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Hörmander Fourier multiplier theorems

with optimal regularity in

bi-parameter Besov spaces

Jiao Chen†, Liang Huang∗, and Guozhen Lu∗‡

The main aim of this paper to establish a bi-parameter version
of a theorem of Baernstein and Sawyer [1] on boundedness of
Fourier multipliers on one-parameter Hardy spaces Hp(Rn) which
improves an earlier result of Calderón and Torchinsky [2]. More pre-
cisely, we prove the boundedness of the bi-parameter Fourier multi-
plier operators on the Lebesgue spaces Lp(Rn1 × Rn2) (1 < p <∞)
and bi-parameter Hardy spaces Hp(Rn1 × Rn2) (0 < p ≤ 1) with
optimal regularity for the multiplier being in the bi-parameter

Besov spaces B
(
n1
2 ,

n2
2 )

2,1 (Rn1 × Rn2) and B
(s1,s2)
2,q (Rn1 × Rn2).

The Besov regularity assumption is clearly weaker than the as-
sumption of the Sobolev regularity. Thus our results sharpen the
known Hörmander multiplier theorem for the bi-parameter Fourier
multipliers using the Sobolev regularity in the same spirit as Baern-
stein and Sawyer improved the result of Calderón and Torchinsky.
Our method is differential from the one used by Baernstein and
Sawyer in the one-parameter setting. We employ the bi-parameter
Littlewood-Paley-Stein theory and atomic decomposition for the
bi-parameter Hardy spaces Hp(Rn1 × Rn2) (0 < p ≤ 1) to estab-
lish our main result (Theorem 1.6). Moreover, the bi-parameter
nature involves much more subtlety in our situation where atoms
are supported on arbitrary open sets instead of rectangles.
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1. Introduction

We first recall some basics about the Fourier multiplier operators. For m ∈
L∞(Rn), the Fourier multiplier operator T̃m is defined by

T̃mf(x) =

∫

Rn

m(ξ)f̂(ξ)e2πix·ξdξ

for f ∈ S(Rn). The Mihlin multiplier theorem [25] says that if m ∈
C [n/2]+1(Rn \ {0}) satisfies

|∂αξ m(ξ)| ≤ Cα|ξ|
−|α|

for all |α| ≤ [n/2] + 1, then the Fourier multiplier operator T̃m is bounded
from Lp(Rn) to Lp(Rn) for all 1 < p <∞.

Let ψ ∈ S(Rn) be a Schwartz function in Rd (with d changing from time
to time as needed) satisfying
(1.1)

suppψ ⊂

{
ξ ∈ Rd :

1

2
≤ |ξ| ≤ 2

}
,
∑

j∈Z

ψ(ξ/2j) = 1 for all ξ ∈ Rd\{0}.

For s ∈ R, the Sobolev space W s(Rn) consists of all f ∈ S ′(Rn) such
that

(1.2) ∥f∥W s ≜ ∥(I −△)s/2f∥L2 <∞,

where (I −△)s/2f = F−1[(1 + |ξ|2)s/2f̂(ξ)] and ξ ∈ Rn. Then the Hörman-
der multiplier theorem [18] says

Theorem 1.1. If m ∈ L∞(Rn) satisfies

sup
j∈Z

||m(2j ·)ψ||W s(Rn) <∞ for all s >
n

2
,
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where ψ is the same as in (1.1) when d = n and W s(Rn) is the Sobolev
space, then the Fourier multiplier operator T̃m defined with the symbol m is
bounded from Lp(Rn) to Lp(Rn) for all 1 < p <∞.

Calderón and Torchinsky [2] set up the following Hörmander’s multiplier
theorem on Hardy spaces.

Theorem 1.2. If m ∈ L∞(Rn) satisfies

(1.3) sup
j∈Z

||m(2j ·)ψ||W s(Rn) <∞ for all s >
n

p
−
n

2
,

where ψ is the same as in (1.1) when d = n and W s(Rn) is the Sobolev
space, then the Fourier multiplier operator T̃m defined with the symbol m is
bounded from Hp(Rn) to Hp(Rn) for all 0 < p ≤ 1.

Baernstein and Sawyer [1] obtained the following sharpened result when
0 < p < 1 at the limiting case of (1.3), i.e., s = n

p − n
2 .

Theorem 1.3. If m ∈ L∞(Rn) satisfies

sup
j∈Z

||m(2j ·)ψ||Bα
2,q(R

n) <∞(1.4)

for all α =
n

p
−
n

2
and q ≤ p or α >

n

p
−
n

2
and 0 < q <∞,

where ψ is the same as in (1.1) when d = n and Bα
2,p(R

n) is the Besov

space(see the definition of Besov space in Section 2), then T̃m is bounded
from Hp(Rn) to Hp(Rn) for all 0 < p < 1.

Remark 1.1. If p = 1 and m satisfies (1.4) with α > n
2 , then Tm is still

bounded from H1(Rn) to H1(Rn). For p = 1, if m satisfies (1.4) and α = n
2 ,

a counterexample of Baernstein and Sawyer shows that Tm needs not be
bounded on H1(Rn).

In the bi-parameter setting, the Fourier multiplier operator is defined by

Tm(f)(x1, x2) :=

∫

Rn1×Rn2

m(ξ1, ξ2)f̂(ξ1, ξ2)e
2πi(x1·ξ1+x2·ξ2)dξ1dξ2

for f ∈ S(Rn1 × Rn2), where x ∈ Rn1 × Rn2 and ξ = (ξ1, ξ2) ∈ Rn1 × Rn2 .
We note that as convolution type singular integral operators in multi-

parameter setting, the Lp boundedness for the bi-parameter Fourier multi-
plier operators follows from the work of R. Fefferman and Stein [17]. We also
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refer to [26] for Lp boundedness and [23] for Hp boundedness of a class of
rather general non-convolutional type of multi-parameter singular integral
operators. The Hardy Hp → Hp boundedness for the bi-parameter Fourier
multipliers (thus being convolutional type singular integral operators) fol-
lows from the works [4], [5], [15], [24] without knowing the optimal regularity
of the multipliers.

We set

(1.5) mj1,j2(ξ1, ξ2) = m(2j1ξ1, 2
j2ξ2)ψ(ξ1)ψ(ξ2), j1, j2 ∈ Z,

where ψ(ξ1) is as in (1.1) with d = n1 and ψ(ξ2) is as in (1.1) with d = n2.

For s1, s2 ∈ R, the two-parameter Sobolev space W (s1,s2)(Rn1 × Rn2) is
defined to be the class of all f ∈ S ′(Rn1 × Rn2) such that

(1.6) ∥f∥W (s1,s2)(Rn1×Rn2 ) = ∥D(s1,s2)f∥L2(Rn1×Rn2 ) <∞,

where D(s1,s2)f(x1, x2) = F−1[(1 + |ξ1|
2)s1/2(1 + |ξ2|

2)s2/2f̂(ξ1, ξ2)](x1, x2).

The following is a bi-parameter version of the Fourier multipliers theorem
of Calderón and Torchinsky (see [3] and [10]). This sharpens results in [11,
16, 20]. The numbers s1 > n1(

1
p − 1

2) and s2 > n2(
1
p − 1

2) are optimal in the
sense of the Sobolev regularity (see [3] and [10]).

Theorem 1.4. Assume that m(ξ) is a function on Rn1 × Rn2 satisfying

sup
j1,j2∈Z

∥mj1,j2∥W (s1,s2) <∞

with si > ni(
1
p − 1

2) for 1 ≤ i ≤ 2. Then Tm is bounded from Hp(Rn1 × Rn2)
to Hp(Rn1 × Rn2) for all 0 < p ≤ 1 and

∥Tm∥Hp→Hp ≲ sup
j1,j2∈Z

∥mj1,j2∥W (s1,s2) ,

where mj1,j2 is defined by (1.5). Moreover, the smoothness assumption on
si is optimal in the sense that there exists a multiplier m with some si ≤
ni(

1
p − 1

2) such that Tm is not bounded on Hp(Rn1 × Rn2).

We also refer to the reader to [7] and [19] for the Hörmander multiplier
theorem in the anisotropic one and bi-parameter settings.

In the present paper, we shall consider the Fourier multipliers which
satisfy the following conditions (1.7) or (1.9) with optimal regularity in the
bi-parameter Besov spaces (see the definition in Section 2). We will obtain a
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limiting case of the above Theorem 1.4 using the bi-parameter Besov spaces
regularity instead of using the bi-parameter Sobolev space regularity.

The following is the first main result, which gives the Lp-estimates of
the bi-parameter Fourier multipliers for 1 < p <∞.

Theorem 1.5. Let 1 < p <∞. Assume that m(ξ1, ξ2) is a function on
Rn1 × Rn2 satisfying

(1.7) sup
j1,j2∈Z

∥mj1,j2∥B(n1/2,n2/2)
2,1 (Rn1×Rn2 )

<∞.

Then

∥Tm∥Lp→Lp ≲ sup
j1,j2∈Z

∥mj1,j2∥B(n1/2,n2/2)
2,1 (Rn1×Rn2 )

.

Remark 1.2. We can show that the numbers n1/2, n2/2 in Theorem 1.5
are sharp, see Proposition 5.1.

For s1 > n1/2 and s2 > n2/2, it should be remarked that

W (s1,s2)(Rn1 × Rn2) →֒ B
(n1/2,n2/2)
2,1 (Rn1 × Rn2) →֒ L∞(Rn1 × Rn2).

Thus, we can obtain a corollary of Theorem 1.5.

Corollary 1.1. Let 1 < p <∞. Assume that m(ξ1, ξ2) is a function on
Rn1 × Rn2 satisfying

(1.8) sup
j1,j2∈Z

∥mj1,j2∥W (s1,s2)(Rn1×Rn2 ) <∞.

Then

∥Tm∥Lp→Lp ≲ sup
j1,j2∈Z

∥mj1,j2∥W (s1,s2)(Rn1×Rn2 ),

where s1 > n1/2 and s2 > n2/2.

The following theorem is the second main result.
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Theorem 1.6. Let 0 < p ≤ 1 and 0 < q <∞. Assume that m(ξ1, ξ2) is a
function on Rn1 × Rn2 satisfying

(1.9) sup
j1,j2∈Z

∥mj1,j2∥B(s1,s2)
2,q (Rn1×Rn2 )

<∞.

Then

∥Tm∥Hp→Hp ≲ sup
j1,j2∈Z

∥mj1,j2∥B(s1,s2)
2,q (Rn1×Rn2 )

,

where s1 > n1(1/p− 1/2) and s2 > n2(1/p− 1/2).

