniquely determined by its
combinatorics ΦY and its rays (one dimensional cones) Cs := C{s}. When Y

is constructed from ∆ as above then ΦY is canonically isomorphic to Φop
∆

over S, and in particular there is a canonical bijection between the facets of
∆ and the rays Cs := C{s} of Y.

The rays of Y determine us : s ∈ S up to positive scale, and similarly ∆
determines Ls : s ∈ S up to positive scale. Given a choice of these scales, we
say ∆ is a labelled polytope with affine normals Ls ∈ h and inward normals
us := dLs ∈ t for s ∈ S, and that Y is a labelled fan with generators us ∈ t

for s ∈ S.

Definition 9. A (complete) fan Y is simplicial if the rays in any cone
are linearly independent. A (compact) convex polytope ∆ is simple if its
fan is simplicial. In terms of a labelling, this means for all S ∈ ΦY, us : s ∈
S is linearly independent, or (for polytopes) ∀ξ ∈ ∆, Bξ := (us : s ∈ Sξ) is
linearly independent. This condition only depends on the vertices ξ of ∆,
where it means that Bξ is a basis; in particular, each vertex is m-valent.

Returning to (N,D, J,K), the underlying contact manifold (N,D) is
toric under (K,TN ) in the sense of [8], where the following result is obtained,
following the methods of [13, 29, 38, 42–44].

Theorem 1. Let (N,D,K) be a (compact, connected) toric contact man-
ifold under TN . Then the stabilizers in TN of points in N are connected
(i.e., subtori) and the fibres of the momentum map µ on UD are TN -orbits.
For any nondegenerate Levi pair (g, λ) the signs of the primitive generators
vs ∈ tN of the circle stabilizers Ns : s ∈ S may be chosen uniquely such that
the image of the horizontal momentum map µλ : N → A ⊆ h∗ is the compact
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simple convex polytope ∆ in A defined by the affine functions Ls := LN (vs)
and µλ is a submersion over the interior of each face.

In particular, µλ induces a poset isomorphism over S of ΦN with Φ∆.

Corollary 1. N and ∆ (i.e., ΦN and Φ∆) have the same combinatorial
type.

Remark 5. The primitive generators vs : s ∈ S need not be linearly inde-
pendent in tN , nor even distinct, although after taking a quotient of N by
a subtorus acting freely, we may assume that they span.

Suppose now that G is a closed subgroup of TN with Lie algebra g. Such
a subgroup exists if and only if the lattice of circle subgroups ΛN in tN is
mapped to a (rank m) lattice Λ in t, which holds if and only if us : s ∈ S

span a lattice in t.

Definition 10. If Λ ⊆ t is a lattice, then a polytope ∆ or fan Y labelled
by Ls (with us = dLs) or us : s ∈ S is rational with respect to Λ if for all
s ∈ S, us ∈ Λ.

We are now ready to study the Levi–Kähler quotient N/G, which is a
compact toric Kähler orbifold M of real dimension 2m under an m-torus
T with Lie algebra t and hamiltonian generators h. Indeed, with respect to
the symplectic form on N/G induced by dηλ|D, µλ : N → A ⊆ h∗ descends
to a (natural) momentum map for the action of T = TN/G on N/G, whose
image is the rational simple convex polytope ∆ ⊆ A. Rational Delzant the-
ory [29, 44] asserts that any such toric Kähler orbifold M is determined up
to symplectomorphism or biholomorphism by its labelled polytope or fan.
The construction ofM from these data is relevant here, so we review it now.

Let ZS be the free abelian group generated by S, let tS = ZS ⊗Z R and
CS = ZS ⊗Z C be the corresponding free vector spaces over R and C, and
let TS = tS/2πZS and TC

S
= CS/2πZS

∼= C×
S

be the corresponding real and
complex tori. Denote the generators of ZS ⊆ tS ⊆ CS by es : s ∈ S, and
observe that TS and TC

S
act diagonally on CS, via [

∑

s tses] · (
∑

s zses) =
∑

s exp(its)zses, where zs ∈ C and ts ∈ R or C. The action of TS on CS is
hamiltonian (with respect to the standard symplectic form ωS on CS) and
has a momentum map σ : CS → t∗

S
defined by

(9) ⟨σ(z), es⟩ = σs(z) :=
1
2 |zs|

2,

where zs : CS → C denote the standard (linear) complex coordinates on CS.
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The labellings s 7→ Ls and s 7→ us of ∆ and Y induce, and are defined by
(without loss, surjective) linear maps L : tS → h and u : tS → t with L(es) =
Ls and u(es) = us for all s ∈ S. Let g̃ be the kernel of u; then L determines
a linear form λ̃ ∈ g̃∗ completing the following diagram:

(10)

0 ✲ g̃
ι̃
✲ tS

u
✲ t ✲ 0

0 ✲ R

λ̃
❄ ε

✲ h

L
❄ d

✲ t

w

w

w

✲ 0.

When ∆ (or Y) is rational, then u maps ZS to Λ and hence defines a map
from TS = tS/2πZS to t/2πΛ whose kernel is a closed subgroup G̃ of TS with
Lie algebra g̃. We let G̃C ⩽ TC

S
be the kernel of the complexification of this

map.
The combinatorics ΦY of Y (or ∆) define an open subset C◦

S
⊆ CS as the

union of z ∈ CS for which Sz := {s ∈ S | zs = 0} is in ΦY. In other words,
C◦

S
is the union of the TC

S
-orbits

CS,S := {z ∈ CS | zs = 0 iff s ∈ S}

over S ∈ ΦY. Thus the set of T
C

S
orbits in C◦

S
is isomorphic to ΦY, and S ⊆ S′

iff the closure of CS,S contains CS,S′ .

Lemma 3. Let (Y,u) be a simplicial fan with combinatorics ΦY. Then
g̃ ⊆ tS acts locally freely on C◦

S
. If in addition (Y,u) is rational, and G̃ is

the corresponding closed subgroup of TS, then for any S ∈ ΦY, the stabilizer
in G̃ of any z ∈ CS,S is

(11) StabG̃(z)
∼= (Λ ∩ spanR{us | s ∈ S})/spanZ{us | s ∈ S}.

Proof. Let S ∈ ΦY and z ∈ CS,S , so that zs = 0 iff s ∈ S. Then any element
of the stabilizer of z in tS has the form v =

∑

s∈S tses, which belongs to g̃

iff
∑

s∈S tsus = 0. However, since (Y,u) is simplicial, us : s ∈ S is linearly
independent, hence v = 0.

For the second part, an element [v] = [
∑

s∈S tses] of the stabilizer of z

in TS = tS/2πZS is in G̃ iff
∑

s∈S tsus ∈ Λ, and is the identity element iff
ts ∈ Z for all s ∈ S. The result follows. □

The Delzant–Lerman–Tolman correspondence and the relation between
symplectic and complex (GIT) quotients [29, 44] now assert that:

(i) as a complete toric variety, M is a complex (GIT) quotient C◦
S
/G̃C

of CS by G̃C;
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(ii) as a compact toric symplectic orbifold, M is a symplectic quotient
Ñ/G̃ — where Ñ = (ι̃⊤σ)−1(λ̃) — of CS by G̃ at momentum level λ̃ ∈ g̃∗.

The orbifold structure groups of points in M = Ñ/G̃ are given by the stabi-
lizers in G̃ of corresponding points in Ñ , hence are related to the labellings
of the polytope and fan by (11). Note that the complex structure in (i) is bi-
holomorophic to the complex structure of the Kähler quotient in (ii), which
is the quotient of the induced CR structure on Ñ ⊆ CS. However, M is not
typically isometric to the Kähler quotient of CS by G̃, which is called the
Guillemin metric [1, 2, 37] of ∆.

In particular, the Levi–Kähler quotient (N/G, dηλ|
D
, J |D) is symplec-

tomorphic to the toric symplectic orbifold obtained from (∆,L) by the
Delzant–Lerman–Tolman construction, but also biholomorphic to the Levi–
Kähler quotient of the toric CR submanifold Ñ of flat space by (g̃, λ̃). In
general N and Ñ have different dimensions, but there is a map from Λ to ΛN

sending es to vs, and if the latter form a basis for ΛN , then we may identify
TN with TS, LN with L, and hence (g̃, λ̃) with (g, λ). This motivates the
study of Levi–Kähler quotients of toric CR submanifolds of flat space, which
will occupy us for the remainder of the paper.

2.2. Toric CR submanifolds of flat space

Let S be a d element set, and define ZS, tS, CS, TS and TC

S
as in ➜2.1.

Let K : tS → ham(CS, ωS) be the infinitesimal hamiltonian action, and let
ϑ : C×

S
→ TS be angular coordinates conjugate to the momentum compo-

nents (9) on the open set C×
S

of CS where zs ̸= 0 for all s ∈ S; thus dϑ :
TC×

S
→ tS satisfies dϑ(Kv) = v and dϑ(JKv) = 0 for all v ∈ tS. The flat

Kähler metric in action-angle coordinates on C×
S
is then

(12)

gS =
∑

s∈S

(

dσs
2

2σs
+ 2σsdϑs

2

)

,

ωS =
∑

s∈S

dσs ∧ dϑs, d
cσs := Jdσs = 2σsdϑs.

In particular, the metric H(v, w) := gS(Kv,Kw) on the TS-orbits is given
by the smooth function H = 2δσ : CS → S2t∗

S
, where δ : t∗

S
→ S2t∗

S
⊆ t∗

S
⊗ t∗

S

is the coproduct dual to componentwise multiplication in tS; thus if we
write v =

∑

s∈S vses and w =
∑

s∈Swses then Hz(v, w) =
∑

s∈S 2σs(z)vsws,
which is positive definite for z ∈ C×

S
. Note the following crucial property of
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the flat Kähler metric on CS: d
cσs(Kv) = 2σsvs for all v ∈ tS, i.e.,

(13) d
cσ(Kv) = H(v) = 2(δσ)(v),

where we use the natural inclusion S2t∗
S
⊆ Hom(tS, t

∗
S
) to evaluate H = 2δσ

on v.
We now restrict attention to Levi–Kähler quotients in the following set-

ting.

Definition 11. A toric CR submanifold of CS is a compact connected CR
submanifold (N,D, J) which is invariant and locally Reeb type under the
action of TS.

We assume that for any S ⊆ S, the intersection of N with the TC

S
orbit

CS,S is connected; these intersections are then the orbit strata, and the com-
binatorics ΦN of N may be identified with the poset of those S ∈ P (S) such
that N ∩ CS,S is nonempty. We also assume that for all s ∈ S, {s} ∈ ΦN ,
i.e., Ns := N ∩ CS,{s} = {z ∈ N | zs = 0} is nonempty, with generic stabi-
lizer <exp(tes)> (if this did not hold, the <exp(tes)> circle action on N
would be free, and we could take a quotient).

We refer to a Levi–Kähler quotient M of a toric codimension ℓ CR
submanifold (N,D, J) in CS by a positive Levi pair (g, λ), where g is the
Lie algebra of an ℓ-dimensional subtorus G ⊆ TS, as a (codimension ℓ) Levi–
Kähler reduction of CS.

The data (N,D, J) and (g, λ) are linked by Condition 1, which may
be viewed as a constraint on (N,D, J) given (g, λ) or vice versa. We spec-
ify the choice of (g, λ) as in ➜1.3 via a surjective linear map L : tS → h, or
equivalently, an indexed family Ls : s ∈ S of vectors in h which span (where
Ls = L(es)). In other words, for toric CR submanifolds (N,D, J) of CS, a
pair (g, λ) is associated canonically, via the set-up (10), with a (not neces-
sarily compact or nonempty) convex polytope

∆g,λ = {ξ ∈ A | ∀ s ∈ S, Ls(ξ) ⩾ 0}

labelled (formally) by Ls : s ∈ S (although some facets Fs could be empty a
priori). We denote the combinatorics of ∆g,λ by Φg,λ.

Lemma 4. Let N be a toric CR submanifold of CS satisfying Condi-
tion 1 relative to (g, λ). Then there is a smooth pointwise surjective func-
tion χN,g : N → Hom(t∗

S
, g) such that for all z ∈ N , ηz = χN,g(z) ◦ dcσz and

dηz|Dz
= χN,g(z) ◦ ddcσz|Dz

.
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Proof. The CR submanifold N may be written (at least locally, and in our
examples globally)N = (F ◦ σ)−1(0) where F : t∗

S
→W is a smooth function

with values in an ℓ-dimensional vector space W , for which 0 is a regular
value. Hence TzN = ker dF

σ(z) ◦ dσz and so D is the kernel of the pullback
ν of dF ◦ dcσ to N , with νz(Kv) = dF

σ(z)(Hz(v)) for v ∈ tS and z ∈ N . By
Condition 1, dF ◦H ◦ ι : N → Hom(g,W ) is a pointwise isomorphism, and
η = (dF ◦H ◦ ι)−1ν.

We may now set χN,g = (dF ◦H ◦ ι)−1 ◦ dF ; this formula may only be
valid locally, but the result is independent of the choice of F : t∗

S
→W , so

χN,g, with η = χN,g ◦ dcσ is globally defined. Since ν|
D

= 0, dη|
D

= (dF ◦
H ◦ ι)−1dν|

D
. Now

d(dF ◦ dcσ) = (HessF )(dσ ∧ d
cσ) + dF ◦ ddcσ.

