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Lie superalgebras
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We describe explicitly the Grothendieck rings of finite-dimensional
representations of the periplectic Lie superalgebras. In particular,
the Grothendieck ring of the Lie supergroup P (n) is isomorphic to
the ring of symmetric polynomials in x±1

1
, . . . , x±1

n
whose evalua-

tion x1 = x−1

2
= t is independent of t.

1. Introduction

The Grothendieck group is a fundamental invariant attached to an abelian
category. It is defined to be the free abelian group on the objects of the
category modulo the relation [B] = [A] + [C] for every exact sequence 0 →
A → B → C → 0. If the category possesses tensor products of objects, then
the Grothendieck group inherits a structure of a ring. A beautiful example
is the Grothendieck ring K[GL(n)] of the category of finite-dimensional
representations of the general linear group. It is isomorphic to the ring of
symmetric Laurent polynomials

K[GL(n)] ∼= Z
[
x±1
1 , . . . , x±1

n

]Sn

(see for example, [6, Sec. 23.24]). Moreover, the famous Schur polynomials
are images of irreducible representations under this isomorphism.

This description generalizes to all semisimple complex Lie algebras. In
this case, the category admits complete reducibility and the characters of ir-
reducible representations are given explicitly by the Weyl character formula.
The Grothendieck ring is then isomorphic to the ring Z[P ]W of W -invariants
in the integral group ring Z[P ], where P is the corresponding weight lattice
and W is the Weyl group. The isomorphism is given by the character map.

The analogous theory for Lie superalgebras is more difficult: the category
of finite-dimensional representations is not semisimple and a general Weyl
character formula is unknown. The class of basic classical Lie superalgebras
is better understood, as it carries an invariant bilinear form.
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In 2007, A.N. Sergeev and A.P. Veselov [11] described the Grothendieck
ring for basic classical Lie superalgebras. Since modules over Lie superal-
gebras admit a parity shift functor Π which does not change the action of
the Lie superalgebra, it is natural to consider one of the two quotients of
the ring, either by the relation [M ] = [ΠM ] or [M ] = −[ΠM ]. We refer to
these quotients as the ring of characters and the ring of supercharacters,
respectively.

The theorem of A.N. Sergeev and A.P. Veselov states that the ring of su-
percharacters is equal to the subring of Z[P ]W , admitting an extra condition
which corresponds to the isotropic roots of the Lie superalgebra. This extra
condition can be seen as invariance under an action of the Weyl groupoid. In
particular, for the general linear Lie supergroup GL(m|n), the ring of super-
characters is isomorphic to the ring of supersymmetric Laurent polynomials,
namely,
{
f ∈ Z

[
x±1
1 , . . . , x±1

m , y±1
1 , . . . , y±1

n

]Sm×Sn
: f |x1=y1=t is independent of t

}
.

The periplectic Lie superalgebra p(n) imposes further difficulties than
basic classical Lie superalgebras due to the lack of an invariant bilinear form.
It was only recently that its representations were understood and translation
functors were computed in [2] and [1].

In this paper, we describe the ring of supercharacters of the periplectic
Lie superalgebra. We show that it is isomorphic to the ring of supersymmet-
ric functions with a suitable supersymmetry condition. In particular, for the
periplectic Lie supergroup P (n), we get the following theorem:

Theorem 1.0.1. The ring of supercharacters of P (n) is isomorphic to

Jn := {f ∈ Z[x±1
1 , . . . , x±1

n ]Sn : f |x1=x−1
2 =t is independent of t}.

The inclusion from left to right for Theorem 1.0.1 is obtained by re-
striction to rank-one subalgebras as done in [11, Prop. 4.3]. The other
inclusion is much more involved. A key tool is the ring homomorphism
dsn : J(P (n)) → J(P (n− 2)) induced from the Duflo–Serganova functor.
We use the realization of dsn as the evaluation map f 7→ f |xn=x−1

n−1=t, proven

in [9] as well as the description of its kernel. The main step is to prove that
dsn is surjective in order to apply an inductive argument. We construct
preimages of dsn using Euler characteristics of parabolic inductions given in
[7] and translation functors given in [2].

