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Levi—Kahler reduction of CR structures,
products of spheres, and toric geometry

VESTISLAV APOSTOLOV, DAVID M. J. CALDERBANK,
PAUL GAUDUCHON, AND EVELINE LEGENDRE

We introduce a process, which we call Levi-K&ahler reduction, for
constructing Kéhler manifolds and orbifolds from CR manifolds (of
arbitrary codimension) with a transverse torus action. Most of the
paper is devoted to the study of Levi-Ké&hler reductions of toric CR,
manifolds, and in particular, products of odd dimensional spheres.
We obtain explicit descriptions and characterizations of the orb-
ifolds obtained by such reductions, and find that the Levi-Ké&hler
reductions of products of 3-spheres are extremal in a weighted sense
introduced by G. Maschler and the first author [II], and further
studied by A. Futaki and H. Ono [34].
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Introduction

In recent years there has been considerable interest in the interaction be-
tween Kéahler geometry and its odd-dimensional younger cousin, Sasaki ge-
ometry [I9]. On the one hand, ideas in K&hler geometry, such as toric
methods or extremal metrics, have led to the development of analogues
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in Sasaki geometry. On the other hand, Sasaki manifolds have a canoni-
cal 1-dimensional foliation generated by the Reeb vector field, which both
provides a construction of Kéhler metrics on the leaf space when the latter
is a manifold or orbifold, as well as a “horizontal” generalization of such
quotients when it is not.

Our thesis herein is that these ideas need not be limited to 1-dimensional
foliations. Indeed, any Sasaki manifold has an underlying codimension one
CR structure, whereas CR manifolds arise naturally in arbitrary codimen-
sion [I7]. This prompts us to introduce transverse “Reeb foliations” on ar-
bitrary CR manifolds (N, D, J). A theory of such foliations has recently
been developed in [46], but here we focus on the horizontal Kdhler geometry
of (D, J), i.e., the Kéhler structures induced on the space of (local) leaves
of the Reeb foliation. However, whereas in codimension one, the exterior
derivative of the contact form equips the horizontal distribution D with a
nondegenerate 2-form (which, together with the complex structure J on D,
defines the horizontal Kéhler structure on D), in higher codimension, the
non-integrability of D is measured by a 2-form on D with values in TN/D,
called the Levi form Lp. In order to construct a Kéhler metric on the leaf
space of the Reeb foliation, we therefore need also to choose a nondegenerate
component of Lg. This construction, which we call a Levi-Kdhler quotient
or a Levi-Kdhler reduction (see Definition |§| for more details), is our main
topic of study.

In particular, the Levi form of D must have a nondegenerate component.
Rank 2m distributions D of this type, on manifolds N of dimension 2m + £,
were studied in a companion paper [§], to which the present work may be
viewed as a sequel, although we do not here rely upon intimate familiarity
with that paper, or its main theorem. Indeed, whereas in [8] we study the
general theory of toric contact manifolds in higher codimension, the applica-
tions in Kahler geometry we develop herein use only the simplest examples:
toric CR submanifolds of flat space, and in particular, products of spheres.
We review the necessary ingredients from [§] in Theorem [1| below.

Our prime contribution in this paper is the construction of new com-
pact toric Kéhler orbifolds M, i.e., Kéahler orbifolds of real dimension 2m
admitting an isometric hamiltonian action of a real m-torus t/2wA, which
have nice curvature properties in the sense pioneered by Calabi [24], as well
as weighted extensions studied in [I1], 34]. As we recall in Section any
symplectic toric orbifold (M,w) is classified [14], 29| [44] by the image A of
its momentum map, which is a convex polytope in an m-dimensional real
affine space A modelled on t*. Explicitly, A is an intersection of half-spaces
L > 0, where s € 8§ indexes the facets (codimension one faces) of A, and
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Ls € b, the (m + 1)-dimensional vector space of affine functions on A. The
linear parts us € t of Lg for s € § generate the normal rays to A, defining a
fan Y in t which in turn determines [26, 32] the equivariant biholomorphism
type of any toric w-compatible complex structure on M. It is convenient to
encode these data in linear maps

L:Rs— b and u: Rg —t
es — L €s > Us

where Rg is the standard real vector space with basis es : s € §. The kernel g
of u is the Lie algebra of a subtorus G of Rg/27Zs, and we let A € g* be the
restriction of L to g (which takes values in the constant affine functions, i.e.,
R). Equipping the complexification Cg of Rg with its standard flat K&hler
structure, M is then equivariantly symplectomorphic to the symplectic quo-
tient of Cs by G at momentum level A [29] 44], whereas the equivariant
biholomorphism type of M defined by Y is given by the GIT quotient of Cg
by the complexification of G [25].

However, the metric on M which comes from the Kéahler reduction by
G of the flat metric on Cg — and which has an elegant expression given
by Guillemin [37] — has not been found to have particularly interesting
curvature properties, except in the simplest case of the complex projective
space (when it defines a Fubini-Study metric). We are thus motivated to
make the following observations. First, the level set Ny ) := Mgl()\) of the
momentum map of G is a CR submanifold of Cg, in fact an intersection of
quadric hypersurfaces, preserved by the natural action of the torus Tg :=
Rs/2nZs on Cg (i.e. Ny is a toric CR manifold). Secondly, since G < T
acts on Ny ) with orbits transverse to the CR distribution D, we may regard
the Levi form Ly as a g-valued 2-form on D. We find that the A component
is nondegenerate and induces a Kéhler metric on M = Ny /G — in other
words, the data (g, \) is exactly what we need (see Definition [6]) to define
a Levi-Kéhler quotient of Ny y. While the Levi-Kahler quotient metric on
M associated to the data (g, ) is in general different from the Guillemin
metric, it may not have nice curvature properties either. There is, however,
a third observation that proves to be decisive. To explain this, note that the
pair (g, \) plays a dual role in the above construction: it is used both to
define N\ and also to define the transverse group action and momentum
level for the Levi-Kéhler quotient. We do not need to use the same pair for
these independent roles: if we introduce a new pair (g,, Ao), corresponding
to another polytope A, which has the same combinatorial type as A (see
Definition [§), and such that (g, \) defines a Levi-Kahler quotient of the
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toric CR submanifold Ny, » , then we find that the resulting toric orbifold
is equivariantly symplectomorphic to (M,w) (see Theorem , i.e. the pair
(g0, Ao) gives rise to a w-compatible toric Kahler metric on M.

We take advantage of these observations by following the idea that a
Levi-Kahler reduction of a CR manifold N can be expected to have nice
curvature properties if N does. The simplest examples, in codimension one,
are round CR (2m + 1)-spheres, which are the toric CR submanifolds as-
sociated to m-simplices, and are circle orbibundles over complex weighted
projective spaces. The Levi-K&ahler quotients in this case give rise to the
natural Bochner-flat Kahler metrics on weighted complex projective spaces,
studied in [2), 22, 28], [48], which are also extremal in the sense of [24]. Sim-
ilarly, we show in this paper that the Levi-Kéahler quotients of products of
CR spheres provide a natural extension of the Bochner-flat Kahler metrics in
higher codimension: if A is a polytope with the same combinatorial type as
the product of simplices A,, we construct (see Theorem and Corollary a
distinguished toric Kéhler metric on the toric symplectic orbifold associated
to A, obtained as a Levi-Kahler quotient of the toric CR manifold Ny, »,
associated to A, (which as a CR manifold is the product of CR spheres).
The investigation of the curvature properties of this class of toric Kéhler
metrics is the main focus of the article.

The product structure on a product N of CR spheres induces distribu-
tions on M and we show that the curvature of M has vanishing Bochner
component on each such distribution, simply because CR spheres have van-
ishing Chern—Moser tensor. For 3-dimensional CR manifolds, the vanishing
of the Chern—Moser tensor is automatic and we compute instead the scalar
curvature of a Levi-Ké&hler quotient of a product of 3-spheres and observe
that, when the polytope is projectively equivalent to a cube, the Levi—Kéahler
quotient metric can be characterized as being extremal in a weighted sense
that was introduced (in a special case) in [11]. More precisely, given a “con-
formal dimension” p € R and a positive function w on a compact symplectic
orbifold (M,w) whose hamiltonian vector field is quasiperiodic (i.e., it be-
longs to the Lie algebra of a torus T in Ham(M,w)), we can generalize
the approach of Donaldson [30] and Fujiki [33] to Calabi’s extremal Kéhler
metrics [24] by using w1 as a weight for the formal Fréchet symplectic
structure on the space of T-invariant compatible complex structures. Then
the action of Ham™ (M, w) on this space is hamiltonian, and if we weight
the inner product on its Lie algebra of by w~("*1) then the momentum map
at J may be identified with a modification s, of the scalar curvature of
g7 = w(-, J-), which is what the scalar curvature of the conformally related
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metric w?g; would be if M had dimension p. (The special case when p = 2m
is studied in [11], 34].)

If the polytope A of M is projectively equivalent to a cube, the inter-
sections of opposite facets of A lie in a common hyperplane (and this is a
characterization of projective cubes), so there is a unique affine-linear func-
tion w up to scale which is positive on A and vanishes on the intersections of
opposite facets. We prove in Theorem |§| that the unique (up to equivariant
symplectomorphism) toric metric on (M, w) for which s m+2 is an affine-
linear function is the one arising as a Levi-Kéahler quotient of a product
of 3-spheres. We can summarize some of our findings (Theorems and
Corollary |2|) as follows.

Theorem A. Let (M,w) be a compact 2m-dimensional symplectic toric orb-
ifold with Delzant image A C t*. Then A has the combinatorics of a product
of simplices if and only if (M,w) can be obtained as a Levi—-Kdhler reduction
of a product of odd dimensional CR spheres. In particular, such an orbifold
admits a distinguished compatible Kdhler metric hy, whose symplectic po-
tential is explicitly given in Theorem | below. If, furthermore, the Delzant
image A is a projectively equivalent to a product of 1-dimensional simplices
(i.e., is a projective cube), then hy, is an (m + 2, w)-extremal Kdhler met-
ric, where w is the unique (up to scale) positive affine-linear function on t*
which vanishes at the intersections of all pairs of opposite facets of A.

An important source of (smooth) toric Kéhler manifolds M whose
Delzant polytope has the combinatorics of a product of simplices — and
to which Theorem A applies — is obtained from the generalized Calabi con-
struction (see [10]), where both the base and the fibre are toric manifolds
with Delzant polytopes having the combinatorics of product of simplices.
This includes the complex Hirzebruch surfaces, holomorphic projective bun-
dles over a projective space, the Bott manifolds recently studied in [21], and,
inductively, rigid toric fibrations where the base and the fibre are one of the
aforementioned smooth complex manifolds. We show that in this special
setting, the Kéhler metric corresponding to the Levi-Kahler quotient of the
product of spheres associated to M is obtained from the generalized Calabi
construction, where the metrics on the base and on the fibre are themselves
Levi-Kahler quotients of product of spheres.

Theorem A yields the existence of a canonical weighted extremal metric
on any toric 4-orbifold whose Delzant polytope is a quadrilateral (i.e. with
second Betti number by(M) = 2) whereas by the results in [6] the existence
of genuine (unweighted) extremal Ké&hler metrics is generally obstructed.
This motivates a further investigation of the class of (m + 2, w)-extremal
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Kahler metrics, in the general framework developed in [I1]. Notice that in
complex dimension 2, this coincides with the class of weighted extremal
metrics appearing in [I1], but in higher dimensions, our approach suggests
a different weight m + 2 than the conformal generalization 2m proposed
n [11]. This observation has inspired subsequent work [3, 12] which has
elucidated the natural role that the weight m + 2 plays in Kahler and Sasaki
geometry.

As another novel aspect, the explicit form of the Levi-K&ahler quotient
metrics on the toric Kédhler manifolds whose Delzant polytope is projectively
equivalent to a cube gives rise to an extension of the ambitoric ansatz of
Segre type [l 6] to arbitrary dimension. This has also been further studied
in [3].

The Levi—Kéahler quotient metrics of products of ¢ < 2 odd dimensional
spheres can also lead to extremal Kéahler metrics (in the classical sense of
[24]). As we have already mentioned above, in the case ¢ =1, the Levi-
Kahler quotients of a CR, sphere give rise to the Bochner-flat Kéahler metrics
on weighted complex projective spaces, which are extremal [22]. We find
some new extremal K&hler orbifold examples, obtained as the Levi-Ké&hler
quotient of a product of two CR spheres (¢ = 2). In particular, the construc-
tion in Section yields the following result.

Theorem B. There exists a countable family of compact constant scalar
curvature Kdhler 6-orbifolds obtained as Levi-Kdhler reductions of S® x S3.

The main results are presented in three courses, which we serve up in
Sections [2] 3] and [ after presenting some background and preliminary re-
sults in Section [1} The preliminary material reviews the notion of a CR
(2m + £)-manifold of codimension ¢ and studies infinitesimal CR torus ac-
tions transverse to the CR distribution. These have associated Kahler cones
of dimension 2(m + ¢) and so may be viewed as a natural generalization of
Sasaki structures. Such a transverse infinitesimal action of an /-dimensional
abelian Lie algebra g, together with an element A € g* is called a positive
Levi pair if Ao Lo is a horizontal Kéahler structure on the CR distribution.
A Levi-Kahler reduction is thus obtained when the action of g integrates to
an action of a Lie group G.

Section [2| presents our general results on toric CR submanifolds of Cg
and their Levi-Kahler quotients. We first review the elements of toric geom-
etry and combinatorics, and make precise the notion of combinatorial type.
Then we show in Theorem [2| that if (g, \) is a positive Levi pair associated
to polytope A and N is a toric submanifold of Cg with the same combinato-
rial type, then the momentum map of the horizontal Levi-K&ahler structure
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(or the Levi-Kahler quotient when that exists) has image A. In the case
that N is a toric intersection of quadric hypersurfaces contained in a round
hypersphere, the Levi-Kahler structure can be made explicit, as we show in
Theorem [l

In Section [3, we study the construction of toric Kahler metrics as Levi—
Kahler quotients of products of spheres. Building on Theorem [2, we charac-
terize such quotients in Theorem [4] as those associated to a polytope with
the combinatorial type of a product of simplices. In turn, Theorem [5] builds
on Theorem [3] by giving explicit formulae for the Levi-Kéhler quotients
of f-fold products of spheres and their symplectic and Kéhler potentials,
extending the results of [22] in the case ¢ =1 to arbitrary ¢. In the re-
mainder of the section, we explore relations between this construction and
other explicit methods in Kéahler geometry such as the generalized Calabi
construction [9, [10].

The final Section[d]investigates the curvature properties of a Levi-Kéhler
quotient M of a product of spheres IN. We discuss here the curvature char-
acterization of such Levi-Kahler quotients, the weighted extremal geometry
they define when the Delzant polytope is a projective cube, as well as the
special cases when the Levi-Kahler quotient is extremal in the usual sense
of [24].

1. Levi—-Kahler quotients of CR manifolds
1.1. CR structures of arbitrary codimension

Definition 1. A CR structure (D, J) of rank m and codimension £ on a real
(2m + ¢)-dimensional manifold N is a real rank 2m distribution D C TN
equipped with an almost complex structure J: D — D, which satisfies the
integrability conditions

[X,Y] - [JX,JY] € C®(D),

v (X, JY]+[JX,Y] = J(X,Y] - [JX,JY]), VX,Y €C™D),

where C*°(D) denotes the sheaf of smooth sections of D; equivalently,
[OX(DM), (D)) € ¢(D10),

where D10 C TN ® C is the subbundle of (1,0) vectors in D ® C.
(N, D, J) is then called a CR manifold (of codimension ¢).
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The underlying rank 2m distribution D on N may be viewed as a
codimension ¢ generalization of a contact structure on N [8]. The funda-
mental invariant of D is its Levi form Lp: A?D — TN/D, defined, via
X,Y € C*(D), by the tensorial expression

(2) LSD(X7Y) = _QSD([va])

where gp: TN — T'N/D is the quotient map. The transpose of ¢p identi-
fies (TN/D)* canonically with the annihilator D° of D, which is a rank ¢
subbundle of T*N. We denote throughout by p: TN — N the cotangent
bundle projection or its restriction to any subbundle of T*N such as DP.
The normalization convention for L is chosen so that for any section a of
DO, the restriction of da to A2D C A2T'N is awo L.