Pulling back to N and restricting to D, the first term vanishes (since F ◦ σ
is constant on N). Hence dη|

D
= χN,g ◦ ddcσ|

D
. □

The characteristic function of (N, g, λ) is the (nowhere vanishing) func-
tion χ = χN,g,λ : N → tS with χN,g,λ(z) = λ ◦ χN,g(z). Hence η

λ := ⟨η, λ⟩ =
⟨dcσ, χN,g,λ⟩ and the horizontal momentum map µλ : N → A ⊆ h∗ satisfies:

⟨µλ(z),L(v)⟩ = ηλz (Kv) = Hz(v, χN,g,λ(z))(14)

= 2⟨δσ(z), v ⊗ χN,g,λ(z)⟩.

Thus ηλ =
∑

s∈S χs d
cσs and ⟨µλ,L(v)⟩ =

∑

s∈S 2σsχsvs, i.e., Ls(µ
λ) =

2σsχs. Since ddcσs = 2dσs ∧ dϑs, the induced metric on D (over C×
S
∩N)

is

hD,λ =
∑

s∈S

Ls(µ
λ)

σs

(

dσs
2

2σs
+ 2σsdϑs

2

)
∣

∣

∣

∣

D

(15)

=
∑

s∈S

2χs

(

dσs
2

2σs
+ 2σsdϑs

2

) ∣

∣

∣

∣

D

.

Theorem 1 shows that if (g, λ) is a nondegenerate Levi pair, then the
image of the horizontal momentum map µλ is the compact simple convex
polytope ∆, defined by ±Ls : s ∈ S for some choice of signs, and also that ∆
has the same combinatorial type as N . Now if ∆ = ∆g,λ (i.e., all signs are
positive) then equation (15) shows that (g, λ) is a positive Levi pair. This
motivates the introduction of the following constraint.
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Condition 2. ∆g,λ is a compact convex polytope with the same combina-
torial type as N (as a subset of P (S)).

Theorem 2. Let N be a toric submanifold of CS and suppose (g, λ) is a
Levi pair. Then imµλ = ∆g,λ if and only if (g, λ) is a positive Levi pair
satisfying Condition 2.

Proof. If imµλ = ∆g,λ, then (15), applied to each orbit stratum, shows that
hD,λ is positive definite over the interior of each face of ∆g,λ, hence every-
where. Thus (g, λ) is a positive Levi pair. Under this assumption, Theorem 1
shows that imµλ = ∆g,λ if and only if Condition 2 holds. □

2.3. Levi–Kähler reduction for quadrics

We now specialize to the case that N is an intersection of quadrics. For N
to be a toric CR manifold with codimension ℓ, it is then the level set of
an ℓ-dimensional family of components of σ : CS → t∗

S
, hence of the form

(F ◦ σ)−1(0), with F = ι⊤o − λo : t
∗
S
→ g∗o, where ιo : go →֒ tS is an inclusion

of an ℓ-dimensional subspace, and λo ∈ g∗o is in the image of the positive
quadrant of t∗

S
.

Thus N = µ−1
o (λo), where µo = ι⊤o σ, is defined by the same sort of data

(go, λo) as the data (g, λ) which determines the Levi–Kähler structure on N .
These data may therefore be fixed in the same way as (g, λ) using a diagram
of linear maps

0 ✲ go
ιo
✲ tS

uo
✲ t ✲ 0

0 ✲ R

λo
❄ ε

✲ h

Lo
❄ d

✲ t

w

w

w

✲ 0.

We write Ngo,λo
or NLo for the CR submanifold corresponding to these data.

We shall assume that ∆go,λo
is a compact convex polytope, so that it satisfies

Condition 2: the image of σ : N → t∗
S
thus lies in the nonnegative quadrant

of

toS := {ξ ∈ t∗S | ∀ v ∈ go, ξsvs = 0 ∀ s ∈ S ⇒ v = 0},
and uos : s ∈ S are the normals of a complete fan.

Since F is affine linear, dF is constant, equal to ι⊤o , and so νz(Kv) =
ι⊤o (Hz(v)). Hence Ez = im(Hz ◦ ιo : go → t∗

S
) and so E = σ∗Eo where Eo → to

S

has fibre Eo
ξ = {(ξsvs)s∈S ∈ t∗

S
| v ∈ go}.

Proposition 4. On Ng0,λ0
, (go, λo) is a positive Levi pair.
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Proof. Since uos : s ∈ S are the normals of a complete fan, {α ∈ t∗ | ∀ s ∈
S, α(uos) ⩾ 0} = {0}. Hence (uo)⊤(t∗) meets the positive quadrant of t∗

S
only

at 0, so the image in g∗o of this positive quadrant is a strictly convex cone C
whose dual cone C∗ is the intersection of go with the inverse image (under
ιo) of the positive quadrant in tS. Since Hz is diagonal and positive definite,
it maps the positive quadrant of tS onto the positive quadrant of t∗

S
. Thus

ι⊤o ◦Hz ◦ ιo maps C∗ onto C. Since λo ∈ C, χo(z) := ιo(ι
⊤
o ◦Hz ◦ ιo)−1(λo)

has positive components, and hence hD,λo
is positive definite. □

Thus we can satisfy Condition 1 by letting (g, λ) equal (go, λo).
If the fan associated to (go, λo) is rational, (M,J) is the underlying com-

plex orbifold of the Delzant–Guillemin Kähler quotient of CS by (go, λo). Its
Kähler form belongs to the same Kähler class as the Levi–Kähler quotient,
but will not be the same in general.

Remark 6. By continuity, we also obtain a positive definite metric for
(g, λ) in an open neighbourhood of (go, λo). In particular, we can fix g = go
and vary λ to obtain an ℓ-dimensional family of Levi–Kähler quotients on
the same complex orbifold. As H2

dR(M) is ℓ-dimensional, it is natural to ask
if all Kähler classes are obtained in this way.

The characteristic function χ = χN,g,λ of N = Ngo,λo
with respect to an

arbitrary Levi pair (g, λ) is given by χ(z) = (ι⊤ ◦Hz ◦ ιo)−1(λ) ∈ go, where
we tacitly omit the inclusion ιo : go ⊆ tS.

Remark 7. The function χ : N → go is determined by H(χ)|g = λ; since
H = 2δσ, it is linear in σ, which implies χ is a rational function of σ. Now for
any v ∈ go and z ∈ N , 1

2H(
∑

s∈S es) =
∑

s∈S⟨σs(z), v⟩ = λo(v), and so the
characteristic function χo of the canonical Levi pair (go, λo) is characterized
by ι⊤o Hz

(

χo(z)− 1
2

∑

s∈S es
)

= 0.

Proposition 5. If
∑

s∈S u
o
s = 0 then 2χo

s = 1 for all s ∈ S.

Proof. Since
∑

s∈S es ∈ go, for all z ∈ N , χo(z) = 1
2

∑

s∈S es by the charac-
terization. □

If this assumption holds, we say N is spherical : N is then contained in a
hypersphere in CS. (The equivariant topology of such manifolds has been
studied in [18], but here we focus on the geometry of their Levi–Kähler
quotients.) In the spherical case, σs = ⟨µλo , Lo

s⟩, and the canonical Levi–
Kähler quotient metric agrees with the Delzant–Guillemin Kähler quotient.
In particular, the reduced metric on A ⊆ h∗ is

∑

s∈S(dL
o
s)

2/2Lo
s, which is the



✐

✐

“1-Apostolov” — 2021/2/13 — 0:48 — page 1592 — #28
✐

✐

✐

✐

✐

✐

1592 Apostolov, Calderbank, Gauduchon, and Legendre

pullback by (Lo)⊤ of the metric ho =
∑

s∈S dζs
2/2ζs on t∗

S
, where we write

ζs for the linear function ζs(ξ) = ξs on t∗
S
corresponding to es ∈ tS (thus dζs

is es, viewed as a constant 1-form).
In order to compute the reduced metric for any Levi pair (g, λ), not just

(go, λo) we observe that the bundle Eo ⊆ T to
S
= to

S
× t∗

S
(with E = σ∗Eo) is

the orthogonal complement to to
S
× (uo)⊤(t∗) with respect to ho:

∑

s∈S

dζs((ξsvs)s∈S)dζs(w ◦ uo)

ζs(ξ)
=
∑

s∈S

vs(w ◦ uo)s = w(uo(v)) = 0.

Hence by Remark 3, we have the following result.

Theorem 3. Let (g, λ) be a positive Levi pair on a spherical quadric N =
Ngo,λo

. Then the reduced metric of the Levi–Kähler structure is the pullback
by L⊤ : ∆g,λ → to

S
of the restriction of ho to to

S
× (uo)⊤(t∗) ⊆ T to

S
(extended

by zero on Eo ⊆ T to
S
).

Example 5. The weighted projective space CPm
a of weight a = (a0, . . . ,

am) ∈ Nm+1 has the structure of a toric symplectic orbifold whose Delzant
polytope is a labelled simplex (∆, u). The corresponding momentum level set
Nλ ⊆ Cm+1 is CR G-equivariantly isometric to the sphere S2m+1 ⊆ Cm+1,
acted by the a-weighted diagonal S1 action. By a result of S. Webster [48],
Levi–Kähler reduction defines on CPm

a a homothety class of Bochner-flat
Kähler metrics [22, 28], which are extremalKähler metrics [24]. The Bochner-
flat metric coincides with the Guillemin symplectic-Kähler reduction if and
only if a = (1, . . . , 1), i.e., only on CPm, see e.g., [2]. Thus one can obtain
Levi–Kähler quotients of the same (flat) CR structure on S2m+1 ⊆ Cm+1

on any labelled rational simplex, by varying the subgroup G ∼= S1 within
a fixed maximal torus Tm+1 in the group AutCR(S

2m+1) = PU(m+ 1, 1) of
CR transformations of S2m+1.

Locally, the construction is defined by a one-dimensional subspace g ⊆
tS, generated by a non-zero element v ∈ tS, with corresponding vector field
Kv transverse to the CR distribution on S2m+1, and the choice of a contact
form ηv with ηv(Kv) = 1 and ker ηv = D. In this case (Kv, ηv,D, J) defines
a Sasaki structure compatible with the standard CR structure (D, J) on
S2m+1, see e.g. [20]. The horizontal Kähler geometry (dηv,D, J) may be
described by a compatible toric metric over a (perhaps not rational) labelled
simplex (see [40]). The fact that g is the Lie algebra of a subgroup G ⩽ Tm+1

implies a rationality condition on g, hence on the corresponding labelled
simplex.
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3. Levi–Kähler reduction for products of spheres

Our main motivation for the study of toric Levi–Kähler quotients is the con-
struction of Kähler metrics on toric varieties with “nice” curvature proper-
ties. For this we observe that CR submanifolds of CS have local invariants,
and so one approach to constructing Levi–Kähler quotients with nice cur-
vature is to start from a nice CR submanifold N of CS. In particular, when
N is a product of spheres, it is flat as a CR manifold. Hence we might hope
that Levi–Kähler quotients of products of spheres have interesting curvature
properties.

3.1. Products of simplices and products of spheres

We specialize the set-up of ➜2 as follows. Fix positive integers ℓ and m1,
m2, . . . ,mℓ, and let

I = {1, 2, . . . , ℓ}, Ii = {0, 1, . . . ,mi}, S = {(i, r) | i ∈ I and r ∈ Ii}.

Let m =
∑

i∈I mi and d = m+ ℓ as usual. Thus CS
∼= Cm1+1 × Cm2+1 ×

· · · × Cmℓ+1 ∼= Cd and tS has a natural subspace go = {x ∈ tS | xiq = xir for
all i ∈ I and q, r ∈ Ii}. We denote by xi the common value of the xir and
thus identify go with Rℓ. On go we have a natural linear form λo sending
(x1, x2, . . . , xℓ) to x1 + x2 + · · ·+ xℓ ∈ R, and we let Lo : tS → h = tS/ kerλo
and uo : tS → t = tS/go be the quotient maps.

Under the canonical identification of t∗
S
with tS, h

∗ is isomorphic to the
subspace of ξ = (ξs)s∈S such that

∑

r∈Ii
ξir is independent of i, this constant

being the natural projection h∗ → R. Hence t∗ is a product (over i ∈ I) of
the codimension one linear subspaces of Rmi+1 where the coordinate sum is
zero, and A is the corresponding product of affine subspaces Ai where the
coordinate sum is one.

Notation 1 (The faces of Σ). The polytope Σ in h∗ defined by Lo is a
product of simplices Σi in the affine spacesAi. In the following, we sometimes
write i(s) and r(s) for the components of s ∈ S, i.e., s = (i(s), r(s)).

• The facets of Σi are F
i
r = {ξir = 0} ∩ Σi for r ∈ Ii.

• The vertices of Σi may also be indexed by r ∈ Ii: we let p
i
r be the unique

vertex of Σi that is not in F
i
r .
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• The vertices of Σ are thus indexed by (r1, . . . , rℓ) ∈ I1 × · · · × Iℓ:

p(r1,...,rℓ) = (p1r1 , . . . , p
ℓ
rℓ
).