Let 0 < p ≤ 1, s1 > n1(1/p− 1/2), s2 > n2(1/p− 1/2) and q ≥ 2. Notice
that

W (s1,s2) = B
(s1,s2)
2,2 (Rn1 × Rn2) →֒ B

(s1,s2)
2,q (Rn1 × Rn2)

Thus, Theorem 1.4 is a corollary of Theorem 1.6.

Remark 1.3. One may wonder if Theorem 1.6 is still true when 0 < p ≤ 1
and s1 = n1(1/p− 1/2), s2 = n2(1/p− 1/2) as in the one-parameter case.
In establishing our Theorem 1.6, we apply Fefferman’s criterion (see The-
orem 2.1 below) in the bi-parameter case. We provide an example here to
show that the multiplier operators Tm do not satisfy Fefferman’s criterion
when s1 = n1(1/p− 1/2), s2 = n2(1/p− 1/2). (see Section 5 for such an ex-
ample.)

Remark 1.4. Furthermore, if we assume assume

(1.10) sup
j1,j2∈Z

∥mj1,j2∥B(s1,s2)
2,1 (Rn1×Rn2 )

<∞,

where s1 > n1/2, s2 > n2/2, then Tm is bounded on H1(Rn1 × Rn2) and the
numbers n1/2 and n2/2 are sharp, see Proposition 5.2.

Remark 1.5. We can also prove that the numbers n1(
1
p − 1

2) and n2(
1
p − 1

2)
in Theorem 1.6 are sharp for 0 < p < 1.

By duality of the product Hp(Rn1 × Rn2) and CMOp(Rn1 × Rn2) (see
[22]) and the Hp(Rn1 × Rn2) boundedness of Tm, we have

Theorem 1.7. Assume that m(ξ1, ξ2) is a function on Rn1 × Rn2 satisfying

(1.11) sup
j1,j2∈Z

∥mj1,j2∥B(s1,s2)
2,q (Rn1×Rn2 )

<∞,

withs1 > n1(
1
p − 1

2), s2 > n2(
1
p − 1

2) and 0 < p ≤ 1 and 0 < q <∞.
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Then Tm is bounded from CMOp(Rn1 × Rn2) to CMOp(Rn1 × Rn2).
Moreover

∥Tm∥CMOp→CMOp ≲ sup
j1,j2∈Z

∥mj1,j2∥B(s1,s2)
2,q (Rn1×Rn2 )

.

In the case of p = 1, we derive the boundedness of Tm on the bi-parameter
BMO(Rn1 × Rn2) under the assumption that the multiplier m satisfies the
minimal smoothness s1 > n1/2 and s2 > n2/2.

As we pointed out earlier, the following relationship shows that our main
results (Theorems 1.5 and 1.6) indeed improve the known Hörmander type
multiplier theorem with regularity in the bi-parameter Sobolev spaces (e.g.,
Theorem 1.4):

W (s1,s2)(Rn1 × Rn2) = B
(s1,s2)
2,2 (Rn1 × Rn2) →֒ B

(s1,s2)
2,q (Rn1 × Rn2)

for 0 < p ≤ 1, q ≥ 2, s1 > n1(1/p− 1/2) and s2 > n2(1/p− 1/2) and

W (s1,s2)(Rn1 × Rn2) →֒ B
(n1/2,n2/2)
2,1 (Rn1 × Rn2) →֒ L∞(Rn1 × Rn2)

for s1 > n1/2 and s2 > n2/2.

We finally mention that Hörmander Fourier multiplier theorems with
optimal Besov regularity on Hardy spaces of arbitrary number of parameters
have been recently established by the authors [8]. It requires different ideas
since the Fefferman’s boundedness criterion fails in the case of three or more
parameters.

We use the notations A ≈ B to denote C−1B ≤ A ≤ CB for some abso-
lute constant C ≥ 1 and A ≲ B to denote A ≤ CB for some absolute con-
stant C > 0.

The organization of this paper is as follows: In Section 2 we recall some
preliminary facts and give some relevant definitions. In Sections 3 and 4, we
prove Theorems 1.5 and 1.6 respectively. In Section 5, the sharpness of the
conditions of Theorem 1.5 and Theorem 1.6 are discussed and an example
is constructed to show Tm does not satisfy Fefferman’s criterion.

2. Preliminary results

Let S(Rn) and S ′(Rn) be the Schwartz spaces of all rapidly decreasing
smooth functions and tempered distributions, respectively. We define the
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Fourier transform Ff and the inverse Fourier transform F−1f of f ∈ S(Rn)
by

Ff(ξ) = f̂(ξ) =

∫

Rn

f(x)e−2πix·ξdx and F−1f(x) =

∫

Rn

f(ξ)e2πix·ξdξ.

For m ∈ L∞(Rn), the linear Fourier multiplier operator m(D) is defined
by

m(D)f(x) = F−1[mf̂ ](x) =

∫

Rn

m(ξ)f̂(ξ)e2πix·ξdξ, f ∈ S(Rn).

The Hardy-Littlewood maximal function M is defined by

Mf(x) = sup
r>0

1

|B(x, r)|

∫

B(x,r)
|f(y)|dy,

where f is a locally integral function on Rn.

We recall the definition of Besov spaces. Let φ ∈ S(Rd) be such that

suppφ ⊂ {ξ ∈ Rd : 1/2 ≤ |ξ| ≤ 2},
∑

k∈Z

φ(ξ/2k) = 1, ξ ∈ Rd \ {0}.(2.12)

And see φ0(ξ) = 1−
∑∞

k=1 φ(ξ/2
k), φk(ξ) = φ(ξ/2k) for k ≥ 1.

For 0 < p, q ≤ ∞ and s ∈ R, the Besov space Bs
p,q(R

n) consists of all
f ∈ S ′(Rn) such that

∥f∥Bs
p,q(R

n) =

(
∞∑

k=0

2ksq∥φk(D)f∥qLp

)1/q

<∞.

The norm of the Besov space of the product type B
(s1,s2)
p,q (Rn1 × Rn2),

s1, s2 ∈ R, for f ∈ S ′(Rn1 × Rn2) is also defined by

∥f∥
B

(s1,s2)
p,q (Rn1×Rn2 )

=

(
∞∑

k1,k2=0

2(k1s1+k2s2)q∥Φ(k1,k2)(D)f∥qLp

)1/q

<∞,

where

Φ(k1,k2)(ξ) = (φk1
⊗ φk2

)(ξ) = φk1
(ξ1)φk2

(ξ2),(2.13)

ξ = (ξ1, ξ2) ∈ Rn1 × Rn2 .

Let us recall the definition of bi-parameter Hardy spaces and atomic de-
composition of the product Hardy spacesHp(Rn1 × Rn2). For ψ(ξi) ∈ S(Rni)
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satisfy condition (1.1) for i = 1, 2 and set Ψj1,j2(x1, x2) = ψj1(x1)ψj2(x2).
The product Littlewood-Paley square function of f ∈ S ′(Rn1 × Rn2) is de-
fined by

f∗(x1, x2) =

(
∑

j1,j2∈Z

|Ψj1,j2(D1, D2)f(x1, x2)|
2

)1/2

.

For 0 < p ≤ 1, the product Hardy space Hp(Rn1 × Rn2) can be defined by

Hp(Rn1 × Rn2) = {f ∈ S ′(Rn1 × Rn2) : f∗ ∈ Lp(Rn1 × Rn2)}

with ∥f∥Hp(Rn1×Rn2 ) := ∥f∗∥Lp(Rn1×Rn2 ).
A function a(x1, x2) defined in Rn1 × Rn2 is called an Hp(Rn1 × Rn2)

atom if a(x1, x2) is supported in an open set Ω ⊂ Rn1 × Rn2 with finite
measure and satisfies the following conditions:

(i) ∥a∥L2 ≤ |Ω|1/2−1/p,
(ii) a can further be decomposed as a(x1, x2) =

∑
R∈M(Ω) aR(x1, x2),

where aR are supported on the double of R = I × J (I a dyadic cube in
Rn1 , J a dyadic cube in Rn2) and M(Ω) is the collection of all maximal
dyadic rectangles contained in Ω,

{
∑

R∈M(Ω)

∥aR∥
2
L2

}1/2

≤ |Ω|1/2−1/p,

(iii)
∫
2I aR(x1, x2)x

α
1 dx1 = 0 for all x2 ∈ Rn2 , 0 ≤ |α| ≤ Np,n1

,∫
2J aR(x1, x2)x

β
2dx2 = 0 for all x1 ∈ Rn1 , 0 ≤ |β| ≤ Np,n2

,
where Np,n1

, Np,n2
are large integers depending on n1, n2 and p.

Chang and R. Fefferman [4, 5] proved the atomic decomposition of prod-
uct Hardy spaces Hp(Rn1 × Rn2). Moreover, we also employ in the proof of
Theorem 1.6 the following boundedness criterion which was established by
R. Fefferman [15].

Theorem 2.1. Let 0 < p ≤ 1 and T be a bounded linear operator on
L2(Rn1 × Rn2). Suppose that there exist constants C > 0 and δ > 0 such
that, for any Hp(Rn1 × Rn2) rectangle atom a supported on R,

(2.14)

∫

Rn1×Rn2\γR
|Ta(x1, x2)|

pdx1dx2 ≤ Cγ−δ for all γ ≥ 2,

where γR denotes the concentric γ-fold dilation of R. Then T is a bounded
operator from Hp(Rn1 × Rn2) to Lp(Rn1 × Rn2).
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We now recall the definition of the dual space of weighted multi-
parameter Hardy spaces Hp(Rn1 × Rn2) introduced in [22] using the
Littlewood-Paley-Stein square functions. We only consider the nonweighted
case here. It is the so-called Carleson measure space CMOp = CMOp(Rn1 ×
Rn2). We refer to [22] for more details.

Definition 2.1. For 0 < p ≤ 1, we call f ∈ CMOp(Rn1 × Rn2) if f ∈
(S∞)

′

(Rn1 × Rn2) with the finite norm defined by

sup
Ω

{
1

|Ω|
2

p
−1

∑

j,k∈Z

∑

I1×I2

|ψ1(D/2
j)ψ2(D/2

k)f(2−jl1 , 2−kl2)|2 × |I1 × I2|

}1/2

for all open sets Ω in Rn1 × Rn2 with finite measures, here I1 are dyadic
cubes in Rn1 with the side length 2−j and the left lower corners of I1 is
2−jl1, l1 ∈ Zn1 and I2 are dyadic cubes in Rn2 with the side length 2−k and
the left lower corners of I2 is 2−kl2, l2 ∈ Zn2 .

We will use Littlewood-Paley-Stein square functions to prove our opti-
mal Fourier multiplier theorem using the Besov space regularity. We remark
the multi-parameter local Hardy space theory has also been developed us-
ing the Littlewood-Paley-Stein square functions and boundedness of multi-
parameter singular integrals and pseudo-differential operators on such spaces
has been established (see [12], [13], [14], [6]).