The nondegeneracy locus of D is the open subset

Up = {a € D’ = (TN/D)* | a o Ly is nondegenerate}

of DY. If Up N DY is nonempty then, since nondegeneracy is an open con-
dition, DY has a basis a1, ...,ay in Up and so Up N DY is the complement
of the set where (Zle t;c;) o Ly degenerates, which is the cone over a pro-
jective hypersurface Vp , of degree m (the zero set of a homogeneous degree
m polynomial in the ¢ variables t1,...,%,). In [§], Vo C P(D?) is called the
degeneracy variety of D. Therein it is shown that Up is a canonical “sym-
plectization” of (N, D): Up is the open subset of D° over which the pullback
of the canonical symplectic form Q on T*N to D is nondegenerate.

Definition 2. Let (N, D, J) be a CR manifold (of codimension £). We say

D is Levi nondegenerate if Up has nonempty intersection with each fibre of

p: DY — N. A (local) section of Usp is called a (local) contact form on N.
Note that the Levi form Lp satisfies

Lp(X.Y) = ~ (X, Y] + [JX, JY])

and hence is J-invariant or “type (1,1)” on D. It follows that hp(X,Y) :=
Ly (X,JY) is a section of S?D* @ TN/D. We say (N, D, J) is Levi definite
if at each z € N there exists a € DY such that a o hp € S?D is positive
definite.

Clearly Levi definite CR manifolds are Levi nondegenerate: more gen-
erally Uf; :={a € D° | ao hyp is positive definite} is an open and closed
submanifold of Uyp.
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Examples 1. (i) A maximally real codimension £ submanifold of C"™** is a
smooth submanifold N C C"™*+ for which D := TN N JTN, where J is the
standard complex structure of C™*¢, has rank 2m (i.e., corank ¢ in T'N).
Then (N, D), with the induced action of J on D, is a CR manifold of rank m
and codimension £. A model example, in codimension one, is the unit sphere
S2m+1 in Cm—&-l'

(ii) If (NV;, Dy, J;) are CR manifolds, with codimensions ¢;, for i€
{1,...,n}, thensois ([[;=; Ni, D1 ® - ® Dy, J1 & - -- & Jy,), with codimen-
sion { =401+ ---+¥4, and Up = H?:l Up,. In particular, the product of
n = ¢ codimension one CR spheres S? 1 x ... x §?™+1! ig 3 CR manifold
with codimension ¢.

Remark 1. The Levi form of a CR manifold (N, D, J) is traditionally de-
fined to be the hermitian form hp ++/—1Lp: D x D — C ® TN/D; how-
ever it is uniquely determined (given J) by its real or imaginary part, and
the imaginary part is an invariant of the underlying (real) distribution D.
The rank is usually called the CR dimension.

Levi nondegeneracy implies that X +— Ly (X, -) is an injective bundle ho-
momorphism from D to Hom(D,T'N/D). This condition, together with the
assumption that Lo is surjective onto T'N/D, appears in the study [I5] of CR
automorphisms of real quadrics N, := {(z,w) € C"™* | $(w) = Jo(z, 2)},
where o: C™ x C™ — C! is hermitian and 3 denotes the imaginary part.
Such quadrics are homogeneous CR manifolds of rank m and codimension
¢, with Levi form isomorphic to o (or So in our sense).

Levi definiteness extends the codimension one notion of strict pseudo-
convexity.

1.2. Infinitesimal CR actions, generalized Sasaki structures
and Kahler cones

Definition 3. Let (N, D, J) be a CR manifold; then the space ct(N,D, J)
of CR wvector fields is the Lie subalgebra of vector fields X on N such that

(3) LxC>®(D)CC>®(D) and LxJ=0.
An (infinitesimal, effective) CR action of a Lie algebra g on (N,D,J) is a
Lie algebra monomorphism K: g — ct(N,D, J). For v € g, we write K, for

the induced vector field K(v), and we define

k®: N xg—=TN;(z,v) = K, = (Ky).
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Let X9 CTN be the image of x9, ie., K9, :=span{K, , | v € g}. Since
K: g — ct(N,D,J) is a Lie algebra morphism, X9 is an integrable distribu-
tion.

Example 2. Let 7: N — M be a principal G-bundle with connection 7 :
TN — g, where dim G = ¢ and dim M = 2m. Then D := kery is a rank 2m
distribution on N, and 7 induces a bundle isomorphism of T'"N/D with N x
g. In this trivialization, the Levi form of D is dn+ 1[n A nlg, the pullback
to N of the curvature F" of n. If M has an (integrable) complex structure
J for which F" is J-invariant, the horizontal lift of J to D equips N with a
G-invariant CR structure. For G abelian, this is the principal torus bundle
construction of [47].

Suppose K: g—ct(NV, D, J) is an infinitesimal CR action, where (N, D, J)
is CR of codimension ¢ = dim g. Abstracting the infinitesimal geometry of

Example [2], we say the action of g is transversal if the following condition
holds.

Condition 1. At every point of N, D + X% = T'N. Equivalently:

(i) rank K¢ = ¢ everywhere on N,
(ii) D NK? is the zero section of TN (and thus TN =D @ K?9).

The composite gp o k%: N x g — K% — T'N/D is a bundle isomorphism
and so there is a canonically defined 1-form n%: TN — g, characterized by

kern® =D and VYveg, n K, =v.

We also denote by 7 the induced map from T'N/D to g. For any A € g*,
define

N N = DY by p2AX) = (n8(X),A) = AnE(X)),

so that n97(K,) = A(v) and dn®*|p, = (dn®|p, \) = n%* o Lp is the A\
component of the Levi form of D. When there is no danger of confusion,
we shall omit the index g and denote

A 82

n:=n°, n n

If K integrates to an action of a connected Lie group G on N, then
Condition [1fi) implies that the G-action is locally free, so that M := N/G
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is a compact orbifold. Condition [I[ii) then ensures that D is isomorphic to
the pullback of TM to N, and hence G-invariant data on D descend to M.
Invariant components of the Levi form provide examples of such data.

In codimension one, a transversal CR action is essentially a CR Reeb
vector field, or equivalently, a compatible Sasaki structure, which makes the
symplectic cone Kéahler.

To generalize this to arbitrary codimension, note that the total space D°
of p: DY — N inherits from T*N a tautological 1-form : using the exact
sequence

(4) 0—p D’ = TD° % p*TN — 0,

we have that 7, = a o p,: T,DY — R for any o € DO, where p, is the deriva-
tive of the cotangent bundle projection p: T*N — N, here restricted to Dy.
Thus 7 is the restriction to DY of the Liouville 1-form on 7T*N. We further
set QP = dr, which is the pullback of the tautological symplectic form on
T*N to DO.

Any X € C*®(TN) has a lift to a hamiltonian vector field X on T*N
with p.(X) = X and hamiltonian fx = 7(X), i.e., fx(a) = 7.(X) = a(X);
furthermore {fx, fy} = fix,y). (Explicitly, dfx = —0P(X,.), where X, =
ax(X;) — (Lxa), for any extension of a € TSN to a local section.) If X €
ct(N,D, J), then X is tangent to D° C T*N.

Observation 1. Let K: g — ct(N, D, J) be an infinitesimal CR action of
g on (N, D) and define

pg: D® = g* by (ug(a),v) =a(K,) YaecD’ veg.

Then the lift of K to T*N preserves DO, and the induced infinitesimal ac-
tion K is hamiltonian on Up with momentum map ug]UD; i particular

(dpg(Ky), w) = (g, [v,w]g) for all v,w € g.

This is immediate. Now (p, ytg): D° — N x g* is a bundle isomorphism
with inverse 14(z,A) := (1., A): if o = (n,,\) for some X € g* and z € N,
then pg(a) = A

Lemma 1. Let 7 be the tautological 1-form on D°. Then

(5) (VaT) (X +a) = (n(X), A),
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and hence
(6)  (p7) (X +a, Y +b) = (a,9(Y)) = (b,7(X)) + (d(X, Y), A).
Proof. Since 174(Z) = a(p«(2)),

W)z (X + a) = 70 (V) (X + a)) = (n(X), A).

Hence ¢37 = (p2,pin), where p; and py are the first and second projections
of N x g*, which yields . Now

PEQY = rdr = d(PiT) = (dp2 A pin) + (p2,pidn),

which yields @ . O

For (z,v) € N x g, let J(, . be the complex structure on T¢, ., (N X g) =
T,N @ g defined by

\7(z,v)<X + w) =JX? + Kw,z - W(X)
where X denotes the D.-component of X € T,N = D, & (X89),.

Lemma 2. The almost complex structure J is integrable if and only if g
is abelian.

Proof. Let X, Y be vector fields on N with n(X) and n(Y") constant and let
u,v € g*; as vector fields on IV X g, these are constant in the g direction.
First observe that

Ng(X,Y) = [X, JY]+[TX,Y] = J(X,Y] - [T X, TY])
=[X,JYP]+ [JXP Y] - JX,Y]?
+ (X, Y) + TIXP,JYP]
=0,
since [X,Y]? = [XP,YP] + [K,x), Y] + [X?, K, y)]. Next

ij(u,Y) :j([u,jY]—i—[ju,Y])—i—[u,Y] - [ju,jY}
= J[Kuay]® —n([Ky, Y]) — [Ku, JY?® — n(Y)] = 0.

Finally,

jNJ(uﬂ)) = j([uv\jv] + [juvv]) + [u,v] - [ju,jv]
= [Ku, Ky| = K[u,v]v
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which vanishes for all u,v € g iff g is abelian. g
Using 7 to identify K% with N x g, we observe that
(M) Ten(Nxg)=D,0gdg" and T, (Nxg) =D, ©gdg;

in these terms, (%Z)SQD)(z,A) is the sum of (dn,, A\) and the standard symplec-
tic structure on g © g*, while J, , is the sum of the complex structure J on
D, and the standard complex structure on g @ g. Thus if g is abelian and we
identify N x g with N x g* using a symmetric positive definite bilinear form
¢ on g, we obtain a Kéhler structure on the open subset of (z,A) € N x g*
with 1g(z,\) € Uj).

Proposition 1. Let (N,D,J) be a codimension { CR manifold, and g a
transversal CR action of an (¢-dimensional) abelian Lie algebra g with a
(positive definite) inner product. Then U'g C N x g* has a canonical Kdhler
metric on which g defines an infinitesimal isometric hamiltonian action
whose momentum map is the projection pa: N X g* — g*.

Proof. Lemmas (1| and |2 imply that U;E is Kéhler. The hamiltonian vector
field generated by the component (py,v) of py is the pullback of K,, which
clearly preserves the complex structure 7, hence the metric hon N x g*. [

Definition 4. Let (N, D, J) be Levi definite, and let g be an (¢-dimensional)
abelian Lie algebra. Then a g-Sasaki structure on N is a transversal infinites-
imal CR action of g together with an inner product ¢ on g; given such an
action, we say (N, D, J,g,() is a codimension ¢ Sasaki manifold with gen-
eralized Kdhler cone U%.

Example 3. A basic example of codimension ¢ Sasaki manifold (N, D,
J, g, () is obtained by taking N = H where H is a compact simple Lie group
and G < H a maximal /-dimensional torus with Lie algebra g. In this case,
the root decomposition

hoC=(g2C)® P (ha ®b-a),

OZER+

where g ® C is the corresponding Cartan subalgebra of h ® C and Ry is a
set of positive roots, gives rise to a G-invariant CR structure J on N defined
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by (D ® C)e° = @D.cr, Ha- Equivalently, we have that

DN x @ma,

a€R+

where m,, is the J-invariant 2-dimensional real part of h_, ® bh,. Further-
more, we can take ¢ to be, up to sign, the restriction of the Killing form of
h to g. The general theory of simple Lie groups yields that for any x € g,
and u,v € D, the Levi form Lo satisfies

C(LD (uv v)? .’L‘) - —C([U, U]? .%') = Z _ia(x)C(Juom Ua)v

a€R+

where u,, and v, are the projections of v and v to the subspace m,, respec-
tively. Thus, U%‘ = N x g where

g+ ={reg|Vae R, —ia(x) >0}
is the positive Weyl chamber, and g7 is its image under .

1.3. CR torus actions and Levi—Kahler quotients

Definition 5. An infinitesimal CR action K: ty — ct(N,D,J) of an
abelian Lie algebra ty on a CR manifold (N,D,J) is called an infinites-
imal CR torus action, and is said to be a CR torus action if it integrates to
an effective (i.e., faithful) action of a compact torus Ty = ty /27 Ay, where
Ap is the lattice of generators of the circle subgroups of Ty. If g < ty is
a subalgebra such that K: g — ct(N, D, J) satisfies Condition [I} we refer
to K8 and its integral submanifolds as the associated Reeb distribution and
Reeb foliation transverse to D.

Given an infinitesimal CR torus action K: txy — ct(N, D, J), let
k:=k": N xty — TN, with k(z,v) = K, ,, and
= g, DY — Ly, with (u(a),v) = a(Ky),

so that (p,p): DY — N x ty is the pointwise transpose of gp o kK: N X ty —
TN/D.

Definition 6. An /-dimensional subalgebra ¢: g < ty and an element \ €
9" \ 0 together form a Levi pair (g, A) for an infinitesimal CR torus action
K if:
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e g acts transversally on N via K, i.e., X9 := span{K, . | v € g} satisfies
Condition [Il

Let 7: TN — g be the connection 1-form of g, 7 := (n,\), and hp y =
A (-, J). Then (D, hyp y,J) is called a Levi structure and we say that
(gv >‘) or (‘Dvh'D,A’ J) is

e nondegenerate if n is a contact form, i.e., hp x is nondegenerate on D;
e positive if hp y is positive definite on D.

We say (N, D, J,K) is Reeb type if it admits a nondegenerate Levi pair, and
if positive, we say that (N, D, J,g,\) or (N, D, J, hp ) is Levi-Kdhler.

If K is a CR torus action of T and g is the Lie algebra of a closed sub-
group G of T, then N/G, with the Kiihler metric induced by (hp x, J, dn|,)
is called the Levi-Kdhler quotient of (N, D, J) by (g, A).

If N is compact, {\€g*\0](g,\)is a Levi pair} is an open cone
Cqy Cg".

Example 4. Going back to Example [3| we take G = Ty. Then for any
A € g%, (9,A) defines a nondegenerate positive Levi pair on N and the cor-
responding Levi-Kéahler quotient is the flag manifold M = H/G endowed
with the H-invariant Kéhler structure (gy,.J) with constant scalar curva-
ture. The Kahler—Einstein structure on M corresponds to the special choice

A= ner, —ia.

Let (g,\) be a Levi pair. For any v € ty, (dn*)(K,,-) = —d(n*(Ky)).
We may thus view n*(K,) = (u(n),v) as the “horizontal momentum” of
K, with respect to the Levi structure (D, dn?|;). Observe that if v € g,
n) (K,) = (v, \), which vanishes for v € ker A C g. Hence z — u(n)) € ti
takes values in (ker \)? = (ty/ ker \)*.

Stratagem 1. For any pair (g, \) with g C ty and A € g* \ 0, the quotient
ty/ ker \ is an extension by R of the quotient ty/g. To allow (g, \) to vary,
it is convenient to fix this extension h — t (where h and t are abelian Lie
algebras of dimensions m + 1 and m); then the commutative diagram

2

0—>g—rty —>t—s0

ST

0—>R-—sh—t—s0.
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of short exact sequences associates pairs (g, A), with ty/ker A = b, to sur-
jective linear maps Ly : ty — b (thus g is the kernel of uy := d o Ly, and
A is induced by Ly|,).