• Each facet F i
r (for r ∈ Ii) of the simplex Σi determines a facet

Fir = Σ1 × · · · × Σi−1 × F i
r × Σi+1 × · · · × Σℓ

of Σ and a corresponding inward normal uoir = dLo
ir.

The corresponding CR submanifold of CS is

N = NLo = {z ∈ CS |
∑

r∈Ii
σir = 1 for all i ∈ I},

where σir =
1
2 |zir|2. Thus N ∼= S2m1+1 × · · · × S2mℓ+1. As in ➜2.3, N is the

level set, at the regular value λo, of the momentum map µo = ι⊤o σ. Thus

µo(z) = (σ1(z), . . . ,σℓ(z)), where σi(z) =
∑

r∈Ii

σir(z) =
∑

r∈ Ii

1
2 |zir|

2,

and we denote z = (z1, . . . , zℓ) with zi = (zi0, . . . , zimi
) the linear coordi-

nates of CS. These data are associated to the Delzant construction for
the product Σ = Σ1 × · · · × Σℓ ⊆ A of standard Delzant simplices Σi ⊆ Ai.
More specifically, go is the Lie algebra of a subtorus Go of TS, which acts
freely onN preserving the CR structure (D, J), with quotient space (M,J) =
CPm1 × · · · × CPmℓ . The Lie algebra go of Go defines a Reeb foliation on
N ⊆ CS with induced horizontal Levi structure consisting of scales of prod-
uct of Fubini–Study metrics.

Theorem 4. Let N = S2m1+1 × · · · × S2mℓ+1 ⊆ CS be a product of standard
CR spheres. Then for a pair (g, λ), defined by L : tS → h, with associated
polytope ∆g,λ ⊆ A, the following are equivalent.

(i) (g, λ) is a positive Levi pair, i.e., defines a Levi–Kähler structure
on N .

(ii) (g, λ) is a Levi pair (i.e., g satisfies Condition 1) whose horizontal
momentum map µλ : N → A has imµλ = ∆g,λ.

(iii) (g, λ) satisfies Condition 2, i.e., ∆g,λ is a compact convex polytope
with the same combinatorial type as Σ.

The proof makes use a couple of Lemmas.
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Lemma 5. If (g, λ) satisfies Condition 2, then it satisfies Condition 1.

Proof. Condition 1(i) holds since it only depends on the combinatorics of ∆.
Suppose that g does not satisfy Condition 1(ii). Then there exist z ∈ N

and v = (xs) ∈ tS \ 0 such that Kv(z) ∈ D =
⋂

i∈I ker d
cσi and v ∈ g, that

is

(16)
∑

s∈S

xsus = 0 ∈ t and
∑

r∈Ii

xirσir = 0 for i ∈ I,

where σs =
1
2 |zs|2. As equations on v = (xs) for fixed z, this system is a

linear map from tS to Rℓ ⊕ t, which both have dimension d. We may write
the d× d-matrix A = Az of this linear map as follows: for j ∈ I the j-th
row is σsδi(s)j , while the lower part B of the matrix is the m× d-matrix,
whose s-th column is us for s ∈ S (written with respect to some basis of t).
We compute the determinant of A = Az by expanding along the first ℓ rows.
The nonzero terms are all obtained by choosing, for each j ∈ I, rj ∈ Ij to
obtain a minor

±σ1r1σ2r2 · · ·σℓrℓ detB(r1,...,rℓ),

where B(r1,...,rℓ) is the submatrix of B obtained by removing the columns
u1r1 , . . . , uℓrℓ . Up to an overall sign (depending on |Ij |) each such minor
contributes to detA with sign (−1)

∑
j∈I

rj . Hence to show detA ̸= 0, it suf-
fices to show that (for a fixed basis of t) (−1)

∑
j∈I

rj detB(r1,...,rℓ) > 0 for all
(r1, . . . , rℓ) ∈ I1 × · · · × Iℓ, because σs ⩾ 0 and the products

∏

j∈I σjrj do
not all vanish at the same time.

Since ∆ has the same combibatorial type as Σ, we know that the colomns
of B(r1,...,rℓ) are inward normals of the facets meeting at the vertex p(r1,...,rℓ),
see Notation 1. These form a basis by the Delzant condition on ∆, and so it
suffices to show that (−1)

∑
l

j=1
rj times the wedge product of the columns of

B(r1,...,rℓ) has sign independent of (r1, . . . , rℓ). This will hold for ∆ if it holds
for Σ, so it suffices to check that for each j ∈ I, (−1)rjuoj0 ∧ · · · ûojrj ∧ · · ·uojmj

(with the uojrj factor omitted) is independent of rj ∈ Ij . Since
∑

r∈Ij
uojr = 0,

this is a triviality. □

Lemma 6. Suppose (g, λ) satisfies Condition 1 and let χ : N → go ∼= Rℓ be
the characteristic function of (N, g, λ). Then (g, λ) is a positive Levi pair if
and only if χ1, . . . , χℓ are positive.
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Proof. First observe that since D =
⋂

i∈I ker d
cσi, we have

(17) ηλ =
∑

i∈I

χi d
cσi, dηλ|D =

∑

i∈I

χi dd
cσi|D.

Moreover, D splits as a sum D =
⊕

i∈I Di where Di is tangent the i-th
sphere in the productN =

∏

i∈I S
2mi+1 (that isDi = TS2mi+1 ∩ JTS2mi+1).

For i ∈ I, ddcσi is nondegenerate on Di, and if j ̸= i, Dj ⊆ ker ddcσi. Thus
dηλ|

D
defines a positive definite metric iff χi > 0 for all i ∈ I. □

Before proving the theorem we need a bit more notation. For each j ∈ I,
we define

C±
j := {ξ ∈ A | ∀ r ∈ Ij , ±Ljr(ξ) ⩾ 0} and ∆ =

⋂

j∈I

C+
j .

Note that C−
j is potentially empty but C+

j is not.

Proof of Theorem 4. By Lemma 5, we may assume Condition 1 holds. Then
the formula (14) for the induced momentum map µλ here reduces to

(18) Lir(µ
λ(z)) = 2χi(z)σir(z)

where Lir = L(eir) for the standard basis eir of tS.
If (g, λ) is a positive Levi pair, the functions χi are positive by Lemma 6

and then equation (18) and Theorem 1 imply that imµλ = ∆g,λ; thus (i)⇒(ii).
Now (ii)⇒(i)&(iii) by Theorem 2, which also shows (i)⇒(iii).
Finally, to prove (iii)⇒(i), it suffices, by Lemma 6, to show that the func-

tions χi are positive. First note the following consequences of equation (18).

(a) imµλ contains all the vertices of ∆ = ∆g,λ. Indeed, each z ∈ N having
only one nonzero coordinates in each spherical factor is sent to a vertex
of ∆. Moreover, on the vertices of ∆, Ls′ ⩾ 0 for each s′ ∈ S; thus
equation (18) implies that χi(z) ⩾ 0 for any z ∈ N such that µλ(z) is
a vertex of ∆.

(b) If Lir(µ
λ(z)) ⩾ 0 (resp. Lir(µ

λ(z)) ⩽ 0) then for all q ∈ Ii, Liq(µ
λ(z)) ⩾

0 (resp. Liq(µ
λ(z)) ⩽ 0). That is µλ(z) ∈

⋂

j∈I(C
+
j ∪ C−

j ).
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Thanks to the statement (a) above, it is sufficient to prove that none of the
χi’s vanishes on N . From statement (b) we have the following inclusion

imµλ ⊆
⋂

j∈I

(C+
j ∪ C−

j ) =
⋃

J⊆I

∆J ,

where ∆J =
(

⋂

j∈J C
−
j

)

∩
(

⋂

j∈J c C
+
j

)

with J c := I\J (so ∆∅ = ∆).

Statement (a) implies that ∆ ∩ imµλ is not empty, but this image is con-
nected and for J nonempty, ∆J does not meet ∆. Hence imµλ is contained
in ∆. However, if χi(z) = 0 for some i ∈ I and z ∈ N , then Lir(µ

λ(z)) = 0
for all r ∈ Ii, contradicting the combinatorial type of ∆. □

Corollary 2. Any toric symplectic orbifold whose rational Delzant polytope
(∆,L) has the combinatorics of a product of simplices admits a compatible
toric Kahler metric hL which is a Levi–Kähler reduction of a product of
spheres.

Remark 8. It seems an interesting question to classify the smooth com-
pact toric manifolds whose Delzant polytope has the combinatorics of a
product of simplices. In dimension 2m = 2 the only such example is CP 1

whereas if 2m = 4 the only smooth examples are M = CP 1 × CP 1 and the
Hirzebruch complex surfaces M = P(O ⊕O(k)) → CP 1, k ≥ 1. More gen-
erally, one can apply the generalized Calabi construction (see [9, 10] and
Section 3.5 below) with the base and the fibre being compact toric manifolds
with Delzant polytopes having the combinatorics of product of simplices in
order to obtain, inductively, higher dimensional examples of such smooth
toric manifolds. Thus, the Hirzebruch complex surfaces are obtained by the
generalized Calabi constriction in which the base and the fibre are CP 1,
and the corresponding Delzant image has the combinatorics of the prod-
uct of two 1-dimensional simplices (i.e. is a 2-cuboid). More generally, the
Bott towers are higher dimensional generalizations of Hirzebruch surfaces in
which the base is a Bott tower of dimension 2(m− 1) and the fibre is CP 1

and corresponding Delzant polytope is anm-cuboid (cf. [21]). Conversely, by
a result in [45], any smooth compact toric manifold whose Delzant polytope
is a cuboid is a Bott tower. The generalized Calabi construction mentioned
above provides scope to extend this classification result to the larger class
of toric manifolds whose Delzant images have the combinatorics of product
of simplices.

We now give a closed formula for the symplectic potential of hL.
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Theorem 5. Let N = S2m1+1 × · · · × S2mℓ+1 ⊆ CS be a product of standard
CR spheres, and suppose that the kernel g of u = d ◦ L satisfies Condition 1.
Then

GL =
1

2

∑

i∈I

∑

r∈Ii∪{∞}

Lir log |Lir| =
1

2

∑

i∈I

∑

r∈Ii

Lir log
∣

∣

∣

Lir

Li∞

∣

∣

∣

is a symplectic potential for the Levi–Kähler metric, where Lir ∈ h is viewed
as a linear function on h∗, hence an affine function on A ⊆ h∗, and Li∞ =
−
∑

r∈Ii
Lir. Equivalently, the reduced metric on the image of the horizontal

momentum map µλ is given by

hredL =
1

2

∑

i∈I

∑

r∈Ii∪{∞}

dLir
2

Lir
=

1

2

∑

i∈I

∑

0⩽r<s⩽mi

LirLis
∑mi

t=0 Lit

(

dLir

Lir
− dLis

Lis

)2

.

Proof. The hessian of the stated potential GL evaluates readily to the stated
reduced metric, which we can compute in two ways. Using Theorem 3, we
decompose

ho :=
∑

s∈S

dζs
2

2ζs
=

1

2

∑

i∈I

(

∑

r∈Ii

dζir
2

ζir
−
(
∑

r∈Ii
dζir

)

2

∑

r∈Ii
ζir

)

+
1

2

∑

i∈I

(
∑

r∈Ii
dζir

)

2

∑

r∈Ii
ζir

into components orthogonal and parallel to Eo, and the reduced metric is
the pullback of the first term by L. Alternatively, by (15), the horizontal
metric on J(K ∩D) is

∑

i∈I

2χi

∑

r∈Ii

dσir
2

2σir

∣

∣

∣

∣

D

= σ∗

[

1

2

∑

i∈I

ρi

(

∑

r∈Ii

dζir
2

ζir
−
(
∑

r∈Ii
dζir

)

2

∑

r∈Ii
ζir

)]

∣

∣

∣

∣

D

=
1

2

∑

i∈I

σ∗

(

∑

r∈Ii

d(ρiζir)
2

ρiζir
−
(
∑

r∈Ii
d(ρiζir)

)

2

∑

r∈Ii
ρiζir

)

∣

∣

∣

∣

D

where σ∗ρi = 2χi and we use that
∑

r∈Ii
σir is constant on N , so that

σ∗

(

∑

r∈Ii

dζi

)

= 0,

and then exploit rescaling invariance. The result is the pullback by µλ of the
stated reduced metric, since Lir(µ

λ) = 2χiσir by (18). □
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As shown by Guillemin [37], a Kähler potential may be computed as a
Legendre transform of the symplectic potential GL with respect to some
basepoint p ∈ A:

HL = ⟨µλ − µλ(p), dGL⟩ −GL

=
∑

i∈I

∑

r∈Ii∪{∞}

(

1
2

(

⟨µλ − µλ(p), dLir⟩ − Lir

)

log |Lir|+ 1
2⟨µ

λ − µλ(p), dLir⟩
)

=
∑

i∈I

∑

r∈Ii∪{∞}

1
2Lir(p) log |Lir|, since

∑

r∈Ii∪{∞}

Lir = 0.