We also need the definition of the strong maximal operator Ms in [21].
Suppose that f is a locally integrable function on Rn1 × Rn2 , then Ms(f) is
defined by

(2.15) Msf(x1, x2) = sup
r1,r2>0

1

r1n
1

r2n

∫

Rn1×Rn2

|f(y1, y2)|dy1dy2,

where R = {(y1, y2) ∈ Rn1 × Rn2 : |y1 − x1| < r1, |y2 − x2| < r2}. It is well
known that Ms is bounded on Lp(Rn1 × Rn2) for all 1 < p <∞ (see [9]).

The following lemma and proposition will be used later, we can find
them in [27].

Lemma 2.1. Let s1, s2 > 0, 1 ≤ p ≤ ∞ and 0 ≤ q <∞. Then there exists
a constant C such that the estimate

∥f · g∥
B

(s1,s2)
p,q (Rn1×Rn2 )

≤ C∥f∥
B

(s1,s2)
p,q (Rn1×Rn2 )

∥g∥
B

(s1,s2)
∞,q (Rn1×Rn2 )

(2.16)

holds for all f in B
(s1,s2)
p,q and all g in B

(s1,s2)
∞,q .
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Hörmander Fourier multiplier theorems 1057

Proposition 2.1. Let s1, s2 > 0, 1 ≤ p ≤ ∞ and 0 ≤ q <∞. Then the fol-
lowing inequality holds:

∥f(2l1 ·, 2l2 ·)∥
B

(s1,s2)
p,q

≲ max{1, 2l1s1}2−l1n1/2max{1, 2l2s2}2−l2n2/2∥f∥
B

(s1,s2)
p,q

holds for all f in B
(s1,s2)
p,q and all g in B

(s1,s2)
∞,q .

We also need the following result which will be used in the proof of
Theorem 1.5.

Theorem 2.2. ([17]) Let 1 < p <∞, and let ψ1 ∈ S(Rn1), ψ2 ∈ S(Rn2) be
such that suppψ1 ⊂ {ξ ∈ Rn1 : 1/a ≤ |ξ| ≤ a} for some a > 1, suppψ2 ⊂ {η ∈
Rn2 : 1/b ≤ |η| ≤ b} for some b > 1. Then there exists a constant C > 0 such
that

∥∥∥∥∥

{
∑

j,k∈Z

|ψ1(D/2
j)ψ2(D/2

k)f |2

}1/2∥∥∥∥∥
Lp

(2.17)

≤ C∥f∥Lp for all f ∈ Lp(Rn1+n2)

where [ψ1(D/2
j)ψ2(D/2

k)f ](ξ1, ξ2) = F−1
[
ψ1(·/2

j)ψ2(·/2
k)f̂(·, ·)

]
(ξ1, ξ2).

Moreover, if
∑

j∈Z ψi(ξi/2
j) = 1 for all ξi ̸= 0, for i = 1, 2, then

∥∥∥∥∥

{
∑

j,k∈Z

|ψ1(D/2
j)ψ2(D/2

k)f |2

}1/2∥∥∥∥∥
Lp

(2.18)

≈ ∥f∥Lp for all f ∈ Lp(Rn1+n2).

Lemma 2.2. Let s1 > 0, s2 > 0, q > 0, and let ψ′(ξi) ∈ S(Rni) be such that
suppψ′(ξi) is a compact subset of Rni \ {0} for i = 1, 2. Assume that ϕ ∈
C∞(Rn1 × Rn2 \ {0}) satisfies

|∂α1

ξ1
∂α2

ξ2
ϕ(ξ1, ξ2)| ≤ Cα1,α2

(|ξ1|+ |ξ2|)
−(|α1|+|α2|)

for all multi-indices α1, α2. Then there exists a constant C > 0 such that

sup
t1,t2>0

∥m(t1·, t2·)ϕ(t1·, t2·)ψ
′ψ′∥

B
(s1,s2)
2,q

≤ C sup
j1,j2∈Z

∥mj1,j2∥B(s1,s2)
2,q

for all m ∈ L∞(Rn1 × Rn2) satisfying supj1,j2∈Z ∥mj1,j2∥B(s1,s2)
2,q

<∞, where

mj1,j2 is defined by (1.5).
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Proof. We may assume that suppψ′(ξ1) ⊂ {ξ1 ∈ Rn1 : 1/2l1 ≤ |ξ1| ≤ 2l1}
and suppψ′(ξ2) ⊂ {ξ2 ∈ Rn2 : 1/2l2 ≤ |ξ2| ≤ 2l2} for some l1, l2 ∈ N. Given
t1, t2 > 0, take j1, j2 ∈ Z satisfying 2j1−1 ≤ t1 ≤ 2j1 and 2j2−1 ≤ t2 ≤ 2j2 .
Then, since 1 < 2j1/t1 ≤ 2 and 1 < 2j2/t2 ≤ 2, by a change of variables and
Proposition 2.1,

∥m(t1·, t2·)ϕ(t1·, t2·)ψ
′ψ′∥

B
(s1,s2)
2,q

≤ C∥m(2j1 ·, 2j2 ·)ϕ(2j1 ·, 2j2 ·)ψ′(2j1t−1
1 ·)ψ′(2j2t−1

2 ·)∥
B

(s1,s2)
2,q

.

Let ψ ∈ S(Rd) be as in (1.1) with d = n1 and d = n2, and note that

suppψ(ξ1/2
k1) ⊂ {2k1−1 ≤ |ξ1| ≤ 2k1+1}

and

suppψ(ξ2/2
k2) ⊂ {2k2−1 ≤ |ξ2| ≤ 2k2+1}.

Set Ψ(ξ1, ξ2) = ψ(ξ1)ψ(ξ2) and Ψ′(ξ1, ξ2) = ψ′(ξ1)ψ
′(ξ2). Using

suppψ′(2j1t−1
1 ξ1) ⊂ {1/2l1+1 ≤ |ξ1| ≤ 2l1}

and

suppψ′(2j2t−1
2 ξ2) ⊂ {1/2l2+1 ≤ |ξ2| ≤ 2l2},

we have by Lemma 2.1

∥m(2j1 ·, 2j2 ·)ϕ(2j1 ·, 2j2 ·)Ψ′(2j1t−1
1 ·, 2j2t−1

2 ·)∥
B

(s1,s2)
2,q

≤

l1∑

k1=−(l1+1)

l2∑

k2=−(l2+1)

∥m(2j1 ·, 2j2 ·)ϕ(2j1 ·, 2j2 ·)

×Ψ′(2j1t−1
1 ·, 2j2t−1

2 ·)Ψ(·/2k1 , ·/2k2)∥
B

(s1,s2)
2,q

≤ C

l1∑

k1=−(l1+1)

l2∑

k2=−(l2+1)

∥m(2j1 ·, 2j2 ·)Ψ(·/2k1 , ·/2k2)∥
B

(s1,s2)
2,q

× ∥ϕ(2j1 ·, 2j2 ·)Ψ′(2j1t−1
1 ·, 2j2t−1

2 ·)∥
B

(s1,s2)
∞,q

≤ C

l1∑

k1=−(l1+1)

l2∑

k2=−(l2+1)

∥m(2j1+k1 ·, 2j2+k2 ·)Ψ∥
B

(s1,s2)
2,q

∥ϕ(t1·, t2·)Ψ
′∥

B
(s1,s2)
∞,q

≤ C

(
sup

j1,j2∈Z
∥mj1,j2∥B(s1,s2)

2,q

)(
sup

t1,t2>0
∥ϕ(t1·, t2·)Ψ

′∥
B

(s1,s2)
∞,q

)
.
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Since |∂α1

ξ1
∂α2

ξ2
ϕ(t1ξ1, t2ξ2)| ≤ Cα1,α2

(|ξ1|+ |ξ2|)
−(|α1|+|α2|), and suppΨ′ does

not contain the origin, we have |∂α1

ξ1
∂α2

ξ2
(ϕ(t1·, t2·)Ψ

′)| ≤ Cα1,α2
for all α1, α2

and t1, t2, and consequently,

sup
t1,t2>0

∥ϕ(t1·, t2·)Ψ
′∥

B
(s1,s2)
∞,q

<∞.

The proof is complete. □

Remark 2.1. By Lemma 2.2, we have
∑

k1,k2

2(k1s1+k2s2)q∥φk1
φk2

F−1[ξα1

1 ξα2

2 mj1,j2(ξ1, ξ2)]∥
q
L2 ≤ sup

j1,j2∈Z
∥mj1,j2∥

q

B
(s1,s2)
2,q

,

where s1, s2 > 0 and mj1,j2 is defined by (1.5). In fact, since

F−1[ξα1

1 ξα2

2 mj1,j2(ξ1, ξ2)] = F−1[m(2j1 ·, 2j2 ·)ξα1

1 ξα2

2 Ψ],

the estimate follows from Lemma 2.2 with ϕ = 1 and ψ′ψ′ = ξα1

1 ξα2

2 Ψ.

We first prove the following lemma which is needed in our proof of The-
orem 1.5.

Lemma 2.3. Let ϕ ∈ S(Rd) be such that ϕ(x) = ϕ(−x), x ∈ Rd, and ϕ(x) =
1 on {x ∈ Rd : |x| ≤ 2}. Then

|Tm(·/2j1 ,·/2j2 )(f)(x)| ≲
∞∑

k1,k2=0

2(k1n1+k2n2)/2∥Φ(k1,k2)(D)m∥L2

× [(|ϕ|2)(k1−j1)(|ϕ|
2)(k2−j2)] ∗ |f |

2(x)1/2

for x=(x1, x2)∈Rn1×Rn2 and j1, j2∈Z, where (|ϕ|2)(k)(y)=2−kd|ϕ(2−ky)|2

with d = n1, d = n2 and Φ(k1,k2) is defined by (2.13).