The description of the ring of supercharacters of the Lie supergroup
SP (n) and the Lie superalgebras p(n) and sp(n) are deduced from the one
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of P (n). We also express the character ring of p(n) as the ring of invariant
functions under a Weyl groupoid corresponding to the root system of p(n).

Structure of the paper

In Section 2, we summarize the representation theory of the periplectic Lie
superalgebra p(n). In Section 3, we define the Duflo–Serganova functor for
P (n), construct the corresponding homomorphism between supercharacter
rings and compute its kernel. The kernel is explicitly described in terms
of the supercharacters of thin Kac modules (see Proposition 3.2.1). In Sec-
tion 4, we prove the surjectivity of the Duflo–Serganova homomorphism for
P (n), and in Section 5.1, we prove Theorem 1.0.1. We then describe the
Grothendieck ring of the periplectic Lie superalgebra in Section 5.2, and the
special periplectic Lie superalgebra in Section 5.3. We end this manuscript
by describing the super Weyl groupoid for p(n) in Section 5.4.

2. The periplectic Lie superalgebra and its representations

2.1. Lie superalgebras

Given a Z2-graded vector superspace V = V0̄ ⊕ V1̄, the parity of a homoge-
neous (even) vector v ∈ V0̄ is defined as v̄ = 0̄ ∈ Z2 = {0̄, 1̄} while the parity
of an odd vector v ∈ V1̄ is defined as v̄ = 1̄. If the parity of a vector v is 0̄
or 1̄, we say that v has degree 0 or 1, respectively. We always assume that
v is homogeneous whenever the notation v̄ appears in expressions. By Π we
denote the switch of parity functor.

The Lie superalgebra g = gl(n|n) is defined to be the endomorphism
algebra End(V0̄ ⊕ V1̄), where dimV0̄ = dimV1̄ = n. Then g = g0̄ ⊕ g1̄, where

g0̄ = End(V0̄)⊕ End(V1̄) and g1̄ = Hom(V0̄, V1̄)⊕Hom(V1̄, V0̄).

Let [x, y] = xy − (−1)x̄ȳyx, where x and y are homogeneous elements of g,
and extend [ , ] linearly to all of g. By fixing a basis of V0̄ and V1̄, the
superalgebra g can be realized as the set of 2n× 2n matrices, where

g0̄ =

{(
A 0
0 D

)
: A,D ∈ Mn,n

}
and g1̄ =

{(
0 B
C 0

)
: B,C ∈ Mn,n

}
,
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and Mn,n are n× n complex matrices. Recall that the supertrace is defined
by

str

(
A B
C D

)
= tr(A)− tr(D).

2.1.1. Periplectic Lie superalgebra. Let V be an (n|n)-dimensional
vector superspace equipped with a nondegenerate odd symmetric form

(1) β : V ⊗ V → C, β(v, w) = β(w, v), and β(v, w) = 0 if v̄ = w̄.

Then EndC(V ) inherits the structure of a vector superspace from V . Let p(n)
be the Lie superalgebra of all X ∈ EndC(V ) preserving β, i.e., β satisfies the
condition

β(Xv,w) + (−1)X̄v̄β(v,Xw) = 0.

With respect to a fixed bases for V , the matrix of X ∈ p(n) has the form(
A B
C −At

)
, where A,B,C are n× n matrices such that B is symmetric and C

is antisymmetric.
For the remainder of this manuscript, we will write g := p(n). Note that

str : g → C is a one-dimensional representation of g. We will also use the
Z-grading g = g−1 ⊕ g0 ⊕ g1 where g0 = g0̄ ≃ gl(n), g±1 is the annihilator
of V0̄ (respectively, V1̄). By G we denote the algebraic supergroup P (n).

