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We show that the Quot scheme QuotA3(Or, n) admits a symmetric
obstruction theory, and we compute its virtual Euler characteristic.
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968 S. V. Beentjes and A. T. Ricolfi

1. Introduction

Let X be a smooth projective Calabi–Yau 3-fold over C. Donaldson–Thomas
(DT) invariants, introduced in [41], are virtual counts of stable objects in the
bounded derived category Db(X) of X. Particularly well-studied examples
of such stable objects are ideal sheaves (rank one torsion free sheaves with
trivial determinant) of curves in X and the stable pairs of Pandharipande–
Thomas (PT) [31]. These objects are related by wall-crossing phenomena
(cf. Section 1.2), giving rise to the famous DT/PT correspondence [11, 42, 43].

Recently Toda [44] generalised the classical (rank one) DT/PT corre-
spondence to arbitrary rank. Let ω be an ample class on X, and let (r,D) ∈
H0(X)⊕H2(X) be a pair such that r ≥ 1 and gcd(r,D · ω2) = 1. The higher
rank analogues of ideal sheaves are ω-slope stable torsion free sheaves of
Chern character α = (r,D,−β,−m), for given (β,m) ∈ H4(X)⊕H6(X).
The higher rank analogues of stable pairs are certain two-term complexes
J• ∈ Db(X) of class α, first described by Lo (see Section 4.1), called PT
pairs [27]. The virtual counts of these objects can be computed as Behrend’s
virtual Euler characteristic of their moduli space.

Toda’s higher rank wall-crossing formula [44, Thm. 1.2] is the equality

(1.1) DTr,D,β(q) = M((−1)rq)rχ(X) · PTr,D,β(q)

of generating series. Here DTr,D,β is the generating function of DT invariants
of Chern characters of the form (r,D,−β,−m), with m ∈ H6(X) varying,
and similarly for the series PTr,D,β. The “difference” between the DT and
PT generating functions is measured by a wall-crossing factor, expressed in
terms of the MacMahon function

M(q) =
∏

m≥1

(1− qm)−m,

the generating function of plane partitions of natural numbers.
In [17], Gholampour–Kool proved a formally similar relation in the

following situation. Fix a torsion free sheaf F of rank r and homological
dimension at most one on a smooth projective 3-fold X, not necessarily
Calabi–Yau. Then [17, Thm. 1.1] states the equality

∑

n≥0

χ(QuotX(F , n))q
n(1.2)

= M(q)rχ(X) ·
∑

n≥0

χ(QuotX(Ext
1(F ,OX), n))q

n,
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where χ is the topological Euler characteristic and QuotX(E, n) is the Quot
scheme of length n quotients of the coherent sheaf E.

In this paper, we explain the formal similarity between equations (1.1)
and (1.2), answering a question raised in [17, Sec. 1]. Our method exhibits
formula (1.2) as an Euler characteristic shadow of a local version of (1.1)
based at the sheaf F . Moreover, we explicitly compute (cf. Corollary 1.2)
the F-local DT generating series when F is a locally free sheaf: this can be
seen (cf. Remark 6.5) as the higher rank analogue of the point contribution
to rank one DT theory, originally the first of the three MNOP conjectures,
cf. [29, Conj. 1].

1.1. Main results

We give some details and state our results in order of appearance. In the
final part of the Introduction (Section 1.2) we give a short outline of related
work on wall-crossing and Quot schemes in Enumerative Geometry.

To any complex scheme Y of finite type, Behrend [6] associates a canonical
constructible function νY : Y (C)→ Z. We recall in Section 3.1 the properties
we will need. The virtual Euler characteristic of Y is the “motivic integral”
of νY , namely

(1.3) χ̃(Y ) ..= χ(Y, νY ) ..=
∑

k∈Z

k · χ(ν−1
Y (k)) ∈ Z.

Our first result, proven in Section 3, is the following virtual refinement of
Gholampour–Kool’s formula (1.2) in the locally free case.

Theorem A. Let X be a smooth 3-fold, F a locally free sheaf of rank r on

X. Then

(1.4)
∑

n≥0

χ̃(QuotX(F , n))q
n = M((−1)rq)rχ(X).

The case r = 1, corresponding to the Hilbert scheme parametrising zero-
dimensional subschemes of X, has been proven by Behrend–Fantechi in [8].
We establish (1.4) by generalising their approach (technical details are in
Appendix A). See also [24, 25] for different proofs for r = 1. Note that no
Calabi–Yau or projectivity assumptions on X are required.

Remark 1.1. If F is a locally free sheaf, a local model for QuotX(F , n) is
the Quot scheme QuotA3(Or, n). We show that the latter is a critical locus
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(Theorem 2.6), so that in particular it carries a symmetric perfect obstruction
theory in the sense of [8]. This motivates the interest in the virtual Euler
characteristic computed in Theorem A. However, even for reflexive sheaves
F over Calabi–Yau 3-folds, we do not know when QuotX(F , n) carries a
symmetric perfect obstruction theory.

We now describe the local higher rank DT/PT correspondence. For a
given ω-slope stable sheaf F of homological dimension at most one, we embed
the Quot schemes

ϕF : QuotX(F) →֒MDT(r,D), ψF : QuotX(Ext
1(F ,OX)) →֒MPT(r,D)

in suitable DT and PT moduli spaces via closed immersions (cf. Proposi-
tions 5.1 and 5.5). The former, ϕF , consists of taking the kernel of a surjection
F ↠ Q. The latter, ψF , might be of independent interest, so we describe its
action on C-valued points here.

Let t : Ext1(F ,OX) ↠ Q be a zero-dimensional quotient. Since F is of
homological dimension at most one, there is a natural morphism

t̄ : F∨ → Ext1(F ,OX)[−1]
t[−1]
−−−→ Q[−1],

where (−)∨ = RHom(−,OX) is the derived dualising functor. This functor
is an involutive anti-equivalence of Db(X), hence dualising again yields a
canonical isomorphism

Hom(F∨, Q[−1]) ∼= Ext1(QD[−1],F),

where QD = Ext3(Q,OX). We define ψF by sending t to the corresponding
extension

F → J• → QD[−1]

in Db(X). We prove in Proposition 5.5 that this defines a higher rank PT
pair and, moreover, that the association t 7→ J• extends to a morphism that
is a closed immersion.

We define F-local DT and PT invariants by restricting the Behrend
weights on the full DT and PT moduli spaces via these closed immersions.1

1In general, these immersion are not open, so the restriction of the Behrend weight
of the full moduli space does not in general agree with the intrinsic Behrend weight
of the Quot schemes.
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We collect these in a generating function

DTF (q) =
∑

n≥0

χ (QuotX(F , n), νDT) q
n

on the DT side, and a similar generating function PTF (q) on the PT side.
We prove the following relation (Theorem 5.9) after establishing a key

identity in a certain motivic Hall algebra, and applying the Behrend weighted
integration morphism.

Theorem B. Let X be a smooth projective Calabi–Yau 3-fold, and let F
be an ω-stable torsion free sheaf on X of rank r and homological dimension

at most one. Then

(1.5) DTF (q) = M((−1)rq)rχ(X) · PTF (q).

Applying the unweighted integration morphism instead, taking Euler
characteristics, we recover the main result of [17] in the special case where
F is slope-stable.

Theorem C. Let X be a smooth projective 3-fold, and let F be an ω-stable
torsion free sheaf on X of rank r and homological dimension at most one.

Then Gholampour–Kool’s formula (1.2) holds.

Since the formula of Gholampour–Kool descends from the same Hall
algebra identity giving rise to (1.5), one can interpret it as an Euler charac-
teristic shadow of the F-local higher rank DT/PT correspondence, in the
case that F is ω-slope stable.

In the final section, we consider some special cases by imposing further
restrictions on F . In particular, the following result is the ‘intersection’
between Theorems A and B.

Corollary 1.2. With the assumptions of Theorem B, if F is locally free

then

DTF (q) = M((−1)rq)rχ(X).

We show in Proposition 6.1 the invariance property PTF ⊗L(q) = PTF (q),
where L is a line bundle on X. Finally, Corollary 6.6 shows that PTF is a
polynomial if F is reflexive.
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1.2. Previous work on wall-crossing

Both the DT invariant and the Euler characteristic

χ̃(MX(α)) ∈ Z, χ(MX(α)) ∈ Z

can be seen as ways to size, or “count points” in the moduli space MX(α) of
stable torsion free sheaves of class α. Unlike the virtual invariants, the Euler
characteristic is not deformation invariant. Indeed, deformation invariance
of χ̃(MX(α)) is a consequence of the virtual class technology available for
MX(α). Nonetheless, the virtual and the naive invariants share a common
behavior: both satisfy wall-crossing formulas. These are relations describing
the transformation that the invariants undergo when one deforms not the
complex structure of X, but rather the stability condition defining the moduli
space.

The first calculations in DT theory, and their original motivation, involved
ideal sheaves, namely the rank one DT objects; see for instance [8, 29].

The DT/PT correspondence was first phrased rigorously as a wall-crossing
phenomenon by Bayer [3] using polynomial stability conditions. It was
established in the rank one case by Bridgeland [11] and Toda [42] for the
virtual invariants, and previously by Toda [43] for Euler characteristics.

Similar wall-crossing formulas hold for the Quot schemes

QuotX(IC , n) ⊂ Hilb(X),

where C ⊂ X is a fixed Cohen–Macaulay curve and X need not be Calabi–
Yau. See work of Stoppa–Thomas [39] for the naive invariants, and [15, 36]
for the virtual ones (where also projectivity is not needed, but C is required
to be smooth).

In [30, 35], a cycle-local DT/PT correspondence is proved in rank one.
Cycle-local DT invariants gather contributions of those ideals IZ ⊂ OX for
which the cycle [Z] is equal to a fixed element of the Chow variety of X.
Specialising to the case F = IC , where C ⊂ X is a Cohen–Macaulay curve,
our Theorem B refines this cycle-local DT/PT correspondence to an IC-local
correspondence around the fixed subscheme C ⊂ X (see Remark 5.12).

In the recent work [28], Lo approaches the problem of relating
QuotX(Ext

1(F ,OX)) to the moduli space MPT(r,D) from a categorical
point of view, constructing a functor ‘the other way around’, i.e. from PT
pairs to quotients. It would be interesting to find out the precise relationship
between Lo’s functor and our closed immersion.
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Conventions

We work over C. All rings, schemes, and stacks will be assumed to be locally
of finite type over C, unless specified otherwise. All categories and functors
will be C-linear. A Calabi–Yau 3-fold is a smooth projective 3-fold X such
that KX = 0 and H1(X,OX) = 0. If M is a scheme, we write Db(M) for
the bounded coherent derived category of M and Perf(M) ⊂ Db(M) for the
category of perfect complexes. We write Coh0(M) (resp. Coh≤1(M)) for
the full subcategory of coherent sheaves on M of dimension zero (resp. of
dimension at most 1). The homological dimension of a coherent sheaf F on a
smooth projective variety is the minimal length of a locally free resolution of
F . For a sheaf E ∈ Coh(X) of codimension c, we set ED = Extc(E,OX).2 We
write QuotX(E, n) for the Quot scheme of length n quotients of E, and we set
QuotX(E) =

∐
n≥0QuotX(E, n). We refer the reader to [19] for generalities

on moduli spaces of sheaves and to [1, Sec. 1] for base change theory for local
Ext.

2. Quotients of a free sheaf on affine 3-space

B. Szendrői proved in [40, Theorem 1.3.1] that the Hilbert scheme of points
HilbnA3 is a global critical locus. The goal of this section is to prove that
the same is true, more generally, for the Quot scheme

QuotA3(Or, n),

for all r ≥ 1 and n ≥ 0. In other words, we will show that the Quot scheme
can be written as the scheme-theoretic zero locus of an exact one-form d f ,
where f is a regular function defined on a smooth scheme. In particular, this
proves that QuotA3(Or, n) carries a symmetric perfect obstruction theory,
defined by the Hessian of f . By inspecting the virtual motivic refinements of
these critical loci, we deduce the formula

∑

n≥0

χ̃(QuotA3(Or, n))qn = M((−1)rq)r.

In Section 3, we generalise this formula to arbitrary locally free sheaves on
smooth quasi-projective 3-folds, thus establishing Theorem A.

2This differs slightly from the notation used in [19], where ED denotes Extc(E,ωX).



✐

✐

“2-Beentjes” — 2021/9/14 — 1:40 — page 974 — #8
✐

✐

✐

✐

✐

✐

974 S. V. Beentjes and A. T. Ricolfi

2.1. Quiver representations

Let Q be a quiver, i.e. a finite directed graph. We denote by Q0 and Q1 the
sets of vertices and edges of Q respectively. A representation M of Q is the
datum of a finite dimensional vector space Vi for every i ∈ Q0, and a linear
map Vi → Vj for every edge i→ j in Q1. The dimension vector of M is

dimM = (dimVi) ∈ NQ0 .

It is well known that the representations of Q form an abelian category, that
is moreover equivalent to the category of left modules over the path algebra
CQ of the quiver.

Following [21], we recall the notion of (semi)stability of a representation
of Q.

Definition 2.1. A central charge is a group homomorphism Z : ZQ0 → C

such that the image of NQ0 \ 0 lies inside H+ = { reiπφ | r > 0, 0 < φ ≤ 1 }.
For every α ∈ NQ0 \ 0, we denote by φ(α) the real number φ such that
Z(α) = reiπφ. It is called the phase of α.

Note that every vector θ ∈ RQ0 induces a central charge Zθ given by

Zθ(α) = −θ · α+ i|α|,

where |α| =
∑

i αi. We denote by φθ the induced phase function, and we put

φθ(M) = φθ(dimM)

for every Q-representation M .

Definition 2.2. Fix θ ∈ RQ0 . Then a representation M of Q is called θ-
semistable if

φθ(A) ≤ φθ(M)

for every nonzero proper subrepresentation A ⊂M . When strict inequality
holds, we say that M is θ-stable. Vectors θ ∈ RQ0 are referred to as stability
parameters.
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Fix a stability parameter θ ∈ RQ0 . To each α ∈ NQ0 \ 0 one can associate
its slope (with respect to θ), namely the rational number

µθ(α) =
θ · α

|α|
∈ Q.

It is easy to see that φθ(α) < φθ(β) if and only if µθ(α) < µθ(β). So, after
setting µθ(M) = µθ(dimM), one can check stability using slopes instead of
phases.

2.2. Framed representations

Let Q be a quiver with a distinguished vertex 0 ∈ Q0, and let r be a positive
integer. Consider the quiver Q̃ obtained by adding one vertex ∞ to the
original vertices in Q0 and r edges ∞→ 0. If r = 1, this construction is
typically referred to as a framing of Q.