Proof. Let {φki
}∞ki=0 be the partition of unity appearing in the definition of

Besov spaces of the product type for i = 1, 2. Then

Tm(·/2j1 ,·/2j2 )(f)(x)

= 2j1n1+j2n2

∫

Rn1×Rn2

F−1m(2j1(x1 − y1), 2
j2(x2 − y2))f(y1, y2)dy1dy2

= 2j1n1+j2n2

∞∑

k1,k2=0

∫

Rn1×Rn2

φk1
(2j1(y1 − x1))φk2

(2j2(y2 − x2))

× m̂(2j1(y1 − x1), 2
j2(y2 − x2))f(y1, y2)dy1dy2.
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Since suppφki
⊂ {yi ∈ Rni : |yi| ≤ 2ki+1}, we have φki

(yi) = φki
(yi)ϕ(yi/2

ki).
Hence, using Schwartz’s inequality, a change of variables and ϕ(yi) = ϕ(−yi),
we have

|Tm(·/2j1 ,·/2j2 )(f)(x)|

≲ 2j1n1+j2n2

∞∑

k1,k2=0

∫

Rn1×Rn2

[Φ(k1,k2)m̂](2j1(y1 − x1), 2
j2(y2 − x2))

× ϕ

(
2j1(y1 − x1)

2k1

)
ϕ

(
2j2(y2 − x2)

2k2

)
f(y1, y2)dy1dy2

≤ 2j1n1+j2n2

∞∑

k1,k2=0

∥[Φ(k1,k2)m̂](2j1(y1 − x1), 2
j2(y2 − x2))∥L2

×

∥∥∥∥ϕ
(
y1 − x1
2k1−j1

)
ϕ

(
y2 − x2
2k2−j2

)
f(y1, y2)

∥∥∥∥
L2

=

∞∑

k1,k2=0

2(k1n1+k2n2)/2∥Φ(k1,k2)(D)m∥L2

× [(|ϕ|2)(k1−j1)(|ϕ|
2)(k2−j2)] ∗ |f |

2(x)1/2.

This completes the proof of Lemma 2.3. □

3. The proof of main theorem: Theorem 1.5

In this section, we prove Theorem 1.5.

Proof. First, we consider 2 < p <∞. We obtain that

∥Tm(f)∥Lp ≲

∥∥∥∥∥

(
∑

j1,j2∈Z

|∆j1,j2Tm(f)|2

)1/2∥∥∥∥∥
Lp

.

Here, we use A to denote the set of ψ ∈ S(Rd) for which suppψ is a compact
subset of Rd \ {0}. Then we can find functions ψ̃ ∈ A independent of j1, j2
such that

m(ξ1, ξ2)ψ(ξ1/2
j1)ψ(ξ2/2

j2)

= m(ξ1, ξ2)ψ(ξ1/2
j1)ψ(ξ2/2

j2)ψ̃(ξ1/2
j1)ψ̃(ξ2/2

j2),
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where we used the fact that suppψ(ξi) ⊂ {ξi ∈ Rni : 1/2 ≤ |ξi| ≤ 2}. Hence,
we see that

∆j1,j2Tm(f)(x)

=

∫

Rn1×Rn2

m(ξ1, ξ2)ψ(ξ1/2
j1)ψ(ξ2/2

j2)f̂(ξ1, ξ2)e
2πi(x1ξ1+x2ξ2)dξ1dξ2

= Tmj1,j2 (·/2
j1 ,·/2j2 )(∆̃j1,j2f)(x),

where ∆̃j1,j2f = [ψ̃(D/2j1)ψ̃(D/2j2)]f .

By Lemma 2.3, we have

|Tmj1,j2 (·/2
j1 ,·/2j2 )(∆̃j1,j2f)(x)|

≲
∞∑

k1,k2=0

2(k1n1+k2n2)/2∥Φ(k1,k2)(D)mj1,j2∥L2

× [(|ϕ|2)(k1−j1)(|ϕ|
2)(k2−j2)] ∗ |∆̃j1,j2f |

2(x)1/2

=: Ej1,j2(x).

It follows from Schwartz’s inequality that Ej1,j2(x) is estimated by

Ej1,j2(x) ≤

(
∞∑

k1,k2=0

2(k1n1+k2n2)/2∥Φ(k1,k2)(D)mj1,j2∥L2

)1/2

×

{
∞∑

k1,k2=0

2(k1n1+k2n2)/2∥Φ(k1,k2)(D)mj1,j2∥L2

× [(|ϕ|2)(k1−j1)(|ϕ|
2)(k2−j2)] ∗ |∆̃j1,j2f |

2(x)

}1/2

≤ ∥mj1,j2∥
1/2

B
(n1/2,n2/2)
2,1

{
∞∑

k1,k2=0

2(k1n1+k2n2)/2∥Φ(k1,k2)(D)mj1,j2∥L2

× [(|ϕ|2)(k1−j1)(|ϕ|
2)(k2−j2)] ∗ |∆̃j1,j2f |

2(x)

}1/2

.
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Thus,

∥Tm(f)∥Lp ≲

∥∥∥∥∥

(
∑

j1,j2∈Z

|∆j1,j2Tm(f)|2

)1/2∥∥∥∥∥
Lp

≲

(
sup
j1,j2

∥mj1,j2∥B(n1/2,n2/2)
2,1

)1/2

×

∥∥∥∥∥

(
∑

j1,j2∈Z

∞∑

k1,k2=0

2(k1n1+k2n2)/2∥Φ(k1,k2)(D)mj1,j2∥L2

× [(|ϕ|2)(k1−j1)(|ϕ|
2)(k2−j2)] ∗ |∆̃j1,j2f |

2(x))1/2

∥∥∥∥∥
Lp

.

In order to estimate the above Lp-norm, we use a duality argument. Let
g ∈ S be such that ∥g∥L(p/2)′ = 1. Then, we have

∥Tm(f)∥Lp ≲

(
sup
j1,j2

∥mj1,j2∥B(n1/2,n2/2)
2,1

)1/2

×

∣∣∣∣∣

∫

Rn1×Rn2

(
∑

j1,j2∈Z

∞∑

k1,k2=0

2(k1n1+k2n2)/2∥Φ(k1,k2)(D)mj1,j2∥L2

× [(|ϕ|2)(k1−j1)(|ϕ|
2)(k2−j2)] ∗ |∆̃j1,j2f |

2(x)

)
g(x)dx1dx2

∣∣∣∣∣

1/2

≲

(
sup
j1,j2

∥mj1,j2∥B(n1/2,n2/2)
2,1

)1/2

×

{
∑

j1,j2∈Z

∞∑

k1,k2=0

2(k1n1+k2n2)/2∥Φ(k1,k2)(D)mj1,j2∥L2

×

∫

Rn1×Rn2

|∆̃j1,j2f |
2(x)[(|ϕ|2)(k1−j1)(|ϕ|

2)(k2−j2)] ∗ g(x)dx1dx2

}1/2

≲

(
sup
j1,j2

∥mj1,j2∥B(n1/2,n2/2)
2,1

)1/2

×

{
sup

j1,j2∈Z

∞∑

k1,k2=0

2(k1n1+k2n2)/2∥Φ(k1,k2)(D)mj1,j2∥L2

}1/2

×

{∫

Rn1×Rn2

(
∑

j1,j2∈Z

|∆̃j1,j2f |
2(x)

)
Msg(x)dx1dx2

}1/2
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≲

(
sup
j1,j2

∥mj1,j2∥B(n1/2,n2/2)
2,1

)

×

{∥∥∥∥∥
∑

j1,j2∈Z

|∆̃j1,j2f |
2(x)

∥∥∥∥∥
Lp/2

∥Msg(x)∥L(p/2)′

}1/2

≲

(
sup
j1,j2

∥mj1,j2∥B(n1/2,n2/2)
2,1

)
∥f∥Lp∥g∥

1/2

L(p/2)′ .

By taking the supremum over all g as above, we have

(3.19) ∥Tm(f)∥Lp ≲ (sup
j1,j2

∥mj1,j2∥B(n1/2,n2/2)
2,1

)∥f∥Lp .

For the proof of 1 < p < 2, we use duality. Then the dual space of
Lp(Rn1 × Rn2) is Lp′

(Rn1 × Rn2). Therefore exists a function g ∈ Lp′

(Rn1 ×
Rn2) such that

∥Tm(f)∥Lp =

∫

Rn1×Rn2

Tm(f)(x)g(x)dx1dx2

=

∫

Rn1×Rn2

f(x)Tm(g)(x)dx1dx2

≤ ∥f∥Lp∥Tm(g)∥Lp′

≲

(
sup
j1,j2

∥mj1,j2∥B(n1/2,n2/2)
2,1

)
∥f∥Lp∥g∥Lp′ .

By taking the supremum over all g as above, we have

(3.20) ∥Tm(f)∥Lp ≲

(
sup
j1,j2

∥mj1,j2∥B(n1/2,n2/2)
2,1

)
∥f∥Lp .

For p = 2, by Plancherel’s theorem and the embedding theorem, we have

(3.21) ∥Tm(f)∥L2 ≲

(
sup
j1,j2

∥mj1,j2∥B(n1/2,n2/2)
2,1

)
∥f∥L2 .

A combination of (3.19), (3.20) and (3.21) yields

∥Tm(f)∥Lp ≲

(
sup
j1,j2

∥mj1,j2∥B(n1/2,n2/2)
2,1

)
∥f∥Lp

for all 1 < p <∞. This completes the proof. □
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4. The proof of main theorem: Theorem 1.6

In this section, we prove Theorem 1.6.

First we write ∗2 for the convolution operational symbols in variables x2
and f̂2 for the Fourier transform acting only on x2 variables.

For 0 < p ≤ 1 and 0 < q1 ≤ q2 <∞, then

B
(s1,s2)
2,q1

(Rn1 × Rn2) →֒ B
(s1,s2)
2,q2

(Rn1 × Rn2).

Therefore, we just consider ∥mj1,j2∥B(s1,s2)
2,q (Rn1×Rn2 )

<∞ for q > p.

Since Tm is a convolution operator, we have

∥Tm∥L2→L2 ≲ ∥m∥L∞ .

By the Besov embedding theorem, we then have

∥m∥L∞ ≲ sup
j1,j2

∥mj1,j2∥B(s1,s2)
2,q

,

when s1 > n1/2, s1 > n1/2.
Therefore, to establish Theorem 1.6, by Fefferman criterion, we just need

to prove the following: if a is an Hp(Rn1 × Rn2) rectangle atom (0 < p ≤ 1)
supported on R = I × J , we have

∫ ∫

(γR)c
|T ∗

m(a)(x1, x2)|
pdx1dx2 ≲ sup

j1,j2

∥mj1,j2∥
p

B
(s1,s2)
2,q

γ−δp for all γ ≥ 2,

where s1 > n1(1/p− 1/2), s2 > n2(1/p− 1/2) and some fixed δ > 0. By a
translation, we only consider an atom a supported in R which is centered at
(0, 0). By the Besov embedding theorem, it is sufficient to consider the case

ni(1/p− 1/2) < si < [ni(1/p− 1)] + ni/2 + 1 for all i = 1, 2.

Let a be a rectangle atom supported in R. We decompose (γR)c :=
Rn1 × Rn2 \ γR into the following three subsets:

V1 = {(ξ1, ξ2) : (γR)
c \ (V2 ∪ V3)},

V2 = {(ξ1, ξ2) : ξ1 ∈ (γI)c, ξ2 ∈ J},

V3 = {(ξ1, ξ2) : ξ1 ∈ I, ξ2 ∈ (γJ)c}.