3.2. Products of 3-spheres

As a special case of Theorem 4, consider an ℓ-fold product N = S3 × · · · × S3

of 3-spheres as a codimension ℓ submanifold of C2ℓ ∼= Cℓ ⊗ C2 with momen-
tum coordinates σir(z) (i ∈ I = {1, . . . , ℓ}, r ∈ {0, 1}). Thus tS = R2ℓ is the
Lie algebra of TS = T2ℓ acting diagonally on C2ℓ. We study the Levi–Kähler
metric on the open subset where the quotient torus T acts freely, ignoring
rationality conditions.

3.2.1. Geometry of the Levi–Kähler metric. Consider, for any ℓ-
dimensional subspace g ⊆ tS = R2ℓ, the integrable distribution Kg =
span{Kv | v ∈ g} on N . Then, around each point of N such that Kg is
transversal to D, the local quotient space M of leaves of Kg has induced
complex structure J . We will further assume that λ ∈ g∗ is such that dηλ

induces a Kähler metric (hL, J, ωL) on M .
The reduced metric of Theorem 5 specializes to

hredL =
1

2

∑

i∈I

Li0Li1

Li0 + Li1

(

dLi0

Li0
− dLi1

Li1

)2

, i.e., (µλ)∗hredL =
∑

i∈I

χi dσi
2

σi(1− σi)
,

where Lir(µ
λ) = 2χiσir, 2χi = −Li∞(µλ), σi := σi0 = −Li0(µ

λ)/Li∞(µλ),
Li0 + Li1 = −Li∞ and hence σi1 = 1− σi on N . In other words, the charac-
teristic functions χi and the orthogonal coordinates σi are affine and bira-
tional functions (respectively) of the momentum coordinates µλ. Thus the
momentum images of the coordinate hypersurfaces with σi constant are hy-
perplanes inA through the codimension two affine subspace where Li0(µ

λ) =
Li1(µ

λ) = 0, and σi is inverse to the unique affine coordinate on this pencil
of hyperplanes sending 0, 1 and ∞ to the facets Li0(µ

λ) = 0, Li1(µ
λ) = 0

(of ∆g,λ) and the “characteristic hyperplane” χi = −1
2Li∞(µλ) = 0 (respec-

tively). These pencils introduce a factorization structure (in the sense of [6])
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which is adapted to the class of polytopes in A with the combinatorics of
the product of intervals.

To allow for more general coordinates, set H = {0, 1,∞} (so that
∑

r∈H Lir = 0) and introduce an arbitrary affine coordinate

ξi = −Ni0(µ
λ)/Ni∞(µλ)

on the pencil which takes the values αir at the points [Lir], meaning

σi =
(ξi − αi0)(αi1 − αi∞)

(ξi − αi∞)(αi1 − αi0)
, 1− σi =

(ξi − αi1)(αi0 − αi∞)

(ξi − αi∞)(αi0 − αi1)
,

Lir =
2(ξi − αir)Ni∞

A′
i(αir)

for affine functions Nir of µλ with
∑

r∈HNir = 0, and Ai(y) = ai
∏

r∈H(y −
αir). Note that we can also allow αi∞ = ∞, in which case Ai is of degree 2.
(This latter case can be derived from the generic case degAi = 3 by letting
αi∞ = 1/ε and taking a limit of εAi as ε→ 0.) Thus

dσi =
(αi1 − αi∞)(αi0 − αi∞)

(ξi − αi∞)(ξi − αi∞)2
,

χi dσi
2

σi(1− σi)
=
Li∞(µλ)A′

i(αi∞)dξi
2

2(ξi − αi∞)Ai(ξi)
= Ni∞(µλ)

dξi
2

Ai(ξi)
.

On the other hand,

dξi =
Ni0(µ

λ)dNi∞ −Ni∞(µλ)dNi0

Ni∞(µλ)2
◦ dµλ = −(ξidNi∞ + dNi0) ◦ dµλ

Ni∞(µλ)

∴ dµλ = −
∑

j∈I

Nj∞(µλ)dξj ⊗Qj , where Qi : M → t∗ satisfy

∑

i∈I

(ξidNi∞ + dNi0)⊗Qi = Id t and ⟨(ξidNi∞ + dNi0),Qj⟩ = δij .

Hence dQi = −
∑

j⟨Qi, dNj∞⟩dξj ⊗Qj and the Levi–Kähler metric is

hL =
∑

i∈I

Ni∞(µλ)

(

dξi
2

Ai(ξi)
+Ai(ξi)θi

2

)

,

ωL = ⟨dµλ ∧ dt⟩ = −
∑

i∈I

Ni∞(µλ)dξi ∧ θi,
(19)
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with θi = ⟨Qi, dt⟩ for angular coordinates t on M such that dt(1,0) is holo-
morphic:

dd
ct = d

(

∑

i∈I

ξidNi∞ + dNi0

Ai(ξi)
dξi

)

= 0.

The canonical affine coordinates may be obtained by setting Ai(t) = 2t(1−
t)(1− εt) in the limit ε→ 0; we then have Nir = −Lir and ξi = σi so that
Ni∞(µλ) = 2χi and

hL =
∑

i∈I

2χi

(

dσi
2

2σi(1− σi)
+ 2σi(1− σi)θi

2

)

,

ωL = −
∑

i∈I

2χi dσi ∧ θi.
(20)

3.2.2. Explicit normal form. Recall that go ⊆ tS has a canonical basis
ei := ei0 + ei1 for i ∈ I. We obtain a similar basis wi : i ∈ I for g by ob-
serving that the vectors ei0 in tS project to t = tS/go ∼= tS/g to the normals
ui0 : i ∈ I at a vertex of ∆g,λ. Hence g is transversal to span{ei0 | i ∈ I} and
there are canonical wi ∈ g of the form

(21) wi = ei +
∑

j∈I

Cjiej0 = ei0 + ei1 +
∑

j∈I

Cjiej0

for an ℓ× ℓmatrix of real numbers C. We denote byKo
i = Kei andKi = Kwi

the induced vector fields in Kgo and Kg respectively. We shall also write Kir

as a shorthand for Keir = ∂/∂ϑir. Thus

d
cσi(Ko

j ) = 2(σi0dϑi0 + σi1dϑi1)(Kj0 +Kj1) = 2δij

d
cσi(Kj) = 2(σi0dϑi0 + σi1dϑi1)

(

Ko
j +

∑

kCkjKk0

)

= 2(δij + σiCij).

on N , since σi0 + σi1 = 1. Now if ηi : i ∈ I are the 1-forms on N defined by
ηi(Kj) = δij and

⋂

i∈I ker ηi = D =
⋂

i∈I ker d
cσi, we may write

(22) 1
2d

cσi =
∑

j∈I

Pijηj where Pij :=
1
2d

cσi(Kj) = δij + σiCij .

We have noted that ei0 : i ∈ I project onto a bases for t = tS/go ∼= tS/g. In
order to compute the toral part of the quotient metric, we need to project
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the corresponding vector fields Ki0 onto D. We thus define projections

Xo
i = Ki0 −

∑

j∈I

1
2d

cσj(Ki0)K
o
j = Ki0 − σi(Ki0 +Ki1)

= (1− σi)Ki0 − σiKi1,

Xi = Ki0 −
∑

j∈I

ηj(Ki0)Kj ,

along Kgo and Kg respectively. Let Iσ = diag(σ1, . . . , σℓ).

Lemma 7. Xo
i =

∑

j∈I XjP̃ji with P̃ji = δji + Cjiσi, i.e., PIσ = IσP̃ .

Proof. Since
∑

k∈I Pjkηk(Ki0) =
1
2d

cσj(Ki0) = σiδij , it follows from the re-

lation between P and P̃ that 1
2d

cσj(Ki0) =
∑

k∈I ηj(Kk0)P̃ki. We now have

Xo
i = Ki0 −

∑

j∈I

1
2d

cσj(Ki0)

(

Kj −
∑

k∈I

CkjKk0

)

= Ki0 −
∑

j,k∈I

(

ηj(Kk0)P̃kiKj − σjδijCkjKk0

)

=
∑

k∈I

Kk0(δki + Ckiσi)−
∑

j,k∈I

ηj(Kk0)KjP̃ki =
∑

k∈I

XkP̃ki

as required. □

Writing λ = (c1, . . . , cℓ) with respect to the dual basis to wi : i ∈ I, ηλ =
∑

i∈I ciηi. The corresponding momentum coordinates µi : i ∈ I are given
by (cf. (14))

(23) µi = ⟨µλ, Li0⟩ =
∑

j∈I

cjηj(Ki0) =
∑

j∈I

cjσjQ̃ji =
∑

j∈I

cjQjiσi = 2χiσi,

where Q̃ = P̃−1, Q = P−1 and 2χi =
∑

j∈I cjQji. If we rewrite (23) as

cjσj =
∑

i∈I

µiP̃ij = µj +
∑

i∈I

µiCijσj ,

then we can specialize (19) with Njr = Ljr (up to overall scale) using

Lj0(µ
λ) = µj , Lj∞(µλ) = −(Lj0 + Lj1)(µ

λ) =
∑

i∈I

µiCij − cj .
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We may also compute directly that the toral part of the metric on D is

htorL :=
∑

i,j,k∈I

cidηi(Xj , JXk) dtj dtk(24)

=
∑

i,j,k,p∈I

1
2ciQip dd

cσp(Xj , JXk) dtj dtk

=
∑

i,j,k,p,q,r∈I

2ciQip

(

σpdϑp0
2 + (1− σp)dϑp1

2
)

× (Xo
q Q̃qj , X

o
r Q̃rk) dtj dtk

=
∑

i∈I

4χiσi(1− σi)

(

∑

j∈I

Q̃ij dtj

)2

,

where we use σi(1− σi)
2 + (1− σi)σ

2
i = σi(1− σi). This agrees with (19)

since

dµi =
∑

j

cj(dσj Q̃ji + σj dQ̃ji) =
∑

j,k,l

cj(QjkPkl − σjQ̃jkCkl) dσl Q̃li

=
∑

j,k,l

cjQjk(Pkl − σkCkl) dσl Q̃li =
∑

k

2χk dσk Q̃ki.

3.3. Projective cubes

For Levi–Kähler quotients of an ℓ-fold product of 3-spheres, the polytope
∆g,λ is an ℓ-cuboid, i.e., it has the combinatorics of a product of m = ℓ
intervals (an m-cube). Such a polytope is projectively equivalent to a cube if
the intersections of pairs of opposite facets lie in a hyperplane: transforming
this hyperplane projectively to infinity, opposite facets become parallel and
meet the hyperplane at infinity in the facets of an (m− 1)-simplex, and all
simplices are projectively equivalent. Projective equivalence to an m-cube is
automatic when m = 2, but is restrictive for m ⩾ 3 (when m = 3, opposite
facets of a generic cuboid meet in skew lines, not coplanar lines).

The assumption of projective equivalence to an m-cube simplifies the
previous analysis, because we may take Ni∞ to be the equation of the
hyperplane common to the pencils spanned by opposite facets, indepen-
dent of i ∈ I = {1, . . . ,m}. Concretely, let bj ∈ R for 0 ⩽ j ⩽ m and µj :
0 ⩽ j ⩽ m be affine coordinates on the affine space A = {(µ0, µ1, . . . , µm) :
∑m

j=0 bjµj = 1}.



✐

✐

“1-Apostolov” — 2021/2/13 — 0:48 — page 1604 — #40
✐

✐

✐

✐

✐

✐

1604 Apostolov, Calderbank, Gauduchon, and Legendre

We now set Ni∞ = µ0, Ni0 = −µi and Ni1 = µi − µ0 for 1 ⩽ i ̸= m. We
thus have

(25) ξi =
µi
µ0

and hence b0 +

n
∑

i=1

biξi =

m
∑

i=0

biµi
µ0

=
1

µ0
,

so that the inverse transformation is

(26) µ0 =
1

b0 + b1ξ1 + · · ·+ bmξm
, µi = ξiµ0 =

ξi
b0 + b1ξ1 + · · ·+ bmξm

.

Differentiating µi, we may then write the symplectic form as

(27) ωL =

m
∑

i=1

dµi ∧ dti = µ0

m
∑

i=1

dξi ∧ θi,

where

(28) θi = dti − µ0bi

m
∑

j=1

ξjdtj = dti − bi

m
∑

j=1

µjdtj .

In particular dθi = −biωL. Letting

(29) Jdξi := Ai(ξi)θi, 1 ⩽ i ⩽ m,

J defines an integrable almost complex structure and the ti are plurihar-
monic. We thus have the following diagonal form of (hL, ωL)

hL =
1

b0 + b1ξ1 + · · ·+ bmξm

m
∑

i=1

(

dξi
2

Ai(ξi)
+Ai(ξi)θi

2

)

ωL =
1

b0 + b1ξ1 + · · ·+ bmξm

m
∑

i=1

dξi ∧ θi,
(30)

where the 1-forms θi are given by (28).
The product of intervals ξi ∈ [αi0, αi1], 1 ⩽ i ⩽ m transforms to the com-

pact convex polytope ∆ determined by the hyperplanes (ξi − αir)µ0 = 0, (for
r ∈ {0, 1}, 1 ⩽ i ⩽ n). As before, we set

Ai(y) := ai
∏

r∈H

(y − αir), Lir(µ) :=
2(ξi − αir)µ0
A′

i(αir)
=

2(µi − αirµ0)

A′
i(αir)

,

where r ∈ H = {0, 1,∞}. Note that Lir ⩾ 0 on ∆ for 1 ⩽ i ⩽ m and r ∈
{0, 1}, and that

∑

r∈H Lir = 0. We can compute a Kähler potential from
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the symplectic potential GL by Legendre transform based at µj = 0 to get,
modulo constants,

(31) HL =
∑

i,r

log |Lir|
A′

i(αir)
=
∑

i,r

log |ξi − αir|
A′

i(αir)
=

m
∑

i=1

∫ ξi ds

Ai(s)
.