A representation M̃ of Q̃ can be uniquely written as a pair (M, v),
where M is a representation of Q and v = (v1, . . . , vr) is an r-tuple of linear
maps vi : V∞ → V0. We always assume our framed representations to satisfy
dimV∞ = 1, so that

dim M̃ = (1, dimM).

The vector space V∞ will be left implicit.

Definition 2.3. Let θ ∈ RQ0 be a stability parameter. A representation
(M, v) of Q̃ with dimV∞ = 1 is said to be θ-(semi)stable if it is (θ∞, θ)-
(semi)stable in the sense of Definition 2.2, where θ∞ = −θ · dimM .

The space of all representations of Q, of a given dimension vector α ∈ NQ0 ,
is the affine space

Repα(Q) =
∏

(i→j)∈Q1

HomC(C
αi ,Cαj ).

On this space there is an action of the gauge group GLα =
∏
i∈Q0

GLαi
by

simultaneous conjugation. The quotient stack Repα(Q)/GLα parametrises
isomorphism classes of representations of Q with dimension vector α. Im-
posing suitable stability conditions, one can restrict to GLα-invariant open
subschemes of Repα(Q) such that the induced action is free, so that the
quotient is a smooth scheme. We will do this in the next subsection for
framed representations of the three loop quiver.
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2.3. The three loop quiver

Consider the quiver L3 with one vertex and three loops, labelled x, y and z.
A representation of L3 is the datum of a left module over the free algebra

C⟨x, y, z⟩

on three generators, which is the path algebra of L3. We now add r framings
at the vertex, thus forming the quiver L̃3 (see Fig. 1).

∞ 0

x

y

z

.

.

.

v1

vr

Figure 1: The quiver L̃3 with its r framings.

Letting Vn be a fixed n-dimensional vector space, representations of L̃3
with dimension vector (1, n) form the affine space

Rn,r = End(Vn)
3 × V r

n ,

of dimension 3n2 + rn. Consider the open subset

(2.1) Un,r ⊂ Rn,r

parametrising tuples (A,B,C, v1, . . . , vr) such that the vectors v1, . . . , vr span
the underlying (unframed) representation (A,B,C) ∈ Repn(L3). Equivalently,
the r vectors vi span Vn as a C⟨x, y, z⟩-module.

Consider the action of GLn on Rn,r given by

g · (A,B,C, v1, . . . , vr) = (Ag, Bg, Cg, gv1, . . . , gvr),

where Ag denotes the conjugation gAg−1 by g ∈ GLn. This action is free
on Un,r. Thus the GIT quotient Un,r/GLn with respect to the character
det : GLn → C× is a smooth quasi-projective variety.

We now show that the open set Un,r parametrises stable framed repre-
sentations of L3, with stability understood in the sense of Definition 2.3.

If r = 1, then for a point (A,B,C, v) ∈ Un,1 one usually says that v is a
cyclic vector. For r > 1, we say that v1, . . . , vr jointly generate a representation
M = (A,B,C) ∈ Repn(L3) = End(Vn)

3 if (M, v1, . . . , vr) ∈ Un,r.
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Proposition 2.4. Let M̃ = (M, v1, . . . , vr) be a representation of the framed

quiver L̃3 depicted in Figure 1. Choose a vector θ = (θ1, θ2) with θ1 > θ2.

Then M̃ is θ-stable if and only if v1, . . . , vr jointly generate M .

Proof. Suppose that v1, . . . , vr jointly generate a proper subrepresentation
0 ̸=W ⊊M . We obtain a subrepresentation Ñ = (W, v1, . . . , vr) ⊂ M̃ of di-
mension vector (1, d) with 0 < d = dimW < n. We claim that Ñ destabilises

M̃ . Indeed, the inequality

µθ(Ñ) =
θ1 + dθ2
1 + d

>
θ1 + nθ2
1 + n

= µθ(M̃)

holds if and only if θ1 > θ2, which holds by assumption. Since stability and
semistability coincide for this choice of dimension vector, we conclude that
M̃ is unstable.

For the converse, suppose that v1, . . . , vr jointly generate M . If M̃ is
not stable, there exists a non-trivial proper destabilising subrepresentation
0 ̸= Ñ ⊊ M̃ of dimension vector (d1, d2) with 0 ≤ d1 ≤ 1 and 0 ≤ d2 ≤ n.
There are two cases to consider.

1) If d1 = 1, it follows that d2 = n since v1, . . . , vr jointly generateM . But

then Ñ = M̃ , which is a contradiction.

2) If d1 = 0 then d2 > 0, and we directly compute

µθ(Ñ) =
d2θ2
d2

= θ2 =
(1 + n)θ2
1 + n

<
θ1 + nθ2
1 + n

= µθ(M̃)

because θ2 < θ1. But this contradicts the fact that Ñ destabilises M̃ .

It follows that M̃ is θ-stable. This completes the proof. □

2.4. The non-commutative Quot scheme

In this section, we write

R = C⟨x, y, z⟩

for the free (non-commutative) C-algebra on three generators, and for a
complex scheme B, we denote by RB the sheaf of OB-algebras associated to
the presheaf R⊗C OB = OB ⟨x, y, z⟩. We consider the functor

(2.2) Qn,r : Sch
op
C
→ Sets
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sending a C-scheme B to the set of isomorphism classes of triples (M,p, β),
where

1) M is a left RB-module, locally free of rank n over OB,

2) p : RrB ↠M is an RB-linear epimorphism, and

3) β ⊂ Γ(B,M) is a basis of M as an OB-module.

Two triples (M,p, β) and (M ′, p′, β′) are considered isomorphic if there is a
commutative diagram

(2.3)

RrB M

RrB M ′

←

↠
p

⇐⇐ ←→ φ

←

↠
p′

with φ an OB-linear isomorphism transforming β into β′. We denote by
⟨M,p, β⟩ the corresponding isomorphism class.

One can also define a functor

Qn,r : Sch
op
C
→ Sets

by letting Qn,r(B) be the set of isomorphism classes of pairs (M,p) just as
above, but where no basis of M is chosen. Here, as before, we declare that
(M,p) ∼ (M ′, p′) when there is a commutative diagram as in (2.3).

Notice that, by considering the kernel of the surjection, an equivalence
class ⟨M,p⟩ uniquely determines a left RB-module N ⊂ RrB (such that the
quotient RrB/N is a locally free OB-module). The proof of the following result
is along the same lines of [23, Sec. 2].

Theorem 2.5. The smooth quasi-affine scheme Un,r defined in (2.1) repre-
sents the functor Qn,r, whereas the GIT quotient Un,r/GLn represents the

functor Qn,r.

Proof. Let V = Cn with its standard basis e1, . . . , en. Consider the free mod-
ule M0 = V ⊗C ORn,r

with basis β0 = { ej ⊗ 1 : 1 ≤ j ≤ n }. Let (Xij , Yij ,
Zij , u

k
1, . . . , u

k
r ) be the coordinates on the affine space Rn,r. Here 1 ≤ i, j ≤ n

correspond to matrix entries and 1 ≤ k ≤ n to vector components. Then M0

has distinguished elements

vℓ =
∑

j

ej ⊗ u
j
ℓ , 1 ≤ ℓ ≤ r.
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For each ℓ = 1, . . . , r, consider the R-linear map θℓ : RRn,r
→M0 given by

θℓ(✶) = vℓ. Then we can construct the map θ0 = ⊕ℓθℓ : R
r
Rn,r
→M0. Restrict-

ing the triple (M0, θ0, β0) to Un,r ⊂ Rn,r gives a morphism of functors

Un,r → Qn,r,

whose inverse is constructed as follows. Let B be a scheme, set again V = Cn

and fix a B-valued point ⟨M, θ, β⟩ ∈ Qn,r(B). The R-action on β ⊂ Γ(B,M)
determines three endomorphisms (X,Y, Z) : B → End(V )3. On the other
hand, decomposing the map θ : RrB ↠M into r maps θℓ : RB →M and
taking vℓ = θℓ(✶) determines a morphism (v1, . . . , vr) : B → V r. We have
thus constructed a morphism f : B → Rn,r. The surjectivity of θ says that f
factors through Un,r. Therefore Un,r represents Qn,r.

Next, let π : Un,r → Un,r = Un,r/GLn be the quotient map, which we
know is a principal GLn-bundle. This implies that π∗ : QCoh(Un,r) →̃
QCohGLn

(Un,r) is an equivalence of categories, preserving locally free sheaves
[23, Prop. 4.5]. Consider the universal triple ⟨M0, θ0, β0⟩ defined above. Since
M0 is a GLn-equivariant vector bundle on Un,r, it follows that, up to isomor-
phism, there is a unique locally free sheaf M on Un,r such that π∗M ∼=M0.
In fact, M ∼= (π∗M0)

GLn ⊂ π∗M0, the subsheaf of GLn-invariant sections.
The r sections vℓ, being GLn-invariant, descend to sections of M , still de-
noted vℓ. These generate M as an RUn,r

-module, so we get a surjection
ϑ : Rr

Un,r

↠ M sending ✶ 7→ vℓ in the ℓ-th component. In particular, the pair

⟨M , ϑ⟩ defines a morphism of functors

Un,r → Qn,r.

We need to construct its inverse. Let B be a scheme and fix a B-valued
point ⟨N, θ⟩ ∈ Qn,r(B). Let (Bi : i ∈ I) be an open cover of B such that
Ni = N |Bi

is free of rank n over OBi
. Decompose θ = θ1 ⊕ · · · ⊕ θr into r

maps θℓ : RB → N . Choose a basis βi ⊂ Γ(Bi, Ni) and let vℓ,i = θℓ(✶)|Bi

be the restriction of θℓ(✶) ∈ Γ(B,N) to Bi ⊂ B. As usual, the tuple (vℓ,i :
1 ≤ ℓ ≤ r) defines a linear surjection θi : R

r
Bi

↠ Ni. Each triple ⟨Ni, θi, βi⟩
then defines a point ψi : Bi → Un,r, and for all indices i and j there is a
matrix g ∈ GLn(OBij

) sending βi to βj . In other words, g defines a map
g : Bij → GLn such that g · ψi = ψj . Then π ◦ ψi and π ◦ ψj agree on Bij ,
and this determines a unique map to the quotient f : B → Un,r, satisfying
(N, θ) ∼ f∗(M , ϑ). This shows that Un,r represents Qn,r. □
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As a consequence of this result, the B-valued points of the quotient
Un,r/GLn can be identified with left RB-submodules

N ⊂ RrB

with the property that the quotient is locally free of rank n over OB . Because
it represents the functor of quotients Rr ↠ Vn, and R is a non-commutative
C-algebra, we refer to Un,r/GLn as a non-commutative Quot scheme, and
we introduce the notation

Quotnr = Un,r/GLn .

Note that Quotn1 is the non-commutative Hilbert scheme. Finally, the GIT
construction implies that Quotnr is a smooth quasi-projective variety of
dimension 2n2 + rn.

2.5. The potential

On the three-loop quiver, consider the potential

W = x[y, z] ∈ CL3,

where [−,−] denotes the commutator. The associated trace map Un,r → A1,
defined by (A,B,C, v1, . . . , vr) 7→ TrA[B,C], is GLn-invariant.

3 Thus, it
descends to a regular function on the quotient,

(2.4) fn : Quotnr → A1.

We now show that QuotA3(Or, n) is the scheme-theoretic critical locus
of fn.

Theorem 2.6. There is a closed immersion

QuotA3(Or, n) →֒ Quotnr

cut out scheme-theoretically by the exact one-form d fn.

3The vectors vi are not involved in the definition of the map. They are only
needed to define its domain.
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Proof. Let B be a scheme. Observe that there is an inclusion of sets

QuotA3(Or, n)(B) ⊂ Quotnr (B).

A B-valued point [N ] of the non-commutative Quot scheme defines a B-
valued point of the commutative Quot scheme if and only if the R-action
on the corresponding RB-module N descends to a C[x, y, z]-action. This
happens precisely when the actions of x, y and z on N commute with each
other. Let then Z ⊂ Quotnr be the image of the zero locus

{ (A,B,C, v1, . . . , vr) | [A,B] = [A,C] = [B,C] = 0 } ⊂ Un,r

under the quotient map. Then [N ] belongs to QuotA3(Or, n)(B) if and only
if the corresponding morphism B → Quotnr factors through Z. But Z agrees,
as a scheme, with the critical locus of fn, by [38, Prop. 3.8]. □

It follows that QuotA3(Or, n) has a symmetric obstruction theory deter-
mined by the Hessian of fn. We refer to [8] for more details on symmetric
obstruction theories.

Every scheme Z which can be written as { d f = 0 } for f a regular
function on a smooth scheme U has a virtual motive, depending on the pair
(U, f). According to [7], this is a class

[Z]vir ∈M = K µ̂(Var/C)
[
L−1/2

]

in the µ̂-equivariant ring of motivic weights, satisfying the property χ[Z]vir =
χ̃(Z), where χ̃(−) denotes the virtual Euler characteristic, as in (1.3). Here
L = [A1] is the Lefschetz motive, and the Euler characteristic homomor-
phism χ : K(Var/C)→ Z from the classical Grothendieck ring of varieties is
extended to the ringM by sending L1/2 to −1. The class

[Z]vir = −L
−(dimU)/2 · [ϕf ] ∈M

is constructed by means of the motivic vanishing cycle class [ϕf ] introduced
by Denef–Loeser [16]. We refer to [7] for more details.

Theorem 2.6 then produces a virtual motive [QuotA3(Or, n)]vir ∈M in
the ring of equivariant motivic weights, by means of the pair (Quotnr , fn).
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Form the generating function

Zr(t) =
∑

n≥0

[QuotA3(Or, n)]vir · t
n ∈MJtK.

Following the calculation carried out in [7] for r = 1, one can prove the
following.

Proposition 2.7 ([34, Prop. 2.3.6]). One has the relation

(2.5) Zr(t) =

∞∏

m=1

rm−1∏

k=0

(
1− L2+k−rm/2tm

)−1
.

The same motivic formula was proved independently by A. Cazzaniga
[13, Thm. 2.2.4]. See also [14] for a proof via motivic wall-crosssing.

Corollary 2.8. One has the relation

∑

n≥0

χ̃(QuotA3(Or, n))tn = M((−1)rt)r.

Proof. This follows by applying χ to (2.5), and using that χ(L−1/2) = −1. □

From the corollary, along with the observation that

∑

n≥0

χ(QuotA3(Or, n))qn = M(q)r,

we obtain an identity

(2.6) χ̃(QuotA3(Or, n)) = (−1)rnχ(QuotA3(Or, n)).