The proof of Theorem 1.6 will then be divided into three steps.
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Hörmander Fourier multiplier theorems 1065

Step 1: Estimate ∥Tm(a)(x1, x2)∥
p
Hp(V1)

.
We define

Kj1,j2 = F−1[m(·, ·)ψ(·/2j1)ψ(·/2j2)] = F−1[mj1,j2(·/2
j1 , ·/2j2)].

If we write K̃j1,j2 = F−1[mj1,j2 ], then

Kj1,j2(x1, x2) = 2j1n1+j2n2K̃j1,j2(2
j1x1, 2

j2x2).

The Littlewood-Paley-Stein square function T ∗
m(a)(x1, x2) of Tm(a)(x1, x2)

can be written as

T ∗
m(a)(x1, x2)

=

(
∑

j1,j2∈Z

|(Ψj1,j2)
∨ ∗ Tm(a)(x1, x2)|

2

)1/2

=

(
∑

j1,j2∈Z

∣∣∣∣
∫

Rn1×Rn2

Kj1,j2(x1 − y1, x2 − y2)a(y1, y2)dy1dy2

∣∣∣∣
2
)1/2

=:

(
∑

j1,j2∈Z

|Fj1,j2(x1, x2)|
2

)1/2

.

We shall estimate the function Fj1,j2(x1, x2). To this end, for i = 1, 2,
writing ∂αi

i Kj1,j2(y1, y2) = ∂αi
yi
Kj1,j2(y1, y2) and using the moment condition

on rectangle atom a(y1, y2), we have for nonnegative integers L1 and L2 to
be chosen below.

Fj1,j2(x1, x2) =

∫

I×J

[
Kj1,j2(x1 − y1, x2 − y2)

−
∑

|α1|≤L1−1

(−y1)
α1

α1!
∂α1

1 Kj1,j2(x1, x2 − y2)

]
a(y1, y2)dy

= L1

∑

|α1|=L1

∫

I×J

∫ 1

0

(−y1)
α1

α1!
(1− t1)

L1−1∂α1

1

×Kj1,j2(x1 − t1y1, x2 − y2)a(y1, y2)dt1dy
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= L1

∑

|α1|=L1

∫

I×J

∫ 1

0

(−y1)
α1

α1!
(1− t1)

L1−1

×

[
∂α1

1 Kj1,j2(x1 − t1y1, x2 − y2)

−
∑

|α2|≤L2−1

(−y2)
α2

α2!
∂α2

2 ∂α1

1 Kj1,j2(x1 − t1y1, x2 − y2)

]

× a(y1, y2)dt1dy

= L1L2

∑

|α1|=L1

∑

|α2|=L2

∫

I×J

∫ 1

0

∫ 1

0

(−y1)
α1

α1!

(−y2)
α2

α2!
(1− t1)

L1−1

× (1− t2)
L2−1∂α1

1 ∂α2

2 Kj1,j2(x1 − t1y1, x2 − t2y2)]

× a(y1, y2)dtdy,

where 0 ≤ L1 ≤ [n1(1/p− 1)] + 1, 0 ≤ L2 ≤ [n2(1/p− 1)] + 1, dy = dy1dy2
and dt = dt1dt2.

Thus, by Hölder inequality, we have

|Fj1,j2(x1, x2)|

≲ |I|L1/n1 |J |L2/n2

∑

|α1|=L1

∑

|α2|=L2

(∫

I×J
|a(y1, y2)|

2dy1dy2

)1/2

×

(∫

I×J

∫ 1

0

∫ 1

0
|∂α1

1 ∂α2

2 Kj1,j2(x1 − t1y1, x2 − t2y2)|
2dydt

)1/2

≲
∑

|α1|=L1

∑

|α2|=L2

|I|1/2−1/p+L1/n1 |J |1/2−1/p+L2/n2

×

(∫

I×J

∫ 1

0

∫ 1

0
|∂α1

1 ∂α2

2 Kj1,j2(x1 − t1y1, x2 − t2y2)|
2dydt

)1/2

.

By the subadditivity of the p-th power of the Lp-norm, 0 < p ≤ 1 and
by Hölder inequality, we have

∫

V1

|T ∗
m(a)(x1, x2)|

pdx1dx2 ≤
∑

j1,j2∈Z

∫

V1

|Fj1,j2(x1, x2)|
pdx1dx2
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≲
∑

j1,j2∈Z

∑

|α1|=L1

∑

|α2|=L2

|I|p/2−1+L1p/n1 |J |p/2−1+L2p/n2

×

∫

V1

(∫

I×J

∫ 1

0

∫ 1

0
|∂α1

1 ∂α2

2 Kj1,j2(x1 − t1y1, x2 − t2y2)|
2dydt

)p/2

dx1dx2

=:
∑

j1,j2∈Z

∑

|α1|=L1

∑

|α2|=L2

|I|p/2−1+L1p/n1 |J |p/2−1+L2p/n2Gj1,j2 .

Next, we will estimate Gj1,j2 pointwisely. We set Ak1
= {x1 ∈ Rn1 : 2k1 ≤

|x1| ≤ 2k1+1} and Ak2
= {x2 ∈ Rn2 : 2k2 ≤ |x2| ≤ 2k2+1}. Since si > ni(

1
p −

1
2), we can choose that s′i =

(
si + ni(

1
p − 1

2)
)
/2 for i = 1, 2. Hence, using

Hölder’s inequality and a change of variables, we have

Gj1,j2 =

∫

V1

(∫

I×J

∫ 1

0

∫ 1

0
|∂α1

1 ∂α2

2 Kj1,j2(x1 − t1y1, x2 − t2y2)|
2dydt

)p/2

dx1dx2

≤

(∫

V1

|x1|
−s′1

2p

2−p |x2|
−s′2

2p

2−pdx1dx2

)1−p/2

×

(∫

V1

∫

I×J

∫ 1

0

∫ 1

0
|∂α1

1 ∂α2

2 Kj1,j2(x1 − t1y1, x2 − t2y2)|
2

× dtdy|x1|
2s′1 |x2|

2s′2dx1dx2

)p/2

≲ γ−δ|I|−s′1p/n1+1−p/2|J |−s′2p/n2+1−p/2

×
∑

k1≥ρ1,k2≥ρ2

{∫

Ak1
×Ak2

∫

I×J

∫ 1

0

∫ 1

0
|x1 − t1y1|

2s′1 |x2 − t2y2|
2s′2

× |∂α1

1 ∂α2

2 Kj1,j2(x1 − t1y1, x2 − t2y2)|
2dtdydx1dx2

}p/2

≲
∑

k1,k2∈Z

γ−δ|I|−s′1p/n1+1|J |−s′2p/n2+1

×

{∫

Ak1
×Ak2

||x1|
s′1 |x2|

s′2∂α1

1 ∂α2

2 Kj1,j2(x1, x2)|
2dx1dx2

}p/2

.

where −δ = max{−s′1p+ n1 − n1p/2,−s
′
2p+ n2 − n2p/2}, 2

ρ1 ≈ γ|I|, 2ρ2 ≈
γ|J | for ρ1, ρ2 ∈ Z.

Since Kj1,j2(x1, x2) = 2j1n1+j2n2K̃j1,j2(2
j1x1, 2

j2x2). We also set Bki
=

{xi ∈ Rni : 2ki ≤ |xi| ≤ 2ki+1, ki ≥ 1} andBki
= {xi ∈ Rni : |xi| ≤ 2, ki = 0}.



✐

✐

“4-Lu” — 2021/10/5 — 0:56 — page 1068 — #22
✐

✐

✐

✐

✐

✐

1068 J. Chen, L. Huang, and G. Lu

Then, by direct calculations and a change of variables, we obtain

Gj1,j2 ≲ γ−δ|I|−s′1p/n1+1|J |−s′2p/n2+1

×
∑

k1,k2∈Z

2j1p(−s′1+n1+|α1|)2j2p(−s′2+n2+|α2|)

×

{∫

Ak1
×Ak2

||2j1x1|
s′1 |2j2x2|

s′2∂α1

1 ∂α2

2 K̃j1,j2(2
j1x1, 2

j2x2)|
2dx1dx2

}p/2

= γ−δ|I|−s′1p/n1+1|J |−s′2p/n2+1

×
∑

k1,k2∈Z

2j1p(−s′1+n1/2+L1)2j2p(−s′2+n2/2+L2)

×

{∫

Ak1
×Ak2

||x1|
s′1 |x2|

s′2∂α1

1 ∂α2

2 K̃j1,j2(x1, x2)|
2dx1dx2

}p/2

≲ γ−δ|I|−s′1p/n1+1|J |−s′2p/n2+12j1p(−s′1+n1/2+L1)2j2p(−s′2+n2/2+L2)

×
∑

k1,k2∈N

{∫

Bk1
×Bk2

||x1|
s′1 |x2|

s′2∂α1

1 ∂α2

2 K̃j1,j2(x1, x2)|
2dx1dx2

}p/2

≲ γ−δ|I|−s′1p/n1+1|J |−s′2p/n2+12j1p(−s′1+n1/2+L1)2j2p(−s′2+n2/2+L2)

×
∑

k1,k2∈N

{∫

Bk1
×Bk2

|2(k1s′1+k2s′2)φk1
(x1)φk2

(x2)

× ∂α1

1 ∂α2

2 K̃j1,j2(x1, x2)|
2dx1dx2

}p/2

≲ γ−δ|I|−s′1p/n1+1|J |−s′2p/n2+12j1p(−s′1+n1/2+L1)2j2p(−s′2+n2/2+L2)

×
∑

k1,k2∈N

2(−k1θ1s′1−k2θ2s′2)p{2k1(1+θ1)s′1+k2(1+θ2)s′2

× ∥φk1
φk2

F−1[ξα1

1 ξα2

2 mj1,j2(ξ1, ξ2)]∥L2}p

≲ γ−δ|I|−s′1p/n1+1|J |−s′2p/n2+12j1p(−s′1+n1/2+L1)2j2p(−s′2+n2/2+L2)

×

[
∑

k1,k2∈N

2(−k1θ1s′1−k2θ2s′2)p/(1−p/q)

]1−p/q

×

{
∑

k1,k2∈N

2(k1(1+θ1)s′1+k2(1+θ2)s′2)q

× ∥φk1
φk2

F−1[ξα1

1 ξα2

2 mj1,j2(ξ1, ξ2)]∥
q
L2

}p/q
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≲ γ−δ|I|−s′1p/n1+1|J |−s′2p/n2+12j1p(−s′1+n1/2+L1)

× 2j2p(−s′2+n2/2+L2)∥mj1,j2∥
p

B
(s1,s2)
2,q

,

where the last inequality holds by Lemma 2.3 and φki
is defined by (2.12),

q > p and (1 + θi)s
′
i = si for i = 1, 2.