Let €7: h* = R be the transpose of ¢, and let A C h* be the affine
subspace (¢7)71(1) of h*, modelled on t*; then h may be identified with the
affine linear functions ¢: A — R, whence df € t is the linear part of £ € .

By Observation [I} K lifts to an infinitesimal hamiltonian action on Up
with momentum map pl;, . If (g, A), defined by Ly : tx — b, is a Levi pair,
then the map p*: N — A C b*, determined uniquely by the formula

(8) (17 (2), Ly (v)) = n2 (Ky)

for all z € N and v € ty, will be called the horizontal momentum map of
(D, dn’|4). Equivalently the diagram

A
N - U,

uAl i
)

commutes, i.e., L o p? = pont.

Observation 2. Let (N,D,J,K) be a CR manifold of Reeb type, and let
(g, A\) be a nondegenerate Levi pair, where g is the Lie algebra of a subtorus G
of Tn. Then M := N/G, equipped with the 2-form induced by dn’|,,, is the
symplectic quotient g~ (N)/G of Up by the lifted G-action; it is therefore a
compact symplectic orbifold with a hamiltonian action of T = Ty /G whose
momentum map is induced by the G-invariant map p*: N — A C b* defined

mn .

Let X = XK' = im &,
E:=im(p,pu) CN xty and O :=E&° =ker(gpor)=r YD) C N x ty.
If rank D = 2m, then rank X N D < m, and hence dimty < m + £.
Proposition 2. Let K: ty — ct(N, D, J) be an infinitesimal CR torus ac-

tion. Then X N'D is an integrable distribution, i.e., Lp(X,Y) =0 for all
XY eXnD.
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Proof. For any v,w € ty and any section o of DO,
da(Ky, Ky) = (Lr,a)(Ky) — (Lr, o) (Ky).

Hence if X =", f;K,, and Y = Zj g K., are sections of X N'D (for func-
tions f; and g; on N), then

(o Lp)(X,Y) =da(X,Y) =3, filLk, a)(Y) — Zj gj(ﬁija)(X) =0
since K, preserves DO for any v € ty. O

Remark 2. If (g, )\) is a nondegenerate Levi pair then (p, p1g): DY — N x
g*, with pg := 1" o p, is an isomorphism. In particular, (p, 1) injects, i.e., £
is a rank ¢ subbundle of N x t}, (with £* = (N x ty)/© = T'N/D). Equiva-
lently, the transpose ¢p o k surjects (pointwise), i.e., X N D has codimension
¢ in K. Conversely, this suffices for the local existence (i.e., on an open neigh-
bourhood of each point of N) of a transversal subalgebra ¢: g < tx, hence
also a Levi pair: Up is open with nonempty fibres, so we can find A € g*
such that n? is locally a contact form.

This remark prompts the following.

Definition 7. We say (N,D, J,K) is locally Reeb type if qp o Kk surjects
and infinitesimally toric CR if it is locally Reeb type with dimty = m + £.

On any open set where rank X = m + ¢, (N, D, K) is locally Reeb type.

Proposition 3. Let (N, D, J,K) be an infinitesimally toric CR manifold
and let N° be the open subset where rank X =m + ¢, and U3 its inverse
image in Up C DO,

Then Up is an infinitesimal toric symplectic manifold under the lift
K, with momentum map p: Up — ty defined by (u(a),v) = a(K,), where
a€Up CT*N and K, := K(v) forv € ty. Further, there are angular coor-
dinates @: U3 — ty, defined up to additive constants, with QP = (du A dep)
and ker dp = p; H(J(X ND)) (restricting p: D° — N to U3).

Proof. The first part is immediate from Observation [1] By Proposition
K ND is an integrable rank m subbundle of D, hence so is J(X ND) by
the J-invariance of the Levi form, and TN° =X @ J(K N D). The 1-form
f: TN° — ty defined by ker 5 = J(K N D) and B(K,) = v is therefore closed.
It is not exact, but by definition of N°, the local primitives (which are de-
fined up to additive constants) pull back to US) to give ¢. O
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In terms of the short exact sequence restricted to Uf,, we have

0 — p*DY — kerdyp — p*J(XND) — 0

I | |

0 — pD° — TUg Lt TN s,

where for any a € U9, (du)q(ker dp) = i, and (dp)q(p*D°) = ;/J(@g(a)) =
Ep(a)- This identifies (dp)a(p*J (X ND)) with ©F a)"
A subalgebra ¢: g — ty satisfying Condition [1] splits the exact sequence

0—E&— N°xthy — 0" — 0

i.e., kers| = t* is transverse to &, for all z € N°. Thus pu(U9) C t is foliated
by its intersection with the m-dimensional family &, of ¢-dimensional linear
subspaces of t};.

Remark 3. The Levi-Kahler quotient of N by (g, A) is the Kéhler quotient
of any Ty-invariant, QP compatible metric § on U;g whose pullback to
,ugl()\) = N is the orthogonal sum of a metric on X and the metric hp )
on D. We may assume § has angular coordinates d¢ on U%’Jr =U3N U'g ,
so that it is determined uniquely there by the induced T y-invariant metric
on ker dp = N° x t, which descends to a metric G on u(Ug;") C . Since
hoex =chp ) for c € R*, we assume G is homogeneous of degree 1 on t%;,
i.e., as an S%ty-valued function on u(U%+), it is homogeneous of degree
—1. Examples of such metrics include the generalized Kéhler cone metrics
(Definition [4)).

If (g,\) is given by Ly: txy — b, then the Levi-Kéahler quotient metric
depends only on the pullback of G to L {(A) = (+")~!()), an affine subspace
transverse to £.

2. Levi—Kahler reduction in toric geometry
2.1. Polytopes, fans, combinatorics, and toric contact manifolds

Suppose that (N,D,J,K) is a toric CR manifold of rank m and codi-
mension ¢, under a (real) torus Ty = ty /27 Ay with (abelian) Lie algebra
tv = Ay ®z R.

The theory of effective actions of tori [14, [36] implies that for any
subtorus H < Ty,

Ny :={z € N | H = Stabr,(2)} C NH:.={ze N | H C Stabr, ()}
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is an open submanifold of a closed submanifold of N, and if N is nonempty
then N(g) is dense in N H_ The connected components of N(gy and their
closures in N are called open and closed orbit strata of (N,K). Let ®x be
the set of closed orbit strata, partially ordered by inclusion, and let N, : s € 8
index the closed orbit strata stabilized by a circle. The 1-dimensional Lie
algebra of N; has a primitive generator vy € Ay C ty, unique up to sign.
We refer to @y as the combinatorics of N; it is a “poset over 8”.

Definition 8. A poset (partially ordered set) over a set 8 is a set ®
equipped with a partial ordering (reflexive antisymmetric transitive rela-
tion) and a map 8 — ®. A morphism ® — @’ of posets over § is an order
preserving map whose composite with the map 8§ — ® is the map 8§ — @'.
We say ® and ®' have the same combinatorial type if they are isomorphic
as posets over 8. The combinatorics arising in toric geometry are typically
isomorphic to subposets of the power set P(8) or its opposite P(8)°P, which
are posets over 8§ under inclusion or reverse inclusion respectively, with the
map from 8 being the singleton map s — {s}.

To illustrate this, we start, as in Stratagem [l| with an exact sequence
0-RSHS¢-0

of vector spaces, viewed as an extension of abelian Lie algebras with dim t =
m, and let A := (¢7)7!(1) be the corresponding m-dimensional affine sub-
space of h*. Recall that a convex polytope A in A is a subset of the form

A:={¢ecA|VseS8, Ls&) >0}
where § is a finite set, and Lg € b (an affine function on A) for each s € 8.

Remark 4. The combinatorics ®a of A is the poset over 8 of closed faces of
A. More precisely, for £ € A, let S¢ = {s € 8 | Ls(§) = 0}; we assume that
A C A has nonempty interior A (so for £ € A, S¢ = @) and that for any
s € 8, there exists £ € A with S¢ = {s} (otherwise we may discard s without
changing A). The map sending S C § to

Fg:={(€eA|SCS}={{cA|Vse S, Ls& =0}

restricts to an isomorphism from {S¢ € P(8)? | £ € A} to $a over 8. Any
closed face is thus the intersection of the facets Fy:= Fy,, containing it:
Fs = (\,cg Fs. We assume that the empty face is an element of ®A, so that
Fs € ®p for all S € P(8).
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Given a compact convex polytope A C A, the positive span RTA is a
cone in h*; the dual cone to A is

A" :={Leh|VEe A, L&) >0},

and its projection onto t defines a decomposition Y of t, called the associated
(complete) fan, into a union of polyhedral cones

Cs:={dLet|VEe A, L&) >0
with equality for all £ € Fg} = span{us | s € S}

corresponding to the faces Fg of A. These cones form a poset ®v over
8 under inclusion, and a (complete) fan Y is uniquely determined by its
combinatorics ®y and its rays (one dimensional cones) Cs := Cy5y. When Y
is constructed from A as above then ®y is canonically isomorphic to %
over 8, and in particular there is a canonical bijection between the facets of
A and the rays Cs := Cyyy of V.

The rays of Y determine ug : s € & up to positive scale, and similarly A
determines Ly : s € 8 up to positive scale. Given a choice of these scales, we
say A is a labelled polytope with affine normals Ls € § and inward normals
ug :=dLgs € t for s € 8, and that Y is a labelled fan with generators us € t
for s € 8.

Definition 9. A (complete) fan Y is simplicial if the rays in any cone
are linearly independent. A (compact) convex polytope A is simple if its
fan is simplicial. In terms of a labelling, this means for all S € &y, us: s €
S is linearly independent, or (for polytopes) V& € A, Be := (us : s € S¢) is
linearly independent. This condition only depends on the vertices £ of A,
where it means that B, is a basis; in particular, each vertex is m-valent.

Returning to (N, D, J,K), the underlying contact manifold (N, D) is
toric under (K, Ty ) in the sense of [§], where the following result is obtained,
following the methods of [13], 29, [38|, [42H44].

Theorem 1. Let (N,D,K) be a (compact, connected) toric contact man-
ifold under Ty. Then the stabilizers in Ty of points in N are connected
(i.e., subtori) and the fibres of the momentum map u on Up are Ty-orbits.
For any nondegenerate Levi pair (g, \) the signs of the primitive generators
vs € ty of the circle stabilizers Ng : s € 8 may be chosen uniquely such that
the image of the horizontal momentum map p*: N — A C b* is the compact
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simple convex polytope A in A defined by the affine functions Ly := L (vs)
and i is a submersion over the interior of each face.

In particular, u* induces a poset isomorphism over 8 of ® with ®A.

Corollary 1. N and A (i.e., ®n and ®a) have the same combinatorial
type.

Remark 5. The primitive generators vs : s € 8 need not be linearly inde-
pendent in ty, nor even distinct, although after taking a quotient of N by
a subtorus acting freely, we may assume that they span.

Suppose now that G is a closed subgroup of Ty with Lie algebra g. Such
a subgroup exists if and only if the lattice of circle subgroups Ay in ty is
mapped to a (rank m) lattice A in t, which holds if and only if us:s € 8
span a lattice in t.

Definition 10. If A Ctis a lattice, then a polytope A or fan Y labelled
by Ls (with us = dL) or us : s € 8 is rational with respect to A if for all
s €8, us € A.

We are now ready to study the Levi-Kahler quotient N/G, which is a
compact toric Kéhler orbifold M of real dimension 2m under an m-torus
T with Lie algebra t and hamiltonian generators . Indeed, with respect to
the symplectic form on N/G induced by dn*|p, p*: N — A C h* descends
to a (natural) momentum map for the action of T = Tx /G on N/G, whose
image is the rational simple convex polytope A C A. Rational Delzant the-
ory [29] [44] asserts that any such toric Kahler orbifold M is determined up
to symplectomorphism or biholomorphism by its labelled polytope or fan.
The construction of M from these data is relevant here, so we review it now.

Let Zg be the free abelian group generated by 8, let ts = Zg ®7 R and
Cgs = Zg ®7 C be the corresponding free vector spaces over R and C, and
let Ts = ts/27Zs and TS = Cg/27Zg = Cg be the corresponding real and
complex tori. Denote the generators of Zg Ctg C Cg by e;:s €8, and
observe that Tg and 'H‘g act diagonally on Cg, via [, tses] - (D, 2zs€s) =
> s exp(its)zses, where z, € C and ¢, € R or C. The action of Tg on Cg is
hamiltonian (with respect to the standard symplectic form wg on Cg) and
has a momentum map o: Cg — t5 defined by

(9) (0(2), es) = 05(2) = 32,

where z5: Cg — C denote the standard (linear) complex coordinates on Cg.
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The labellings s — Ls and s — us of A and Y induce, and are defined by
(without loss, surjective) linear maps L: ts — h and u: ts — t with L(e;) =
Lg and u(es) = u, for all s € 8. Let g be the kernel of u; then L determines
a linear form \ € g* completing the following diagram:

0§ —r tg >t — 0
(10) AL [

0—+R—+bh —»t—0.

When A (or Y) is rational, then u maps Zg to A and hence defines a map
from Tg = ts/2nZs to t/2m A whose kernel is a closed subgroup G of Ts with
Lie algebra §. We let G < ']I‘g be the kernel of the complexification of this
map.
The combinatorics @y of Y (or A) define an open subset Cg C Cg as the
union of z € Cg for which S, :={s € 8|z, =0} is in ®y. In other words,
g is the union of the ']I‘g—orbits

Cg75::{Z€C5‘ZSZOiﬂS€S}

over S € ®y. Thus the set of ']I‘g orbits in C§ is isomorphic to @y, and S C S5’
iff the closure of Cs g contains Cs g.

Lemma 3. Let (Y,u) be a simplicial fan with combinatorics ®y. Then
g C ts acts locally freely on Cg. If in addition (Y,u) is rational, and G is
the corresponding closed subgroup of Ts, then for any S € ®vy, the stabilizer
in G of any z € Cs,s is

(11) Stabs(z) = (AN spang{us | s € S})/spang{us | s € S}.

Proof. Let S € ®y and z € Cg g, so that z; = 0 iff s € §. Then any element
of the stabilizer of z in ts has the form v =) __qtses, which belongs to g
iff > cgtsus =0. However, since (Y,u) is simplicial, u, : s € S is linearly
independent, hence v = 0.

For the second part, an element [v] = [} ¢ tses] of the stabilizer of 2
in Ts = ts/27Zs is in G iff ) _gtsus € A, and is the identity element iff
ts € Z for all s € S. The result follows. O

The Delzant—-Lerman—Tolman correspondence and the relation between
symplectic and complex (GIT) quotients [29] 44] now assert that:

(i) as a complete toric variety, M is a complex (GIT) quotient Cg/ G°
of Cs by G€;
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(11) as a compact toric symplectic orbifold, M is a symplectic quotient
N/G — where N = (i"e) "' (A) — of Cg by G at momentum level A € §*.

The orbifold structure groups of points in M = N / G are given by the stabi-
lizers in G of corresponding points in N, hence are related to the labellings
of the polytope and fan by (11 . Note that the complex structure in (i) is bi-
holomorophic to the complex structure of the Kahler quotient in (ii), which
is the quotient of the induced CR structure on N C Cg. However, M is not
typically isometric to the Kahler quotient of Cg by G, which is called the
Guillemin metric [1, 2, B7] of A.

In particular, the Levi-Kihler quotient (N/G,dn*|q, J|p) is symplec-
tomorphic to the toric symplectic orbifold obtained from (A,L) by the
Delzant-Lerman—Tolman construction, but also biholomorphic to the Levi—-
Kahler quotient of the toric CR submanifold N of flat space by (g, 5\) In
general N and N have different dimensions, but there is a map from A to Ay
sending e; to vs, and if the latter form a basis for Ay, then we may identify
Ty with Ts, Ly with L, and hence (g, ) with (g,\). This motivates the
study of Levi-Kahler quotients of toric CR submanifolds of flat space, which
will occupy us for the remainder of the paper.