The Quot scheme QuotA3(Or, n) carries an action by the torus

T = (C×)3 × (C×)r,

where the (C×)3-action is the natural lift of the action on A3, and thus moves
the support of the quotients, and the torus (C×)r acts by scaling the fibres
of Or.
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Remark 2.9. The (C×)3-fixed locus of QuotA3(Or, n) is compact, because
it is a closed subscheme of the punctual Quot scheme

Pn = QuotA3(Or, n)0,

the locus of quotients entirely supported at the origin. But Pn is proper,
being a fibre of the Quot-to-Chow morphism (which is a proper morphism).
It follows that the T-fixed locus

QuotA3(Or, n)T ⊂ QuotA3(Or, n)(C
×)3

is also compact. We give a precise description in Lemma 2.10 below.

For later purpose, we now determine the T-fixed locus for this action.

Lemma 2.10. There is an isomorphism of schemes

QuotA3(Or, n)T =
∐

n1+···+nr=n

r∏

i=1

Hilbni(A3)(C
×)3 .

In particular, the T-fixed locus is isolated and compact. It parameterises

direct sums IZ1
⊕ · · · ⊕IZr

of monomial ideals.

Proof. The main result of [9] shows that

(2.7) QuotA3(Or, n)(C
×)r =

∐

n1+···+nr=n

r∏

i=1

Hilbni(A3).

The claimed isomorphism follows by taking (C×)3-invariants. Since
Hilbk(A3)(C

×)3 is isolated (a disjoint union of reduced points, each corre-
sponding to a plane partition of k), the result follows. □

3. Quotients of a locally free sheaf on an arbitrary 3-fold

The goal of this section is to prove Theorem A. We follow the cut-and-paste
technique of Behrend–Fantechi [8], also used in [36].

Let X be a smooth quasi-projective 3-fold and let F be a locally free
sheaf of rank r. We will show that

(3.1) χ(QuotX(F , n), ν) = (−1)rnχ(QuotX(F , n)).

This was proved for F = OX in [8, 24, 25] and for the torsion free sheaf
F = IC , where C ⊂ X is a smooth curve, in [36]. Combined with the Euler
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characteristic calculation [17, Thm. 1.1] recalled in (1.2), formula (3.1) proves
Theorem A.

3.1. The virtual Euler characteristic

Let X be a complex scheme, and let νX : X(C)→ Z be its Behrend function
[6]. The virtual (or weighted) Euler characteristic of X, as recalled in (1.3),
is the integer

χ̃(X) ..= χ(X, νX) ..=
∑

k∈Z

k · χ(ν−1
X (k)).

Given a morphism f : Z → X, one defines the relative virtual Euler charac-
teristic by χ̃(Z,X) = χ(Z, f∗νX). We now recall the properties of ν and χ̃
we will need later.

◦ If f : Z → X is étale, then νZ = f∗νX .

◦ If Z1, Z2 ⊂ X are disjoint locally closed subschemes, one has

(3.2) χ̃(Z1 ⨿ Z2, X) = χ̃(Z1, X) + χ̃(Z2, X).

◦ Given two morphisms Zi → Xi, one has

(3.3) χ̃(Z1 × Z2, X1 ×X2) = χ̃(Z1, X1) · χ̃(Z2, X2).

◦ If one has a commutative diagram

Z X

W Y

←→

←→ ←→
←→

with X → Y smooth and Z →W finite étale of degree d, then

(3.4) χ̃(Z,X) = d(−1)dimX/Y χ̃(W,Y ).

As a special case, if X → Y is étale (for instance, an open immersion)
and Z → X is a morphism, then

(3.5) χ̃(Z,X) = χ̃(Z, Y ).
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3.2. Reduction to the deepest stratum

Consider the Quot-to-Chow morphism

σ : QuotX(F , n)→ SymnX

sending [F ↠ Q] to the zero cycle given by the support of Q. This is a
morphism of schemes by [37, Cor. 7.15]. For every partition α of n, we have
the locally closed subscheme Symn

αX of SymnX parametrising zero-cycles
with multiplicities distributed according to α. The restrictions

σα : QuotX(F , n)α → Symn
αX

induce a locally closed stratification of the Quot scheme. The most interesting
stratum is the deepest one, corresponding to the full partition α = (n). The
map

(3.6) σ(n) : QuotX(F , n)(n) → X

has fibre over a point p ∈ X the punctual Quot scheme QuotX(F , n)p,
parametrising quotients whose target is supported entirely at p. Note that

QuotX(F , n)p
∼= QuotX(O

r
X , n)p

∼= QuotA3(Or, n)0,

where for the first isomorphism we need F locally free. We will see in Lemma
3.3 below that (3.6) is Zariski locally trivial with fibre the punctual Quot
scheme. From now on we shorten

Pn = QuotA3(Or, n)0 , νn = νQuot
A3 (Or,n)

∣∣
Pn
.

Given a partition α = (α1, . . . , αsα) of n, we set

Qα =

sα∏

i=1

QuotX(F , αi),

and we let

Vα ⊂ Qα

be the open subscheme parametrising quotient sheaves with pairwise disjoint
support. Then, by the results of Section A (cf. Proposition A.3), Vα admits
an étale map fα to the Quot scheme QuotX(F , n), and we let Uα denote
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its image. Note that Uα contains the stratum QuotX(F , n)α as a closed
subscheme. We can then form the cartesian square

(3.7)

Zα Vα Qα

QuotX(F , n)α Uα QuotX(F , n)

□

←֓ →

←

→Galois

←
→ fα

←֓ →
open

←֓ → ←֓ →
open

defining Zα. The leftmost vertical map is finite étale with Galois group Gα,
the automorphism group of the partition. We observe that

Zα =
∏

i

QuotX(F , αi)(αi) \ ∆̃,

where ∆̃ parametrises sα-tuples of sheaves with intersecting supports. There-
fore we have a second fibre square

(3.8)

Zα
∏
iQuotX(F , αi)(αi)

Xsα \∆ Xsα

□

←֓ →

←

→πα

←

→

←֓ →

where the vertical map on the right is the product of punctual Quot-to-
Chow morphisms (3.6), the horizontal inclusions are open immersions, and
∆ ⊂ Xsα denotes the big diagonal.

3.3. Calculation

Recall that the absolute χ̃ is not additive on strata, but that the χ̃ relative
to a morphism is additive. Exploiting the diagram (3.7), we compute

χ̃(QuotX(F , n)) =
∑

α

χ̃ (QuotX(F , n)α,QuotX(F , n)) by (3.2)

=
∑

α

χ̃ (QuotX(F , n)α, Uα) by (3.5)
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=
∑

α

|Gα|
−1χ̃(Zα, Vα) by (3.4)

=
∑

α

|Gα|
−1χ̃ (Zα, Qα) . by (3.5)

Before giving an expression of χ̃(Zα, Qα) via the fibre square (3.8), we
make a few technical observations.

Lemma 3.1. We have a canonical isomorphism

A3 × Pn →̃ QuotA3(Or, n)(n)

and the restriction of the Behrend function of QuotA3(Or, n) to its deepest

stratum is the pullback of νn along the projection to Pn.

Proof. This follows by standard arguments, see [8, Lemma 4.6] or [36,
Prop. 3.1]. □

Lemma 3.2. One has χ̃(QuotA3(Or, n)) = (−1)rnχ(Pn) = χ(Pn, νn).

Proof. The first identity follows by Equation (2.6), along with the observation
that

χ(QuotA3(Or, n)) = χ(Pn),

which holds because Pn is a T-invariant subscheme containing the T-fixed
locus (cf. Remark 2.9). By [8, Cor. 3.5], we deduce from the first identity
that the parity of the tangent space dimension at a T-fixed point of the Quot
scheme is (−1)rn. This can also be proved directly by virtual localisation.
The T-action on QuotA3(Or, n) has isolated fixed points by Lemma 2.10,
and using again that Pn is T-invariant and contains the T-fixed locus, we
obtain the second identity by another application of [8, Cor. 3.5]. □

Lemma 3.3. Let X be a smooth 3-fold, F a locally free sheaf of rank r,
and denote by νQ the Behrend function of QuotX(F , n). Let σ(n) be the

morphism defined in (3.6). Then there is a Zariski open cover (Ui) of X such

that (
σ−1
(n)Ui, νQ

)
∼= (Ui,1Ui

)× (Pn, νn)

as schemes with constructible functions on them.

Proof. This is a standard argument. See for instance [36, Cor. 3.2]. □
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Lemma 3.4. One has the identity

χ̃(Zα, Qα) = χ(Xsα \∆) ·

sα∏

i=1

χ(Pαi
, ναi

).

Proof. By Lemma 3.3, we can find a Zariski open cover Xsα \∆ =
⋃
j Bj

such that

(3.9)
(
π−1
α Bj , νQα

)
= (Bj ,1Bj

)×

(∏

i

Pαi
,
∏

i

ναi

)
,

where πα : Zα → Xsα \∆ is the map that appeared for the first time in
(3.8). Such an open covering can be turned into a locally closed stratification
Xsα \∆ = ⨿ℓUℓ such that each Uℓ is contained in some Bj . Then we have

χ̃(Zα, Qα) =
∑

ℓ

χ̃
(
π−1
α Uℓ, Qα

)
by (3.2)

=
∑

ℓ

χ
(
Uℓ ×

∏

i

Pαi
,1Uℓ

×
∏

i

ναi

)
by (3.9)

=
∑

ℓ

χ(Uℓ,1Uℓ
) ·
∏

i

χ (Pαi
, ναi

) by (3.3)

= χ(Xsα \∆) ·
∏

i

χ (Pαi
, ναi

) ,

and the lemma is proved. □

We are now in a position to finish the computation of χ̃(QuotX(F , n)):

χ̃(QuotX(F , n)) =
∑

α

|Gα|
−1χ(Xsα \∆) ·

∏

i

χ (Pαi
, ναi

) by Lemma 3.4

=
∑

α

|Gα|
−1χ(Xsα \∆) ·

∏

i

(−1)rαiχ (Pαi
) by Lemma 3.2

= (−1)rn
∑

α

|Gα|
−1χ(Xsα \∆) ·

∏

i

χ (Pαi
)

= (−1)rnχ(QuotX(F , n)).

By virtue of formula (1.2) of Gholampour–Kool [17, Thm. 1.1], we conclude
that for a locally free sheaf F on a smooth quasi-projective 3-fold X one has

(3.10)
∑

n≥0

χ̃(QuotX(F , n))q
n = M((−1)rq)rχ(X).
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This completes the proof of Theorem A.

4. Tools for the proof of Theorem B

This section contains the technical preliminaries we will need in Section 5
for the proof of Theorem B. We mainly follow [44]. The key objects are the
following.

(i) Moduli spaces of torsion free sheaves and of PT pairs on a smooth
projective 3-fold X. These can be seen as parametrising stable objects
in a suitable heart

Aµ ⊂ D
b(X)

of a bounded t-structure on the derived category of X.

(ii) The Hall algebra of the abelian category Aµ and the associated (Behrend
weighted, unweighted) integration maps.

Throughout, let X be a smooth projective 3-fold, not necessarily Calabi–
Yau. We fix an ample class ω on X, an integer r ≥ 1, and a divisor class
D ∈ H2(X,Z), satisfying the coprimality condition

(4.1) gcd(r,D · ω2) = 1.

4.1. Moduli of sheaves and PT pairs

Slope stability with respect to ω is defined in terms of the slope function µω,
attaching to a torsion free coherent sheaf E the ratio

µω(E) =
c1(E) · ω2

rkE
∈ Q ∪ {∞} .

The coherent sheaf E is µω-stable or slope-stable if the strict inequality

µω(S) < µω(E)

holds for all proper non-trivial subsheaves 0 ̸= S ⊊ E with 0 < rk(S) < rk(E).
The sheaf is slope-semistable if the same condition holds with < replaced
by ≤. Note that condition (4.1) implies that any slope-semistable sheaf is
slope-stable and, hence, that the notions of slope and Gieseker stability
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coincide; see [19]. In particular, the coarse moduli space

(4.2) MDT(r,D,−β,−m)

of µω-stable sheaves of Chern character (r,D,−β,−m) is a projective scheme
[19].

If X is Calabi–Yau, MDT(r,D,−β,−m) carries a symmetric perfect
obstruction theory and hence a (zero-dimensional) virtual fundamental class
by [41]. By the main result of [6], the associated DT invariant

(4.3) DT(r,D,−β,−m) =

∫

[MDT(r,D,−β,−m)]vir
1 ∈ Z,

coincides with Behrend’s virtual Euler characteristic χ̃(MDT(r,D,−β,−m)).
The notion of higher rank PT pair originated in the work of Lo [27], and

was revisited by Toda [44]; also see the example [44, Ex. 3.4]. The definition
is the following.

Definition 4.1 ([44, Def. 3.1]). A PT pair on X is a two-term complex
J• ∈ Db(X) such that

1) H i(J•) = 0 if i ̸= 0, 1,

2) H0(J•) is µω-(semi)stable and H1(J•) is zero-dimensional,

3) Hom(Q[−1], J•) = 0 for every zero-dimensional sheaf Q.

We say that a PT pair J• is F-local, or based at F , if H0(J•) = F .

By [27, Thm. 1.2], the coarse moduli space

(4.4) MPT(r,D,−β,−m)

parametrising PT pairs with the indicated Chern character is a proper alge-
braic space of finite type. If X is in addition Calabi–Yau, the PT moduli space
carries a symmetric perfect obstruction theory by the results of Huybrechts–
Thomas [20]. The PT invariant is defined, just as (4.3), by integration against
the associated virtual class. Similarly to the DT case, by [6] it coincides with
Behrend’s virtual Euler characteristic

PT(r,D,−β,−m) = χ̃(MPT(r,D,−β,−m)).

For later purposes, we recall the notion of family of PT pairs.
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Definition 4.2. A family of PT pairs parametrised by a scheme B is a
perfect complex J• ∈ Db(X ×B) such that, for every b ∈ B, the derived
restriction of J• to X × { b } ⊂ X ×B is a PT pair.

Note that no additional flatness requirement is imposed; see Remark 4.10
for a brief discussion on families of objects in a heart of a bounded t-structure
on Db(X).

We define the moduli spaces

(4.5) MDT(r,D), MPT(r,D)

of µω-stable sheaves and PT pairs, respectively, as the (disjoint) unions of the
moduli spaces (4.2) and (4.4), over all (β,m) ∈ H4(X)⊕H6(X). Elements
of these moduli spaces will be called DT and PT objects respectively.