3.4. Levi–Kähler metrics of convex quadrilaterals

We now specialize to the case m = 2, i.e.,

N = S3 × S3 = {z ∈ C4 ∼= C2 ⊗ C2 | (σ10 + σ11)(z) = 1, (σ20 + σ21)(z) = 1}.

By Theorem 4, the compact Kähler 4-orbifolds (M,hL, ωL) obtained as a
Levi–Kähler quotient of S3 × S3 by an abelian subgroup G ⊆ T4 are the
compact toric 4-orbifolds whose rational Delzant polytope is a quadrilateral.
Note that from its very construction, hL is compatible with a second complex
structure J̃ on M , coming from the quotient of the product CR structure
(D, J1 − J2) on N = S3 × S3, where (D, J) = (D1, J1)⊕ (D2, J2) is the di-
rect sum of the CR distributions of each S3 factor. Thus J = J1 + J2, and
J̃ = J1 − J2 defines a second CR structure on N , associated to the same
distribution D ⊆ TN , which commutes with J and induces the opposite
orientation on D. In the terminology of [5], hL is Kähler with respect to
J and ambihermitian with respect to commuting complex structures (J, J̃)
on M . We are going to show that (hL, J̃) is, in fact, conformal to another
T-invariant Kähler metric (h̃L, J̃) (which induces the opposite orientation
of (M,J)), i.e., that (hL, J) and (h̃L, J̃) define an ambitoric structure on
M in the sense of [5]. These structures have been extensively studied and
classified, both locally [5] and globally [6].

As any quadrilateral is a projective cube, the general form of the Levi–
Kähler metric hL is described by (30) but we shall also describe below how
this form is derived from the choice of the subgroup G. Following the nota-
tion in ➜3.2, we specialize (24) to ℓ = 2, and set

C =

(

α γ
β δ

)

,

so that

A =

(

1 + ασ1 γσ1
βσ2 1 + δσ2

)

and Ã =

(

1 + ασ1 γσ2
βσ1 1 + δσ2

)

;
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hence

B =
1

Z

(

1 + δσ2 −γσ1
−βσ2 1 + ασ1

)

and B̃ =
1

Z

(

1 + δσ2 −γσ2
−βσ1 1 + ασ1

)

,

where Z = (1 + ασ1)(1 + δσ2)− βγσ1σ2 = 1 + ασ1 + δσ2 + (αδ − βγ)σ1σ2.
Then

(32) µ1 =
c1σ1(1 + δσ2)− c2βσ1σ2

Z
, µ2 =

−c1γσ1σ2 + c2(1 + ασ1)σ2
Z

,

while the toral part of the metric on D is

(33) htorL = σ1(1− σ1)
(

(1 + δσ2)c1 − βσ2c2
)(

(1 + δσ2)dt1 − γσ2dt2
)2
/Z3

+ σ2(1− σ2)
(

(1 + ασ1)c2 − γσ1c1
)(

(1 + ασ1)dt2 − βσ1dt1
)2
/Z3.

We now transform this expression into the ansatz (30) for projective
cubes (all quadrilaterals are projectively equivalent). To do this we first find
the base loci of the families of lines with σ1 or σ2 constant. We find that
for σ1 = c2/(c1γ − c2α), 1 + ασ1 = c1γ/(c1γ − c2α) and hence (µ1, µ2) =
(c2/γ, 0), independent of σ2. Similarly for σ2 = c1/(c2β − c1δ), (µ1, µ2) =
(0, c1/β), independent of σ1. These coordinates are examples of Segre factor-
ization structures, as defined in [6]. We transform the coordinate singularity
to infinity by setting

ξ1 = σ1∆1, ∆1 =
1

c2(1 + ασ1)− c1γσ1
=

1 + (c1γ − c2α)ξ1
c2

,

ξ2 = σ2∆2, ∆2 =
1

c1(1 + δσ2)− c2βσ2
=

1 + (c2β − c1δ)ξ2
c1

We then compute that 1 + c1γξ1 + c2βξ2 = c1c2∆1∆2Z and

∆1 + αξ1 = (1 + c1γξ1)/c2, ∆2 + δξ2 = (1 + c2βξ2)/c1,

(1 + δσ2)dt1 − γσ2dt2 =
(

(1 + c2βξ2)dt1 − c1γξ2dt2
)

/(c1∆2)

(1 + ασ1)dt2 − βσ1dt1 =
(

(1 + c1γξ1)dt2 − c2βξ1dt1
)

/(c2∆1),

so that, setting µ0 = 1/(1 + c1γξ1 + c2βξ2), we have

htorL = c1c
3
2µ0∆1ξ1(∆1 − ξ1)

(

dt1 − µ0c1γ(ξ1dt1 + ξ2dt2)
)2

(34)

+ c31c2µ0∆2ξ2(∆2 − ξ2)
(

dt2 − µ0c2β(ξ1dt1 + ξ2dt2)
)2
,

µ1 =
σ1

∆2Z
=

c1c2ξ1
1 + c1γξ1 + c2βξ2

, µ2 =
σ2

∆1Z
=

c1c2ξ2
1 + c1γξ1 + c2βξ2

(35)
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This has the form (30) with A1(ξ1) = c1c
3
2∆1ξ1(∆1 − ξ1) and A2(ξ2) =

c31c2∆2ξ2(∆2 − ξ2).
We now relate the Levi–Kähler metrics to the local forms of ambitoric

metrics studied in [5]. The results depend crucially on whether β = 0 (when
the curves ξ1 =constant pass through the point at infinity), γ = 0 (when the
curves ξ2 =constant pass through the point at infinity), or both (when we
have a product structure). We break this down into three cases as follows.

3.4.1. The product case. This is the case when β = 0, γ = 0. Letting
x = ξ1, y = ξ2 the metric becomes

hL =
dx2

A(x)
+

dy2

B(y)
+A(x)dt21 +B(y)dt22

with A(x), B(y) positive valued polynomials of degree 2 or 3, i.e., a local
product of extremal toric Riemann surfaces. The construction yields (up to
an equivariant isometry corresponding to affine transformations of x and y)
all such products for which A(x) and B(y) are of degree 2 or 3 with distinct
real roots.

3.4.2. The Calabi case. Without loss of generality, this is the case β = 0,
γ ̸= 0, so that the curves ξ1 =constant pass through the point at infinity.
We now let x = 1 + c1γξ1, y = −c1γξ2 so that the metric becomes

(36) hL =
1

x

(

dy2

B(y)
+B(y)dt22 +

dx2

A(x)
+
A(x)

x2
(

dt1 + y dt2
)2
)

i.e., given by the Calabi construction with respect to the variables x̄ = 1/x, y
(see e.g. [4, 39]) starting from a toric extremal Riemann surface (Σ, gΣ =
dy2

B(y) +B(y)dt22), and taking an extremal toric metric on the fibre associated

to the profile function Θ(x̄) := Ā(x̄)/x̄ with Ā(x̄) = x̄4A(1/x̄). Once again,
up to affine changes of x and y, one covers all toric metrics of Calabi type
for which the functions A(x), B(y) are polynomials of degree 2 or 3 with
distinct real roots.

3.4.3. The negative orthotoric case. This is the generic case when
βγ ̸= 0. We can therefore let x = 1 + c1γξ,y = −c2βξ2 so that the metric
becomes

hL =
1

x− y

(

dx2

A(x)
+

dy2

B(y)

)

(37)

+
A(x)(dθ1 + ydθ2)

2 +B(y)(dθ1 + xdθ2)
2

(x− y)3
,
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where A(x) and B(y) are both polynomials of degree 2 or 3 with distinct
real roots. (In terms of [5], the conformal oppositely oriented Kähler metric
(h̃L, J̃) is orthotoric.)

Writing h̃L = (1/w2)hL, a case by case inspection shows that the con-
formal factor w is respectively given by w = 1, 1/x or 1/(x− y), according
to whether we are in the product, Calabi-type or negative orthotoric case.
We observe that in each case w is an affine function in the momenta with
respect to ωL, which vanishes at the (possibly infinite) intersection points of
the pair of opposite facets of (∆,L). We summarize the discussion as follows.

Proposition 6. Let (hL, ωL) be a Levi–Kähler quotient of S3 × S3 ⊆ C2 ×
C2, corresponding to a subspace g ⊆ tS, and some λ ∈ g∗. Then (hL, ωL)
is ambitoric in the sense of [5], and is either a product, of Calabi-type or
conformal and oppositely oriented to an orthotoric metric, depending on
whether g intersects nontrivially two, one or zero of the 2-dimensional sub-
spaces (t1, t2), where ti = R2 ⊆ R4 is the Lie algebra of the 2-torus T2

i ⊆ T4

naturally acting on the i-th factor (i = 1, 2) of C4 = C2 × C2. Furthermore,
in all cases, hL is expressed in terms of two arbitrary polynomials of degree
2 or 3, each with real distinct roots, whereas the oppositely oriented Kähler
metric is h̃L = (1/w2)hL for a positive affine function w on the quadrilateral
∆g,λ, vanishing at the intersection points of its opposite facets. Conversely,
any ambitoric metric of the above mentioned types determined by two poly-
nomials of degree 2 or 3 with distinct real roots1 arises as a Levi–Kähler
quotient of S3 × S3.

3.5. Toric bundles and Levi–Kähler quotients
of products of spheres

The Calabi and the product cases appearing in the analysis in the previous
subsection have a natural generalization to higher dimensions in the frame-
work of semisimple rigid toric bundle construction of [9, 10], where it is also
referred to as the generalized Calabi construction. Let us first recall briefly
the setting of these works.

Let π : M → S be a bundle of toric kählerian manifolds or orbifolds of the
formM = P ×T V , for an ℓ-torus T , a principal T -bundle P over a kählerian
manifold S of dimension 2d, and a toric 2ℓ-manifold (or orbifold) V with

1This constraint comes from the fact that g is a subspace of the Cartan subalgebra
tS consisting of diagonal elements of the Lie algebra su(1, 2)⊕ su(1, 2) of the CR
automorphisms of S3 × S3.
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Delzant polytope ∆ ⊆ t∗; thus M has dimension 2m = 2(d+ ℓ). We let Fi

(i = 1, . . . , n) denote the co-dimension one faces of ∆ and ui the primitive
inward normals (with respect to a lattice Λ). Let be the dimension ofM . Let
θ ∈ Ω1(M, t) be the connection 1-form induced by a principal T -connection
on P , with curvature Ω ∈ Ω1(S, t). Suppose that Ω0 is a closed 2-form on
S. Then the rigid toric bundle construction on M is a Kähler metric of the
form

g = g0 + ⟨x, gΩ⟩+ ⟨dx, (HV )−1, dx⟩+ ⟨θ,HV , θ⟩,(38)

ω = Ω0 + ⟨x,Ω⟩+ ⟨dx ∧ θ⟩, dθ = Ω,

where:

• x ∈ C∞(M, t∗) is the momentum map of the T action with image ∆;

• HV ∈ C∞(∆, S2t∗) is a matrix valued function which, firstly, satisfies
the boundary conditions that on any co-dimension one face Fi, there is
a function hi with

∑

t

HV
st(x)(ui)t = 0,

∑

t

∂HV
st

∂xr
(x)(ui)t = (ui)rhi(x)s

and ⟨hi(x), ui⟩ :=
∑

s hi(x)s(ui)s = 2 for all x ∈ Fi; secondly the inverse
(HV )−1 ∈ C∞(∆, S2t) of HV is the hessian of a function GV on ∆;
thirdly, HV induces a positive definite metric on the interior of each face
F of ∆ (as an element of S2(t/tF )

∗, where tF is the isotropy algebra of
F );

• the metric g0 + ⟨x, gΩ⟩ associated to Ω0 + ⟨x,Ω⟩ via the complex struc-
ture on S is positive definite for all x ∈ ∆ ⊆ t∗.

Throughout, angle brackets denote natural contractions of t with t∗, and we
omit pullbacks by x and π. In particular x itself will denote the standard
t∗-valued coordinate on ∆, as well as its pullback to M .