2.2. Toric CR submanifolds of flat space

Let 8 be a d element set, and define Zg, ts, Cs, Tg and Tg as in §2.1}
Let K: ts — ham(Cs,ws) be the infinitesimal hamiltonian action, and let
¥: C§ — Tg be angular coordinates conjugate to the momentum compo-
nents @ on the open set Cg§ of Cg where z, # 0 for all s € §; thus dv :
TCg — ts satisfies d¥(K,) =v and d9¥(JK,) =0 for all v € tg. The flat
Kéhler metric in action-angle coordinates on Cg is then

dog? 9
gs = Z < 20'3 +20_sd"~98 ) 5
(12) sES
ws = Z dos A dV¥,s, d°cs:= Jdos = 20sd0,.
sES

In particular, the metric H(v, w) := gs(K,, Ky,) on the Tg-orbits is given
by the smooth function H = 2d0: Cg — SQtZ‘g, where §: tg — 5’2{; Ctg®tg
is the coproduct dual to componentwise multiplication in tg; thus if we
write v = ) g vses and w = Y s wses then H (v, w) = Y g 205(2)vsws,
which is positive definite for z € Cg. Note the following crucial property of
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the flat Kéhler metric on Cg: do(K,) = 205v, for all v € tg, i.e.,
(13) d°e(K,) = H(v) = 2(d0)(v),

where we use the natural inclusion S*t§ C Hom(ts, t}) to evaluate H = 2d0
on v.

We now restrict attention to Levi—Kahler quotients in the following set-
ting.

Definition 11. A toric CR submanifold of Cg is a compact connected CR
submanifold (N, D, J) which is invariant and locally Reeb type under the
action of Tg.

We assume that for any S C 8, the intersection of N with the ']I‘(g orbit
Cs,s is connected; these intersections are then the orbit strata, and the com-
binatorics ®x of N may be identified with the poset of those S € P(8) such
that N NCg g is nonempty. We also assume that for all s € 8, {s} € @y,
i.e., Ny:=NNCgys ={z€ N |2 =0} is nonempty, with generic stabi-
lizer <exp(tes)> (if this did not hold, the <exp(tes)> circle action on N
would be free, and we could take a quotient).

We refer to a Levi-Kéhler quotient M of a toric codimension £ CR
submanifold (N,D, J) in Cg by a positive Levi pair (g, \), where g is the
Lie algebra of an ¢-dimensional subtorus G C Tg, as a (codimension ¢) Levi—
Kahler reduction of Cg.

The data (N,D,J) and (g,A) are linked by Condition [1, which may
be viewed as a constraint on (N, D, J) given (g, A) or vice versa. We spec-
ify the choice of (g, ) as in §1.3| via a surjective linear map L: ts — b, or
equivalently, an indexed family L : s € 8 of vectors in hh which span (where
Ls = L(es)). In other words, for toric CR submanifolds (N, D, J) of Cs, a
pair (g, \) is associated canonically, via the set-up , with a (not neces-
sarily compact or nonempty) convex polytope

AQ,A:{£€A|VS€8a Ls(&) 20}

labelled (formally) by L : s € 8 (although some facets Fy could be empty a
priori). We denote the combinatorics of Ag y by ®g ».

Lemma 4. Let N be a toric CR submanifold of Cg satisfying Condi-
tion |1] relative to (g,\). Then there is a smooth pointwise surjective func-
tion xn,g: N — Hom(t§, g) such that for allz € N, n, = xn,4(2) 0o d°c, and
dnz]Dz = XN,g(2)0 ddCaZ|Dz.
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Proof. The CR submanifold N may be written (at least locally, and in our
examples globally) N = (F o o) ~1(0) where F': t§ — W is a smooth function
with values in an ¢-dimensional vector space W, for which 0 is a regular
value. Hence T, N = ker dF,,(,) o do, and so D is the kernel of the pullback
vof dF odc to N, with v.(K,) = dFy(;)(H,(v)) for v € ts and z € N. By
Condition (1, dF o Hov: N — Hom(g, W) is a pointwise isomorphism, and
n=(dFoHou) v

We may now set xn,g = (dF oHo t)~! o dF; this formula may only be
valid locally, but the result is independent of the choice of F': tg — W, so
XN,g, With 7 = x4 0 d°c is globally defined. Since v|y, =0, dn|y = (dF o
Ho:) ldv|g,. Now

d(dF o d°c) = (Hess F)(do A d°o) + dF o dd°e.

Pulling back to N and restricting to D, the first term vanishes (since F' o o
is constant on V). Hence dn|p = xn,g 0 dd°0|,. O

The characteristic function of (N,g,\) is the (nowhere vanishing) func-
tion X = xn.ga: IV — ts with Xy g.1(2) = Ao xn4(2). Hence n? := (1, \) =
(d°c, xn,g,n) and the horizontal momentum map pr: N = A C h* satisfies:

(14) (1 (2),L(v)) = 0 (Ky) = H (v, xn,ga(2))
= 2(60(2),v @ XN,g,(2))-

Thus 77)\ = ZSGS Xs d°os and <NA= L(U)) = ZSES 205XsUs, 1.€., Ls(///)\) =
205xs. Since dd°cs = 2dos A dds, the induced metric on D (over Cg N N)

1S
L (l‘/\) dos” 2
(15) hpa=) —=— 2 T 2050,

sES s D
d 2
=22xs< = +2asdz932)
sES 205 D

Theorem (1| shows that if (g, \) is a nondegenerate Levi pair, then the
image of the horizontal momentum map p* is the compact simple convex
polytope A, defined by +L; : s € 8 for some choice of signs, and also that A
has the same combinatorial type as N. Now if A = Ay ) (i.e., all signs are
positive) then equation shows that (g, \) is a positive Levi pair. This
motivates the introduction of the following constraint.
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Condition 2. A, ) is a compact convex polytope with the same combina-
torial type as N (as a subset of P(8)).

Theorem 2. Let N be a toric submanifold of Cs and suppose (g,\) is a
Levi pair. Then imp® = Ay if and only if (g,\) is a positive Levi pair
satisfying Condition 2]

Proof. If im p* = Ag x, then , applied to each orbit stratum, shows that
hp x is positive definite over the interior of each face of Ay ), hence every-
where. Thus (g, \) is a positive Levi pair. Under this assumption, Theorem
shows that im p* = Ay if and only if Condition |2| holds. O

2.3. Levi—Kahler reduction for quadrics

We now specialize to the case that N is an intersection of quadrics. For N
to be a toric CR manifold with codimension ¢, it is then the level set of
an (-dimensional family of components of o: Cs — t5, hence of the form
(Foo) 1(0), with F' = 1] — X\o: t§ — g7, where ¢, g, — ts is an inclusion
of an ¢-dimensional subspace, and A, € g} is in the image of the positive
quadrant of tg.

Thus N = p; ' (\,), where 1, = ¢} o, is defined by the same sort of data
(g0, A\o) as the data (g, \) which determines the Levi-Ké&hler structure on N.
These data may therefore be fixed in the same way as (g, \) using a diagram
of linear maps

o

0—> gy —>tg —>t—>0

ool

0—>R—»fh—t—0.

We write Ny, 1, or Ny, for the CR submanifold corresponding to these data.
We shall assume that Ay 5 is a compact convex polytope, so that it satisfies
Condition [2} the image of o: N — t5 thus lies in the nonnegative quadrant
of

tg:={{etg|VveEg, &us=0VseS=v=0},

and u? : s € § are the normals of a complete fan.

Since F is affine linear, dF is constant, equal to ¢}, and so v,(K,) =

Ly (H;(v)). Hence &, = im(H, 0 1,: g, — t}) and so & = o*E£° where £° — 2

o

has fibre £ = {(§svs)ses € t5 | v € go}-

Proposition 4. On Ny, »,, (8o, Ao) s a positive Levi pair.
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Proof. Since u?: s € 8§ are the normals of a complete fan, {a € t* | Vs €
8, a(u?) >0} = {0}. Hence (u°) T (t*) meets the positive quadrant of t§ only
at 0, so the image in g} of this positive quadrant is a strictly convex cone C
whose dual cone C, is the intersection of g, with the inverse image (under
Lo) of the positive quadrant in ts. Since H, is diagonal and positive definite,
it maps the positive quadrant of ts onto the positive quadrant of t5. Thus
Ly oH, 01, maps Cx onto C. Since A, € C, X°(2) := to(t) o H, 01,) 71 (Ao)
has positive components, and hence hqp , is positive definite. O

Thus we can satisfy Condition |1| by letting (g, A) equal (go, Ao)-

If the fan associated to (go, Ao) is rational, (M, J) is the underlying com-
plex orbifold of the Delzant—Guillemin Ké&hler quotient of Cg by (go, Ao). Its
Kahler form belongs to the same Kahler class as the Levi-Kéhler quotient,
but will not be the same in general.

Remark 6. By continuity, we also obtain a positive definite metric for
(g, ) in an open neighbourhood of (g,, Ao). In particular, we can fix g = g,
and vary A to obtain an ¢-dimensional family of Levi-K&hler quotients on
the same complex orbifold. As H2, (M) is ¢~dimensional, it is natural to ask
if all Kéahler classes are obtained in this way.

The characteristic function x = xn,g,1 of N = Ny, », with respect to an
arbitrary Levi pair (g, ) is given by x(z) = (+" o H, 0 1,) "1 (A\) € g,, where
we tacitly omit the inclusion ¢,: g, C ts.

Remark 7. The function x: N — g, is determined by H(x)|, = A; since
H = 260, it is linear in o, which implies Y is a rational function of o. Now for
any v € go and 2 € N, L1H(Y g es) = > c5(05(2),v) = Ao(v), and so the
characteristic function x° of the canonical Levi pair (g,, A,) is characterized
by LIHZ (Xo(z) - %ZSES es) =0.

Proposition 5. If )Y _cu? =0 then 2x3 =1 for all s € 8.

Proof. Since ) g es € go, for all z € N, x°(2) = %ZSGS es by the charac-
terization. O

If this assumption holds, we say N is spherical: N is then contained in a
hypersphere in Cg. (The equivariant topology of such manifolds has been
studied in [I8], but here we focus on the geometry of their Levi-K&hler
quotients.) In the spherical case, o = (u**, L?), and the canonical Levi-
Kéhler quotient metric agrees with the Delzant—Guillemin Kéahler quotient.
In particular, the reduced metric on A C h* is >, ¢(dL3)?/2L¢, which is the
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pullback by (L°)T of the metric h, = Y oses d¢s?/2¢s on t§ , where we write
(s for the linear function (s(§) = & on t§ corresponding to ey € ts (thus d(,
is ey, viewed as a constant 1-form).

In order to compute the reduced metric for any Levi pair (g, A), not just
(g0, Ao) we observe that the bundle £° C T'tg = g x t§ (with £ = 0*€°) is
the orthogonal complement to t2 x (u®) T (t*) with respect to h,:

5 dellbndee il o) _ 37 o w o). = w(w(e) 0.
sSES y s€8

Hence by Remark [3] we have the following result.

Theorem 3. Let (g,\) be a positive Levi pair on a spherical quadric N =
Ny, - Then the reduced metric of the Levi-Kdhler structure is the pullback
by LT: Ay \ — 12 of the restriction of h, to t3 x (u®) T (t*) C Tt¢ (extended
by zero on £° C T'3).

Example 5. The weighted projective space CP)* of weight a = (ao,...,
am) € N™ ! has the structure of a toric symplectic orbifold whose Delzant
polytope is a labelled simplex (A, u). The corresponding momentum level set
N, C C™*! is CR G-equivariantly isometric to the sphere S+ C ¢+,
acted by the a-weighted diagonal S! action. By a result of S. Webster [48],
Levi-Kahler reduction defines on CP.* a homothety class of Bochner-flat
Kéhler metrics [22], 28], which are extremal Kahler metrics [24]. The Bochner-
flat metric coincides with the Guillemin symplectic-Kéahler reduction if and
only if a=(1,...,1), i.e., only on CP™, see e.g., [2]. Thus one can obtain
Levi-Kihler quotients of the same (flat) CR structure on S?"*+t C C™+!
on any labelled rational simplex, by varying the subgroup G' = S! within
a fixed maximal torus T™*! in the group Autcg(S*™*!) = PU(m + 1,1) of
CR transformations of S?"+1,

Locally, the construction is defined by a one-dimensional subspace g C
tg, generated by a non-zero element v € tg, with corresponding vector field
K, transverse to the CR distribution on S?™*!, and the choice of a contact
form n” with n¥(K,) = 1 and kern” = D. In this case (K, 1y, D, J) defines
a Sasaki structure compatible with the standard CR structure (D,J) on
S?m+1 . see e.g. [20]. The horizontal Kihler geometry (dn?,D,J) may be
described by a compatible toric metric over a (perhaps not rational) labelled
simplex (see [40]). The fact that g is the Lie algebra of a subgroup G' < T™*1
implies a rationality condition on g, hence on the corresponding labelled
simplex.
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3. Levi—Kahler reduction for products of spheres

Our main motivation for the study of toric Levi-Kéahler quotients is the con-
struction of Kahler metrics on toric varieties with “nice” curvature proper-
ties. For this we observe that CR submanifolds of Cg have local invariants,
and so one approach to constructing Levi—-Ké&hler quotients with nice cur-
vature is to start from a nice CR submanifold N of Cg. In particular, when
N is a product of spheres, it is flat as a CR manifold. Hence we might hope
that Levi-Kahler quotients of products of spheres have interesting curvature
properties.

3.1. Products of simplices and products of spheres

We specialize the set-up of §2| as follows. Fix positive integers £ and mq,
ma,...,my, and let

Z=A12,...,¢}, I,=A0,1,...,m;}, S8={(i,r)|i€Zandr € [;}.

Let m =) ,.;m; and d =m +{ as usual. Thus Cg = Cmitl  Cmetl x
oo x Cmetl 2 C? and tg has a natural subspace g, = {z € ts | Tiq = T4y for
all i € Z and ¢,r € I;}. We denote by z; the common value of the x;. and
thus identify g, with Rf. On g, we have a natural linear form ), sending
(x1,29,...,x¢) toxy + 22+ -+ +xp € R,and we let L°: ts — h = tg/ ker A,
and u’: ts — t = tg/g, be the quotient maps.

Under the canonical identification of t5 with ts, h* is isomorphic to the
subspace of § = (§s)ses such that } ; &, is independent of 4, this constant
being the natural projection h* — R. Hence t* is a product (over i € Z) of
the codimension one linear subspaces of R™T! where the coordinate sum is
zero, and A is the corresponding product of affine subspaces A; where the
coordinate sum is one.

Notation 1 (The faces of ¥). The polytope ¥ in h* defined by L° is a
product of simplices Y; in the affine spaces A;. In the following, we sometimes
write i(s) and r(s) for the components of s € 8, i.e., s = (i(s), r(s)).

e The facets of X; are F! = {&;,, = 0} N X; for r € I;.

e The vertices of ¥; may also be indexed by r € I;: we let p’. be the unique
vertex of X; that is not in F}'.
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e The vertices of X are thus indexed by (r1,...,7r¢) € I} X -+ x I

Plrsroe) = (Drys -5 Dr,)-
e Each facet F! (for r € I;) of the simplex X; determines a facet
Fip =31 XXX 1 X F' x 541 X -+ X X
of ¥ and a corresponding inward normal u) = dLf,.
The corresponding CR. submanifold of Cg is
N = Np. ={z € Cg | Zreli o =1 forall it € T},

where o, = %]ziT\Q. Thus N = §2mi+l ... x §2metl Ag in i N is the
level set, at the regular value \,, of the momentum map p, = ¢, o. Thus

po(2) = (6'(2),...,0%(2)), where &'(2) = oi(z) = Y 3lzl’,

rel; re I;

and we denote z = (z',...,2%) with 2' = (zp0,..., zim,) the linear coordi-

nates of Cg. These data are associated to the Delzant construction for
the product X' = X7 x --- x Xy C A of standard Delzant simplices X; C A;.
More specifically, g, is the Lie algebra of a subtorus G, of Tg, which acts
freely on N preserving the CR structure (D, J), with quotient space (M, J) =
CP™ x ... x CP™. The Lie algebra g, of GG, defines a Reeb foliation on
N C Cg with induced horizontal Levi structure consisting of scales of prod-
uct of Fubini—Study metrics.