Remark 4.3. The moduli stacks of DT and PT objects

(4.6) MDT(r,D,−β,−m), MPT(r,D,−β,−m)

also enter the picture in Toda’s proof of the DT/PT correspondence in the key
Hall algebra identity [44, Lemma 3.16] underlying his wall-crossing formula.
By the coprimality assumption (4.1), each sheaf or PT pair parametrised by
these stacks has automorphism group Gm. Thus, the stacksMDT(r,D) and
MPT(r,D), defined as the disjoint unions of the stacks (4.6) over all (β,m),
are Gm-gerbes over their coarse moduli spaces (4.5).

4.1.1. A characterisation of PT pairs. Let C ⊂ X be a curve, whereX
is a Calabi–Yau 3-fold. The formulation of the C-local DT/PT correspondence
requires C to be Cohen–Macaulay. This is equivalent to the ideal sheaf
IC ⊂ OX being both a DT and a PT object. Similarly, an F-local (higher
rank) DT/PT correspondence requires the sheaf F to be both a DT object
and a PT object. This assumption will be crucial, for instance, in the proof
of Lemma 5.6.

We introduce the following definition, which allows us to recognise a PT
pair more easily and to describe the intersection of the spaces (4.5) of DT
and PT objects.

Definition 4.4. A complex J• ∈ Db(X) satisfying properties (1) and (2)
in Definition 4.1 is called a pre-PT pair.

Whether or not a pre-PT pair is a PT pair depends on the vanishing of
a particular local Ext sheaf. To see this, recall that the derived dual (−)∨ =
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RHom(−,OX) is a triangulated anti-equivalence of Db(X) that restricts to
an anti-equivalence of abelian categories

(−)∨ : Coh0(X) →̃ Coh0(X)[−3], Q 7→ QD[−3],

where QD = Ext3(Q,OX) is the usual dual of a zero-dimensional sheaf
on a 3-fold. In particular, we also have an anti-equivalence Coh0(X)[−1] →̃
Coh0(X)[−2].

Lemma 4.5. Let J• be a pre-PT pair. Then J• is a PT pair if and only if

Ext2(J•,OX) = 0.

Proof. There is a natural truncation triangle

(4.7) τ≤1(J
•∨)→ J•∨ → Ext2(J•,OX)[−2],

where τ≤1(J
•∨) and J•∨ live in degrees [0, 1] and [0, 2] respectively. Note that

the rightmost object is a (shifted) zero-dimensional sheaf because H0(J•) is
torsion free and H1(J•) is zero-dimensional. The dualising involution yields

Hom(Q[−1], J•) = Hom(J•∨, QD[−2])

for every zero-dimensional sheaf Q ∈ Coh0(X). But we also have

Hom(J•∨, QD[−2]) = Hom(Ext2(J•,OX), Q
D)

by (4.7), since there are no maps from higher to lower degree in Db(X). In
conclusion, it follows that J• is a PT pair if and only if Ext2(J•,OX) = 0 as
claimed. □

Example 4.6. In the case of a classical PT pair I• = [OX → F ], where F
is a pure one-dimensional sheaf, the above vanishing can be deduced directly
from the existence of the triangle I• → OX → F . Indeed, it induces an exact
sequence

· · · → Ext2(OX ,OX)→ Ext2(I•,OX)→ Ext3(F,OX)→ · · ·

in which the outer two terms vanish, the latter by purity of F .

The following corollary explains the assumptions on the sheaf F made in
[17], and the assumptions required to have an F -local DT/PT correspondence.
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Corollary 4.7. Let F be a coherent sheaf on X. Then F is both a DT and

a PT object if and only if F is a µω-stable sheaf of homological dimension at

most one.

Proof. The coherent sheaf F is µω-stable if and only if it is a DT object. It
is then torsion free, so Ext≥3(F ,OX) = 0. In addition, F has homological
dimension at most one if and only if Ext≥2(F ,OX) = 0, but this holds if and
only if it is a PT object by Lemma 4.5. □

Remark 4.8. Corollary 4.7 implies that for every smooth projective 3-fold
X, for every µω-stable torsion free sheaf F of homological dimension at most
one, and for every zero-dimensional sheaf Q, the only possibly non-vanishing
Ext groups between F and Q are

Hom(F , Q) ∼= Ext3(Q,F)∗, Ext1(F , Q) ∼= Ext2(Q,F)∗.

This in fact holds without the stability assumption by [17, Lemma 4.1]. As a
consequence, one has hom(F , Q)− ext1(F , Q) = r · ℓ(Q). Note that the last
relation reads

(4.8) ext1(F , Q[−1])− ext1(Q[−1],F) = r · ℓ(Q),

which is reminiscent of the DT/PT wall-crossing.

4.2. Hall algebras and integration maps

We recall from [44, Sec. 2.5, 3.4] the Hall algebra of a suitable heart A µ of
a bounded t-structure on Db(X). To introduce it, recall that a torsion pair
[18] on an abelian category A is a pair of full subcategories (T ,F ) such
that

1) for T ∈ T and F ∈ F , we have Hom(T, F ) = 0,

2) for every E ∈ A , there exists a short exact sequence

0→ TE → E → FE → 0

in A with TE ∈ T and FE ∈ F . This sequence is unique by (1).

Recall also that we have fixed an ample class ω on the 3-fold X and a
pair (r,D) satisfying the coprimality condition (4.1). Define the number

µ =
D · ω2

r
∈ Q.
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Toda [44] considers the torsion pair

Coh(X) = ⟨Coh>µ(X),Coh≤µ(X)⟩,

where for an interval I ⊂ R ∪ {∞}, the category CohI(X) is the extension-
closure of the µω-semistable objects E ∈ Coh(X) with slope µω(E) ∈ I, along
with the zero sheaf. Tilting Coh(X) at the above torsion pair produces the
heart

Aµ = ⟨Coh≤µ(X),Coh>µ(X)[−1]⟩

of a bounded t-structure on Db(X). We summarise the required properties
of A µ.

Lemma 4.9. The category A µ satisfies the following properties.

1) An object E ∈ A µ is a two-term complex in Db(X) such that

H0(E) ∈ Coh≤µ(X), H1(E) ∈ Coh>µ(X), and H i(E) = 0 otherwise.

2) A µ is a noetherian and abelian category,

3) A µ contains the noetherian and abelian full subcategory

Bµ = ⟨Cohµ(X),Coh≤1(X)[−1]⟩ ⊂ A µ,

where Coh≤1(X) consists of sheaves with support of dimension at most

one,

4) the category Coh≤1(X) ⊂ A µ is closed under subobjects, extensions,

and quotients.

Let MX be Lieblich’s moduli stack of semi-Schur objects on X; it is an
algebraic stack locally of finite type [26]. Recall that a complex E ∈ Db(X)
is a semi-Schur object if Exti(E,E) = 0 for all i < 0 (see loc. cit. for more
details). Because Aµ is the heart of a bounded t-structure, its objects have no
negative self-extensions. Consider the substack of MX parametrising objects
in A µ. It defines an open substack of MX (for example by [33, Prop. 4.11])
which we abusively4 still denote by A µ. The category Bµ defines, in turn,
an open substack of Aµ; this follows from the arguments and results in [2,
App. A], in particular [2, Thm. A.8]. It follows that both Bµ and Aµ are

4If C is a subcategory of Db(X) whose objects have no negative self-extensions,
we abuse notation and denote the corresponding moduli stack, a substack of MX ,
by C if it exists.
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algebraic stacks locally of finite type. The moduli stacks (4.6) both carry an
open immersion to Bµ, cf. [44, Remark 3.8].

Remark 4.10. Let B be a base scheme. Since X is smooth and A µ ⊂MX

is open, a B-valued point of A µ is a perfect complex E on X ×B such
that Eb = Li∗b(E) ∈ A µ for every closed point b ∈ B. (Here ib : X × { b } →֒
X ×B is the natural inclusion.) Note that no further flatness assumption is
required.

Indeed, Bridgeland shows in [10, Lemma 4.3] that a complex E ∈ Db(X ×
B) is a (shifted) sheaf flat over B if and only if each derived fibre Eb ∈ Coh(X)
is a sheaf. In other words, flatness of E over B is encoded in the vanishing
H i(Eb) = 0 for all i < 0. Thus the right notion of a B-family of objects in
A µ is given by a perfect complex E on X ×B such that H i

A µ
(Eb) = 0 for

all i ≠ 0 and for all closed points b ∈ B. This means precisely that Eb ∈ A µ.

4.2.1. Motivic Hall algebra. We recall the definition of the motivic Hall
algebra from [12]. Let S be an algebraic stack that is locally of finite type
with affine geometric stabilisers. A (representable) morphism of stacks is a
geometric bijection if it induces an equivalence on C-valued points. It is a
Zariski fibration if its pullback to any scheme is a Zariski fibration of schemes.

Definition 4.11. The S-relative Grothendieck group of stacks is the Q-
vector space K(St/S) generated by symbols [T → S], where T is a finite type
algebraic stack over C with affine geometric stabilisers, modulo the following
relations.

1) For every pair of S-stacks f1, f2 ∈ St/S, we have

[T1 ⊔ T2
f1⊔f2
−−−→ S] = [T1

f1
−→ S] + [T2

f2
−→ S].

2) For every geometric bijection T1 → T2 of S-stacks, we have

[T1
f1
−→ S] = [T2

f2
−→ S].

3) For every pair of Zariski locally trivial fibrations fi : Ti → Y with the
same fibres and every morphism g : Y → S, we have

[T1
g◦f1
−−−→ S] = [T2

g◦f2
−−−→ S].

Remark 4.12. The last relation plays no further role in this paper.
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As a Q-vector space, the motivic Hall algebra of A µ is

H(A µ) = K(St/A µ).

We now define the product ⋆ on H(Aµ). Let A
(2)
µ be the stack of short exact

sequences in Aµ, and let

pi : A
(2)
µ → Aµ, i = 1, 2, 3,

be the 1-morphism sending a short exact sequence 0→ E1 → E3 → E2 → 0
to Ei.

The following is shown in [5, App. B] for every heart of a bounded
t-structure on Db(X) whose moduli stack is open in MX , where X is any
smooth projective variety.

Proposition 4.13. The stack A
(2)
µ is an algebraic stack that is locally

of finite type over C. The morphism (p1, p2) : A
(2)
µ → A µ×A µ is of finite

type.

Given two 1-morphisms fi : Xi → Aµ, consider the diagram of stacks

(4.9)

X1 ⋆X2 A
(2)
µ Aµ

X1 ×X2 Aµ ×Aµ

□

← →
f

←→

← →
p3

←→ (p1,p2)

←→
f1×f2

where the square is cartesian. Then one defines

[f1 : X1 → Aµ] ⋆ [f2 : X2 → Aµ] = [p3 ◦ f : X1 ⋆X2 → Aµ] .

As a consequence of the previous proposition, the stack X1 ⋆X2 is algebraic
and of finite type. It also has affine geometric stabilisers, and thus defines
an element of H(A µ). The unit is given by the class 1 = [Spec C→ A µ]
corresponding to the zero object 0 ∈ A µ.

Theorem 4.14. The triple (H(A µ), ⋆, 1) defines a unital associative alge-

bra.

Proof. The proof of [12, Thm. 4.3] goes through without change. □

Let Γ ⊂ H∗(X,Q) be the image of the Chern character map. It is a finitely
generated free abelian group. The stack A µ decomposes as a disjoint union
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into open and closed substacks

A µ =
∐

γ∈Γ

A
(γ)
µ

where A
(γ)
µ is the substack of objects of Chern character γ. The Hall algebra

is Γ-graded

H(A µ) =
⊕

γ∈Γ

Hγ(A µ)

where Hγ(A µ) is spanned by classes of maps [X → A µ] that factor through

A
(γ)
µ ⊂ A µ.

4.2.2. Integration morphism. For simplicity, we denote a symbol [T →
Spec C] in the Grothendieck group K(St/C) by [T ]. This group has a natural
commutative ring structure induced by the fibre product of stacks [T ] · [U ] =
[T ×C U ]. In turn, the Hall algebra has a natural structure ofK(St/C)-module
where the action is given by

[T ] · [U
f
−→ A µ] = [T × U

f◦pr2−−−→ A µ].

The ring K(St/C) is obtained from the classical Grothendieck ring of varieties
K(Var/C) by localising at the classes of special algebraic groups [12, Lemma
3.8]. There is a subring

Λ = K(Var/C)[L−1, (1 + L+ · · ·+ Lk)−1 : k ≥ 1] ⊂ K(St/C),

where L = [A1] is the Lefschetz motive. Note that Λ does not contain [BC×] =
(L− 1)−1.

By [12, Thm. 5.1], the Λ-submodule5

Hreg(A µ) ⊂ H(A µ)

generated by regular elements is closed under the ⋆ product, where a regular
element is an element in the span of the classes [f : T → A µ] where T is a

5The classes 1 + L+ · · ·+ Lk of the projective spaces Pk have to be inverted in
the definition of the regular Hall subalgebra; see the corrected version [11] available
on the arXiv.
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variety. Moreover, the quotient

Hsc(Aµ) = Hreg(Aµ)/(L− 1)Hreg(Aµ)

of the regular subalgebra Hreg(Aµ) ⊂ H(Aµ) by the ideal generated by L− 1
is a commutative algebra called the semi-classical limit. It is equipped with
an induced Poisson bracket

(4.10) { f, g } =
f ⋆ g − g ⋆ f

L− 1

with respect to ⋆, where f, g ∈ Hsc(A µ). The semi-classical limit is the
domain of the integration map.

The codomain of the integration map is the Poisson torus. There are
two versions depending on the choice of a sign σ ∈ {±1}. Either is defined
as the Q-vector space

Cσ(X) =
⊕

γ∈Γ

Q · cγ

generated by elements { cγ | γ ∈ Γ } and equipped with a product given by
the rule

cγ1 ⋆ cγ2 = σχ(γ1,γ2) · cγ1+γ2 .

The Poisson torus is a Poisson algebra with respect to the bracket

{ cγ1 , cγ2 } = σχ(γ1,γ2)χ(γ1, γ2) · cγ1+γ2 .

Remark 4.15. Note that the product is commutative when σ = +1. If X
is Calabi–Yau the Euler pairing is anti-symmetric, so the product is also
commutative when σ = −1.

There are two integration morphisms Hsc(Aµ)→ Cσ(X) defined by

(4.11) [f : Y → Aµ] 7→

{
χ(Y ) · cγ , if σ = 1

χ(Y, f∗ν) · cγ , if σ = −1,

whenever f factors through the open and closed substack A
(γ)
µ ⊂ A µ for

some γ ∈ Γ, and where ν denotes the Behrend weight on Aµ. For simplicity,
we denote these group homomorphisms by IE (when σ = 1) and IB (when
σ = −1) for Euler and Behrend respectively.