The function GV is called a symplectic potential for HV and is deter-
mined up to an affine function on t∗. According to [2, Thm. 2] and [9,
Rem. 4.2], the boundary and positivity conditions above can be equivalently
formulated in terms of GV , by requiring that GV is smooth and strictly con-
vex on the interior ∆̊ of ∆, such that

GV − 1

2

k
∑

i=1

Li logLi ∈ C∞(∆)

det(HessGV )

k
∏

i=1

Lk ∈ C∞(∆) and is strictly positive,

(39)
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where Li = ⟨ui, x⟩ − vi, i = 1, . . . , k are the labels defining ∆.
Let X be a holomorphic vector field on S which is hamiltonian with

respect to Ω0 + ⟨x,Ω⟩ for all x ∈ ∆. Thus−ıX(Ω0 + ⟨x,Ω⟩) = df0 + ⟨x, dfΩ⟩
for functions f0 ∈ C∞(S,R) and fΩ ∈ C∞(S, t). Generalizing an observation
from the proof of [10, Lemma 5], any such X can be lifted to a hamiltonian
Killing vector field of (M, g, ω):

(40) X̂ = XH + ⟨fΩ,K⟩,

where K := gradω x ∈ C∞(M,TM)⊗ t∗ is the family of hamiltonian vector
fields generated by the principal T bundle P , and XH denotes the horizontal
lift of X (to the kernel of θ). Indeed,

−ı
X̂
ω = −ıX(Ω0 + ⟨x,Ω⟩) + ⟨fΩ, dx⟩ = d(f0 + ⟨x, fΩ⟩),

so X̂ has hamiltonian f0 + ⟨x, fΩ⟩ (omitting pullbacks of f0 and fΩ to M).
Suppose now that the family g0 + ⟨x, gΩ⟩ of Kähler metrics on S is toric

with respect to a fixed torus action of a torus TS with Lie algebra tS . For
each fixed x, the momentum map of TS may be written ξ0 + ⟨x, ξΩ⟩, where
ξ ∈ C∞(S, t∗S) and ξΩ ∈ C∞(S, t∗S ⊗ t), and pulling back these functions to
M , ξ0 + ⟨x, ξΩ⟩ is the momentum map for the TS action on M defined by
lifting the generators to M using (40). Since these lifts commute with K,
M is toric under the combined action of T × TS .

Lemma 8. Let (M, g, ω) be a Kähler manifold or orbifold given by (38)
with fibrewise symplectic potential GV , and suppose that (S,Ω0 + ⟨x,Ω⟩) is
toric with respect to a fixed action of TS for all x ∈ ∆. Then, (M, g, ω) is
toric with respect to the lifted T × TS action and has a symplectic potential

(41) GM = GV +G0 + ⟨x,GΩ⟩,

where G0 and GΩ are functions of ξ ∈ tS such that for each fixed x, G0 +
⟨x,GΩ⟩ is a symplectic potential for g0 + ⟨x, gΩ⟩ on S.

Proof. The torus action T on (M, g, ω) is rigid, meaning that the metric on
the torus orbits depends only on the value of the momentum map x [7].
Hence for each fixed ξ ∈ tS , the restriction of GM to t∗ + ξ ∼= t∗ differs from
GV by an affine function of x, hence has the form (41). By construction,
for each fixed x ∈ ∆, (S, g0 + ⟨x, gΩ⟩) is the Kähler quotient of M by T at
momentum level x. Hence by [23], the restriction of GM to x+ t∗S

∼= t∗S is a
symplectic potential for g0 + ⟨x, gΩ⟩, hence so is G0 + ⟨x,GΩ⟩. □
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A rigid toric bundle metric (38) is semisimple if S is a product of Kähler
manifolds (Sj , ωj) and there exist cj ∈ R and pj ∈ t (for j ∈ {1, 2, . . . , N})
such that Ω0 + ⟨x,Ω⟩ =

∑N
j=1(cj + ⟨pj , x⟩)ωj . If each (Sj , ωj) is toric under

a torus Tj with Lie algebra tj , then (S,Ω0 + ⟨x,Ω⟩) is toric for all x under the

product action of TS =
∏N

j=1 Tj with tS =
⊕N

j=1 tj . We refer to this special
case as the toric generalized Calabi ansatz.

Proposition 7. Suppose that (g, ω) is a Kähler metric obtained by the
toric generalized Calabi ansatz, where the fibre V is a compact toric orb-
ifold with labelled polytope (∆, L1, . . . , Lk), and each factor (Sj , ωj) of the

base S =
∏N

j=1 Sj is a compact toric orbifold with labelled Delzant polytope

(∆j , L
j
1, . . . , L

j
kj
), respectively. Then (g, ω) is a toric Kähler metric on the

compact symplectic orbifold with labelled Delzant polytope

∆̂ = {Li(x) ≥ 0, L̂j
rj

:= (⟨pj , x⟩+ cj)L
j
rj

≥ 0}.

Moreover, if the fibrewise toric metric determined by GV and the Kähler
metrics ωj are all Levi–Kähler quotients of product spheres, then the result-
ing metric (38) is a Levi–Kähler quotient of the overall product of spheres.

Proof. We check that GM satisfies the conditions (39). Lemma 8 and the
fact that ⟨pj , x⟩+ cj is strictly positive on ∆ imply that GM differs by a
smooth function

G0
M :=

1

2

(

k
∑

i=1

Li logLi +

N
∑

j=1

(

kj
∑

rj=1

L̂j
rj
log L̂j

rj

))

.

It remains to see that det(Hess(GM ))
(
∏k

i=1 Li

)(
∏

j,rj
L̂j
rj

)

is smooth and

positive on ∆̂. The determinant det(Hess(GM )−1) is, up to a positive scale,
the norm with respect to g of the wedge product of the Killing vector fields
(K1, . . . ,Kℓ, K̂

j
rj ) for j = 1, . . . , N , rj = 1, . . . , dj . Using (40) and the specific

form (38) of the metric g, one sees that

det(Hess(GM )−1) = C

(

N
∏

j=1

(⟨pj , x⟩+ cj)
dj

)

× det(Hess(GV )
−1) det(Hess(Gj)

−1),

where C > 0 is constant. Using the compactification criteria (39) for each
GV and Gj , and the fact that ∆̂ is a simple polytope, near any point y on
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a face F̂ ⊆ ∆̂ we have:

det(Hess(GM )−1) = δ

(

k
∏

i=1

Lk

)(

N
∏

j=1

(⟨pj , x⟩+ cj)
dj

(

kj
∏

rj=1

Lj
rj

))

(42)

= δ′

(

k
∏

i=1

Lk

)

N
∏

j=1

(

kj
∏

rj=1

L̂j
rj

)

,

where δ and δ′ are smooth positive functions around y ∈ ∆̂.
For the second part, we assume by Theorem 5 thatGV = 1

2

∑

ir Lir logLir

and Gj =
1
2

∑

qjrj
Lj
qjrj logL

j
qjrj with

∑

r Lir = 0 and
∑

rj
Lj
qjrj = 0. Then,

by Lemma 8,

GM =
1

2

(

∑

ir

Lir logLir +

N
∑

j=1

(⟨pj , x⟩+ cj)

(

∑

qjrj

Lj
qjrj

logLqjrj

))

=
1

2

(

∑

ir

Lir logLir +

N
∑

j=1

(

∑

qjrj

L̂j
qjrj

logLqjrj

))

=
1

2

(

∑

ir

Lir logLir

+

N
∑

j=1

(

∑

qjrj

(

L̂j
qjrj

log L̂qjrj −
∑

qjrj

Lqjpj
log(⟨pj , x⟩+ cj)

)))

=
1

2

(

∑

ir

Lir logLir +

N
∑

j=1

(

∑

qjrj

L̂j
qjrj

log L̂qjrj

))

We conclude by using Theorem 5 again. □

Remark 9. The toric Calabi construction provides a practical method for
constructing new toric metrics from old ones. Suppose (gj , ωj) and (gV , ωV )
are toric Kähler metrics on ∆̊j × Tdj and ∆̊× Tℓ respectively, for labelled

(simple convex, compact) polytopes ∆j = {xj ∈ Rdj : Lj
rj (x

j) ≥ 0, rj =
1, . . . , kj} (j = 1, . . . , N) and ∆ = {x ∈ Rℓ : Li(x) ≥ 0, i = 1, . . . , N}. Let
pj = (pj1, . . . , pjℓ), θ = (θ1, . . . , θℓ) with

θi = dti +

N
∑

j=1

pji

(

dj
∑

rj=1

xjrjdt
j
rj

)

,
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where the affine functions
∑ℓ

i=1 pjixi + cj are positive on ∆. Then, as in
Propostion 7, we get a toric Kähler metric on the interior of ∆̂ times
Tℓ × Td1 × · · · × TdN , whose symplectic potential GM is given by Lemma 8.
Taking all the affine functions Lj

rj and Li, and (
∑ℓ

i=1 pjixi + cj) be all with

rational coefficients, one gets a rational labelled polytope ∆̂, and if the ingre-
dient metrics (gj , ωj) and (gV , ωV ) satisfty the Abreu boundary conditions

(39) for the corresponding labellings Lj
rj and Li, then so does the metric

given (locally) by the toric generalized Calabi Ansatz, with the labelling de-
fined in Proposition 7. Hence the metric compactifies on the compact toric
orbifold M given by ∆̂ and these labels.

4. Curvature of Levi–Kähler quotients of products of spheres

4.1. Bochner condition

Recall (see e.g. [5, 22]) that if R ∈ ∧1,1Cm∗ ⊗ u(m) is a formal Kähler cur-
vature tensor, i.e., Ru,v(w) +Rv,w(u) +Rw,u(v) = 0, then the Bochner part
of R is its orthogonal projection B(R) onto the U(m)-submodule of formal
Kähler curvature tensors with vanishing Ricci trace. The Bochner tensor
Bg of a Kähler manifold is then the (pointwise) Bochner part B(Rg) of its
riemannian curvature Rg ∈ C∞(∧1,1T ∗M ⊗ u(TM)). One can extend this
definition to more general hermitian curvature tensors R ∈ ∧2Cm∗ ⊗ u(m)
(which do not a priori satisfy the Bianchi identity) where one still denotes by
B(R) the orthogonal projection of an element R onto the U(m)-submodule
of formal Kähler curvature tensors with vanishing Ricci trace.

In our language, S. Webster [48] showed that in codimension one the
Bochner tensor of a Levi–Kähler quotient M of CR manifold N pulls back
to the Chern–Moser tensor of N , which vanishes when the N is locally CR
diffeomorphic to a standard CR sphere (S2m+1,D, J). In particular, every
Levi–Kähler quotient (M2m, g, J) of S2m+1 is Bochner-flat. We generalize
this to arbitrary codimension, by describing the curvature of Kähler metrics
arising as Levi–Kähler quotients of a product of CR-spheres.

Let N = S2m1+1 × · · · × S2mℓ+1 ⊆ CS be a product of standard CR
spheres and

(

D =
⊕

i∈I Di, J =
⊕

i∈I Ji
)

be the product CR structure and
denote byNi

∼= S2mi+1 the i-th factor ofN , with projection pi : N → Ni. The
bundle p∗iTNi is identified with the subbundle Ei :=

⋂

j ̸=i ker(pj∗) of TN via

the restriction pi∗ : E
i
z

≃−→ Tpi(z)Ni. We denote the projection ri : TN → Ei.
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Let (g, λ) be a positive Levi pair (corresponding to L) and assume that
g is the Lie algebra of a subtorus G of TS; denote by M = N/G the Levi–
Kähler quotient and by π : N →M the quotient map. The global assumption
on g is made purely to make statements aboutM rather than local quotients.
In addition to a Kähler structure (ǧ = hL, J, ωL), M inherits a ǧ-orthogonal
splitting of its tangent space, namely

(43) TM =
⊕

i∈I

Ďi

where Ďi = π∗(Di). We denote by ∇̌i the connection on Ďi induced by

the Levi–Civita connection ∇̌ of ǧ, by R∇̌i

the corresponding curvature
tensor (a section of ∧2T ∗M ⊗ gl(Ďi, J), where gl(Ďi, J) denotes the bundle

of J-commuting endomorphisms of Ďi), and by Bi := Bi(R∇̌i

) the Bochner

projection of R∇̌i |
Ďi

∈ ∧2Ď∗
i ⊗ gl(Di, J).

Proposition 8. For each i ∈ I, Bi = 0.

We prove this result using the observation (see [27] and [48]) that the
Chern–Moser tensor of (Ni, Ji,Di) may be computed from the horizontal
part of the curvature of the Tanaka connection (see e.g. [16]) associated
to any contact form α compatible with the (codimension 1) CR structure
(D, J). The Chern–Moser tensor does not depend upon the chosen compat-
ible contact structure (it is a CR invariant). If the Reeb vector field V of
α (determined by α(V ) = 1 and LV α = 0) is a transverse CR vector field,
the horizontal part of the Tanaka connection (i.e., its restriction on D) is
the pullback to N of the Levi-Civita connection of the Levi–Kähler quotient
(M, g, J, ω) of N by V using the identification D ∼= π∗TM .

In our situation, for each w ∈
∏

j ̸=iNj , there is an embedding ιw : Ni →֒
N . We shall (slightly abusively) still denote by Di the pullback bundle ι∗wDi

and by Ji the corresponding (standard) CR-structure on (Ni,Di). Recall
that N is endowed with a 1-form ηλ with dηλ = π∗ωL, where λ ∈ g∗ is the
value defining the Levi–Kähler quotient ωL. The pullback αw,i := ι∗wη

λ thus
defines a 1-form on Ni, and the next Lemma implies that αw,i is a contact
1-form compatible with the CR structure (Ni, Ji,Di).