For I × J , there exist l1, l2 ∈ Z such that |I| ≈ 2−l1n1 , |J | ≈ 2−l2n2 . Thus,
use the estimates of Gj1,j2 , we obtain that

∫

V1

|T ∗
m(a)(x1, x2)|

pdx1dx2

≲
∑

j1,j2∈Z

∑

|α1|=L1

∑

|α2|=L2

|I|(−s′1+n1/2+L1)p/n1 |J |(−s′2+n2/2+L2)p/n2

× γ−δ2j1p(−s′1+n1/2+L1)2j2p(−s′2+n2/2+L2)∥mj1,j2∥
p

B
(s1,s2)
2,q

≲ sup
j1,j2∈Z

∥mj1,j2∥
p

B
(s1,s2)
2,q

γ−δ

×
∑

j1,j2∈Z

2(j1−l1)p(−s′1+n1/2+L1)2(j2−l2)p(−s′2+n2/2+L2).

Set

B =
∑

j1,j2∈Z

2(j1−l1)p(−s′1+n1/2+L1)2(j2−l2)p(−s′2+n2/2+L2).

In the above summation B, we can choose Li = 0, if ji ≥ li and Li = [ni/p−
ni] + 1, if ji < li for i = 1, 2. Hence, we have
∫

V1

|T ∗
m(a)(x1, x2)|

pdx1dx2 ≲ γ−δ sup
j1,j2∈Z

∥mj1,j2∥
p

B
(s1,s2)
2,q

×
∑

j1,j2∈Z

2(j1−l1)p(−s′1+n1/2+L1)2(j2−l2)p(−s′2+n2/2+L2)

≲ γ−δ sup
j1,j2∈Z

∥mj1,j2∥
p

B
(s1,s2)
2,q

×

{
∑

j1≥l1

2(j1−l1)p(−s′1+n1/2) +
∑

j1<l1

2(j1−l1)p(−s′1+n1/2+[n1/p−n1]+1)

}

×

{
∑

j2≥l2

2(j2−l2)p(−s′2+n2/2) +
∑

j2<l2

2(j2−l2)p(−s′2+n2/2+[n2/p−n2]+1)

}

≲ γ−δ sup
j1,j2∈Z

∥mj1,j2∥
p

B
(s1,s2)
2,q

where −δ = max{−s′1p+ n1 − n1p/2,−s
′
2p+ n2 − n2p/2} < 0.
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Finally, we have concluded

∥Tm(a)(x1, x2)∥
p
Hp(V1)

≲ γ−δ sup
j1,j2∈Z

∥mj1,j2∥
p

B
(s1,s2)
2,q

.(4.22)

Step 2: Estimate ∥Tm(a)(x1, x2)∥
p
Hp(V2)

.

As before, we have

∫

V2

|T ∗
m(a)(x1, x2)|

pdx1dx2 ≤
∑

j1∈Z

∫

V2

(
∑

j2∈Z

|Fj1,j2(x1, x2)|
2

)p/2

dx1dx2

≤
∑

j1∈Z

(∫

V2

|x1|
−s′1

2p

2−pdx1dx2

)1−p/2

×

(∫

V2

∑

j2∈Z

|Fj1,j2(x1, x2)|
2|x1|

2s′1dx1dx2

)p/2

≲ γ−δ′ |I|−s′1p/n1+1−p/2|J |1−p/2

×
∑

j1∈Z

∑

k1≥ρ1

(∫

Ak1
×Rn2

∑

j2∈Z

|Fj1,j2(x1, x2)|
2|x1|

2s′1dx1dx2

)p/2

= γ−δ′ |I|−s′1p/n1+1−p/2|J |1−p/2

×
∑

j1∈Z

∑

k1≥ρ1

∥{|Fj1,j2(x1, x2)||x1|
s′1}l2j2

∥pL2(Ak1×Rn2 )

=: γ−δ′ |I|−s′1p/n1+1−p/2|J |1−p/2
∑

j1∈Z

∑

k1≥ρ1

(⋆)p,

where −δ′ = −s′1p+ n1 − n1p/2.

In order to estimate (⋆), we use a duality argument.

(⋆) ≤ sup
∥{hj2

}l2
j2

∥L2(Ak1
×R

n2 )≤1

∑

j2∈Z

∫

Ak1
×Rn2

|Fj1,j2(x1, x2)||x1|
s′1hj2(x1, x2)dx1dx2.

Similarly, we have

Fj1,j2(x1, x2) = L1

∑

|α1|=L1

∫

I×J

∫ 1

0

(−y1)
α1

α1!
(1− t1)

L1−1

× ∂α1

1 Kj1,j2(x1 − t1y1, x2 − y2)a(y1, y2)dt1dy,

where 0 ≤ L1 ≤ [n1(1/p− 1)] + 1 and dy = dy1dy2.
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Hörmander Fourier multiplier theorems 1071

Fixed hj2 , we have

∫

Ak1×Rn2

|Fj1,j2(x1, x2)||x1|
s′1hj2(x1, x2)dx1dx2

= L1

∑

|α1|=L1

∫

Ak1×Rn2

∣∣∣∣∣

∫

I×J

∫ 1

0

(−y1)
α1

α1!
(1− t1)

L1−1

× ∂α1

1 Kj1,j2(x1 − t1y1, x2 − y2)a(y1, y2)dt1dy1dy2

∣∣∣∣∣
× |x1|

s′1hj2(x1, x2)dx1dx2.

Fixed x1, t1, y1, j1, j2, define

S(a)(x2) =

∫

J
∂α1

1 Kj1,j2(x1 − t1y1, x2 − y2)a(y1, y2)dy2.

Setmx1,t1,y1,j1,j2(x2) = ∂α1

1 K̂2
j1,j2

(x1 − t1y1, x2) and suppψ̃ ⊂ {ξ : 1/3 ≤ |ξ| ≤

3}, ψ̃ = 1 on suppψ and ∆̃j2g(x2) = [ψ̃(D/2j2)g]. By Lemma 2.3, we obtain

∫

Rn2

S(a)(x2)hj2(x1, x2)dx2

=

∫

Rn2

S(a)(x2)∆̃j2hj2(x1, x2)dx2

≲
∞∑

k2=0

2k2n2/2∥φk2
∂α1

1 K̂2
j1,j2(x1 − t1y1, x2)∥L2(Rn2 )

×

∫

Rn2

((|ϕ|2)(k2−j2) ∗2 |∆̃j2a(y1, ·)|
2)1/2(x2)|∆̃j2hj2 |(x1, x2)dx2.

Thus, we obtain

∣∣∣∣∣

∫

Ak1
×Rn2

Fj1,j2(x1, x2)|x1|
s′1hj2(x1, x2)dx1dx2

∣∣∣∣∣

= L1

∑

|α1|=L1

∫

Ak1×Rn2

∫

I×J

∫ 1

0

(−y1)
α1

α1!
(1− t1)

L1−1

× S(a)(x2)dt1dy1|x1|
s′1hj2(x1, x2)dx1dx2
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≲
∑

|α1|=L1

|I|L1/n1

∫

I

∫

Ak1
×Rn2

∫ 1

0

∞∑

k2=0

2k2n2/2|x1|
s′1

× ∥φk2
∂α1

1 K̂2
j1,j2(x1 − t1y1, x2)∥L2(Rn2 )

× ((|ϕ|2)(k2−j2) ∗2 |∆̃j2a(y1, ·)|
2)1/2(x2)|∆̃j2hj2 |(x1, x2)dt1dx1dx2dy1.

Using Schwartz’s inequality and a change of variables, we have

∫

Ak1

∫ 1

0
|x1|

s′1∥φk2
∂α1

1 K̂2
j1,j2(x1 − t1y1, x2)∥L2

x2
|∆̃j2hj2 |(x1, x2)dt1dx1

≲

∫ 1

0
∥|x1 − t1y1|

s′1φk2
∂α1

1 K̂2
j1,j2(x1 − t1y1, x2)∥L2(Ak1

×Rn2 )dt1∥∆̃j2hj2∥L2(Ak1
)

= ∥|x1|
s′1φk2

∂α1

1 K̂2
j1,j2(x1, x2)∥L2(Ak1×Rn2 )∥∆̃j2hj2∥L2(Ak1 )

= 2j1(−s′1+n1+L1)∥|2j1x1|
s′1φk2

∂α1

1 K̂2
j1,j2(2

j1x1, x2)∥L2(Ak1
×Rn2 )∥∆̃j2hj2∥L2(Ak1

)

= 2j1(−s′1+n1/2+L1)∥|x1|
s′1φk2

∂α1

1 K̂2
j1,j2(x1, x2)∥L2(Ak1

×Rn2 )∥∆̃j2hj2∥L2(Ak1
)

≲ 2k1s′1∥φk2
∂α1

1 K̂2
j1,j2(x1, x2)∥L2(Ak1×Rn2 )2

j1(−s1+n1/2+L1)∥∆̃j2hj2∥L2(Ak1
)

≲ 2j1(−s′1+n1/2+L1)2k1s′1∥ψk1
φk2

mj1,j2∥L2∥∆̃j2hj2∥L2(Ak1
),

where we have used Lemma 2.2 to obtain the last inequality and ψ is defined
by (1.1).