Remark 4.16. The result [12, Thm. 5.2] gives conditions which guarantee
that IE and IB are morphisms of commutative or Poisson algebras. We
summarise these here.
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1) If X is any smooth projective 3-fold, then IE is a morphism of com-
mutative algebras. It is not a morphism of Poisson algebras in gen-
eral. However, if [f : Y → A µ] ∈ H

sc(A µ) factors through A
(γ0)
µ where

γ0 ∈ Γ is the Chern character of a zero-dimensional object, then

IE ({f, g}) =
{
IE(f), IE(g)

}

holds for all g ∈ Hsc(A µ). This follows from the proof of [12, Thm. 5.2],
because Serre duality between a zero-dimensional object Z and any
object E in Db(X) reduces to the Calabi–Yau condition Exti(Z,E) ∼=
Ext3−i(E,Z) for all i ∈ Z.

2) If X is Calabi–Yau, then both IE and IB are morphism of Poisson
algebras.

Finally, we need a completed version of both the Hall algebra and the
Poisson torus. Toda constructs in [44, Sec. 3.4] a completed Hall algebra

Ĥ#(Aµ) =
∏

γ∈Γ#

Hγ(Aµ) =
∏

γ∈Γ#

Hγ(Coh≤1(X)[−1]),

where Γ# = { (0, 0,−β′,−n′) ∈ Γ | β′ ≥ 0, n′ ≥ 0 } can be seen as the set
of Chern characters of objects in Aµ belonging to Coh≤1(X)[−1], cf. [44,
Remark 3.11]. Moreover, for each (r,D) satisfying (4.1), he constructs a
bimodule over this algebra,

Ĥr,D(Aµ) =
∏

γ∈Γr,D

Hγ(Aµ),

where Γr,D ⊂ Γ is a suitably bounded subset6 of admissible Chern characters
of the form (r,D,−β,−n). There is a corresponding Λ-submodule of regular
elements

Ĥreg
r,D(Aµ) ⊂ Ĥr,D(Aµ).

The semi-classical limit Ĥsc
r,D(Aµ) is defined as the quotient of Ĥreg

r,D(Aµ) by
the submodule generated by L− 1. These are bimodules over the correspond-
ing algebras Ĥsc

# (Aµ) and Ĥ
reg
# (Aµ) with respect to ⋆-multiplication on the

left and on the right.

6See [44, Lemma 3.9], which implies that the product and bracket extend to these
completions.
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There are (Behrend weighted and unweighted) integration morphisms
induced by (4.11),

Ir,D : Ĥsc
r,D(A µ)→ Ĉr,D(A µ) =

∏

γ∈Γr,D

Cγ(X),

I# : Ĥsc
# (A µ)→ Ĉ#(A µ) =

∏

γ∈Γ#

Cγ(X),
(4.12)

to the completed Poisson tori. These are compatible with the Poisson-
bimodule structure of Ĥsc

r,D(A µ) over Ĥ
sc
# (A µ) and Ĉr,D(A µ) over Ĉ#(A µ)

in the following sense:

(4.13) Ir,D ({a, x}) = {I#(a), Ir,D(x)}

for all a∈Ĥsc
# (A µ) and x∈Ĥ

sc
r,D(A µ), where {a,−} : Ĥ

sc
r,D(A µ)→Ĥsc

r,D(A µ).

In short, Ir,D is a Poisson-bimodule morphism over Ĥsc
# (A µ) whereas I#

is a morphism of Poisson algebras. We use (4.12) in Section 5.3 to obtain the
F -local DT/PT correspondence (Theorem 5.9) and to reprove equation (1.2)
for stable sheaves (Theorem 5.10).

5. The higher rank local DT/PT correspondence

Let X be a smooth projective 3-fold and let F ∈MDT(r,D) be a µω-stable
sheaf of homological dimension at most one, i.e., F satisfies Exti(F ,OX) = 0
for i ≥ 2.

In this section, we embed the Quot schemes QuotX(F) and
QuotX(Ext1(F ,OX)) in suitable moduli spaces of torsion free sheaves and PT
pairs, respectively. In the Calabi–Yau case, we use these embeddings to define
F-local DT and PT invariants of X, representing the virtual contributions
of F to the global invariants.7 We prove Theorem B (resp. Theorem C) by
applying the integration morphism IB (resp. IE) to an identity in the Hall
algebra of A µ (Proposition 5.7), which is the F -local analogue of the global
identity [44, Thm. 1.2].

5.1. Embedding Quot schemes in DT and PT moduli spaces

Recall that closed immersions of schemes are the proper monomorphisms (in
the categorical sense), and a monomorphism of schemes is a morphism a : Y →

7The definition makes sense for arbitrary 3-folds, but the enumerative meaning of
these numbers is less clear without the Calabi–Yau condition.
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Z such that the induced natural transformation Hom(−, Y )→ Hom(−, Z)
is injective. If Y and Z are finite type schemes over an algebraically closed
field, then a is a closed immersion if and only if it is proper, injective on
closed points, and injective on tangent spaces at closed points. We will use
the latter characterisation in Proposition 5.1 and the former characterisation
in Proposition 5.5.

Proposition 5.1. Taking the kernel of a surjection F ↠ Q defines a closed

immersion

ϕF : QuotX(F) →֒MDT(r,D).

Proof. Let B be a scheme, πX : X ×B → X the projection, and π∗X F ↠ Q

a flat family of zero-dimensional quotients of F . Then the kernel K ⊂ π∗X F is
B-flat and defines a family of torsion free µω-stable sheaves on X. Therefore
the association

[F ↠ Q] 7→ ker(F ↠ Q)

is a morphism to the moduli stack MDT(r,D), and composing with the
natural morphism p :MDT(r,D)→MDT(r,D) to the coarse moduli space
defines ϕF . Note that the morphism p is a Gm-gerbe by the coprimality
condition (4.1). Since the Quot scheme is proper and MDT(r,D) is separated,
the morphism ϕF is proper.

Next, we verify that ϕF is injective on tangent spaces. Let q = [F ↠ Q]
be a closed point of QuotX(F), and let K ⊂ F be the kernel of the surjection.
Note that K is stable, hence simple, and so hom(K,K) = 1. The tangent
space to QuotX(F) at q is Hom(K,Q). To establish injectivity of ϕF on
tangent spaces, it suffices to show that in the exact sequence

0→ Hom(K,K)
i
−→ Hom(K,F)

u
−→ Hom(K,Q)

dϕF

−−−→ Ext1(K,K),

where dϕF is the tangent map to ϕF at q, one has u = 0. In the exact
sequence

Hom(Q,F)→ Hom(F ,F)→ Hom(K,F)→ Ext1(Q,F),

the two outer terms vanish by Remark 4.8. By stability of F , this vanishing
implies that hom(K,F) = 1. Therefore i is an isomorphism, and u = 0 as
required.

Finally, we prove that ϕF is injective on closed points. Let qi = [F ↠ Qi]
for i = 1, 2 be two closed points, and assume that ϕF (q1) = ϕF (q2). Thus,
their kernels are isomorphic as sheaves, say via α : K1 →̃K2. By the previous
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argument we have hom(Ki,F) = 1, implying that the embeddings of the
kernels into F , which we denote by ιi : Ki →֒ F , are unique up to scaling. It
now follows, scaling the isomorphism α if necessary, that the diagram

K1 F

K2 F

←֓ →
ι1

←→α ⇐⇐

←֓ →
ι2

commutes. Thus q1 = q2 in QuotX(F), proving that ϕF is a closed immersion.
□

Remark 5.2. As the proof shows, the initial assumption on the homological
dimension of F is not needed. It will be needed in Proposition 5.5 (the “PT
side”).

We now move to the PT side. First, we construct a map

QuotX(Ext
1(F ,OX))→MPT(r,D)

on the level of C-valued points. Consider a surjection

t : Ext1(F ,OX) ↠ Q,

and recall the following identifications, induced by the derived dualising
functor,

(5.1) Hom(F∨, Q[−1]) = Hom(QD[−2],F) = Ext1(QD[−1],F).

We interpret t as an element of the first Hom-space by precomposing its shift

t̄ : F∨ → Ext1(F ,OX)[−1]
t[−1]
−−−→ Q[−1],

and we associate to t the extension

(5.2) F →֒ J•
↠ QD[−1]

in Aµ corresponding to t̄ under (5.1). Note that rk J
• = rkF = r and c1(J

•) =
c1(F) = D. It is clear that J• defines a pre-PT pair based at F . To see that
J• is in fact a PT pair, we dualise again by applying Hom(−,OX) to the
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defining triangle (5.2). We find

· · · → Ext1(F ,OX)
t
−→ Q = Ext3(QD,OX)→ Ext2(J•,OX)→ 0

where the last zero is Ext2(F ,OX) = 0. Here, we have t = H1(t̄) since the
derived dual is an involution. Thus the surjectivity of the morphism t is
equivalent to the vanishing of Ext2(J•,OX). In turn, by Lemma 4.5, this
means that J• is a PT pair.

Remark 5.3. Conversely, any F-local PT pair, consisting of an exact
triangle of the form (5.2), gives rise to a surjection Ext1(F ,OX) ↠ Q by
applying Hom(−,OX).

To extend this association to families, we make use of the following result.

Lemma 5.4. Let B be a scheme, and let Q ∈ Coh(X ×B) be a B-flat

family of zero-dimensional sheaves on a smooth scheme X of dimension d.
Then one has

ExtiX×B(Q,OX×B) = 0, i ̸= d.

Moreover, the base change map

ExtdX×B(Q,OX×B)⊗OB
k(b)→ ExtdX(Qb,OX)

is an isomorphism for all b ∈ B.

Proof. The vanishing follows from [1, Theorem 1.10]. The base change prop-
erty follows from [1, Theorem 1.9]. □

Proposition 5.5. The association t 7→ J• extends to a closed immersion

ψF : Quot(Ext1(F ,OX)) →֒MPT(r,D).

Proof. Let B be a base scheme, and let πX : X ×B → X denote the natural
projection. Let Q ∈ Coh(X ×B) be a B-flat family of zero-dimensional
sheaves on X receiving a surjection

t : π∗XExt1(F ,OX) ↠ Q.

In particular, Q ∈ Perf(X ×B) is a perfect object in the derived category
of X ×B. Pulling back the triangle H0(F∨)→ F∨ → Ext1(F ,OX)[−1] on



✐

✐

“2-Beentjes” — 2021/9/14 — 1:40 — page 1004 — #38
✐

✐

✐

✐

✐

✐

1004 S. V. Beentjes and A. T. Ricolfi

X to X ×B yields the exact triangle

(5.3) π∗XH
0(F∨)→ π∗X(F

∨)→ π∗XExt1(F ,OX)[−1],

and precomposing t[−1] yields the morphism t̄ : π∗X(F
∨)→ Q[−1]. Since all

objects we consider are perfect complexes on X ×B, so are their derived
duals. We deduce

π∗X(F
∨) = (π∗XF)

∨.

More generally, for complexes E,F ∈ Perf(X ×B) we have a natural isomor-
phism

RHom(E,F ) ∼= RHom(F∨, E∨).

By Lemma 5.4, we have a natural isomorphism of perfect complexes on
X ×B

RHom
(
π∗X(F

∨),Q[−1]
)
∼= RHom

(
Q

D[−2], π∗XF
)
.

Taking derived global sections yields an isomorphism of complexes of vector
spaces, and further taking cohomology yields a natural isomorphism of
C-linear Hom-spaces

(5.4) HomX×B

(
π∗X(F

∨),Q[−1]
)
∼= Ext1X×B

(
Q

D[−1], π∗XF
)
.

We write the image of t̄ under this identification as an extension

(5.5) π∗XF → J• → Q
D[−1].

We claim that J• is a family of PT pairs parametrised by B (cf. Definition 4.2).
First, taking the derived fibre of the triangle (5.5) shows that J•

b = Li∗b(J
•)

is a pre-PT pair on Xb for all closed points b ∈ B, where Xb = X × { b } and
ib : Xb →֒ X ×B is the natural closed immersion. Second, J• is a perfect
complex because π∗XF and QD[−1] are. Thus J• defines a family of pre-PT
pairs based at F in the sense of Definition 4.2.

To see that each derived fibre J•
b is a PT pair, recall that for a perfect

complex the operations of taking the derived fibre and taking the derived
dual commute. In other words, there is a canonical isomorphism

Li∗b(E
∨) ∼= (Li∗bE)∨
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for all b ∈ B, where E ∈ Perf(X ×B) is a perfect complex. As a consequence,
the diagram

HomX×B (π∗XF
∨,Q[−1]) HomX×B

(
QD[−2], π∗XF

)

HomXb
(F∨,Qb[−1]) HomXb

(
QD
b [−2],F

)

←

→
(−)∨

←

→ Li
∗
b

←

→ Li∗b

← →
(−)∨

commutes.8 In words, given the morphism t̄ : π∗X(F
∨)→ Q[−1], we obtain

our family of pre-PT pairs J• on X ×B by dualising, and taking its derived
fibre J•

b = Li∗b(J
•) yields a complex that is canonically isomorphic to the

pre-PT pair obtained by first restricting t to the derived fibre

t̄b = Li∗b(t̄) : F
∨ → Ext1(F ,OX)[−1]

tb[−1]
−−−→ Qb[−1]

and then dualising. By taking the derived fibre of the triangle (5.5) and
running the argument for a C-valued point, it follows that Ext2(J•

b ,OXb
) = 0

because each map tb is surjective. Thus J
• defines a family of PT pairs by

Lemma 4.5. We have obtained a morphism to the moduli stackMPT(r,D),
and composing withMPT(r,D)→MPT(r,D), defines ψF .

Note that ψF is proper because its domain is proper and the PT moduli
space is separated. To prove that it is a closed immersion, it is enough to show
it is injective on B-valued points. Let t and u be two families of surjections
with (the same) target Q, and assume that they give rise to the same family of
PT pairs J•. Then, by (5.4), we conclude that t̄ = t[−1] ◦ g = u[−1] ◦ g = ū,
where

g : π∗X(F
∨)→ π∗XExt1(F ,OX)[−1]

is the morphism appearing in (5.3). But the natural map

(−) ◦ g : Hom
(
π∗XExt1(F ,OX)[−1],Q[−1]

)
→ Hom

(
π∗X(F

∨),Q[−1]
)

is injective because Hom(π∗XH
0(F∨)[1],Q[−1]) = Ext−2(π∗XH

0(F∨),Q) = 0,
i.e., its kernel vanishes. It follows that t = u. This completes the proof. □

See Appendix B, and in particular Proposition B.5, for a ‘universal’ closed
immersion generalising Proposition 5.5.