Theorem 4. Let N = S?™H1 x ... x §?™+1 C Cg be a product of standard
CR spheres. Then for a pair (g, ), defined by L: ts — b, with associated
polytope Ag \ C A, the following are equivalent.

(i) (g, ) is a positive Levi pair, i.e., defines a Levi-Kdahler structure
on N.

(ii) (g, ) is a Levi pair (i.e., g satisfies Condition |1} whose horizontal
momentum map *: N — A has im p* = Ag .

(ili) (g, ) satisfies Condition (2} i.e., Ag x is a compact convex polytope
with the same combinatorial type as X.

The proof makes use a couple of Lemmas.
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Lemma 5. If (g,\) satisfies Condition [2| then it satisfies Condition [L]

Proof. Condition (1) holds since it only depends on the combinatorics of A.

Suppose that g does not satisfy Condition (ii). Then there exist z € N
and v = (z5) € ts \ 0 such that K,(z) € D =(\,czkerd°c’ and v € g, that
is

(16) szus =0et and Zmirair =0 forieZ,

seS rel;

where o, = %|2,|?. As equations on v = (z;) for fixed z, this system is a
linear map from tg to RY @ t, which both have dimension d. We may write
the d x d-matrix A = A, of this linear map as follows: for j € Z the j-th
row is 050(s);, while the lower part B of the matrix is the m X d-matrix,
whose s-th column is u, for s € 8§ (written with respect to some basis of t).
We compute the determinant of A = A, by expanding along the first £ rows.
The nonzero terms are all obtained by choosing, for each j € Z, r; € I; to
obtain a minor

:|2017«102r2 c 2 Oygrp, det B(Tl,---Jz)’

where B, . ., is the submatrix of B obtained by removing the columns
Ulpy, - -+, Upr,. Up to an overall sign (depending on |I;|) each such minor
contributes to det A with sign (—1)2i<z". Hence to show det A # 0, it suf-
fices to show that (for a fixed basis of t) (—1)ZJ‘€I "I det B, .. r,) > 0 for all
(ri,...,r¢) € I x -+ x I, because o5 > 0 and the products Hjez ojr, do
not all vanish at the same time.

Since A has the same combibatorial type as 3, we know that the colomns
of By, ,...r,) are inward normals of the facets meeting at the vertex p(,, . ),
see Notatlon [} These form a basis by the Delzant condition on A, and so it
suffices to show that (— 1)27 177 times the wedge product of the columns of

By, ,..r,) has sign independent of (r1,...,7,). This will hold for A if it holds
for X, so it suffices to check that for each j € 7, (1) ufy A -+~ a5, A« uf,,

(Wlth the ug, factor omitted) is independent of r; € ;. Slnce Zrel ug, =0,
this is a tr1v1ahty

Lemma 6. Suppose (g, )\) satisfies Condition (1| and let x: N — g, = R’ be
the characteristic function of (N,g,A). Then (g,\) is a positive Levi pair if
and only if x1,...,Xe are positive.
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Proof. First observe that since D = [, ker d°a’, we have

(17) =Y xido’, dplp = xiddo’|p.
i€l €L

Moreover, D splits as a sum D = ,.; D; where D; is tangent the i-th
sphere in the product N = [, S*™ ! (that is D; = T'S*™+1 0 JTS*™ ).
For i € Z, dd°c" is nondegenerate on D;, and if j # i, D; C ker ddc”*. Thus
d77’\|D defines a positive definite metric iff x; > 0 for all 7 € Z. O

Before proving the theorem we need a bit more notation. For each j € Z,
we define

Ci={¢eA|Vrel;, £L;(¢) >0} and A=[)C}.
JEL

Note that C; is potentially empty but Cj is not.

Proof of Theorem [4. By Lemma [5] we may assume Condition [I] holds. Then
the formula for the induced momentum map p* here reduces to

(18) Lir(1(2)) = 2xi(2)ounr(2)

where L;, = L(e;,) for the standard basis e; of ts.

If (g, ) is a positive Levi pair, the functions y; are positive by Lemma@
and then equation and Theorem [1{imply that im p* = Ay y; thus (i)=(ii).

Now (ii)=-(i)&(iii) by Theorem [2| which also shows (i)=-(iii).

Finally, to prove (iii)=-(i), it suffices, by Lemma|§|7 to show that the func-
tions x; are positive. First note the following consequences of equation .

(a) im p* contains all the vertices of A = A ). Indeed, each z € N having
only one nonzero coordinates in each spherical factor is sent to a vertex
of A. Moreover, on the vertices of A, Ly > 0 for each s’ € §; thus
equation implies that x;(z) > 0 for any z € N such that p*(2) is
a vertex of A.

(b) If Lir(u?(2)) = 0 (vesp. Ly (u*(2)) < 0) then for all g € I;, Lig(p*(2)) >
0 (resp. Lig(p*(2)) < 0). That is p?(2) € ijZ(C;_ uey).
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Thanks to the statement (a) above, it is sufficient to prove that none of the
Xi's vanishes on N. From statement (b) we have the following inclusion

imp* € ()(Cfuey) = As,
JeL JCI

where A 7 = (ﬂjej C’J_) N (ﬂjejc C’;r) with J¢:=7\J (so Ag = A).
Statement (a) implies that A N im z* is not empty, but this image is con-
nected and for J nonempty, A 7 does not meet A. Hence im p is contained
in A. However, if x;(2) = 0 for some i € Z and z € N, then L;.(u*(2)) =0
for all r € I;, contradicting the combinatorial type of A. O

Corollary 2. Any toric symplectic orbifold whose rational Delzant polytope
(A,L) has the combinatorics of a product of simplices admits a compatible
toric Kahler metric hy, which is a Levi—-Kahler reduction of a product of
spheres.

Remark 8. It seems an interesting question to classify the smooth com-
pact toric manifolds whose Delzant polytope has the combinatorics of a
product of simplices. In dimension 2m = 2 the only such example is CP?
whereas if 2m = 4 the only smooth examples are M = CP! x CP! and the
Hirzebruch complex surfaces M = P(O @ O(k)) — CP!, k > 1. More gen-
erally, one can apply the generalized Calabi construction (see [0, [10] and
Section [3.5|below) with the base and the fibre being compact toric manifolds
with Delzant polytopes having the combinatorics of product of simplices in
order to obtain, inductively, higher dimensional examples of such smooth
toric manifolds. Thus, the Hirzebruch complex surfaces are obtained by the
generalized Calabi constriction in which the base and the fibre are CP!,
and the corresponding Delzant image has the combinatorics of the prod-
uct of two 1-dimensional simplices (i.e. is a 2-cuboid). More generally, the
Bott towers are higher dimensional generalizations of Hirzebruch surfaces in
which the base is a Bott tower of dimension 2(m — 1) and the fibre is CP!
and corresponding Delzant polytope is an m-cuboid (cf. [21]). Conversely, by
a result in [45)], any smooth compact toric manifold whose Delzant polytope
is a cuboid is a Bott tower. The generalized Calabi construction mentioned
above provides scope to extend this classification result to the larger class
of toric manifolds whose Delzant images have the combinatorics of product
of simplices.

We now give a closed formula for the symplectic potential of hy,.
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Theorem 5. Let N = S?™H1 x ... x §?™e+l C Cg be a product of standard
CR spheres, and suppose that the kernel g of u = d o L satisfies Condition [1]
Then

Z Z Lzrlog‘Lzr| - ZZLWIOg‘T‘

ZEZ rel;U{oco} €L rel;

is a symplectic potential for the Levi—-Kdahler metric, where L;. € § is viewed
as a linear function on h*, hence an affine function on A C b*, and Lis =
—D e 1, Lir. Equivalently, the reduced metric on the image of the horizontal
momentum map | is given by

: de 1 LirLis (dLy  dLis\?
TS DY Y Y s (T

1€I rel;U{oco} Lir 1€Z 0<r<s<m; w

Proof. The hessian of the stated potential Gy, evaluates readily to the stated
reduced metric, which we can compute in two ways. Using Theorem (3| we
decompose

e I (56 (S 6 | Ly (e )
o Z 2s 2 Z <Z Gir ZTGL‘, Gir ) i 2 Z Zreji Gir

s€8 1€ \rel €L

into components orthogonal and parallel to £°, and the reduced metric is
the pullback of the first term by L. Alternatively, by , the horizontal
metric on J(K N D) is

doi,” d¢;,? Dorel, d@")2>]

2xi = _ /

iGZI T%I; 20'7;7” D [ ; (7; CZT ZTGL- Cir
_ 1 * d(pi<i7)2 _ (ZTEI,- d(pigir»Q
2 EU (Z 1Gi > orer, PiGir

i€l rel; piir

D

D

where o*p; = 2x; and we use that Ere 1, Oir 18 constant on N, so that

o (Z dg) =0,
rel;

and then exploit rescaling invariance. The result is the pullback by p* of the
stated reduced metric, since L;,(u*) = 2x;04 by (I8). O
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As shown by Guillemin [37], a K&hler potential may be computed as a
Legendre transform of the symplectic potential Gy, with respect to some
basepoint p € A:

Hy = (11" = u\(p), dGL) - G
=2, > (%(W — M (p), dLiy) — Lir) log |Lip| + 5 (1™ — i (p), dLm)

:Z Z 5Lir(p)log | L], since Z L =0.

1€Z rel;U{oco} rel;U{oo}

3.2. Products of 3-spheres

As a special case of Theorem consider an ¢-fold product N = S? x --- x §3
of 3-spheres as a codimension ¢ submanifold of C% 2 Cf ® C2 with momen-
tum coordinates 0;,.(2) (i € Z = {1,...,£}, r € {0,1}). Thus ts = R? is the
Lie algebra of Ts = T2 acting diagonally on C**. We study the Levi-Kahler
metric on the open subset where the quotient torus T acts freely, ignoring
rationality conditions.

3.2.1. Geometry of the Levi—-K&hler metric. Consider, for any /-
dimensional subspace g C ts =R?%*, the integrable distribution X% =
span{K, | v € g} on N. Then, around each point of N such that K9 is
transversal to D, the local quotient space M of leaves of K¢ has induced
complex structure J. We will further assume that A € g* is such that dn’
induces a Kéhler metric (hy,, J,wr,) on M.

The reduced metric of Theorem [5] specializes to

pied — EZ LioLi (dLio B dLil>27 fe., (u)hied = xi doi?
24 Lo+ L \ Lio Li ' '
i€

where Li(p*) = 2Xi0ir, 2Xi = —Lioo (1), 0 := 0o = —Lio (1) / Lioo (1),
Lo+ Ljjy = —L;» and hence g;1 =1 — g; on N. In other words, the charac-
teristic functions y; and the orthogonal coordinates o; are affine and bira-
tional functions (respectively) of the momentum coordinates p*. Thus the
momentum images of the coordinate hypersurfaces with o; constant are hy-
perplanes in A through the codimension two affine subspace where L;o(p?) =
L (,u)‘) =0, and o3 is inverse to the unique affine coordinate on this pencil
of hyperplanes sending 0, 1 and oo to the facets Lio(ut) =0, Li(u?) =0
(of Ag ) and the “characteristic hyperplane” x; = —%Lioo(u)‘) = 0 (respec-
tively). These pencils introduce a factorization structure (in the sense of [6])
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which is adapted to the class of polytopes in A with the combinatorics of
the product of intervals.

To allow for more general coordinates, set H = {0,1,00} (so that
> ren Lir = 0) and introduce an arbitrary affine coordinate

& = —Nio (1) /Nioo (1)
on the pencil which takes the values «;, at the points [L;,], meaning

(& — aqn)(aio — Qo)
(& — ioo) (i — 1)’

(& — o) (41 — Qioo)
(& — tioo) (i1 — o)
- 2(& — air)Nico

Li = A;(azr)

, 1—o0;=

o; =

for affine functions Nj, of u* with Yoven Nir =0, and Ai(y) = a; [,y (v
ajr). Note that we can also allow oo = 00, in which case A; is of degree 2.
(This latter case can be derived from the generic case deg A; = 3 by letting
Qoo = 1/€ and taking a limit of €A4; as € — 0.) Thus

(i1 — Qico) (i — Qlico)

(& — ioo) (& — tico)?

Xidoi®  Liso(p*) Af(vino)d&®
oi(l—o;)  2(& — i) Ai(&) Nioo (1 )

On the other hand,

dO‘i =

dg;”
Ai(&)

Nio(#1*)dNiso — Nioo(11*)dNyg (&,dNiso + dNjg) o dp?

d&; = odpt = —
]\fioo(/vt/\)2 NZOO(/’{’A>
ZNJOO )d&; @ Qj,  where Q;: M — t*  satisfy
JET
Z(&'dNioo + dNjp) ® Q; = Id¢ and  ((§dNise + dNyo), Q;) = 945
i€l

Hence dQ; = — Zj<Qi7 dNjs)dé; ® Q; and the Levi-Kéhler metric is

d¢;?
hy = ZNZ'OO(/L)‘) <A§§) + Ai(fi)0i2>a
(19) i€ P
= (dp* Adt) = = Nio(u?)d&; A 6,
€T
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with 0; = (Q;, dt) for angular coordinates t on M such that dt(1:9) is holo-
morphic:

dd¢t = d(z gszzoo + dNZOdf) —0.

€L

The canonical affine coordinates may be obtained by setting A4;(¢) = 2¢(1 —
t)(1 — et) in the limit € — 0; we then have N; = —L;,. and & = o; so that
Nwo(/f‘) = 2)@' and

2
_ 2
hy =) 2 ( T " 204(1 — 0;)0; )

(20) €T

— Z 2x; do; N\ 6;.
€L

3.2.2. Explicit normal form. Recall that g, C ts has a canonical basis
e; = e;0 + ;1 for i € Z. We obtain a similar basis w; : i € Z for g by ob-
serving that the vectors e;y in tg project to t = tg/g, = ts/g to the normals
uip : @ € T at a vertex of Ay . Hence g is transversal to span{e;o | i € Z} and
there are canonical w; € g of the form

(21) wi = € + Z Cjiejo = eio + €1 + Z Cjiejo
jezT jez

for an ¢ x £ matrix of real numbers C. We denote by K? = K., and K; = K,
the induced vector fields in K% and X® respectively. We shall also write K,
as a shorthand for K., = 0/09;,. Thus

d°o’ (K?) = 2(0i0d®i + 01 d¥in) (Kjo + Kj1) = 20
d°o’(K;) = 2(ciddio + Uﬂdﬁu)(Kj + > kCkiKro) = 2(6ij + 0:Cij).

on N, since ;9 + 0;1 = 1. Now if n; : i € Z are the 1-forms on N defined by
ni(Kj) = 6;j and (;er kern; = D = [,z ker d°c’, we may write

(22) %dcdi = Z‘P’ijnj where Pij = %dcdi(Kj) = 51']‘ + aiCl-j.
JjeT

We have noted that e;p : ¢ € Z project onto a bases for t = ts/g, = ts/g. In
order to compute the toral part of the quotient metric, we need to project
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the corresponding vector fields K;o onto D. We thus define projections
X7 =Kio— Y 3d°07 (Kig) K = Kig — 0i(Kio + Kin)
JET
=(1—0i)Kip — 0iKa,
Xi = Ko — Z n; (Kio) K,
JET

along K% and X9 respectively. Let I, = diag(oy,...,00).