Therefore,

∣∣∣∣∣
∑

j2∈Z

∫

Ak1
×Rn2

|Fj1,j2(x1, x2)||x1|
s′1hj2(x1, x2)dx1dx2

∣∣∣∣∣

≲ 2j1(−s′1+n1/2+L1)|I|L1/n1

∑

j2∈Z

∞∑

k2=0

2k2n2/22k1s′1∥ψk1
φk2

mj1,j2∥L2

×

∫

I

∫

Rn2

((|ϕ|2)(k2−j2) ∗2 |∆̃j2a(y1, ·)|
2)1/2(x2)∥∆̃j2hj2∥L2(Ak1

)dy1dx2

≲ 2j1(−s′1+n1/2+L1)|I|L1/n1 sup
j2

{
∞∑

k2=0

2k2n2/22k1s′1∥ψk1
φk2

mj1,j2∥L2

}

×
∑

j2∈Z

sup
k2

{∫

I

∫

Rn2

((|ϕ|2)(k2−j2) ∗2 |∆̃j2a(y1, ·)|
2)1/2(x2)

× ∥∆̃j2hj2∥L2(Ak1
)dy1dx2

}
.
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It follows from Schwartz’s inequality that the sum concerning j2 in the last
line is estimated by

∑

j2∈Z

sup
k2

{∫

Rn2

((|ϕ|2)(k2−j2) ∗2 |∆̃j2a(y1, ·)|
2)1/2(x2)∥∆̃j2hj2∥L2(Ak1 )

dx2

}

≤

(
∑

j2∈Z

sup
k2

∫

Rn2

((|ϕ|2)(k2−j2) ∗2 |∆̃j2a(y1, ·)|
2)(x2)dx2

)1/2

×

(
∑

j2∈Z

∫

Ak1
×Rn2

|∆̃j2hj2 |
2dx1dx2

)1/2

≤

(
∑

j2∈Z

sup
k2

sup
∥g∥L∞=1

∣∣∣∣∣

∫

Rn2

((|ϕ|2)(k2−j2) ∗2 |∆̃j2a(y1, ·)|
2)(x2)g(x2)dx2

∣∣∣∣∣

)1/2

×

(
∑

j2∈Z

∫

Ak1
×Rn2

|hj2 |
2dx1dx2

)1/2

≤

(
∑

j2∈Z

sup
k2

sup
∥g∥L∞=1

∣∣∣∣∣

∫

Rn2

|∆̃j2a(y1, ·)|
2(x2)(|ϕ|

2)(k2−j2) ∗2 g(x2)dx2

∣∣∣∣∣

)1/2

×

(
∑

j2∈Z

∫

Ak1
×Rn2

|hj2 |
2dx1dx2

)1/2

≤

(
sup

∥g∥L∞=1

∣∣∣∣∣

∫

Rn2

∑

j2∈Z

|∆̃j2a(y1, ·)|
2(x2)Mg(x2)dx2

∣∣∣∣∣)
1/2

×

(
∑

j2∈Z

∫

Ak1
×Rn2

|hj2 |
2dx1dx2

)1/2

≤ ∥a(y1, ·)∥L2(Rn2 )∥{hj2}l2∥L2(Ak1
×Rn2 ).

Since ∥a∥L2 ≤ |I × J |1/2−1/p, we have

∑

j2∈Z

sup
k2

{∫

I

∫

Rn2

((|ϕ|2)(k2−j2) ∗2 |∆̃j2a(y1, ·)|
2)1/2(x2)∥∆̃j2hj2∥L2(Ak1

)dy1dx2

}

≤

∫

I
∥a(y1, ·)∥L2(Rn2 )∥{hj2}l2∥L2(Ak1

×Rn2 )dy1

≤ |I|1/2∥a∥L2∥{hj2}l2∥L2(Ak1
×Rn2 )

≤ |I|1/2|I × J |1/2−1/p∥{hj2}l2∥L2(Ak1×Rn2 ).
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Combining these estimates and for I × J , there exist l1 ∈ Z such that |I| ≈
2−l1n1 , we have

∫

V2

|T ∗
m(a)(x1, x2)|

pdx1dx2

≲ γ−δ′ sup
j1,j2

∑

k1∈Z

{
∞∑

k2=0

2k2n2/22k1s′1∥φk1
φk2

mj1,j2∥L2

}p

×
∑

j1∈Z

2j1p(−s′1+n1/2+L1)|I|p(−s′1+n1/2+L1)/n1

× sup
∥{hj2

}l2
j2

∥L2(Ak1
×R

n2 )≤1
∥{hj2}l2∥

p
L2(Ak1

×Rn2 )

≲ γ−δ′ sup
j1,j2

{
∑

k1∈N

∑

k2∈N

2k2s′2p2k1s′1p∥φk1
φk2

mj1,j2∥
p
L2

}

×
∑

j1∈Z

2j1p(−s′1+n1/2+L1)|I|p(−s′1+n1/2+L1)/n1

≲ γ−δ′
(
sup
j1,j2

∥mj1,j2∥
p

B
(s1,s2)
2,q

)∑

j1∈Z

2j1p(−s1+n1/2+L1)|I|p(−s′1+n1/2+L1)/n1

≲ γ−δ′
(
sup
j1,j2

∥mj1,j2∥
p

B
(s1,s2)
2,q

)

×

{
∑

j1≥l1

2(j1−l1)p(−s′1+n1/2) +
∑

j1<l1

2(j1−l1)p(−s′1+n1/2+[n1/p−n1]+1)

}

≲ γ−δ′ sup
j1,j2

∥mj1,j2∥
p

B
(s1,s2)
2,q

.

Thus, we obtain

(4.23) ∥Tm(a)(x1, x2)∥
p
Hp(V2)

≲ γ−δ′ sup
j1,j2∈Z

∥mj1,j2∥
p

B
(s1,s2)
2,q

,

with −δ′ = −s′1p+ n1 − n1p/2. By symmetry of the situation, the cases V2
and V3 are treated in the similar way.

Therefore, we have

(4.24) ∥Tm(a)(x1, x2)∥
p
Hp(V3)

≲ γ−δ′′ sup
j1,j2∈Z

∥mj1,j2∥
p

B
(s1,s2)
2,q

,

with −δ′′ = −s′2p+ n2 − n2p/2.
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Combining (4.22) with (4.23) and (4.24), we have the desired estimate,

(4.25) ∥Tm(a)(x1, x2)∥
p
Hp((γR)c) ≲ γ−σ sup

j1,j2∈Z
∥mj1,j2∥

p

B
(s1,s2)
2,q

,

where −σ = max{−δ,−δ′,−δ′′}.

By Theorem 2.1, we have proved the Hp boundedness for Tm. The proof
of Theorem 1.6 is thus completed.

5. The sharpness of the conditions in Theorem 1.5 and 1.6

In this section, we consider the sharpness of Theorems 1.5 and 1.6.

Proposition 5.1. Let 1 < p <∞. Then the estimates

(5.26) ∥Tm(f)∥Lp ≤ C sup
j1,j2∈Z

∥mj1,j2∥B(s1,s2)
2,1

∥f∥Lp

holds only if s1 ≥ n1/2, s2 ≥ n2/2.

Proof. First, we set f(x1, x2) = f1(x1)f2(x2) where f1(x1) ∈ Lp(Rn1) and
f2(x2) ∈ Lp(Rn2). We take functions φ1 and φ2 such that

φi ∈ S(Rni), φi = 1 for |ξi| ≤ 1, supp φ ⊂ {ξi ∈ Rni : |ξi| ≤ 2}

for all i = 1, 2. And let θ̂1 and θ̂2 be smoothing functions, and assume that

θ̂i ∈ S(Rni), θ̂i(ξi) = 1 for |ξi| ≤ 1/2, supp θ̂i ⊂ {ξi ∈ Rni : |ξi| ≤ 1},

for all i = 1, 2. And define f̂i(ξi) = φi((ξi − η0i )/ϵi) and mi(ξi) = θ̂i((ξi −
η0i )/ϵi) with |η0i | = 1 for i = 1, 2.

To prove the necessity of the condition s1 ≥ n1/2 and s2 ≥ n2/2, we set,
for sufficiently small 0 < ϵi < 1,

m(ξ1, ξ2) = m1(ξ1)m2(ξ2) = θ̂1((ξ1 − η01)/ϵ1)θ̂2((ξ2 − η02)/ϵ2).

For m = m1m2 and f = f1f2, we have

Tm(f)(x1, x2) = F−1[θ̂1((· − η01)/ϵ1)f̂1](x1)F
−1[θ̂1((· − η02)/ϵ2)f̂2(·)](x2).

Fix ϵi, we first estimate the norm ∥m∥
B

(s1,s2)
2,1 (Rn1×Rn2 )

.
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In fact, we have

∥m∥
B

(s1,s2)
2,1

= ∥θ̂1((ξ1 − η01)/ϵ1)∥Bs1
2,1(R

n1 )∥θ̂2((ξ2 − η02)/ϵ2)∥Bs2
2,1(R

n2 )

≤ Cϵ
−s1+n1/2
1 ϵ

−s2+n2/2
2 ,

the last inequality follows from Proposition 2.1.

Hence, we have

∥Tm(f)(x1, x2)∥Lp

≤ C∥F−1[θ̂1((· − η01)/ϵ1)f̂1](x1)F
−1[θ̂2((· − η02)/ϵ2)f̂2(·)](x2)∥Lp

≤ C∥θ̂1((ξ1 − η01)/ϵ1)∥Bs1
2,1(R

n1 )∥θ̂2((ξ2 − η02)/ϵ2)∥Bs2
2,1(R

n2 )∥f1∥Lp∥f2∥Lp

≤ Cϵ
−s1+n1/2
1 ϵ

−s2+n2/2
2 ∥f1∥Lp∥f2∥Lp

≤ Cϵ
−s1+n1/2
1 ϵ

−s2+n2/2
2 ϵ

n1−n1/p
1 ϵ

n2−n2/p
2 .

Moreover, a simple calculation gives

∥Tm(f)(x1, x2)∥Lp = ∥ϵn1

1 φ1(ϵ1x1)ϵ
n2

2 φ2(ϵ2x2)∥Lp = Cϵ
n1−n1/p
1 ϵ

n2−n2/p
2 .

Thus, (5.26) yields the inequality

ϵ
n1−n1/p
1 ϵ

n2−n2/p
2 ≤ Cϵ

−s1+n1/2
1 ϵ

−s2+n2/2
2 ϵ

n1−n1/p
1 ϵ

n2−n2/p
2 ,

which holds only if s1 ≥ n1/2 and s2 ≥ n2/2. □

Proposition 5.2. Let p = 1. Then the estimates

∥Tm(f)∥H1(Rn1×Rn2 ) ≤ C sup
j1,j2∈Z

∥mj1,j2∥B(s1,s2)
2,1 (Rn1×Rn2 )

∥f∥H1(Rn1×Rn2 )

holds only if s1 > n1/2, s2 > n2/2.

Proof. First of all, we only need to consider the simplest case. In the follow-
ing, we set f(x1, x2) = f1(x1)f2(x2), where f1(x1) ∈ H1(Rn1) and f2(x2) ∈
H1(Rn2), then we have f(x1, x2) ∈ H1(Rn1 × Rn2). Furthermore, we also set
m(ξ1, ξ2) = m1(ξ1)m2(ξ2), wherem1(ξ1)∈B

s1
2,1(R

n1) andm2(ξ2)∈B
s2
2,1(R

n2).
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Therefore, we just estimate

Tmf(x1, x2) = Tm1
f1(x1)Tm2

f1(x2).