8Here we are implicitly using Lemma 5.4, saying that dualising commutes with
base change for a flat family of zero-dimensional sheaves. More generally, dualising
commutes with any base change for perfect objects.
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5.2. The F-local Hall algebra identity

In this section, we prove an F -local analogue of Toda’s Hall algebra identity in
[44, Lemma 3.16] which gives rise to the higher rank DT/PT correspondence
by applying the integration morphisms IB.

We introduce the Hall algebra elements. Let Coh0(X)[−1] be the shift of
the category of zero-dimensional coherent sheaves on X, which we denote by
C∞ to be consistent with the notation of [44]. The moduli stack of objects in
C∞ is an open substack C∞ ⊂ Aµ. We obtain an element

δ(C∞) = [C∞ →֒ Aµ] ∈ Ĥ#(Aµ).

Let p :MDT(r,D)→MDT(r,D) denote the natural morphism from the
moduli stack of DT objects to its coarse moduli space. Consider the cartesian
diagram

QX(F) MDT(r,D) A µ

QuotX(F) MDT(r,D)

□

←֓ →
ιF

←→p′ ←→ p

←֓ →
open

←֓ →
ϕF

defining QX(F). The map ιF is a closed immersion by Proposition 5.1 and
base change. Hence QX(F) defines a locally closed substack of A µ. A similar
picture holds on the PT side by replacing F by Ext1(F ,OX).

For the sake of brevity, we rename these objects

QF
DT = QX(F), QF

PT = QX(Ext
1(F ,OX)).

We now obtain Hall algebra elements

δFDT =
[
QF

DT → A µ

]
, δFPT =

[
QF

PT → A µ

]

in Ĥr,D(A µ). By base change, the morphism p′ and its analogue for
Ext1(F ,OX) are (trivial) Gm-gerbes (cf. Remark 4.3). Thus it follows that
the elements

δ
F

DT = (L− 1) · δFDT, δ
F

PT = (L− 1) · δFPT

lie in the regular submodule Ĥreg
r,D(Aµ). Projecting to the semiclassical limit

yields elements

(5.6) δ
F

DT, δ
F

PT ∈ Ĥsc
r,D(Aµ).
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Let us form the Aµ-stacks

QF
DT ⋆ C∞, C∞ ⋆QF

PT

via the pullback construction described in (4.9). For a scheme B, a B-valued
point of QF

DT ⋆ C∞ is an exact triangle E1 → E → E3 in Perf(X ×B) such
that E1, E3 ∈ A µ(B), E1 is a B-valued point of QF

DT, and E3 is a B-valued
point of C∞. Similarly, a B-valued point of C∞ ⋆QF

PT is an exact triangle
E1 → E → E3 in Perf(X ×B) where E1 is a B-valued point of C∞ and E3

is a B-valued point of QF
PT.

Lemma 5.6. There is an equivalence at the level of C-valued points

(
QF

DT ⋆ C∞
)
(C) =

(
C∞ ⋆QF

PT

)
(C).

Proof. Let E be a C-valued point of C∞ ⋆QF
PT. Then we can decompose E

as an extension of an object J• ∈ QF
PT by a (shifted) zero-dimensional object

Q[−1] ∈ C∞. We obtain the following diagram

H0(E) E H1(E)[−1]

F J• P [−1]

←֓ →

←→ f

←
↠

←↠ ←→ g

←֓ → ←

↠

in Aµ, where P ∈ Coh0(X). The snake lemma in A µ induces a four-term
exact sequence

0→ ker(f)→ Q[−1]→ ker(g)→ coker(f)→ 0

and implies that g is surjective. Since Coh≤1(X)[−1] ⊂ Aµ is closed under
subobjects, extensions, and quotients, and Q is zero-dimensional, we deduce
that the above exact sequence lies in C∞ entirely. But there are no morphisms
in negative degree, so coker(f) = 0 since F ∈ Cohµ(X) is a sheaf. We obtain
the exact sequence

0→ H0(E)→ F → ker(f)[1]→ 0

in Coh(X), proving that H0(E) ∈ QF
DT as claimed.
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Conversely, let E be an extension of a (shifted) zero-dimensional object
P [−1] and an object K ∈ QF

DT. We obtain the diagram

Q[−1] K F

S[−1] E J•

←֓ →

←→ f ′

←

↠

←
֓

→ ←→ g′

←֓ → ←

↠

in Aµ, where S[−1] ⊂ E is the largest subobject of E in Coh0(X)[−1]; this
object exists since A µ is noetherian and C∞ ⊂ A µ is closed under extensions
and quotients. In particular, it follows that Hom(C∞, J

•) = 0. The snake
lemma in Aµ induces a four-term exact sequence

0→ ker(g′)→ coker(f ′)→ P [−1]→ coker(g′)→ 0

and implies that f ′ is injective. As before, we deduce that the above exact
sequence lies in C∞ entirely. By assumption F is both a DT and PT object,
hence Hom(C∞,F) = 0 and so ker(g′) = 0. We obtain the exact sequence

0→ F → J• → coker(g′)→ 0

in Aµ, proving that J• ∈ QF
PT. The constructions are clearly inverse to each

other. □

We now refine the above identification to a Hall algebra identity.

Proposition 5.7. In Ĥr,D(Aµ), one has the identity

(5.7) δFDT ⋆ δ(C∞) = δ(C∞) ⋆ δFPT.

Proof. Recall the open immersion of stacks Bµ ⊂ Aµ. The key Hall algebra
identity proven by Toda relies on the existence of geometric bijections

(5.8)

MDT(r,D) ⋆ C∞ C∞ ⋆MPT(r,D)

B̃µ

←

→

←

→

where B̃µ is the open substack of Bµ parametrising objects E ∈ Bµ such that
H1(E) ∈ Coh0(X). Pulling back the closed immersions ϕF and ψF , the stacks
QF

DT ⋆ C∞ and C∞ ⋆QF
PT embed as closed substacks of the corresponding
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B̃µ-stacks (5.8). Recall that the class of an A µ-stack S → A µ in the Hall
algebra is equal to the class of its reduction,

[Sred → A µ] = [S → A µ] ,

via the geometric bijection Sred → S of A µ-stacks. Thus we may assume
that QF

DT ⋆ C∞ and C∞ ⋆QF
PT are reduced. Let ZDT and ZPT denote their

stack-theoretic images in B̃µ, which are reduced closed substacks.

ZDT ZPT

B̃µ

←֓

→

We claim that ZDT = ZPT as substacks. This establishes the identity (5.7)
because, crucially, we have δFDT ⋆ δ(C∞) = [ZDT → A µ] in Ĥr,D(A µ) by the

geometric bijection QF
DT ⋆ C∞ → ZDT over B̃µ ⊂ A µ; similarly, we have the

identity δ(C∞) ⋆ δFPT = [ZPT → A µ].
To prove this claim, recall that the stack A µ is locally of finite type. Since

A µ ⊂ D
b(X) is the heart of a bounded t-structure, it follows that the stack

A µ has affine geometric stabilisers [4, Lemma 2.3.9]. By a result of Kresch
[22, § 4.5], it is locally a global quotient stack [V/G] where V is a variety
and G is a linear algebraic group. Thus locally ZDT and ZPT correspond
to G-invariant closed subvarieties of V . But the C-valued points of these
(reduced) closed subvarieties coincide by Lemma 5.6. Thus ZDT = ZPT as
claimed. □

5.3. The F-local DT/PT correspondence

In this section, we prove Theorem B and Theorem C. For n ≥ 0, we define

DTF ,n = χ(QuotX(F , n), νDT)

PTF ,n = χ(QuotX(Ext
1(F ,OX), n), νPT)

where the Behrend weights come from the full DT and PT moduli spaces
and are restricted via the closed immersions of Propositions 5.1 and 5.5. We
form the generating functions

DTF (q) =
∑

n≥0

DTF ,nq
n, PTF (q) =

∑

n≥0

PTF ,nq
n
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in the completed Poisson torus Ĉσr,D(X) =
∏
γ∈Γr,D

Cγ(X), where we use
the shorthand q = c(0,0,0,1). In the Calabi–Yau case, these series can be
interpreted as the “contribution” of F to the global DT and PT invariants.

Recall the Hall algebra elements (5.6). Note that

(5.9) IB
(
δ
F

DT

)
= −DTF (q

−1)cγ , IB
(
δ
F

PT

)
= −PTF (q

−1)cγ ,

where IB is the Behrend weighted version of the map Ir,D from (4.12), and
γ = ch(F). The minus sign is a consequence of property (3.4) of the Behrend
function, taking into account that the moduli stacks are Gm-gerbes over the
coarse moduli spaces of DT and PT objects.

Remark 5.8. The Behrend weights νDT and νPT are not unrelated. Indeed,
up to the Gm-gerbes

MDT(r,D)→MDT(r,D), MPT(r,D)→MPT(r,D),

they are both restrictions of the Behrend function of Lieblich’s moduli stack
MX , studied in [26], along their respective open immersionsMDT(r,D) ⊂
MX andMPT(r,D) ⊂MX .

Theorem 5.9. Let X be a Calabi–Yau 3-fold, and let F be a µω-stable
sheaf of rank r and homological dimension at most one. There is an equality

of generating series

(5.10) DTF (q) = M((−1)rq)rχ(X) · PTF (q).

Proof. The equality follows by applying the integration morphism Ir,D from
(4.12) taken with σ = −1, precisely as in the proof of [44, Thm. 3.17], after
replacing the Hall algebra identity of [44, Lemma 3.16] by the identity of
equation (5.7). We give the argument in full.

By Proposition 5.7, we obtain the identity

δFDT = δ(C∞) ⋆ δFPT ⋆ δ(C∞)−1 ∈ Ĥr,D(A µ).

Since Coh0(X) is artinian, we have a well-defined logarithm ϵ(C∞) =
log δ(C∞) ∈ Ĥ#(A µ). We obtain in Ĥr,D(A µ) the identity

δFDT = exp (ϵ(C∞)) ⋆ δFPT ⋆ exp (−ϵ(C∞)) .
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The Ĥ#(A µ)-bimodule structure of Ĥr,D(A µ) induces an adjoint action of

a ∈ Ĥ#(A µ) on Ĥr,D(A µ) via the equation

Ad(a) ◦ x = a ⋆ x− x ⋆ a : Ĥr,D(A µ)→ Ĥr,D(A µ).

By the Baker–Campbell–Hausdorff formula the above equation becomes

δFDT = exp
(
Ad(ϵ(C∞))

)
◦ δFPT

in Ĥr,D(A µ). Multiplying both sides of the equation by L− 1 and projecting

the resulting equation in Ĥreg
r,D(A µ) to the semi-classical quotient Ĥsc

r,D(A µ),
we obtain the identity

δ
F

DT = exp
(
Adsc(ϵ(C∞))

)
◦ δ

F

PT ∈ Ĥsc
r,D(A µ),

where we have written the adjoint action of a ∈ Ĥsc
# (A µ) as

Adsc(a) ◦ x ..= {a, x} : Ĥsc
r,D(A µ)→ Ĥsc

r,D(A µ),

in terms of the Poisson bracket of equation (4.10), and we have applied Joyce’s
No-Poles Theorem which states that ϵ(C∞) = (L− 1)ϵ(C∞) ∈ Ĥreg

# (A µ);
cf. [44, Thm. 3.12].

Applying the integration morphism Ir,D, and using the Euler pairing
computation

χ
(
(0, 0,−β′,−n′), (r,D,−β,−n)

)
= rn′ −Dβ′,

along with the identities (5.9), we obtain the formula

(5.11) DTF (q) = exp

(∑

m>0

(−1)rm−1rm · Nm,0q
m

)
· PTF (q),

after formally sending q−1 7→ q. Here the “N-invariants” Nm,0 ∈ Q count
semistable zero-dimensional sheaves E with χ(E) = m, and are defined by
the relation

I# (ϵ(C∞)) = −
∑

m≥0

Nm,0(q
−1)m.
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See [44, Sec. 3.6] and the references therein for more details. Using the rank
one identity

exp

(∑

m>0

(−1)m−1m · Nm,0q
m

)
= M(−q)χ(X)

established in [8, 24, 25], the relation (5.11) becomes precisely

DTF (q) = M((−1)rq)rχ(X) · PTF (q).

This completes the proof. □

We now prove Theorem C, namely the main result of [17] in the special
case of a stable sheaf F . We do not require X to be Calabi–Yau.

Theorem 5.10. Let X be a smooth projective 3-fold, and let F be as in

Theorem 5.9. Then

∑

n≥0

χ(QuotX(F , n))q
n(5.12)

= M(q)rχ(X) ·
∑

n≥0

χ(QuotX(Ext
1(F ,OX), n))q

n.

Proof. The equality follows from the proof of [44, Thm. 3.17] by replacing
the Hall algebra identity of [44, Lemma 3.16] by the identity of equation (5.7)
and by replacing the Behrend weighted integration morphism IB by the
integration morphism IE taking Euler characteristics. The compatibility of
IE with the Poisson brackets is explained in Remark 4.16. □

Remark 5.11. In [17], formula (5.12) is obtained by reducing to the affine
case, and carrying out an inductive procedure on the rank. The base case
of rank two, established on an affine 3-fold, relies on the existence of an
auxiliary cosection F → OX .

The above result yields an interpretation of equation (5.12) as the Euler
characteristic shadow of the F-local higher rank DT/PT correspondence
(5.10). This question was raised by Gholampour and Kool in [17, Sec. 1].

Note that our proof only produces the formula for µω-stable sheaves F
(of homological dimension at most one). This is a consequence of producing
the identity (5.7) in the Hall algebra of A µ. In contrast, [17] proves formula
(5.12) for all torsion free sheaves (of homological dimension at most one).
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Remark 5.12. Let X be a Calabi–Yau 3-fold, C ⊂ X a Cohen–Macaulay
curve, and F = IC of ch(IC) = (1, 0,−β, pa(C)− 1). The cycle-local in-
variants of [30, Sec. 4] may in general differ from those of Theorem 5.9.
Indeed, the former express the contribution of all ideal sheaves IZ such
that [Z] = [C] in Chow1(X, β), and this condition is in general weaker than
having an inclusion IZ →֒ IC . The two types of invariants do agree when C
is smooth: in this case, [35, Thm. 2.1] proves that QuotX(IC , n) is precisely
the fibre of the Hilbert–Chow morphism over the cycle of C. They also agree
when β = ch2(OC) is irreducible, see Proposition 6.9.

Also the method of proof differs: in [30], the author restricts Bridgeland’s
global DT/PT identity to the Hall subalgebra of the abelian category of
sheaves supported on C in dimension one, whereas in this paper an IC-local
identity is established directly in the Hall algebra of Aµ. We emphasise,
however, that both local proofs make use of the established proof of the
global correspondence in some way.