Lemma 7. X? =Y. ; X;Pj; with Pji = 6 + Cji04, i.e., PI, = I, P.

Proof. Since )y o7 Pjgpni(Kio) = $d°07(Kip) = 06;j, it follows from the re-
lation between P and P that 1d°c?(Kio) = 3.7 ;(Kko)Pri- We now have

X7 =Kig— Y 3d°0 (Ky) (Kj -y ijKk[))

jeT keT

= Ko — Z <?7](Kko)szK Ug5ngkJKko>
7,keT

= Kpo(Oki + Crioi) = Y 0j(Keo)K;Pri = Y XiPyi
keZ jkeT keZ

as required. O

Writing A = (cy, ..., c) with respect to the dual basis to w; :i € Z, n =
> icz Cini- The corresponding momentum coordinates p; : i € I are given

by (cf. )
(23) i = (u*, Lio) = ZCjUJ(Kio) = ZCjUiji = ZCijiUi = 2xi04,

jezT jeT jeT
where Q = P1, Q= P! and 2y; = > jer ¢jQji- If we rewrite as

cjoj = ZUiPz‘j =p5+ Zﬂicijaja
i€ 1€L
then we can specialize with Nj, = Lj, (up to overall scale) using

Lio(n) = 1y Ljeo(p) = =(Ljo+ Ljn) () = Y piCij — ¢;.
€L
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We may also compute directly that the toral part of the metric on D is

(24) WP =Y cidni(XG, JX) dt; dty
1,7,k€T
= Y 1aQipddéoP(X;, JX) dt; dty
,7,k,pEL
= Z 2¢Qip (0pd9po” + (1 — 0)dVp%)
i,3,k,p,q,r€L

X (X2Qqj, X2Qur) dt; dty,

2
= Z dxioi(1 — o) (Z Qij dtj) ,

ieT jeT

where we use 0;(1 — 0;)? + (1 — 0;)0? = 0;(1 — 0;). This agrees with
since

du; = Z Cj(de jS +0j d@ji) = Z Cj(ijPkl - Uj@jkckl) do; Qli

J Jkl
= ¢;Qjk(Pu — 0xChi) doy Qui = ZQXk dok Qki-
7.k,

3.3. Projective cubes

For Levi-Kahler quotients of an ¢-fold product of 3-spheres, the polytope
Ag y is an f-cuboid, i.e., it has the combinatorics of a product of m = ¢
intervals (an m-cube). Such a polytope is projectively equivalent to a cube if
the intersections of pairs of opposite facets lie in a hyperplane: transforming
this hyperplane projectively to infinity, opposite facets become parallel and
meet the hyperplane at infinity in the facets of an (m — 1)-simplex, and all
simplices are projectively equivalent. Projective equivalence to an m-cube is
automatic when m = 2, but is restrictive for m > 3 (when m = 3, opposite
facets of a generic cuboid meet in skew lines, not coplanar lines).

The assumption of projective equivalence to an m-cube simplifies the
previous analysis, because we may take N;o to be the equation of the
hyperplane common to the pencils spanned by opposite facets, indepen-
dent of i € Z ={1,...,m}. Concretely, let b; € R for 0 < j <m and py; :
0 < j < m be affine coordinates on the affine space A = {(uo, ft1, .-, tm) :

Z] Cobjpg =1}
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We now set Njoo = o, Niop = —p; and Nj; = p; — o for 1 < i # m. We
thus have

Hi - b1
25 & =" and hence by+ bi& = S
) Ho ZZ; iz(:) fo Mo

so that the inverse transformation is

1 &i

26 = ) i = Silbo = i
(26) o Do+ biér + -+ bl Sitto bo + b1l + - -+ + bmbim

Differentiating u;, we may then write the symplectic form as

m m
(27) wr, = Z dpi A\ dt; = po Z d&; N 6;,
i=1 =1
where
(28) 91 = dti — ,u,obi ijdlfj = dti - bi Z,ujdtj.
j=1 i=1

In particular df; = —b;wy,. Letting
(29) dez = Al(&)Q,, 1 < ) < m,

J defines an integrable almost complex structure and the t; are plurihar-
monic. We thus have the following diagonal form of (hy,, wr,)

1 [ d&° 2
by = Ai(&)0;
t b0+51£1+"'+bm§m§<Ai(€i) A )
(30) ‘m
1
L bo+b151+-~+bm§m; ¢

where the 1-forms 6; are given by (28).

The product of intervals &; € [ajo, 1], 1 < @ < m transforms to the com-
pact convex polytope A determined by the hyperplanes (§; — a;,.)po = 0, (for
r € {0,1}, 1 <i < n). As before, we set

2(& — aur 2(p — oy
Aily) = ai ][ =), Lin(n) = (gA’.(cj ;MO - (MA’(; >MO)’
reH i e

where r € H = {0,1,00}. Note that L;; >0 on A for 1 <i<m and r €
{0,1}, and that }° _; Li = 0. We can compute a Kéhler potential from
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the symplectic potential G, by Legendre transform based at p; = 0 to get,
modulo constants,

log | Lir| log & — azr’ /61 ds
1 H;
(31) L= A/( r) ; Al(air) Z

3.4. Levi—Kahler metrics of convex quadrilaterals
We now specialize to the case m = 2, i.e.,
N=SxS3={2eC*=C*0C?| (0104 011)(2) = 1, (020 + 091)(2) = 1}.

By Theorem {4} the compact Kéhler 4-orbifolds (M, hy,,wr,) obtained as a
Levi-Kéhler quotient of S? x S® by an abelian subgroup G C T* are the
compact toric 4-orbifolds whose rational Delzant polytope is a quadrilateral.
Note that from its very construction, Ay, is compatible with a second complex
structure J on M, coming from the quotient of the product CR structure
(D,J1 — Jo) on N =S3 x S3, where (D, J) = (D1, 1) @ (Da, Jo) is the di-
rect sum of the CR distributions of each S? factor. Thus J = J; + Jo, and
J = J1 — Jo defines a second CR structure on NV, associated to the same
distribution D C TN, which commutes with J and induces the opposite
orientation on D. In the terminology of [5], Ay, is K&hler with respect to
J and ambihermitian with respect to commuting complex structures (J, J )
on M. We are going to show that (hy,, J ) is, in fact, conformal to another
T-invariant Kahler metric (iLL, J) (which induces the opposite orientation
of (M,J)), i.e., that (hy,J) and (hy,J) define an ambitoric structure on
M in the sense of [5]. These structures have been extensively studied and
classified, both locally [5] and globally [6].

As any quadrilateral is a projective cube, the general form of the Levi—
Kahler metric hy, is described by but we shall also describe below how
this form is derived from the choice of the subgroup G. Following the nota-
tion in we specialize to £ = 2, and set

_ (a7
c=(5 3):
so that

A= 1+ a0 791 and A= 1+ a0 102 ;
09 6‘71 1+ 502
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hence

o 1 /14009 —Y01 5 1 /14009 —Y02
B_Z<—BU2 1+ oy and B_Z —fBo1 14ao1)’

where Z = (1 + ao1)(1 + do2) — fyo109 = 1 4+ aoy + dog + (ad — Bv)o109.
Then
c101(1 + d02) — caBo109 —c1yo102 + c2(1 + aoy)os

(32) = 7 NNCES 7 7

while the toral part of the metric on D is

(33) h}:?r = 0'1(1 — 0'1)((1 + (50’2)61 — BO‘QCQ) ((1 + 50’2)dt1 — ’)/O'thQ)Q/Zg
+ 02(1 — 02)((1 -+ 05(71)62 — ’70101) ((1 + OéJl)dtQ — ﬁaldt1)2/Z3.

We now transform this expression into the ansatz for projective
cubes (all quadrilaterals are projectively equivalent). To do this we first find
the base loci of the families of lines with o1 or o9 constant. We find that
for o1 = co/(c17 — o), 1+ aoy = c17/(c1y — ce) and hence (pg, p2) =
(c2/7,0), independent of o9. Similarly for o2 = ¢1/(c2f — c16), (1, p2) =
(0,¢1/B), independent of 0. These coordinates are examples of Segre factor-
ization structures, as defined in [6]. We transform the coordinate singularity
to infinity by setting

1 1 _
Gi=01ld1, A= _ 1t (e 020‘)517
62(1 + 0401) — C17Y01 C2
1 1+ (c2f — c16)&2
N _
& = 09/ 2= 7 60g) — caBos -

We then compute that 1+ c1v& + o8& = c1coA1AoZ and

A+ aér = (1+avér)/ca, Do+ 06 = (14 e2B8)/c,
(1 + 50’2)dt1 — yoodty = ((1 + Cgﬂgg)dtl — Cl’yfzdtg)/(clAg)
(1 + CMO’l)dtQ — BO’ldtl = ((1 + Cl’yﬁl)dtg — Cgﬂfldtl)/(CQAl),

so that, setting puo = 1/(1 + 1761 + c28&2), we have

(34) A" = ercuo&n(Ar — &) (dty — pocry(€rdty + Exdty))?
+ cleapoDaba(Ag — &) (dtz — poca (1 dty + §2dt2))2,

o1 c1c2é1 op) c1c262

35 _ _ e _
G5 M= 7 T T e b 2T AZ T 1T et + ol
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This has the form with A1(€1) = c1e3A16 (A1 — &) and A(&2) =
el (Ag — &).

We now relate the Levi-Kéhler metrics to the local forms of ambitoric
metrics studied in [5]. The results depend crucially on whether 8 = 0 (when
the curves &; =constant pass through the point at infinity), v = 0 (when the
curves £ =constant pass through the point at infinity), or both (when we
have a product structure). We break this down into three cases as follows.

3.4.1. The product case. This is the case when = 0,7 = 0. Letting
x = &1,y = & the metric becomes
dz? dy?

"= T B

+ A(x)dt? + B(y)dt3

with A(x), B(y) positive valued polynomials of degree 2 or 3, i.e., a local
product of extremal toric Riemann surfaces. The construction yields (up to
an equivariant isometry corresponding to affine transformations of x and y)
all such products for which A(z) and B(y) are of degree 2 or 3 with distinct
real roots.

3.4.2. The Calabi case. Without loss of generality, this is the case 8 = 0,
v # 0, so that the curves & =constant pass through the point at infinity.
We now let © = 14 c17v&1,y = —c1v€2 so that the metric becomes

di? | Alz)

1 dy2 2 2

z \ B(y)
i.e., given by the Calabi construction with respect to the variables z = 1/z,y
(see e.g. [4, B9]) starting from a toric extremal Riemann surface (X, gs =

gTy;) + B(y)dt3), and taking an extremal toric metric on the fibre associated

to the profile function ©(z) := A(Z)/z with A(Z) = z*A(1/Z). Once again,
up to affine changes of z and y, one covers all toric metrics of Calabi type
for which the functions A(z), B(y) are polynomials of degree 2 or 3 with
distinct real roots.

3.4.3. The negative orthotoric case. This is the generic case when
By #0. We can therefore let x =1+ 17§y = —c28& so that the metric
becomes

1 dax? dy?
(37) hL:x—y<Amy+B@Q
N A(x)(d6y + ydb)* + B(y)(db; + xdby)*
(x—y)? ’
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where A(z) and B(y) are both polynomials of degree 2 or 3 with distinct
real roots. (In terms of [5], the conformal oppositely oriented Kahler metric
(}N‘LL, J) is orthotoric.)

Writing hy, = (1/w?)hy,, a case by case inspection shows that the con-
formal factor w is respectively given by w =1,1/x or 1/(x — y), according
to whether we are in the product, Calabi-type or negative orthotoric case.
We observe that in each case w is an affine function in the momenta with
respect to wr,, which vanishes at the (possibly infinite) intersection points of
the pair of opposite facets of (A, L). We summarize the discussion as follows.

Proposition 6. Let (hy,wr) be a Levi-Kihler quotient of S* x S3 C C? x
C2, corresponding to a subspace g C ts, and some X € g*. Then (hy,wr)
is ambitoric in the sense of [J], and is either a product, of Calabi-type or
conformal and oppositely oriented to an orthotoric metric, depending on
whether g intersects nontrivially two, one or zero of the 2-dimensional sub-
spaces (t1,1t2), where t; = R? C R* is the Lie algebra of the 2-torus TZZ C T4
naturally acting on the i-th factor (i = 1,2) of C* = C? x C2. Furthermore,
in all cases, hy, is expressed in terms of two arbitrary polynomials of degree
2 or 3, each with real distinct roots, whereas the oppositely oriented Kdahler
metric is hy, = (1/w?)hy, for a positive affine function w on the quadrilateral
Ag x, vanishing at the intersection points of its opposite facets. Conversely,
any ambitoric metric of the above mentioned types determined by two poly-
nomials of degree 2 or 3 with distinct real T’OOtﬂ arises as a Levi—-Kdhler
quotient of S® x S3.

3.5. Toric bundles and Levi—Kéahler quotients
of products of spheres

The Calabi and the product cases appearing in the analysis in the previous
subsection have a natural generalization to higher dimensions in the frame-
work of semisimple rigid toric bundle construction of [9) [10], where it is also
referred to as the generalized Calabi construction. Let us first recall briefly
the setting of these works.

Let m: M — S be a bundle of toric kidhlerian manifolds or orbifolds of the
form M = P x¢ V, for an ¢-torus T', a principal T-bundle P over a kahlerian
manifold S of dimension 2d, and a toric 2¢-manifold (or orbifold) V' with

I This constraint comes from the fact that g is a subspace of the Cartan subalgebra,
ts consisting of diagonal elements of the Lie algebra su(1,2) & su(1,2) of the CR
automorphisms of S3 x S3.
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Delzant polytope A C t*; thus M has dimension 2m = 2(d + ¢). We let F;
(t=1,...,n) denote the co-dimension one faces of A and w; the primitive
inward normals (with respect to a lattice A). Let be the dimension of M. Let
6 € QY(M, t) be the connection 1-form induced by a principal T-connection
on P, with curvature Q € Q!(S,t). Suppose that Q0 is a closed 2-form on
S. Then the rigid toric bundle construction on M is a Kahler metric of the
form

(38) 9= g0+ (z,g0) + (d,(H") ", dz) + (,H",0),
w=Q+ (z,Q) + (dx N 0), do = Q,

where:

o € C°(M,t") is the momentum map of the T" action with image A;

e HY € 0®(A, S%t%) is a matrix valued function which, firstly, satisfies
the boundary conditions that on any co-dimension one face Fj, there is
a function h; with

4
S HG@ ) =0, 3 ) ) = () ha(e).

and (h;(z),u;) ==Y, hi(z)s(ui)s = 2 for all z € Fj; secondly the inverse
(HY)"! € C=(A, S?t) of H” is the hessian of a function Gy on A;
thirdly, H induces a positive definite metric on the interior of each face

F of A (as an element of S%(t/tg)*, where tr is the isotropy algebra of
F);

e the metric go + (z, go) associated to Qg + (z, Q) via the complex struc-
ture on S is positive definite for all z € A C t*.

Throughout, angle brackets denote natural contractions of t with t*, and we
omit pullbacks by x and w. In particular x itself will denote the standard
t*-valued coordinate on A, as well as its pullback to M.

The function Gy is called a symplectic potential for H” and is deter-
mined up to an affine function on t*. According to [2, Thm. 2] and [9
Rem. 4.2], the boundary and positivity conditions above can be equivalently
formulated in terms of Gy, by requiring that Gy is smooth and strictly con-
vex on the interior A of A, such that

k
1 oo
Gy — 3 ZLilogLi e C™(A)
(39) =

k
det(Hess Gy) H Ly € C(A) and is strictly positive,
i=1
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where L; = (u;,x) — v;,i = 1,...,k are the labels defining A.