Moreover, we could obtain

∥Tm(f)(x1, x2)∥H1(Rn1×Rn2 ) = C∥Tm1
(f1)(x1)∥H1(Rn1 )∥Tm2

(f2)(x2)∥H1(Rn2 )

By the sharpness of Baernstein and Sawyer’s Theorem [1], we have that
Theorem 1.6 is sharpness in the sense that there exists a multiplier m ∈

B
(s1,s2)
2,1 (Rn1 × Rn2) with s1 ≤ n1/2 or s2 ≤ n2/2 such that Tm is unbounded

on product Hardy spacesH1(Rn1 × Rn2) for p = 1. Proposition 5.2 is proved.
□

Proposition 5.3. Let 0 < p < 1. Then the estimate

(5.27) ∥Tm(f)∥Hp ≤ C sup
j1,j2∈Z

∥mj1,j2∥B(s1,s2)
2,q

∥f∥Hp

holds only if s1 ≥ n1(
1
p − 1

2), s2 ≥ n2(
1
p − 1

2).

Proof. We take the function θi as in the proof of Proposition 5.1.

To prove the necessity of the condition s1 ≥ n1(
1
p − 1

2) and s2 ≥

n2(
1
p − 1

2), we set, for sufficiently small 0 < ϵi < 1,

m(ξ1, ξ2) = m1(ξ1)m2(ξ2) = θ̂1((ξ1 − η01)/ϵ1)θ̂2((ξ2 − η02)/ϵ2).

For m = m1m2 and f = f1f2, we have

Tm(f)(x1, x2) = F−1[θ̂1((· − η01)/ϵ1)f̂1](x1)F
−1[θ̂1((· − η02)/ϵ2)f̂2(·)](x2).

Fix ϵi, we first estimate the norm ∥m∥
B

(s1,s2)
2,q (Rn1×Rn2 )

.

In fact, we have

∥m∥
B

(s1,s2)
2,q

≤ Cϵ
−s1+n1/2
1 ϵ

−s2+n2/2
2 .

We take the function fi(xi) = ψi(xi) ∈ S(Rni), where ψi(xi) is chosen
such that suppψ̂i is a compact subset of Rni \ {0}, ψ̂i(ξi) = 1 in a neigh-
borhood of η0i for i = 1, 2.
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Hence, we have

∥Tm(f)(x1, x2)∥Hp ≤ C∥θ̂1((ξ1 − η01)/ϵ1)∥Bs1
2,q(R

n1 )

× ∥θ̂2((ξ2 − η02)/ϵ2)∥Bs2
2,q(R

n2 )∥f1∥Hp∥f2∥Hp

≤ Cϵ
−s1+n1/2
1 ϵ

−s2+n2/2
2 ∥f1∥Hp∥f2∥Hp

≤ Cϵ
−s1+n1/2
1 ϵ

−s2+n2/2
2 .

Moreover, a simple calculation gives

∥Tm(f)(x1, x2)∥Hp = C∥ϵn1

1 θ1(ϵ1x1)ϵ
n2

2 θ2(ϵ2x2)∥Hp = Cϵ
n1−n1/p
1 ϵ

n2−n2/p
2 .

Thus, (5.27) yields the inequality

ϵ
n1−n1/p
1 ϵ

n2−n2/p
2 ≤ Cϵ

−s1+n1/2
1 ϵ

−s2+n2/2
2 ,

which inequality holds only if s1 ≥ n1(
1
p − 1

2) and s2 ≥ n2(
1
p − 1

2). The proof
of Proposition 5.3 is complete. □

At last, we give an example of Tm to show that Tm does not satisfy Fef-
ferman’s criterion when s1 = n1(

1
p − 1

2), s2 = n2(
1
p − 1

2). The construction
of our counterexample is based on [1]. First, we must introduce function
spaces Kα,p

s (Rn) which was considered in [1]. Suppose that

1 ≤ s ≤ ∞, 0 ≤ α <∞, 0 < p ≤ ∞.

Herz space Kα,p
s (Rn) consists of all functions f ∈ Ls

loc(R
n\{0}) ∩ Ls(Rn)

with

∥f∥Kα,p
s (Rn) = ∥f∥Ls(Rn) + ∥f∥K̇α,p

s (Rn) <∞,

where

∥f∥K̇α,p
s (Rn) =

{
∞∑

−∞

(∫

Ak

|f(x)|sdx

)p/s

2kαs

}1/p

for Ak = {2k ≤ |x| ≤ 2k+1}.

Now, we recall a Lemma in [1].



✐

✐

“4-Lu” — 2021/10/5 — 0:56 — page 1079 — #33
✐

✐

✐

✐

✐

✐
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Lemma 5.1. ([1]) Suppose that s > 0, 0 < p ≤ 1, r > n+ α and that Q ∈
L1(Rn) satisfies

(5.28) ∥Q∥L1(Rn) ≤ 1, and |Q(x)| ≤ |x|−r for |x| > 2.

Then, for g ∈ Kα,p
2 (Rn), we have

∥g ∗Q∥Kα,p
2 (Rn) ≤ C(s, p, r, n)∥g∥Kα,p

2 (Rn).

Notice that F maps Bα
2,q isomorphically onto Kα,q

2 for α ≥ 0 and 0 <
q ≤ ∞, see [1]. For simplicity, we consider the case n = 1.

Our main purpose of this section is to give an example of a bi-parameter
Fourier multiplier m such that the multiplier operator does not satisfy the
Fefferman criterion of boundedness from the bi-parameter Hardy space. To
this end, we will first construct such an example in the one-parameter set-
ting.

Proposition 5.4. For 0 < p ≤ 1, s = 1/p− 1/2, we can find a sequence of
constants γ ≥ 2 and a multiplier m(ξ) satisfying

sup
j∈Z

∥mj∥
K

( 1
p
−

1
2
),p

2

<∞

such that

∥Tm(a)∥pLp((γI)c) ≤ cγ−δ fails for any given δ > 0,

where a(x) = eixχ(0,2π) is a Hp(R) atom, I = (0, 2π).

Proof. Define f0 by

(5.29) f0(x) =

{
2−k/p|k|−1/p2

, for all x ∈ Ak, k = 2, 4, 6, . . . ,

0, otherwise.

Then, we have f0 ∈ K
1

p
− 1

2
,p

2 (R). Take Q ∈ C∞(R) satisfying Q ≥ 0, Q(0) >

0, ∥Q∥L1(R) = 1, Q̂ ∈ C∞(R) and suppQ̂ ⊂ {|ξ| ≤ 1
2}. For fixed r > 1

p + 1
2 ,

Q satisfies |Q(x)| ≤ C|x|−r for some C, and so cQ satisfies the hypothesis
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of Lemma 5.1 for some c > 0. Hence,

f(x) := eix(f0 ∗Q)(x) ∈ K
n( 1

p
− 1

2
),p

2 (R).

Define m = f̂ . Then suppm ⊂ {1
2 ≤ |ξ| ≤ 2} and mσ(ξ) = m(σξ)ψ(ξ) = 0

unless 1
8 ≤ σ ≤ 8. And the inverse Fourier transform ofm(σξ) is σ−1f(σ−1x).

These functions are all in K
( 1

p
− 1

2
),p

2 (R). From Lemma 5.1 with Q = cψ̌, it
follows that m satisfies that

sup
σ

∥mσ∥
K

( 1
p
−

1
2
),p

2

≈ 1.

Take x ∈ Ak, k = 2, 4, 6, . . .. Then

(f0 ∗Q)(x) =

∫

|y|<2k−1

Q(x− y)f0(y)dy

+

∫

Ak

Q(x− y)f0(y)dy +

∫

|y|>2k+2

Q(x− y)f0(y)dy.

Since |Q(x)| ≤ C|x|−r, the first and the third integrals are controlled by
C
2kr ∥f0∥L1(R). Since Q(0) > 0, the middle integral

∣∣∣∣
∫

Ak

Q(x− y)f0(y)dy

∣∣∣∣ ≥ C2−k/p|k|−1/p2

.

Since r > 1
p , it follows that for all sufficiently large k

(f0 ∗Q)(x) ≥ C2−k/p|k|−1/p2

for x ∈ Ak.

Take an Hp atom a(x) = eixχ(0,2π), where
1
2 < p ≤ 1. Hence,

∥Tm(a)∥pLp((γI)c) =

∫

(γI)c

∣∣∣∣
∫

(0,2π)
ei(x−y)f0 ∗Q(x− y)a(y)dy

∣∣∣∣
p

dx

=

∫

(γI)c

∣∣∣∣
∫

(0,2π)
f0 ∗Q(x− y)dy

∣∣∣∣
p

dx

≥

∫

Ak

∣∣∣∣
∫

(0,2π)
f0 ∗Q(x− y)dy

∣∣∣∣
p

dx

≥ C|k|−1/p,

we can take γ ≈ 2k, then we deduce

|k|−1/p ≤ c2−kδ,
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which is impossible when k trend to ∞. Therefore,

∥Tm(a)∥pLp((γI)c) ≨ cγ−δ. □

Next, we will construct an example in the bi-parameter setting.

Proposition 5.5. For 0 < p ≤ 1, s = 1/p− 1/2, we can find a sequence of
constants γ ≥ 2 and a multiplier m(ξ1, ξ2) satisfying

sup
j,k∈Z

∥mjk∥
K

( 1
p
−

1
2
),p

2 (R×R)
<∞

and a rectangle atom a(x1, x2) in H
p(R× R) supported in the rectangle I =

(0, 2π)× (0, 2π) such that

∥Tm(a)∥pLp((γI)c) ≤ cγ−δ fails

for any given δ > 0.

Proof. For bi-parameter case, we set a(x1, x2) = a1(x1)a2(x2), where
a1(x1) = eix1χ(0,2π) ∈ Hp(R) and a2(x2) = eix2χ(0,2π) ∈ Hp(R). Furthermore,

we also setm(ξ1, ξ2) = m1(ξ1)m2(ξ2), wherem1(ξ1) ∈ K
( 1

p
− 1

2
),p

2 (R),m2(ξ2) ∈

K
( 1

p
− 1

2
),p

2 (R) are the same as in the above example. Therefore, we just esti-
mate

Tmf(x1, x2) = Tm1
a1(x1)Tm2

a2(x2).

Moreover, we have

∥Tm(f)(x1, x2)∥
p
Lp((R)c) ≥ C∥Tm1

(a1)∥
p
Lp((γI)c)∥Tm2

(a2)∥
p
Lp((γI)c)

≥ C|k1|
−1/p|k2|

−1/p,

where R = I × I and I = (0, 2π).

We can take γ ≈ 2k12k2 , then we deduce

|k1|
−1/p|k2|

−1/p ≤ 2−k1δ2−k2δ for δ > 0

which is impossible when k1, k2 tend to ∞. Then,

∥Tm(f)(x1, x2)∥
p
Lp((γR)c) ≰ cγ−δ.

Therefore, Tm does not satisfy Fefferman’s criterion when s1 =
1
p − 1

2 , s2 =
1
p − 1

2 for 0 < p ≤ 1. □
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