6. Applications

In this section we discuss a few results and special cases, directly linked to
Theorem 5.9, concerning the PT series PTF and its properties. Throughout,
as before, X is a smooth projective 3-fold and F is a µω-stable sheaf of
homological dimension at most one.

6.1. Tensoring by a line bundle

We establish a general relation between the generating functions of F-local
and of (F ⊗ L)-local PT invariants, where L is a line bundle on X.

Proposition 6.1. We have PTF⊗L(q) = PTF (q) for every line bundle L
on X.

Proof. Since F is a µω-stable sheaf of homological dimension at most 1, the
same holds for F ⊗ L. Moreover, (r,D · ω2) are coprime so (r, (rc1(L) +D) ·
ω2) are coprime as well.

Let t : Ext1(F ,OX) ↠ Q be a zero-dimensional quotient. Tensoring by
L−1 induces the identification

Ext1(F ,OX)⊗ L
−1 Q⊗ L−1

Ext1(F ⊗ L,OX) Q⊗ L−1

←

↠

←→ ∼ ⇐⇐

←

↠
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using that Ext-sheaves are local; note that Q is zero-dimensional so Q⊗
L−1 ∼= Q, but for reasons of naturality we do not choose an isomorphism
here. Tensoring by line bundles behaves well in flat families, so we obtain an
isomorphism

−⊗ L−1 : QuotX(Ext
1(F ,OX), n) →̃ QuotX(Ext

1(F ⊗ L,OX), n).

We claim that the following diagram

(6.1)

QuotX(Ext
1(F ,OX), n) QuotX(Ext

1(F ⊗ L,OX), n)

MPT(r,D) MPT(r,D + rc1(L))

←
֓

→ψF

←→
−⊗L−1

←
֓

→ ψF⊗L

← →
−⊗L

commutes. Our closed immersion into the PT moduli space proceeds by
dualising

t̄ : F∨ → Ext1(F ,OX)[−1]→ Q[−1].

To obtain the corresponding F -local PT pair, we dualise again to obtain the
extension

F →֒ J•
↠ QD[−1],

which corresponds to t̄ under Hom(F∨, Q[−1]) ∼= Ext1(QD[−1],F). Tensoring
this exact sequence by the line bundle L yields an (F ⊗ L)-local PT pair
J• ⊗ L, namely

F ⊗ L →֒ J• ⊗ L↠ QD ⊗ L[−1].

We also obtain a PT pair by performing the operations the other way
around. Indeed, first tensoring t̄ by the line bundle L−1 yields the morphism

t̄L : F
∨ ⊗ L−1 ∼= (F ⊗ L)∨ → Ext1(F ⊗ L,OX)[−1]→ (Q⊗ L−1)[−1].

To obtain the corresponding local PT pair, we dualise again to obtain the
extension

F ⊗ L →֒ J•
L ↠ QD ⊗ L[−1],

corresponding to t̄L under

Hom((F ⊗ L)∨, (Q⊗ L−1)[−1]) ∼= Ext1(QD ⊗ L[−1],F ⊗ L).

We claim that J•
L and J• ⊗ L are canonically isomorphic (F ⊗ L)-PT pairs.
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To see this, consider the following diagram of canonical and commuting
isomorphisms:

Hom(Ext1(F ,OX), Q) Hom(Ext1(F ⊗ L,OX), Q⊗ L
−1)

Hom(F∨, Q[−1]) Hom((F ⊗ L)∨, Q⊗ L−1[−1])

Ext1(QD[−1],F) Ext1(QD ⊗ L[−1],F ⊗ L)

←
֓

→

⇐

⇐
−⊗L−1

←
֓

→
⇐⇐(−)∨

⇐

⇐
−⊗L−1

⇐⇐ (−)∨

⇐ ⇐
−⊗L

which proves that the operations indeed commute, so J•
L
∼= J• ⊗ L canoni-

cally, because the extensions are equal. Thus the diagram displayed in (6.1)
commutes.

As a consequence, pulling back the Behrend functions of MPT(r,D) and
MPT(r,D + rc1(L)) to either moduli space induces the same constructible
function on the isomorphic Quot schemes. In particular, their Behrend
weighted Euler characteristics are equal, which means that PTF ,n = PTF⊗L,n

for all n ∈ Z. We infer PTF (q) = PTF⊗L(q) as claimed. □

Consider the generating function of topological Euler characteristics

P̂TF (q) =
∑

n≥0

χ(QuotX(Ext
1(F ,OX), n))q

n.

The above proof directly carries over to the Euler characteristic setting.

Corollary 6.2. We have P̂TF⊗L(q) = P̂TF (q) for every line bundle L on X.

6.2. Special cases

Let X be a smooth projective Calabi–Yau 3-fold. We collect some special
cases of Theorem 5.9 by imposing further restrictions on the sheaf F .

Corollary 6.3. With the assumptions of Theorem 5.9, if F is locally free

then the generating series of F -local PT invariants is trivial: PTF (q) = 1. In
particular,

DTF (q) = M((−1)rq)rχ(X).

Proof. Since Ext1(F ,OX) = 0, one deduces from the definitions that PTF ,n =
0 for all n ≠ 0 and that PTF ,0 = 1. The formula for DTF then follows from
Theorem 5.9. □
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Remark 6.4. Recall that any rank one PT pair is of the form I• =
[s : OX → F ] where F is a pure one-dimensional sheaf and coker(s) is zero-
dimensional; in particular, ker(s) = H0(I•) is the ideal sheaf of a Cohen–
Macaulay curve C ⊂ X. The above corollary generalises the fact that the
only rank one PT pair I• with H0(I•) a line bundle is the trivial one with
F = 0.

Remark 6.5. Combining Corollary 6.3 with Theorem A, we observe that
for a stable vector bundle F of rank r on a Calabi–Yau 3-fold X, one has
the identity

DTF ,n = χ̃(QuotX(F , n)).

Note that the left hand side depends, a priori, on the embedding

ϕF ,n : QuotX(F , n) →֒MDT(r,D, ch2(F), ch3(F)− n)

whereas the right hand side is completely intrinsic to the Quot scheme. The
above identity is trivial in the case (r,D) = (1, 0), for then QuotX(F , n) =
HilbnX =MDT(1, 0, 0,−n).

Next, we assume that F is a reflexive µω-stable sheaf. Let (−)∗ denote
the usual OX -linear dual of a sheaf, and note that F∗ is again µω-stable and
reflexive; see for example [17, Lemma 2.1(2)]. In particular, it is both a DT
and PT object by Corollary 4.7 and the series PTF∗(q) is well-defined. We
denote the reciprocal of a polynomial P (q) of degree d by

P ∗(q) = qdP (q−1),

and we let ℓ(T ) denote the length of a zero-dimensional sheaf T .
Following its proof, we obtain the virtual analogue of [17, Thm. 1.2].

Corollary 6.6. With the assumptions of Theorem 5.9, if F is reflexive then

the series
DTF (q)

M((−1)rq)rχ(X)
= PTF (q)

of F -local PT invariants is a polynomial of degree ℓ(Ext1(F ,OX)). Moreover,

this polynomial has a symmetry induced by the derived dualising functor

(6.2) PT
∗
F (q) = PTF∗(q).

And finally, if rk(F) = 2 then PT
∗
F (q) = PTF (q) is palindromic.
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Proof. The final claim requires the Behrend weighted identity PTF⊗L(q) =
PTF (q) for any line bundle L, which is provided by Proposition 6.1, and
F∗ ∼= F ⊗ det(F)−1 if rk(F) = 2. □

6.3. Rationality: open questions

Let β ∈ H2(X,Z) be a curve class on a Calabi–Yau 3-fold X, and let PTn,β be
the (rank one) PT invariant, defined as the degree of the virtual fundamental
class of Pn(X, β) =MPT(1, 0,−β,−n). In [31, Conj. 3.2], Pandharipande
and Thomas conjectured that the Laurent series

PTβ(q) =
∑

n∈Z

PTn,βq
n

is the expansion of a rational function in q (invariant under q ↔ q−1). This
was proved by Bridgeland [11]. More generally, Toda [44, Thm. 1.3] proved
the rationality of the series

PTr,D,β(q) =
∑

6n∈Z

PT(r,D,−β,−n)qn

for arbitrary (r,D, β). Moreover, Toda previously proved [43] the rationality
of the unweighted generating function

P̂Tβ(q) =
∑

n∈Z

χ(Pn(X, β))q
n.

One may ask similar questions about the local invariants studied in the
present paper.

Let F be a µω-stable sheaf of homological dimension at most one on the
Calabi–Yau 3-fold X. It makes sense to ask the following:

Question 6.7. On a Calabi–Yau 3-fold X, is PTF (q) the expansion of a
rational function?

One can of course ask the same question for the unweighted invariants

P̂TF (q) =
∑

n≥0

χ(QuotX(Ext
1(F ,OX), n))q

n,

where X is now an arbitrary smooth projective 3-fold and F is a torsion free
sheaf of homological dimension at most one (not necessarily stable).
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Question 6.8. On a 3-fold X, is P̂TF (q) the expansion of a rational func-
tion?

Rationality of P̂TF has been announced for toric 3-folds in [17]. As for
the weighted version, there is a partial answer in the rank one case, building
upon work of Pandharipande and Thomas [32]. We will investigate such
rationality questions in future work.

Proposition 6.9. LetX be a Calabi–Yau 3-fold, C ⊂ X a Cohen–Macaulay

curve in class β ∈ H2(X,Z). If β is irreducible, then PTIC
(q) is the expansion

of a rational function in q.

Proof. Let g = 1− χ(OC) be the arithmetic genus of C, and denote by
Pn(X,C) ⊂ P1−g+n(X, β) the closed subset parametrising stable pairs [OX →
F ] such that the fundamental one-cycle of F equals [C] ∈ Chow1(X, β). Let
Pn,C denote the virtual contribution of Pn(X,C). Under the irreducibility
assumption on β, Pandharipande and Thomas showed in [32, Sec. 3.1] that
the generating function of cycle-local invariants

ZC(q) =
∑

n≥0

Pn,Cq
1−g+n

admits the unique expression

ZC(q) =

g∑

r=0

nr,Cq
1−r(1 + q)2r−2

as a rational function of q, where nr,C are integers, called the “BPS numbers”
of C. Since β is irreducible, however, we have

Pn,C = PTIC ,n.

Indeed, the Chow variety parametrises Cohen–Macaulay curves on X in
class β, therefore given a stable pair [s : OX → F ] ∈ Pn(X,C) along with its
induced short exact sequence

0→ OX/ ker s→ F → Q→ 0,

the condition [F ] = [C] ∈ Chow1(X, β) implies the identity ker s = IC . It
follows that PTIC

= ZC , whence the result. □
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Appendix A. Étale maps between Quot schemes

Let φ : X → X ′ be a morphism of varieties, with X ′ proper. Let F ′ be a
coherent sheaf on X ′, set F = φ∗F ′ and

(A.1) Q = QuotX(F, n), Q′ = QuotX′(F ′, n).

If we have a scheme S, we denote by FS the pullback of F along the projection
X × S → X. For instance, we let

FQ ↠ T

denote the universal quotient, living over X ×Q.

Lemma A.1. Let φ : X → X ′ be an étale map of quasi-projective varieties,

F ′ a coherent sheaf on X ′ and let F = φ∗F ′. Let [θ : F ↠ T ] ∈ Q be a point

such that φ is injective on Supp T . Then

(A.2) F ′ → φ∗φ
∗F ′ → φ∗T

stays surjective.

Proof. First of all, to check surjectivity of (A.2), we may replace X ′ by any
open neighborhood of the support of φ∗T , for example the image of φ itself.
So now φ is faithfully flat, hence φ∗ is a faithful functor, in particular it
reflects epimorphisms. It is easy to see that we may also replace X with any
open neighborhood V of the support B = Supp T . Since φ is étale, it is in
particular quasi-finite and unramified: the fibres Xp, for p ∈ X

′, are finite,
reduced of the same length. Then

A =
∐

b∈B

Xφ(b) \ { b } ⊂ X

is a closed subset, and we can consider the open neighborhood

B ⊂ V = X \A ⊂ X

of the support of T . Since φ is injective on B, and we have just removed
the points in φ−1(φ(B)) that are not in B, the map φ is now an immersion
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around B, so after replacing X by V we observe that the canonical map

(A.3) φ∗φ∗T → T

is an isomorphism. Let us pullback (A.2) along φ, to get

(A.4) ρ : F → φ∗φ∗T.

If we compose ρ with (A.3) we get back θ : F ↠ T , the original surjection. But
(A.3) is an isomorphism, thus ρ is surjective. Since φ∗ reflects epimorphisms,
(A.2) is also surjective, as claimed. □

Proposition A.2. Let φ : X → X ′ be a morphism of varieties, with X ′

proper. Let Q and Q′ be Quot schemes as in (A.1). Fix a point θ = [F ↠ T ] ∈
Q such that φ is étale around B = Supp T and φ|B is injective. Then there

is an open neighborhood θ ∈ U ⊂ Q admitting an étale map Φ: U → Q′.

Proof. First of all, we may replace X by any open neighborhood V of B. We
may choose V affine, so we may assume φ is affine and étale. In the diagram

X × θ X ×Q X

X ′ × θ X ′ ×Q X ′

□

←֓ →i

←→φ
□

←→
p

←→ φ̃ ←→ φ

←֓ →
j

←→ρ

the map φ̃ is now affine, so j∗φ̃∗ →̃φ∗i
∗, and similarly we have ρ∗φ∗ →̃ φ̃∗p

∗

by flat base change. Let us look at the canonical map

α : ρ∗F ′ → ρ∗φ∗F →̃ φ̃∗FQ ↠ φ̃∗T .

We know by Lemma A.1 that restricting α to θ ∈ Q (that is, applying j∗)
we get a surjection F ′ → φ∗F ↠ φ∗T . Since φ is étale and φ|B is injective,
this gives a well-defined point

φ∗θ = [F ′
↠ φ∗T ] ∈ Q

′.