Lemma 9. For any i ∈ {1, . . . , ℓ} and z ∈ N , the subspace of Ei
z defined

by

R
g,i
z := ri(Kη(Ei

z)
)

has dimension 1 and is transverse to Di. In particular, Rg,i → N is a real
line bundle and there exists a unique vector field Vi ∈ C∞(Rg,i) such that
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ηλ(Vi) = 1. Furthermore, for each w ∈
∏

j ̸=iNj, αw,i is a contact form on
Ni, which induces ι∗w,i ◦ π∗ωL as a transversal symplectic structure and the
vector field Vw,i on (Ni,Di) defined by ιw∗Vw,i = Vi is a Reeb vector field for
αw,i.

Proof. Since η(Ei
z) = η

(

(Ei/Di)z
)

, Kη(Ei
z)

⊆ Kg is at most 1-dimensional.

Since
∑ℓ

i=1Kη(Ei
z)

= Kη(TzN) = Kg
z is ℓ-dimensional, it follows that Kη(Ei

z)

is 1-dimensional and dim(Rg,i
z ) ⩽ 1. As Kg is transversal to D ((g, λ) being

Levi pair), each X ∈ Ei
z decomposes as X = Kη(X) +XD; applying ri (and

using ri(X) = X, ri(D) = Di), we obtain X = ri(Kη(X)) +XDi , showing
Ei = Rg,i ⊕Di.

For any Y, Z ∈ Di,

dαw,i(Y, Z) = −αw,i([Y, Z]) = −ηλ([Y, Z]) = π∗ωL(Y, Z).

In order to show that Vw,i is Reeb field for αw,i we need to check that
for any Z ∈ Di, dαw,i(Vw,i, Z) = dηλ(Vi, Z) = 0 (where we have used that
Ei is integrable and ι∗w(Ei) ∼= TNi). Writing Vi = ri(Kη(X)) = X −XDi for
X ∈ Ei, and decomposing X = Kη(X) +XD, we have

dηλ(Vi, Z) = dηλ(X −XDi , Z) = dηλ(Kη(X), Z) +
∑

j ̸=i

dηλ(XDj , Z) = 0,

where (in the last equality) the first term vanishes because ηλ is g-invariant,
whereas the second term vanishes because for j ̸= i, Di is dη

λ-orthogonal to
Dj , see (43). □

We define a partial connection ∇i : C∞(Ei)× C∞(Ei) → C∞(Ei) on
the involutive subbundle Ei ⊆ TN , which pulls back by ιw to the Tanaka
connection of αw,i, as follows:

• ∇i preserves Di;

• Vi, Ji and ω are ∇i parallel;

• For any X,Y ∈ C∞(Di), the torsion T∇i

satisfies T∇i

(X,Y ) =
ω(X,Y )Vi and T

∇i

(Vi, JiX) = −JiT∇i

(Vi, X).

In particular, ∇i satisfies

g(∇i
XY, Z) = ǧ(∇̌X̌ Y̌ , Ž) = ǧ(∇̌i

X̌
Y̌ , Ž)
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We next show that ∇i can be extended to a full connection ∇ on TN pre-
serving D, and such that:

• ∇|
D

= π∗∇̌;

• ι∗w(ri ◦ ∇) is the Tanaka connection ι∗w∇i on (Ni, αi,Di, Ji).

The first condition tells us that the torsion of X,Y ∈ C∞(D) is the vertical
part of −[X,Y ], that is

(44) T∇(X,Y ) = −Kη([X,Y ]).

Hence for X,Y ∈ C∞(Di),

ri(T
∇(X,Y )) = −ri(Kη([X,Y ])) = ω(X,Y )Vi = T∇i

(X,Y ).

Let Rg :=
⊕ℓ

i=1R
g,i be the rank ℓ subbundle of TN over N which is

everywhere transverse to D. We extend the endomorphism J of D by zero
on Rg, and define a linear connection ∇ on

TN =
⊕

i∈I

Ei =
⊕

i∈I

(Di ⊕ R
g,i) = D⊕ R

g

such that

(i) ∇ agrees with the pullback connection π∗∇g on D ∼= π∗TM ,

(ii) ∇Vi = 0,

(iii) ∇sX = [s,X] +∇Xs− 1
2J(LsJ)X for each section s ∈ C∞(Rg) and

X ∈ C∞(D).

Lemma 10. Let ∇ be a connection on N satisfying the conditions (i)–(iii)
above. Then, ι∗w(ri ◦ ∇) is the Tanaka connection ι∗w∇i on (Ni, αi,Di, Ji).

Proof. We first show that ∇sJX = J∇sX for any X ∈ C∞(TN) and s ∈
C∞(Rg). It is clear that ∇sJt = J∇st = 0 for s, t ∈ C∞(Rg) and when X ∈
C∞(D), we have J∇Xs = 0 as well as the decomposition

[s,X] = [s,X]D −∇Xs

with respect to the splitting TN = D⊕ Rg. Using these two facts and con-
dition (iii), a straightforward calculation shows ∇sJX = J∇sX. Together
with this last identity, conditions (i)–(ii) ensure that ri ◦ ∇ satisfies the first
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two defining properties of ∇i on Ei. It remains to check the torsion prop-
erties. The first of these follows from (44). Moreover, using again condition
(iii) we get

T∇(s, JX) = −1
2J(LsJ)JX = 1

2J
2(LsJ)X = −JT∇(s,X)

for any X ∈ C∞(TN) and s ∈ C∞(Rg). This is the second torsion property.
□

Proof of Proposition 8. To compare the curvatures ∇i and ∇̌i, we notice
that

g(∇i
[X,Y ]Z, T ) = g(∇i

[X,Y ]Di
Z, T )− ωL(X̌, Y̌ )g(∇i

Vi
Z, T )

= g(∇[X,Y ]DZ, T )− ωL(X̌, Y̌ )g(∇V K
i
Z, T )

= ǧ(∇̌i
[X̌,Y̌ ]

Ž, Ť ) + ωL(X̌, Y̌ )Ǎi(Ž, Ť ),

where to go from first line to the third we have decomposed

ω(X,Y )Vi = ω(X,Y )V K
g

i −
∑

j ̸=i

[X,Y ]Dj

(with V K
g

i being the projection of Vi to Kg), and we view Ǎi(Ž, Ť ) =
−g(∇V Kg

i
Z, T ) as a (0, 2)-tensor on M , since pullbacks to N of smooth

functions on M are Kg-invariant. It then follows that

g(R∇i

X,Y Z, T ) = ǧ(R∇̌i

X̌,Y̌
Ž, Ť ) + ωL(X̌, Y̌ )Ǎi(Ž, Ť ).

Applying the projection Bi to the both sides, and using that Bi(R∇i

) equals
the Chern–Moser tensor of Ni (which is zero) as well as Bi(ωL ⊗Ai) = 0
(as Bi projects onto the space of ωL-primitive Kähler curvature tensors), we

obtain Bi = Bi(R∇̌i

) = 0. □

4.2. Curvature for Levi–Kähler quotients of
products of 3-spheres

A labelled cuboid (∆,L) is a labelled Delzant polytope which has the combi-
natorics of an m-cube. By Corollary 2, any toric symplectic orbifold whose
rational Delzant polytope (∆,L) is a labelled cuboid admits a compatible
toric Kahler metric hL which is a Levi–Kähler quotient of an m-fold product
of 3-spheres. We next use the explicit form (19) of the Kähler metric hL in
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order to compute its scalar curvature. Up to a factor of −1/2, a Ricci poten-
tial is given by the log ratio of the symplectic volume form to a holomorphic
volume form. Using dt(1,0) to compute the latter, we readily obtain

∑

i∈I

logAi(ξi) +
∑

i∈I

logNi∞(µλ)− 2 log
∧

i∈I

(ξidNi∞ + dNi0).

The derivatives of the first two terms are straightforward to compute, using
that d(Nj∞(µλ)) = −

∑

i∈I Ni∞(µλ)⟨Qi, dNj∞⟩dξi. For the third, observe
by Cramer’s rule that its exterior derivative is

∑

i∈I 2aii dξi where the co-
efficients aij solve the linear system

∑

j∈I(ξjdNj∞ + dNj0)aij = dNi∞, i.e.,
aij = ⟨Qj , dNi∞⟩. Thus

ρL =
1

2

(

d

∑

i∈I

αiθi

)

,(45)

where

αi = A′
i(ξi)−

∑

j∈I

⟨Qi, dNj∞⟩Ni∞(µλ)

Nj∞(µλ)
Ai(ξi)− 2⟨Qi, dNi∞⟩Ai(ξi)

and θi = ⟨Qi, dt⟩. We are interested in the scalar curvature only, defined by

sL =
2mρL ∧ ωm−1

ωm
,

ωm−1

ωm
= − 1

m

∑

j∈I

∏

k ̸=j dξk ∧ θk
Nj∞(µλ) dξ1 ∧ θ1 ∧ · · · ∧ dξm ∧ θm

.

Straightforward computation using (45) then yields

sL = −
∑

i∈I

A′′
i (ξi)

Ni∞(µλ)
+
∑

i∈I

2A′
i(ξi)

(

Qii +
∑

j∈I

Qij

)

−
∑

i∈I

Ai(ξi)Ni∞(µλ)

(

2
⟨Qi, dNj∞⟩2
Ni∞(µλ)2

+
∑

j∈I

(4QiiQij −Q2
ij) +

∑

j,k

QijQik

)

.

(46)

where Qij = ⟨Qi, dNj∞⟩/Nj∞(µλ).
We now specialize to the case of projective cubes as in Section 3.3, where

Ni∞(µλ) = µ0 = 1/(b0 + b1ξ1 + · · · bmξm), independent of 1 ⩽ i ⩽ m. Using

dµ0 = ⟨dNj∞, dµ⟩ = −
m
∑

i=1

µ0dξi⟨Qi, dNj∞⟩,
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we obtain immediately that Qij = bi. The Ricci potential specializes to give

(47) µm+2
0

m
∏

i=1

Ai(ξi),

as may be verified directly using (28) and (30), while the scalar curvature
reduces to

sL = −
∑

i∈I

A′′
i (ξi)

µ0
+
∑

i∈I

2(m+ 1)biA
′
i(ξi)(48)

−
∑

i∈I

(m+ 1)(m+ 2)µ0b
2
iAi(ξi).

4.3. Projective cubes and (w, p)-extremality

We now specialize to the case that the cuboid ∆ is a projective cube, i.e.,
the intersections of pairs of opposite facets lie in a hyperplane. For any
labelled projective cube (∆,L), hL is given by (30), and we provide here a
characterization of this toric metric in terms of the toric geometry of (∆,L),
as developed in [2, 31, 37].

The starting point of our approach is based on a recent observation in
[11], which in turn extends the formal GIT framework of [30, 33] (realiz-
ing the scalar curvature of a Kähler metric as a momentum map under
the action of the group of hamiltonian transformations) to a larger fam-
ily of related GIT problems. Let (M,ω) be a compact symplectic manifold
(or orbifold) and Ham(M,ω) the group of hamiltonian transformations. Fix
a torus T ⩽ Ham(M,ω) and a positive hamiltonian w > 0 with gradω w ∈
t := Lie(T). Let CT(M,ω) be the space of T-invariant, ω-compatible com-
plex structures on (M,ω) and HamT(M,ω) the subgroup of T-equivariant
hamiltonian transformation, acting naturally on CT(M,ω). The Lie algebra
of HamT(M,ω) is identified with the space C∞

0 (M)T of smooth, T-invariant
functions of integral zero, endowed with the HamT(M,ω) bi-invariant inner
product

(49) ⟨h1, h2⟩w,p :=

∫

M

h1h2w
−(p+1)vω,

where p is a real constant (which we call the conformal dimension) and
vω = ωm/m! is the volume form of ω. The space CT(M,ω) carries a formal
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Fréchet Kähler structure, (J,Ωw,p), defined by

JJ(J̇) = JJ̇, Ωw,p
J (J̇1, J̇2) =

1

2

∫

M

tr
(

JJ̇1J̇2

)

w−(p−1)vω,

where the tangent space of CT(M,ω) at J is identified to be the Fréchet
space of smooth sections J̇ of End(TM) satisfying

J̇J + JJ̇ = 0, ω(J̇ ·, ·) + ω(·, J̇ ·) = 0.

The formal complex structure J is the same as the one in [30, 33] whereas
the modified formal symplectic form Ωw,p stays closed (as can easily be
checked).

In the following, we denote by gJ the Kähler metric corresponding to J ∈
CT(M,ω) and by sJ and ∆J the corresponding scalar curvature and Laplace
operator. We then have a straightforward (mutatis mutandis) generalization
of [11, Thm. 1] (which corresponds to p = 2m).

Lemma 11. The action of HamT(M,ω) on (CT(M,ω),J,Ωw,p) is hamilto-
nian with a momentum map µ : CT(M,ω) →

(

C∞
0 (M)T

)∗
, whose value at J

is identified with the ⟨·, ·⟩w,p-dual of

(50) sJ,w,p := w2sJ − 2(p− 1)w∆Jw − p(p− 1)g−1
J (dw, dw).