Let X be a holomorphic vector field on S which is hamiltonian with
respect to Qg + (x, Q) for all z € A. Thus —ux (Q0 + (x, Q) = dfo + (x, dfa)
for functions fy € C*°(S,R) and fq € C°(95, ). Generalizing an observation
from the proof of [I0, Lemma 5], any such X can be lifted to a hamiltonian
Killing vector field of (M, g,w):

(40) X =Xx" + (fo,K),

where K := grad,z € C°°(M,TM) ® t* is the family of hamiltonian vector
fields generated by the principal T bundle P, and X denotes the horizontal
lift of X (to the kernel of #). Indeed,

—lxWw = _ZX(QO + <.%',Q>) =+ <fﬂ7 dl‘) = d(fO + <.’L‘, fQ>)7

so X has hamiltonian fy + (x, fo) (omitting pullbacks of fo and fq to M).

Suppose now that the family go + (x, go) of Ké&hler metrics on S is toric
with respect to a fixed torus action of a torus Ts with Lie algebra tg. For
each fixed z, the momentum map of T's may be written & + (z,£q), where
£ € C™(S,t%) and £ € C°(S5,t5 ® t), and pulling back these functions to
M, & + (x,£q) is the momentum map for the Ts action on M defined by
lifting the generators to M using . Since these lifts commute with K,
M is toric under the combined action of T' x Tg.

Lemma 8. Let (M,g,w) be a Kdihler manifold or orbifold given by (38))
with fibrewise symplectic potential Gy, and suppose that (S, Qo + (z,Q)) is
toric with respect to a fized action of Ts for all x € A. Then, (M,g,w) is
toric with respect to the lifted T' x Tg action and has a symplectic potential

(41) Gy = Gy + Gy + (z,Gg),

where Gy and Gq are functions of & € tg such that for each fized x, Gy +
(x,Gq) is a symplectic potential for gy + (x,gq) on S.

Proof. The torus action T on (M, g,w) is rigid, meaning that the metric on
the torus orbits depends only on the value of the momentum map z [7].
Hence for each fixed & € tg, the restriction of Gy to t* 4+ & = t* differs from
Gy by an affine function of z, hence has the form . By construction,
for each fixed z € A, (S, g0 + (,gq)) is the Kéhler quotient of M by T at
momentum level . Hence by [23], the restriction of Gy to z 4+ t§ = ¢ is a
symplectic potential for gy + (x, ga), hence so is Gp + (z, Gq). O
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A rigid toric bundle metric is semisimple if S is a product of Kéahler
manifolds (S;,w;) and there exist ¢; € R and p; € t (for j € {1,2,...,N})
such that Qp + (z,Q) = Z;-V:l(cj + (pj, x))w;j. If each (S}, wj) is toric under
a torus Tj with Lie algebra t;, then (S, Qo + (z, 2)) is toric for all z under the
product action of Ts = [[;_; T; with tg = @;\;1 t;. We refer to this special
case as the toric generalized Calabi ansatz.

Proposition 7. Suppose that (g,w) is a Kdhler metric obtained by the
toric generalized Calabi ansatz, where the fibre V is a compact toric orb-
ifold with labelled polytope (A, L1, ..., L), and each factor (Sj,w;) of the
base S = vazl S; is a compact toric orbifold with labelled Delzant polytope
(Aj,L{, .. ,Li]_), respectively. Then (g,w) is a toric Kdahler metric on the
compact symplectic orbifold with labelled Delzant polytope

A= {Li(e) 2 0, L}, == ({pj.2) + ;)L > 0}.

Moreover, if the fibrewise toric metric determined by GV and the Kdihler
metrics w;j are all Levi-Kdhler quotients of product spheres, then the result-
ing metric is a Levi—Kdahler quotient of the overall product of spheres.

Proof. We check that Gjs satisfies the conditions . Lemma (8] and the
fact that (p;,z) + ¢; is strictly positive on A imply that Gy differs by a
smooth function

k N / k;
1 s e
G(J)\/[::2<§:Lilogl,i+§ <§ LﬁjlogL£j>>.
=1 J

=1 \r;=1

It remains to see that det(Hess(GM))(Hf:1 L;) (HNJ_ I:i]) is smooth and
positive on A. The determinant det(Hess(Gp7)™!) is, up to a positive scale,
the norm with respect to g of the wedge product of the Killing vector fields
(Kq,.. .,Kg,f(ﬂj) forj=1,...,N,r;=1,...,d;. Using and the specific
form of the metric g, one sees that

N
det(Hess(Gpr)™Y) = C<H(<pj7x> + Cj)dj>

j=1
x det(Hess(Gy)™') det(Hess(G;) ™),

where C' > 0 is constant. Using the compactification criteria for each
Gy and G, and the fact that A is a simple polytope, near any point y on



k N ks
(42)  det(Hess(Gar)™ (H Lk> (H pj, ) +c;)b (H L{;J_))

rj=1

() n(ie)

where § and ¢’ are smooth positive functions around y € A.

For the second part, we assume by Theoremlthat Gy = EZT L. log L,
and G = 5 qu L} log L. with 32, Ly, = 0 and 3, Lqm = 0. Then,
by Lemma

<Z L log L;, + Z ((pj, ) + ¢ (Z L log qu?“j) )

q;7;

<E Lilog Ly + Z (Z L], log Lq_m) >
<Z Lirlog Liy
+Z<Z( loqu i 75 ZL%‘P;' log((pj,x) +Cj)>>>

q;7; q;7;

= (ZLlrlongrvLZ(ZL ,1og£%)>

a;7;j

l\DM—l

N | —

N | —

We conclude by using Theorem [5| again. O

Remark 9. The toric Calabi construction provides a practical method for
constructing new toric metrics from old ones. Suppose (9j,w;) and (9", wy)
are toric Kahler metrics on A x T4 and A x T* respectlvely, for labelled
(sunple convex, compact) polytopes Aj={27 eRY : L] (29) >0, r; =

ki} (j=1,...,N) and A={z € R : Li(x) >0, i=1,...,N}. Let
p] (Pj1s---pje), 0 = (61,...,0,) with

0; —dtz—l—Zpﬂ(Zx] dti )

r;=1
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where the affine functions Zle pjiT; + ¢; are positive on A. Then, as in
Propostion we get a toric Kahler metric on the interior of A times
T x T% x .- x T4, whose symplectic potential G/ is given by Lemma
Taking all the affine functions L, and L;, and (Zle pjixi + ¢j) be all with
rational coefficients, one gets a rational labelled polytope A, and if the ingre-
dient metrics (gj,w;) and (¢, wy) satisfty the Abreu boundary conditions
for the corresponding labellings L7, and L;, then so does the metric
given (locally) by the toric generalized Calabi Ansatz, with the labelling de-
fined in Proposition [/l Hence the metric compactifies on the compact toric
orbifold M given by A and these labels.

4. Curvature of Levi—-Kahler quotients of products of spheres
4.1. Bochner condition

Recall (see e.g. [5, 22]) that if R € ALC™ @ u(m) is a formal Kihler cur-
vature tensor, i.e., Ry ,(w) + Ry w(u) + Ry u(v) = 0, then the Bochner part
of R is its orthogonal projection B(R) onto the U(m)-submodule of formal
Kahler curvature tensors with vanishing Ricci trace. The Bochner tensor
BY of a Kéahler manifold is then the (pointwise) Bochner part B(RY) of its
riemannian curvature RY € C®°(AMT*M @ u(TM)). One can extend this
definition to more general hermitian curvature tensors R € A2C™* ® u(m)
(which do not a priori satisfy the Bianchi identity) where one still denotes by
B(R) the orthogonal projection of an element R onto the U(m)-submodule
of formal Kéhler curvature tensors with vanishing Ricci trace.

In our language, S. Webster [48] showed that in codimension one the
Bochner tensor of a Levi-Kéhler quotient M of CR manifold N pulls back
to the Chern—Moser tensor of IV, which vanishes when the N is locally CR
diffeomorphic to a standard CR sphere (S*™*! D,.J). In particular, every
Levi-Kiéhler quotient (M?™, g,J) of S*™*! is Bochner-flat. We generalize
this to arbitrary codimension, by describing the curvature of Kahler metrics
arising as Levi-Kéahler quotients of a product of CR-spheres.

Let N =S+l ... x 8§+l C Cg be a product of standard CR
spheres and (D = @,.7 Di, J = @,z Ji) be the product CR structure and
denote by N; = S§?™i+1 the i-th factor of N, with projection p;: N — N;. The
bundle p; T N; is identified with the subbundle E* := (2 ker(pjs) of TN via

the restriction p; : E; = Tpi(z)Ni. We denote the projection r;: TN — E°.
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Let (g, A) be a positive Levi pair (corresponding to L) and assume that
g is the Lie algebra of a subtorus G of Tg; denote by M = N/G the Levi-
Kahler quotient and by w: N — M the quotient map. The global assumption
on g is made purely to make statements about M rather than local quotients.
In addition to a Ké&hler structure (§ = hyr,, J,wr,), M inherits a g-orthogonal
splitting of its tangent space, namely

(43) T™ = @ D;

1€T

where D; = 7+(D;). We denote by V° the connection on D; induced by
the Levi-Civita connection V of g, by RY' the corresponding curvature
tensor (a section of A2T*M ® gl(D;, J), where gl(D;, J) denotes the bundle
of J-commuting endomorphisms of D;), and by B" := B(RV") the Bochner
projection of Rvi|(bi € N2Df @ gl(Dy, J).

Proposition 8. For each i € I, B* = 0.

We prove this result using the observation (see [27] and [48]) that the
Chern—-Moser tensor of (N;,J;, D;) may be computed from the horizontal
part of the curvature of the Tanaka connection (see e.g. [16]) associated
to any contact form « compatible with the (codimension 1) CR structure
(D, J). The Chern—-Moser tensor does not depend upon the chosen compat-
ible contact structure (it is a CR invariant). If the Reeb vector field V' of
« (determined by a(V) =1 and Lya = 0) is a transverse CR vector field,
the horizontal part of the Tanaka connection (i.e., its restriction on D) is
the pullback to N of the Levi-Civita connection of the Levi-Kahler quotient
(M, g,J,w) of N by V using the identification D = 7*T' M.

In our situation, for each w € H#i Nj, there is an embedding ¢y, : N; —
N. We shall (slightly abusively) still denote by D; the pullback bundle ¢} D;
and by J; the corresponding (standard) CR-structure on (N;, D;). Recall
that N is endowed with a 1-form 7 with dn® = 7*wy,, where A € g* is the
value defining the Levi-Kahler quotient wy,. The pullback a, ; := v thus
defines a 1-form on /V;, and the next Lemma implies that c,,; is a contact
1-form compatible with the CR structure (NV;, J;, D;).

Lemma 9. For any i€ {1,...,¢} and z € N, the subspace of E. defined
by
R = 1y (Kop(r))

z

has dimension 1 and is transverse to D;. In particular, R%* — N is a real
line bundle and there exists a unique vector field V; € C*°(R%") such that
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(Vi) = 1. Furthermore, for each w € Hj# Nj, o is a contact form on
N;, which induces v, ; o m™*wy, as a transversal symplectic structure and the

vector field Vi, ; on (Nl, D;) defined by Ly Vi = Vi is a Reeb vector field for

Qi -

Proof. Since n(EL) =n((E"/D;)-), Ky gi) € X? is at most 1-dimensional.
Since Zle Ky gy = Kyr.n) = XE is {-dimensional, it follows that K,
is 1-dimensional and dim(R%") < 1. As K9 is transversal to D ((g, ) being
Levi pair), each X € E! decomposes as X = Kyoxy+X D applying r; (and
using 7;(X) = X, (D) = D;), we obtain X = r;(K,x)) + X?Pi showing
E'=R%"® D;.

For any Y, Z € D,,

dawi(Y, Z) = —aw([Y. Z]) = = \([Y. Z]) = m*wi (Y. Z).

In order to show that V,,; is Reeb field for a,,; we need to check that
for any Z € Dy, dovyi(Vi,i, Z) = dn*(V;, Z) = 0 (where we have used that
E' is integrable and ¢}, (E;) = TN;). Writing Vi = ri(K,(x)) = X — XD for
X € E', and decomposing X = K x) + XP | we have

d*(Vi, Z) = dnM (X = X', Z) = dn* (Kyx), 2) + Y dn (X7, 2) =0,
J#

where (in the last equality) the first term vanishes because 7* is g-invariant,
whereas the second term vanishes because for j # 4, D; is di*-orthogonal to

D, see . O

We define a partial connection Vi: C®(E?) x C*®°(E*) — C*(E") on
the involutive subbundle E? C TN, which pulls back by ¢, to the Tanaka
connection of ay, ;, as follows:

e V! preserves D;;
o V., J; and w are V! parallel;

e For any X,Y € C®(D;), the torsion TV satisfies TV (X,Y) =
w(X,Y)V; and TV (Vi, J; X) = = J; TV (V;, X).

In particular, V* satisfies
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We next show that V? can be extended to a full connection V on T'N pre-
serving D, and such that:

o V|p =7"V;
e .} (r; o V) is the Tanaka connection ¢V’ on (N;, oy, Dy, J;).
The first condition tells us that the torsion of X,Y € C°°(D) is the vertical
part of —[X, Y], that is
(44) TY(X,Y) = =K, (x.y))-
Hence for X, Y € C*(D;),
ri(TV(X,Y) = —ri(Kyxy)) = w(X,Y)V; = TV (X, Y).

Let R9 := @le R%% be the rank ¢ subbundle of TN over N which is
everywhere transverse to D. We extend the endomorphism J of D by zero
on R?, and define a linear connection V on

TN = @ F = @D, 039 =D 30
i€Z i€T
such that
(i) V agrees with the pullback connection 7*V9 on D = 7*T'M,
(il) VV; =0,
(ili) VX =[5, X]+ Vxs — 3J(LsJ)X for each section s € C®(R?) and
X € C>*(D).

Lemma 10. Let V be a connection on N satisfying the conditions (i)—(iii)
above. Then, i} (r; o V) is the Tanaka connection ¢})NV" on (Nj, oy, Dy, J;).

Proof. We first show that V,JX = JV,X for any X € C*°(T'N) and s €
C>®(R9). It is clear that Vs Jt = JV4t =0 for s,t € C°(R?) and when X €
C>(D), we have JVxs =0 as well as the decomposition

s, X] =[5, X]P — Vxs

with respect to the splitting TN = D @ R9. Using these two facts and con-
dition (iii), a straightforward calculation shows V,JX = JV X. Together
with this last identity, conditions (i)—(ii) ensure that r; o V satisfies the first
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two defining properties of V¢ on E°. It remains to check the torsion prop-
erties. The first of these follows from . Moreover, using again condition
(iii) we get

TV (s,JX) = -2 J(LJ)IX = LT3 (L, T)X = —JTV (s, X)

for any X € C°°(T'N) and s € C°°(R9). This is the second torsion property.
O

Proof of Proposition [§. To compare the curvatures V' and V?, we notice
that

I(Vix 2, T) = 9(Vix y12. 2, T) — (X Y)g(Vi,2,T)
(V[Xy]DZ T)—wL( Y ( VJCZ T)

= §(Vig 1y 2.T) +wn(X, V) A(2,T),

where to go from first line to the third we have decomposed

WX, Y)V; = w(X, V)V = X, Y]
J#i

(with V;X* being the projection of V; to X9), and we view A (Z,T) =
—9(Vyxs Z,T) as a (0,2)-tensor on M, since pullbacks to N of smooth
functions on M are K9-invariant. It then follows that

g(RY v 2,T) = g(R 2, T) +wr(X,Y)A(Z,T).