Now we extend the association θ 7→ φ∗θ to a morphism Φ: U → Q′ for suit-
able U ⊂ Q. Note that φ̃∗T , the target of α, is coherent (reason: Supp T →
Q proper and factors through the separated projection X ′ ×Q→ Q, so that
φ̃ : Supp T → X ′ ×Q is proper; but T is the pushforward of a coherent
sheaf on its support). Then the cokernel K of α is also coherent, so that
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Supp K ⊂ X ′ ×Q is closed. Since X ′ is proper, we have that the projection
π : X ′ ×Q→ Q is closed, so the image of the support of K is closed. Let

U = Q \ π(Supp K ) ⊂ Q

be the open complement (non-empty because θ belongs there by assumption).
Now consider the cartesian square

X × U X ×Q

X ′ × U X ′ ×Q

□

←֓ →

←→φU ←→ φ̃

←֓ →

and observe that by construction, α restricts to a surjection

α
∣∣
X′×U

: ρ∗UF
′
↠ φU∗T

∣∣
X×U

where ρU is the projection X ′ × U → X ′. But the target φU∗T
∣∣
X×U

is

flat over U (reason: φ̃∗T is flat over Q because T is; but φU∗T
∣∣
X×U

is
isomorphic to the pullback of φ̃∗T along the open immersion X ′ × U →
X ′ ×Q, therefore it is flat over U). We have constructed a morphism

Φ: U → Q′.

Now we show it is étale by using the infinitesimal criterion. First of all,
as in the proof of Lemma A.1, we may shrink X further in such a way
that, for every x ∈ B, the fibre Xφ(x) consists of the single point x. This
implies that the canonical map φ∗φ∗T → T is an isomorphism; moreover, this
condition only depends on the set-theoretic support of T , so it is preserved
in infinitesimal neighborhoods; in particular we have

(A.5) φ∗φ∗F →̃F

for all infinitesimal deformations FS ↠ F of θ parametrized by a fat point S.
Let ι : S → S be a square zero extension of fat points, and consider a

commutative diagram

S U

S Q′

←
֓

→ι

←

→
g

←→ Φ

←

→
h

←

→
v
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where we need to find a unique v making the two triangles commutative.
This will correspond to a family

FS ↠ V

that we have to find. To fix notation, consider the fibre diagram

(A.6)

X × S X × S

X ′ × S X ′ × S

□

←֓ →
ιX

←→φS ←→ φS

←֓ →ιX′

and denote by FS ↠ G the family corresponding to g (restricting to θ over
the closed point) and by F ′

S
↠ H is the family corresponding to h. The

condition φ ◦ g = h ◦ ι means that we have a diagram of sheaves

(A.7)

ι∗X′F ′

S
ι∗X′H

F ′
S φS∗G

⇐⇐

←

↠

←→ ∼

←

↠

over X ′ × S. The conditions φS∗V = H (translating φ ◦ v = h) and
φ∗

S
φS∗V = V , coming from (A.5), together determine for us the family

V = φ∗

S
H ,

which we consider together with the natural surjection φ∗(h) : FS ↠ V . Note
that

ι∗XV = ι∗Xφ
∗

S
H

= φ∗
Sι

∗
X′H by (A.6)

= φ∗
SφS∗G by (A.7)

= G by (A.5)

proves that v ◦ ι = g, finishing the proof. □

Finally, we extend the statement to X ′ quasi-projective.

Proposition A.3. Let φ : X → X ′ be an étale map of quasi-projective

varieties, F ′ a coherent sheaf on X ′, and let F = φ∗F ′. Let V ⊂ Q be the

open subset whose points correspond to quotients F ↠ T such that φ|Supp T
is injective. Then there is an étale morphism Φ: V → Q′.
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Proof. First complete X ′ to a proper scheme Y . Let i : X ′ → Y be the open
immersion and note that i∗i∗F

′ = F ′ canonically. Combining Proposition A.2
and Lemma A.1 we get an étale map Φ: V → QuotY (i∗F

′, n). But the
support of any quotient sheaf i∗φ∗T lies in the open part X ′ ⊂ Y , so Φ
actually factors through QuotX′(F ′, n) = Q′. □

Appendix B. Relative Quot schemes and PT pairs

Let X be a Calabi–Yau 3-fold and fix the Chern character α = (r,D,−β,−m)
with r ≥ 1. Let ω ∈ H2(X,Z) be an ample class on X satisfying the usual
coprimality condition

(B.1) gcd(r,D · ω2) = 1.

In this section, we upgrade the ‘fibrewise’ closed immersion

ψF ,n : QuotX(Ext
1(F ,OX), n) →֒MPT(r,D, ch2(F), ch3(F)− n)

of Proposition 5.5, where F is a DT and PT object of ch(F) = α, to a
universal closed immersion ψα,n by allowing the sheaf F to vary in the moduli
space of DT and PT objects. The domain of ψα,n is a certain relative Quot
scheme. The morphism ψα,n is not an isomorphism; indeed, it even fails to be
surjective on C-valued points. However, the coproduct ψr,D,β =

∐
n∈Z ψα,n

(not depending on ch3 anymore) is a geometric bijection onto

(B.2) MPT(r,D,−β) =
∐

n∈Z

MPT(r,D,−β,−m− n).

This may be seen as a new stratification of MPT(r,D,−β) by relative Quot
schemes.

We first show that there exists a universal sheaf on X ×MDT(α). Ac-
cording to [19, § 4.6], quasi-universal families exist on every moduli space of
stable sheaves on a smooth projective variety. A universal family exists if
the following numerical criterion is fulfilled.

Theorem B.1 ([19, Thm. 4.6.5]). Let Z be a smooth projective vari-

ety, let c be a class in the numerical Grothendieck group N(Z), and let

{B1, . . . , Bℓ } be a collection of coherent sheaves. If

gcd(χ(c⊗B1), . . . , χ(c⊗Bℓ)) = 1,

then there exists a universal family on M(c)s × Z.
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We obtain the following corollary.

Corollary B.2. There exists a universal family FDT(α) on MDT(α)×X.

Note that c1 : Pic(X)→ H2(X,Z) is an isomorphism since H i(X,OX) =
0 for i = 1, 2. We let L be a line bundle represented by ω ∈ H2(X,Z). Since
X is Calabi–Yau, its Todd class is

Td(X) = (1, 0, c2(X)/12, 0).

Proof. We apply the above criterion. Take the sheaves Bk = L⊗k for k =
0, 1, 2 and B3 = Ox, where x ∈ X is a point. Via the Hirzebruch–Riemann–
Roch Theorem, and using the above expression for the Todd class of X, we
compute

χ(α⊗ L⊗k) =
rk3

6
ω3 +

k2

2
D · ω2 +

rk

12
c2(X) · ω

− kβ · ω +
1

12
D · c2(X)−m

and χ(α⊗ Ox) = r. Writing Pα(k) = χ(α⊗ L⊗k), it is not hard to see that

Pα(2)− 2Pα(1) + Pα(0) = rω3 +D · ω2.

By the coprimality assumption (B.1), we find

gcd(χ(α⊗ Ox), Pα(2), Pα(1), Pα(0))

= gcd(r, Pα(2)− 2Pα(1) + Pα(0), Pα(1), Pα(0))

= gcd(r, rω3 +D · ω2, Pα(1), Pα(0))

= 1.

The result now follows from Theorem B.1. □

Next, we describe the domain of the morphism ψα,n, which is a relative
Quot scheme. Inside the α-component of Lieblich’s moduli stack MX(α) ⊂
MX , consider the intersection

M(α) =MDT(α) ∩MPT(α),

and let M(α) be its coarse moduli space, consisting of µω-stable sheaves of
homological dimension at most one. Let

Fα = FDT(α)
∣∣
X×M(α)
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be the restriction of the universal sheaf constructed in Corollary B.2; it is
flat over M(α). If ιm : X × {m } →֒ X ×M(α) denotes the natural closed
immersion, it follows that

(B.3) Ext2 (ι∗mFα,OX) = 0

for everym ∈M(α). Then [1, Thm. 1.10] implies that Ext2
(
Fα,OX×M(α)

)
=

0 (using that Fα is M(α)-flat) and [1, Thm. 1.9] implies that in the previous
degree the base change map to the fibre is an isomorphism

(B.4) ι∗mExt1
(
Fα,OX×M(α)

)
→̃Ext1 (ι∗mFα,OX) .

We consider the relative Quot scheme

Q(α, n) ..= QuotX×M(α)

(
Ext1

(
Fα,OX×M(α)

)
, n
)
.

It is a projective M(α)-scheme that represents the functor (Sch/M(α))op →
Sets which sends a morphism f : S →M(α) to the set of equivalence classes
of surjections

π∗fExt
1
(
Fα,OX×M(α)

)
↠ Q.

Here Q is an S-flat family of length n sheaves, πf = idX ×f fits in the
cartesian square

X × S X ×M(α)

S M(α)

□

←

→
πf

←→pr2 ←→ pr2

←

→
f

and two surjections are equivalent if they have the same kernel.
Ifm = f(s), and is : X × { s } →֒ X × S and ιm : X × {m } →֒ X ×M(α)

denote the natural closed immersions, then we have a canonical identification

(B.5)

X × { s } X × {m }

X × S X ×M(α)

←
֓

→ is

←

→∼

←
֓

→ ιm

←

→
πf

which we rephrase as the condition

(B.6) ιm = πf ◦ is.
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Remark B.3. Since Fα ∈ Coh(X ×M(α)) is flat over M(α), we have that
Lι∗mFα is a coherent sheaf onX for allm ∈M(α). In particular, Lkι∗mFα = 0
for all k > 0, and so Lι∗mFα = ι∗mFα. Using (B.6), we obtain

ι∗mFα = Lι∗mFα
∼= Li∗s

(
Lπ∗fFα

)
.

By [10, Lem. 4.3], we conversely deduce that Lπ∗fFα is a sheaf on X × S
flat over S. In particular, π∗fFα = Lπ∗fFα since Fα is a sheaf and hence

Lπ∗fFα ∈ D
≤0(X × S).

Remark B.4. If the morphism f : S →M(α) is constant, corresponding
to a single sheaf F parametrised by S in a constant family, then πf factors
through the flat projection

X × S → X × {F} ⊂ X ×M(α).

We are reduced to the situation of Proposition 5.5 and Q(α, n)(f) =
QuotX(Ext

1
X(F ,OX), n)(S).

We now prove the following generalisation of Proposition 5.5.

Proposition B.5. For every n ≥ 0 there is a closed immersion

ψα,n : Q(α, n) →֒MPT(r,D,−β,−m− n).

Proof. Fix a morphism f : S →M(α) and a quotient

q : π∗fExt
1
(
Fα,OX×M(α)

)
↠ Q.

Note that the restriction of q to the slice X × { s } is canonically identified
with a surjection

(B.7) qs : Ext1(ι∗mFα,OX) ↠ Qs

via the identification (B.5) and the base change isomorphism (B.4).
We claim that there exists a canonical morphism

u :
(
π∗fFα

)∨
→ π∗fExt

1
(
Fα,OX×M(α)

)
[−1].

Indeed, it is the composition of the canonical morphisms

(
π∗fFα

)∨
=
(
Lπ∗fFα

)∨ ∼= Lπ∗fF
∨
α → π∗fExt

1
(
Fα,OX×M(α)

)
[−1].
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The second isomorphism follows because the derived pullback commutes
with the derived dualising functor. The last morphism exists by the following
argument.

The vanishing of (B.3) implies Fα ∈ D
[0,1](X ×M(α)). There is a canon-

ical triangle

Lπ∗fH
0(F∨

α )→ Lπ∗fF
∨
α → Lπ∗fExt

1
(
Fα,OX×M(α)

)
[−1]

since Lπ∗f is an exact functor. Taking cohomology yields the isomorphism

H1
(
Lπ∗fF

∨
α

)
∼= π∗fExt

1
(
Fα,OX×M(α)

)

since Lπ∗f is a left derived functor and so Lπ∗f Fα ∈ D
≤1(X × S). This com-

pletes the argument.
We now define ψα,n. As before, we shift the morphism q and precompose

by u to obtain

q̄ = q[−1] ◦ u :
(
π∗fFα

)∨
→ Q[−1].

Taking cohomology of the canonical isomorphism RHom(E,F ) ∼=
RHom(F∨, E∨) yields

HomX×S

(
(π∗fFα)

∨,Q[−1]
)
∼= Ext1X×S

(
Q

D[−1], π∗fFα

)
,

where we have appealed to Lemma 5.4, just as in the proof of Proposition 5.5.
We identify q̄ with the corresponding extension under this identification, to
obtain a triangle

(B.8) π∗fFα → J• → Q
D[−1]

of perfect complexes on X × S. We claim that J• defines an S-family of PT
pairs.

Clearly, the derived fibre J•
s = Li∗sJ

• of each closed point s ∈ S defines
a pre-PT pair based at the sheaf corresponding to m = f(s) ∈M(α). To
see that J•

s is a PT pair, recall that for a perfect complex the operations of
taking the derived fibre and taking the derived dual commute. By taking the
derived fibre of the triangle (B.8), we obtain the triangle

Li∗sπ
∗
fFα → J•

s → Q
D
s [−1]

in Perf(X). Using the fact that Li∗sπ
∗
fFα = ι∗mFα and applying the derived

dualising functor RHomX(−,OX), we obtain the triangle

Qs[−2]→ J•∨
s →

(
ι∗mFα

)∨
.
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Further taking cohomology yields the exact sequence

· · · → Ext1Xs

(
ι∗mFα,OXs

) qs
−→ Qs → Ext2Xs

(J•
s ,OXs

)→ 0

where the last 0 is Ext2(ι∗mFα,OX) as in (B.3) and qs is precisely the map
(B.7) obtained by restricting the original surjection q. As such, it is surjective,
therefore Ext2(J•

s ,OXs
) = 0, proving that J• defines a family of PT pairs by

Lemma 4.5. We conclude that

ψα,n : q 7→ J•

defines a morphism. The properness of ψα,n follows from the valuative
criterion, along with the fact that ψα,n restricted to a fibre τ−1(F) of the
structure morphism τ : Q(α, n)→M(α) is precisely the closed immersion
ψF ,n of Proposition 5.5; see Remark B.4. Finally, the same argument used
in Proposition 5.5 shows injectivity on all valued points, thus proving that
ψα,n is a closed immersion as claimed. □

Set Q(r,D,−β) =
∐
n∈ZQ(α, n) and recall the morphism ψr,D,β from

equation (B.2).

Corollary B.6. The morphism ψr,D,β : Q(r,D,−β)→MPT(r,D,−β) is a
geometric bijection.

This may be seen as a new stratification of MPT(r,D,−β) by relative
Quot schemes.

Proof. Let F → J• → QD[−1] be a C-valued point of MPT(r,D,−β). Write
ch3(F) = −m and ℓ(QD) = n, so that ch3(J

•) = −m− n. Set α =
(r,D,−β,−m) and let f : Spec (C)→M(α) be the morphism correspond-
ing to F . Applying Hom(−,OX) to the triangle of J• yields a surjection
q : Ext1X(F ,OX) ↠ Q, which is a C-valued point of Q(α, n). □
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