Note that sJ,w,p is the trace of the conformal modification

(51) ρJ,w,p := w2ρJ + (p− 1)wddcw − 1
2p(p− 1)dw ∧ d

cw

of the Ricci form.

Remark 10. As in [11], one can extend the definition of (J,Ωw,p) on
CT(M,ω) to the larger Frechét spaceAKT(M,ω) of T-invariant ω-compatible
almost-Kähler structures J . Then, using the formulae in [35, Ch. 8] (see
also [41, Lemma 2.1 & Prop. 3.1]), the momentum map for the action of
HamT(M,ω) on AKT(M,ω) is still given by Lemma 11, except that in (50)
we must take sJ to be the hermitian scalar curvature of gJ (the trace of the
Ricci form of the canonical hermitian connection, see e.g. [41]).

Using the contractibility of AKG
ω , we obtain, as in [11], a generalized

Futaki invariant FT
ω,w,p : t → R of (M,ω,T, w, p): for any vector field H ∈ t
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with a hamiltonian h,

(52) FT

ω,w,p(H) :=

∫

M

s̊J,w,phw
−(p+1)vω

is independent of the choice of J ∈ AKG
ω , where s̊J,w,p is the L2-projection

of sJ,w,p onto functions with integral zero with respect to the volume form
w−(p+1)vω.

Specializing to the case of a toric manifold (or orbifold) (M,ω,T), the
above formalism allows one to extend the theory of extremal toric metrics
from [31] to the (w, p)-extremal toric case (the case p = 2m is developed in
detail in [11]). In particular, we have the following result:

Proposition 9. Let (M,ω,T) be a compact toric orbifold with labelled
Delzant polytope (∆,L) in Rm and w a positive affine-linear function on
∆. Then,

(a) There exists at most one (up to equivariant isometry) compatible toric
metric gJ on (M,ω,T), for which sJ,w,p is an affine-linear function.

(b) The affine-linear function in (a) is uniquely determined by (∆,L, w, p).

Definition 12. The (unique) compatible toric metric satisfying the condi-
tion (a) of Proposition 9 is called the (w, p)-extremal metric of (M,ω,T).

Theorem 6. Suppose (∆,L) is a labelled projective cube in Rm, corre-
sponding to a compact toric orbifold (M,ω,T) and let hL be the Levi–Kähler
quotient metric defined by (30). Then hL is the (w,m+ 2)-extremal metric
of (∆,L), where w is the unique up to scale positive affine-linear function
on Rm, vanishing on the hyperplane containing the intersections of opposite
facets of ∆.

Proof. We take w = µ0 and apply (51) with p = m+ 2, ρJ = ρL to obtain

ρL,µ0
= µ20ρJ + (m+ 1)

(

µ0dd
cµ0 − 1

2(m+ 2)dµ0 ∧ d
cµ0
)

(53)

= −1
2µ

2
0dd

c log

(

µm+2
0

∏

i

Ai(ξi)

)

+ (m+ 1)
(

µ20dd
c logµ0 − m

2 dµ0 ∧ d
cµ0
)
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= 1
2

(

−µ20ddc log
∏

i

Ai(ξi) +mµ20dd
c logµ0 −m(m+ 1)dµ0 ∧ d

cµ0

)

.

We now compute

dd
c log

∏

j

Ai(ξi) =
∑

i

d
(

A′
i(ξi)θi

)

=
∑

i

A′′
i (ξi)dξi ∧ θi −

∑

i,j

biµ0A
′
i(ξi)dξj ∧ θj

dd
c logµ0 = −

∑

i

d
(

biµ0Ai(ξi)θi
)

= −
∑

i

biµ0A
′
i(ξi)dξi ∧ θi

+
∑

i,j

Ai(ξi)
(

bibjµ
2
0dξj ∧ θi + b2iµ

2
0dξj ∧ θj

)

dµ0 ∧ d
cµ0

=
∑

i,j

b2iµ
4
0Ai(ξi)dξi ∧ θj .

It follows that

sJ,µ0
=

2mρL,µ0
∧ ωm−1

ωm
= −

∑m
i=1A

′′
i (ξi)

b0 + b1ξ1 + · · ·+ bmξm
,

which (as degAj(ξ) ⩽ 3) is an affine-linear function in momenta. □

Remark 11. We notice that for m = 2, m+ 2 = 2m and sJ,w,4 computes
the scalar curvature of the conformal oppositely oriented metric h̃L =
(1/w2)hL of Proposition 6, i.e., hL is w-extremal in the sense of [11].

4.4. Extremal Levi–Kähler quotients

Formula (48) shows that for ℓ = m > 2, the Levi–Kähler metric hL asso-
ciated to a projective cube cannot be extremal unless bi = 0, i = 1, . . . ,m,
i.e., M is the product of weighted projective lines. However, we show be-
low that when ℓ = 2, Levi–Kähler quotients of a product of two spheres
S2m1+1 × S2m2+1 can provide new examples of extremal Kähler orbifolds.

4.4.1. Extremal Levi–Kähler quotients of S3 × S3. As any quadri-
lateral is a projective cube, hL is (w, 4)-extremal by Theorem 6. Further-
more, sJ,w,4 is the scalar curvature of the conformal metric h̃L = (1/w2)hL,
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see [11]. By Proposition 6, (hL, J) is either a product, of Calabi type, or a
regular ambitoric Kähler metric of Segre type. We can then use [5, 39] to
characterize the extremality of hL as follows.

Proposition 10. Let (M,ω) be a compact toric 4-orbifold whose rational
Delzant polytope is a labelled quadrilateral (∆,L) and hL the corresponding
Levi–Kähler metric. If (∆,L) is a parallelogram, then (M,ωL, hL) is an ex-
tremal toric orbifold which is the Kähler product of two extremal weighted
projective lines; otherwise hL is extremal if and only if the oppositely oriented
ambitoric metric h̃L = (1/w2)hL has constant scalar curvature, or equiva-
lently, h̃L is a conformally Kähler, Einstein–Maxwell metric in the sense
[11], where w is a positive affine linear function on ∆, determined up to
positive scale by the property that it vanishes where the opposite sides of ∆
intersect.

Proof. The product case follows from Proposition 6 (see Section 3.4.1).
When hL is of Calabi-type, i.e. given by (36) for polynomials A(x) and
B(y) of degree 2 or 3, the negative ambitoric metric h̃L = x2hL is also of
Calabi-type with respect to the variables (x, y) and functions A(x) and B(y).
It follows from [4, 39] that hL is extremal if and only if h̃L is extremal if
and only if B(y) has degree 2 and (xA(x))′′(0) = −B′′(0). As degA ⩽ 3,
this is precisely the condition that h̃L is of constant scalar curvature (see
[4, Prop. 14]). The case when hL is regular ambitoric (i.e., negative ortho-
toric) is treated similarly, using the local form (37) and [4, Prop. 11]. Finally,
as h̃L = (1/w2)hL with w being a Killing potential with respect to hL, the
scalar curvature h̃L is constant if and only if h̃L defines a conformally Kähler,
Einstein–Maxwell metric, see [11]. □

Remark 12. The metric hL is extremal (and hence h̃L is Einstein–Maxwell)
if and only if the affine function defined by (∆,L) in Proposition 9(b) is con-
stant. By an observation originating in [39], for a given quadrilateral ∆ this
places two linear constraints on the labels L, see also [11]. Thus, the above
characterization for the extremality of hL lead to the following useful obser-
vation: given a compact convex quadrilateral ∆ which is not a parallelogram,
there is a two-parameter family of inward normals to the faces, such that
the corresponding Levi–Kähler metric is extremal.

4.4.2. CSC Levi–Kähler quotients of S5 × S3. We discuss here ex-
amples of Levi–Kähler quotients of constant scalar curvature (CSC), ob-
tained from the generalized Calabi construction in ➜3.5, where the base is
S = CP 1 equipped with a Fubini–Study metric ωS and the fibre V is a toric
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orbifold with Delzant image a simplex in R2. By Proposition 7, the result-
ing 6-dimensional orbifold (M, g, ω) is obtained as a Levi–Kähler quotient of
S5 × S3 as soon as the fibrewise metric is Bochner-flat (which is the condition
to be Levi–Kähler in the case of one factor). As the extremality condition
is difficult to characterize in general, we shall use the hamiltonian 2-form
ansatz with ℓ = 2 and N = 1 from [7, 9], which in turn is a special case
of the generalized Calabi ansatz [9, ➜4]. We briefly recall the construction
below and invite the Reader to consult [7, 9] for further details.

Let (S, gS , ωS) be a compact Riemann orbi-surface and η a real constant.
We build a Kähler metric (g, ω) with a hamiltonian 2-form of order 2 and
constant root η, defined on an orbifold fibration over M → S, with fibres
isomorphic to an orbifold quotient of a weighted projective plane. The Kähler
metric (g, ω) is written on a dense subset M̊ ⊆M as follows (see [9]):

g = (η − ξ1)(η − ξ2)gS +
(ξ1 − ξ2)pc(ξ1)

F (ξ1)
dξ21 +

(ξ2 − ξ1)pc(ξ2)

F (ξ2)
dξ22

+
F (ξ1)

(ξ1 − ξ2)pc(ξ1)

(

θ1 + ξ1θ2
)2

+
F (ξ2)

(ξ2 − ξ1)pc(ξ2)

(

θ1 + ξ2θ2
)2

ω = (η − ξ1)(η − ξ2)ωS + dσ1 ∧ θ1 + dσ2 ∧ θ2,
dθ1 = −ηωS , dθ2 = ωS pc(t) = (t− η), σ1 = ξ1 + ξ2, σ2 = ξ1ξ2.

(54)

Here ξ1 ∈ [−1, β], ξ2 ∈ [β, 1] (for some |β| < 1) are the orthotoric coordi-
nates on the fibre, |η| > 1, and F (x) is a smooth function which satisfies the
positivity and boundary conditions

• F (x)/pc(x) > 0 on (β, 1); F (x)/pc(x) < 0 on (−1, β);

• F (±1) = F (β) = 0.

It is easy to see that (54) is a special case of (38), with N = 1, (x1, x2) =
(σ1, σ2), p11 = −η, p12 = 1, c1 = η2, and a toric orbifold fibre whose Delzant
polytope ∆ is the the image of [−1, β]× [β, 1] under the map (σ1, σ2) =
(ξ1, ξ2, ξ1ξ2) and labelling

L−1 = −c−1(σ1 + σ2 + 1), L+1 = −c1(−σ1 + σ2 + 1),

Lβ = −cβ(−βσ1 + σ2 + β2),

where c±1

(

F/pc
)′
(±1) = 2 = cβ

(

F/pc
)′
(β), see [9, Prop. 9]. Here we assume

the usual rationality condition for the simplex (∆,L), which certainly holds
for β, η, c±1, cβ ∈ Q.
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We recall from [7] that the metric (54) is extremal if and only if the
scalar curvature of gS is a constant s and F (x) is a polynomial of degree at
most 5 satisfying

(55) F ′′(η) = −s.

The metric g is of constant scalar curvature if, furthermore, the degree of
F (x) is at most 4. Likewise, by the same result, the fibrewise orthotoric
metric

gV =
(ξ1 − ξ2)pc(ξ1)

F (ξ1)
dξ21 +

(ξ2 − ξ1)pc(ξ2)

F (ξ2)
dξ22(56)

+
F (ξ1)

(ξ1 − ξ2)pc(ξ1)

(

dt1 + ξ1dt2
)2

+
F (ξ2)

(ξ2 − ξ1)pc(ξ2)

(

dt1 + ξ2dt2
)2

is Bochner-flat if and only if F (x)/pc(x) is a polynomial of degree at most
4. By Proposition 7, taking in (30) (S, ωS) to be (an isometric orbifold
quotient of) CP 1 endowed with a Fubini–Study metric and F (x) = −c(x2 −
1)(x− β)(x− η)(x− γ) (resp. F (x) = −c(x2 − 1)(x− β)(x− η)), one gets
an ansatz for extremal (resp. constant scalar curvature) toric orbifolds, which
are also Levi–Kähler quotients of S5 × S3.

We further specialize to the constant scalar curvature case, i.e. F (x) =
−c(x2 − 1)(x− β)(x− η) for a non-zero positive constant c. Then, (55) re-
duces to 2c(3η2 − 2βη − 1) = s, whereas the positivity conditions for F (x)
imply η < −1. Together with ScalS > 0, these are the only constraints, sub-
ject to a rationality condition which is trivially solved by taking β, η, c ratio-
nal. For instance, letting β = 1/n, η = −n, c = 2/(3n2 + 1), s = 4 gives rise
to a CSC Levi–Kähler quotient orbifold, which is not a product.
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Institut de Mathématiques de Toulouse

118 route de Narbonne, 31062 Toulouse, France

E-mail address: eveline.legendre@math.univ-toulouse.fr

Received March 11, 2020

Accepted August 5, 2020



✐

✐

“1-Apostolov” — 2021/2/13 — 0:48 — page 1630 — #66
✐

✐

✐

✐

✐

✐


	Introduction
	Levi–Kähler quotients of CR manifolds
	Levi–Kähler reduction in toric geometry
	Levi–Kähler reduction for products of spheres
	Curvature of Levi–Kähler quotients of products of spheres
	References