Applying the projection B* to the both sides, and using that Bi(Rvi) equals
the Chern-Moser tensor of N; (which is zero) as well as B'(wg, ® AY) =0
(as B! projects onto the space of wy,-primitive Kéhler curvature tensors), we
obtain B = B{(RV") = 0. O

4.2. Curvature for Levi—-Kihler quotients of
products of 3-spheres

A labelled cuboid (A, L) is a labelled Delzant polytope which has the combi-
natorics of an m-cube. By Corollary 2] any toric symplectic orbifold whose
rational Delzant polytope (A, L) is a labelled cuboid admits a compatible
toric Kahler metric Ay, which is a Levi-Kahler quotient of an m-fold product
of 3-spheres. We next use the explicit form of the Kéhler metric Ay, in
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order to compute its scalar curvature. Up to a factor of —1/2, a Ricci poten-
tial is given by the log ratio of the symplectic volume form to a holomorphic
volume form. Using dt(?) to compute the latter, we readily obtain

Z log A; (&) + Z log Njoo (1) — 21log /\(éz‘dNioo + dNy).
ieT ieT ieT

The derivatives of the first two terms are straightforward to compute, using
that d(Njeo (1)) = — ez Nioo(1)(Qi, dNjoo)d&;. For the third, observe
by Cramer’s rule that its exterior derivative is ), 7 2a;; d§; where the co-
efficients a;; solve the linear system ZjeI(gdejOO + dNjo)aij = dNjs, i.€.,
Ai5 = <Qj, dNioo>- Thus

(45) pL = é <d Z Oéﬂi) ,

1€T

where

. . . A
— Al - Y dj\fjmgg@;‘” ) 44(6) — 2(Qu. dNi) Ai(&)
jez &0

and 6; = (Q;, dt). We are interested in the scalar curvature only, defined by

2mpp, Aw™ 1 wmt 1 Z [ 1)z dék A O

L= om0 N dELAOLA - A e A O

Straightforward computation using then yields

(46)
SL:_ZN il +22A/ gz <QZZ+ZQ’L])
i€l o i€Z JET
- Z Al(gz)NlOO(,u ) (2@]\;7]00 + Z 4QMQZ] 12]) + Z ngsz) .
i€l ioo (1! )? jeT 3k

where Qij = <Qz; deoo)/Njoo(M)\)'
We now specialize to the case of projective cubes as in Section where
Nioo(u)‘) =po=1/(bo+b1&1 + -+ - bp&m), independent of 1 < ¢ < m. Using

dMO = <dN]o<>a Zﬂodfz Qi, deoo>
=1
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we obtain immediately that Q;; = b;. The Ricci potential specializes to give
m

(47) pe 2 ] Au&),
i=1

as may be verified directly using (28)) and , while the scalar curvature
reduces to

(48) 5= =3 2 S o Al

ez MO el
=) (m 4 1) (m + 2)pob] Ai(&).
ieT

4.3. Projective cubes and (w, p)-extremality

We now specialize to the case that the cuboid A is a projective cube, i.e.,
the intersections of pairs of opposite facets lie in a hyperplane. For any
labelled projective cube (A, L), hy, is given by , and we provide here a
characterization of this toric metric in terms of the toric geometry of (A, L),
as developed in [2, 3], 37].

The starting point of our approach is based on a recent observation in
[11], which in turn extends the formal GIT framework of [30, B3] (realiz-
ing the scalar curvature of a Kahler metric as a momentum map under
the action of the group of hamiltonian transformations) to a larger fam-
ily of related GIT problems. Let (M, w) be a compact symplectic manifold
(or orbifold) and Ham(M,w) the group of hamiltonian transformations. Fix
a torus T < Ham(M,w) and a positive hamiltonian w > 0 with grad, w €
t := Lie(T). Let C*(M,w) be the space of T-invariant, w-compatible com-
plex structures on (M,w) and Ham” (M, w) the subgroup of T-equivariant
hamiltonian transformation, acting naturally on C*(M,w). The Lie algebra
of Ham" (M, w) is identified with the space C5°(M)" of smooth, T-invariant
functions of integral zero, endowed with the Ham™ (M, w) bi-invariant inner
product

(49) <h1, h2>w7p = / hlhgw*(pﬂ)vw,
M

where p is a real constant (which we call the conformal dimension) and
vy = w™/m! is the volume form of w. The space CT(M,w) carries a formal



1620 Apostolov, Calderbank, Gauduchon, and Legendre

Fréchet Kahler structure, (J, Q"P), defined by
) ) .. 1 ..
L) =7J, @y h) = / tr(Lnde)w D,
M

where the tangent space of CT(M,w) at J is identified to be the Fréchet
space of smooth sections J of End(T'M) satisfying

JI+JJ=0, w(J,)+w(J)=0.

The formal complex structure J is the same as the one in [30, B3] whereas
the modified formal symplectic form QP stays closed (as can easily be
checked).

In the following, we denote by gs the Kahler metric corresponding to J €
CT(M,w) and by s; and A the corresponding scalar curvature and Laplace
operator. We then have a straightforward (mutatis mutandis) generalization
of [IT, Thm. 1] (which corresponds to p = 2m).

Lemma 11. The action of Ham™ (M, w) on (CT(M,w), T, Q¥P) is hamilto-
nian with a momentum map p: C*(M,w) — (C(‘)’O(M)T)*, whose value at J
is identified with the (-,-)y p-dual of

(50) Sqwp = w?s; —2(p — DwA yw — p(p — 1)g31(dw7 dw).

Note that s, ) is the trace of the conformal modification
(51) Prwp = w?py+ (p — Dwddw — tp(p — 1)dw A dw
of the Ricci form.

Remark 10. As in [II], one can extend the definition of (J,Q2""P) on
CT(M,w) to the larger Frechét space AKT (M, w) of T-invariant w-compatible
almost-Kéhler structures J. Then, using the formulae in [35, Ch. 8] (see
also [41, Lemma 2.1 & Prop. 3.1]), the momentum map for the action of
Ham" (M, w) on AKT (M, w) is still given by Lemma except that in
we must take s; to be the hermitian scalar curvature of g; (the trace of the
Ricci form of the canonical hermitian connection, see e.g. [41]).

Using the contractibility of AKS, we obtain, as in [I1], a generalized

w
Futaki invariant §. ., : t — R of (M,w, T, w,p): for any vector field H € t

w7w7p .
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with a hamiltonian h,
(52) Sg,w,p(H) = /M §J’w’phw_(p+1)’uw

is independent of the choice of J € AKS, where § Jw,p is the L?-projection

w

of sjw,p onto functions with integral zero with respect to the volume form
—(p+1)

w Vg

Specializing to the case of a toric manifold (or orbifold) (M,w,T), the
above formalism allows one to extend the theory of extremal toric metrics
from [31] to the (w,p)-extremal toric case (the case p = 2m is developed in
detail in [I1]). In particular, we have the following result:

Proposition 9. Let (M,w,T) be a compact toric orbifold with labelled
Delzant polytope (A,L) in R™ and w a positive affine-linear function on
A. Then,

(a) There exists at most one (up to equivariant isometry) compatible toric
metric gy on (M,w,T), for which sy, is an affine-linear function.

(b) The affine-linear function in (a) is uniquely determined by (A, L, w,p).

Definition 12. The (unique) compatible toric metric satisfying the condi-
tion (a) of Proposition [J] is called the (w, p)-extremal metric of (M,w,T).

Theorem 6. Suppose (A,L) is a labelled projective cube in R™, corre-
sponding to a compact toric orbifold (M,w,T) and let hy, be the Levi—-Kdhler
quotient metric defined by . Then hy, is the (w, m + 2)-extremal metric
of (A,L), where w is the unique up to scale positive affine-linear function
on R™  wvanishing on the hyperplane containing the intersections of opposite

facets of A.
Proof. We take w = o and apply with p =m + 2, pj = pr, to obtain

(53) Ly = Hgps + (m—+1)(uodd®uo — 5(m + 2)dpo A d°po)
= —§pgdd®log (MS”” 11 Ai(fi))

+ (m+ 1) (pgdd® log po — Zduo A d°uo)
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= %( 5ddlog [ | Ai(&) + mugdd®log po — m(m + 1)dpg A d%).

%

We now compute

dd¢log | | Ai(&) = E :d(AQ(&)GZ)
J i
= E CAY(&)dE N O; — E bipo AL(&)dE; A 05

i
ddlog po = — Z d(bipoAi(&)0;)
= — ) bipoAj(&)déi A 6;
+ Z Ai(&) (bibjpdde; A 0; + b2 udde; A 0;) dpo A dCug

_Zb2 SA(&)dE N B,

It follows that

o Pmpr e YT ANE)
which (as deg A;(£) < 3) is an affine-linear function in momenta. O

Remark 11. We notice that for m =2, m + 2 = 2m and sj,,4 computes
the scalar curvature of the conformal oppositely oriented metric hy, =
(1/w?)hy, of Proposition @, i.e., hy, is w-extremal in the sense of [11].

4.4. Extremal Levi—Kahler quotients

Formula shows that for £ = m > 2, the Levi-Ké&hler metric hy, asso-
ciated to a projective cube cannot be extremal unless b; =0,i =1,...,m,
i.e., M is the product of weighted projective lines. However, we show be-
low that when ¢ =2, Levi-Kahler quotients of a product of two spheres
SZmatl o §2m2+1 can provide new examples of extremal Kihler orbifolds.

4.4.1. Extremal Levi-Kihler quotients of S? x S3. As any quadri-
lateral is a projective cube, hy, is (w,4)-extremal by Theorem [6] Further-
more, S 7.4.4 is the scalar curvature of the conformal metric ht, = (1/w?)hy,
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see [11]. By Proposition [6] (hy,J) is either a product, of Calabi type, or a
regular ambitoric Kéhler metric of Segre type. We can then use [5, [39] to
characterize the extremality of hy, as follows.

Proposition 10. Let (M,w) be a compact toric 4-orbifold whose rational
Delzant polytope is a labelled quadrilateral (A, L) and hy, the corresponding
Levi-Kdihler metric. If (A,L) is a parallelogram, then (M,wy, hy,) is an ez-
tremal toric orbifold which is the Kdhler product of two extremal weighted
projective lines; otherwise hy, is extremal if and only if the oppositely oriented
ambitoric metric hy, = (1/w?)h1, has constant scalar curvature, or equiva-
lently, hi, is a conformally Kdhler, Einstein—Maxwell metric in the sense
[11], where w is a positive affine linear function on A, determined up to
positive scale by the property that it vanishes where the opposite sides of A
intersect.

Proof. The product case follows from Proposition @] see Section .
When hy, is of Calabi-type, i.e. given by (36]) for polynomials A(x ) and
B(y) of degree 2 or 3, the negative ambitoric metric hy, = z2hy, is also of
Calabi-type with respect to the variables (z,y) and functions A(x) and B(y).
It follows from [4, 39 that hy, is extremal if and only if Ay, is extremal if
and only if B(y) has degree 2 and (zA(z))”(0) = —B"(0). As deg A < 3,
this is precisely the condition that hy, is of constant scalar curvature (see
[4, Prop. 14]). The case when hy, is regular ambitoric (i.e., negative ortho-
torlc) is treated similarly, using the local form (37)) and [4], Prop 11]. Finally,
as hy, = (1/w? )hy, with w being a Killing potentlal Wlth respect to hy,, the
scalar curvature hy, is constant if and only if hy, defines a conformally Kéhler,
Einstein-Maxwell metric, see [11]. O

Remark 12. The metric Ay, is extremal (and hence hy, is Einstein—-Maxwell)
if and only if the affine function defined by (A, L) in Proposition [9](b) is con-
stant. By an observation originating in [39], for a given quadrilateral A this
places two linear constraints on the labels L, see also [I1]. Thus, the above
characterization for the extremality of hy, lead to the following useful obser-
vation: given a compact convex quadrilateral A which is not a parallelogram,
there is a two-parameter family of inward normals to the faces, such that
the corresponding Levi—-Ké&hler metric is extremal.

4.4.2. CSC Levi-Kihler quotients of S® x S3.  We discuss here ex-
amples of Levi-K&hler quotients of constant scalar curvature (CSC), ob-
tained from the generalized Calabi construction in where the base is
S = CP! equipped with a Fubini-Study metric wg and the fibre V is a toric
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orbifold with Delzant image a simplex in R?. By Proposition E the result-
ing 6-dimensional orbifold (M, g,w) is obtained as a Levi-Kéahler quotient of
S® x $? as soon as the fibrewise metric is Bochner-flat (which is the condition
to be Levi-Kéhler in the case of one factor). As the extremality condition
is difficult to characterize in general, we shall use the hamiltonian 2-form
ansatz with £ =2 and N =1 from [7, 0], which in turn is a special case
of the generalized Calabi ansatz [9, §4]. We briefly recall the construction
below and invite the Reader to consult [7, 9] for further details.

Let (S, gs,ws) be a compact Riemann orbi-surface and 1 a real constant.
We build a Kéhler metric (g,w) with a hamiltonian 2-form of order 2 and
constant root 7, defined on an orbifold fibration over M — S, with fibres
isomorphic to an orbifold quotient of a weighted projective plane. The Kahler
metric (g, w) is written on a dense subset M C M as follows (see [9]):

(&1 — &2)pe(&1)

F(&)
F(&) 2 F(&)
MR AN LR e X 2
w=(n—%&)n—&)ws+doi Ay + doa A By,
doy = —nws, dbs =ws pc(t) = (t —n), o1 ==& + &, 02 =160,

(&2 — &1)pe(&2)
F(&)

(61 + 5292)2

g=m—&)n—&)gs + & + 3

(54)

Here & € [-1,0], & € [B,1] (for some |G| < 1) are the orthotoric coordi-
nates on the fibre, |n| > 1, and F'(x) is a smooth function which satisfies the
positivity and boundary conditions

o F'(x)/pe(x) >0 on (8,1); F(z)/pe(x) <0 on (—1,5);

o F(+1) = F(B) = 0.
It is easy to see that is a special case of (38), with N =1, (21, z2) =
(01,02), p11 = —1,p12 = 1,¢1 = 12, and a toric orbifold fibre whose Delzant

polytope A is the the image of [—1,] x [3,1] under the map (o1,02) =
(€1, &9,£162) and labelling

L_y=—-ca(o1+o02+1), Lii=—ci(—o1+02+1),
Lg = —cg(—Po1 + o2 + ),

where c4q (F/pc)/(:lzl) =2=cg (F/pc)/(,b’), see [9]
the usual rationality condition for the simplex (A,
for 67777 C+1,C3 € @

op. 9]. Here we assume

Pr
L), which certainly holds
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We recall from [7] that the metric is extremal if and only if the
scalar curvature of gg is a constant s and F'(z) is a polynomial of degree at
most 5 satisfying

(55) F'(n) = —s.

The metric g is of constant scalar curvature if, furthermore, the degree of
F(z) is at most 4. Likewise, by the same result, the fibrewise orthotoric
metric

v _ (& —&)pc(&1)
F(&)
F(&) (
(61— &)pe(&1)

(&2 — &1)pe(&2)
F(&2)

dty + §1dt2)2 +

(56) g déi + dé3
F(&2)

2
(&2 — &1)pe(&2) (dt1 + &adtz)

_l’_

is Bochner-flat if and only if F(z)/p.(z) is a polynomial of degree at most
4. By Proposition [7} taking in (30) (S,ws) to be (an isometric orbifold
quotient of) CP! endowed with a Fubini-Study metric and F(x) = —c(2? —
1)z — B)(@ — )z —7) (resp. P(z) = —c(&? — 1)(z — B)(z — 1)), one gets
an ansatz for extremal (resp. constant scalar curvature) toric orbifolds, which
are also Levi-K#hler quotients of S® x S3.

We further specialize to the constant scalar curvature case, i.e. F(x) =
—c(z? — 1)(z — B)(z — n) for a non-zero positive constant c. Then, (55]) re-
duces to 2¢(3n% — 281 — 1) = s, whereas the positivity conditions for F(x)
imply n < —1. Together with Scals > 0, these are the only constraints, sub-
ject to a rationality condition which is trivially solved by taking 3,7, ¢ ratio-
nal. For instance, letting 3 = 1/n,n = —n,c=2/(3n% +1),s = 4 gives rise
to a CSC Levi-Kahler quotient orbifold, which is not a product.
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