2.2. Root systems

For the periplectic Lie superalgebra g, fix the standard Cartan subalgebra
h of diagonal matrices in g0 with its standard dual basis {ε1, . . . , εn}. So we
have a root space decomposition g = h⊕

(⊕
α∈∆ gα

)
, where ∆ = ∆(g−1) ∪

∆(g0) ∪∆(g1), and

∆(g0) = {εi − εj : 1 ≤ i ̸= j ≤ n},

∆(g1) = {εi + εj : 1 ≤ i ≤ j ≤ n},

and ∆(g−1) = {−(εi + εj) : 1 ≤ i < j ≤ n}.

The set of simple roots is chosen to be

Π = {−2ε1, ε1 − ε2, . . . , εn−1 − εn}.

This implies that ∆+(g0) = {εi − εj : 1 ≤ i < j ≤ n}. Our Borel subalgebra
is then b0 ⊕ g−1, where b0 =

⊕
α∈∆+(g0)

gα and g−1 =
⊕

α∈∆(g−1)
gα. We set

ρ :=
∑

1≤i≤n(n− i)εi.
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Let

R0 =
∏

α∈∆+(g0)

(1− e−α) and R−1 =
∏

α∈∆(g−1)

(1− e−α).

For W = Sn, the Weyl group of the even subalgebra of p(n), R−1 is W-
invariant and eρR0 is W -anti-invariant.

2.3. Weight spaces

Let Cn be the category of finite-dimensional representation of g and Fn

be the category of finite-dimensional representation of G. Both are abelian
symmetric rigid tensor categories. The latter category is equivalent to the
category of finite-dimensional g-modules, integrable over the underlying al-
gebraic group G0 = GL(n), see [10].

The Cartan subalgebra h is abelian, so it acts locally-finitely on a finite-
dimensional g-module M . This yields a decomposition of M as a direct
sum of generalized weight spaces M = ⊕λ∈h∗Mλ where Mλ = {v ∈ M : (h−
λ(h))mv for all h ∈ h} ≠ {0} for some sufficiently large m. If M is a G-
module, it is semisimple over g0 and hence h acts diagonally on M .

Suppose that M =
⊕

µ∈h∗ Mµ is weight space decomposition of a g-
module M . Define the character of M as

ch(M) :=
∑

µ∈h∗

dim(Mµ)e
µ,

while the supercharacter is defined as

sch(M) :=
∑

µ∈h∗

sdim(Mµ)e
µ.

Weights of modules in the abelian category Fn of finite-dimensional rep-
resentations of the periplectic Lie supergroup P (n) are denoted as

λ = (λ1, . . . , λn) =
∑

1≤i≤n

λiεi, λi ∈ Z.

Define the parity of λ as p(λ) = 1
2

∑
1≤i≤n λi (mod 2) if

∑
1≤i≤n λi is even

and p(λ) = 1
2(
∑

1≤i≤n λi + 1) (mod 2) if
∑

1≤i≤n λi is odd. We use the stan-
dard partial ordering of weights, namely

λ ≥ µ if λ− µ ∈
∑

α∈∆+(g0)∪∆(g−1)

Z≥0α.
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Note that in this ordering εi > εj when i < j and εi < 0 for all i.
A weight λ is dominant if and only if λ1 ≥ λ2 ≥ · · · ≥ λn. We will denote

Λn as the set of dominant integral weights. Simple objects in Fn (up to
isomorphism and parity-switch) are parametrized by Λn. Denote by L(λ) the
simple module with highest weight λ with respect to the Borel subalgebra
b0 ⊕ g−1, where the parity is taken such that the parity of the highest weight
vector is p(λ).

2.4. Thin Kac modules

Let V (λ) be a simple g0-module with highest weight λ with respect to the
fixed Borel b0 of g0. Given a dominant integral weight λ, the thin Kac module
corresponding to λ is

∇(λ) =
∏

n(n−1)/2 Indgg0⊕g1
V (λ− γ) ≃ Coindgg0⊕g1

V (λ),

where γ =
∑

α∈∆(g−1)
α =

∑n
i=1(1− n)εi. We will also write ∇P (n)(λ) to

specify that the thin Kac module is a representation over the algebraic su-
pergroup P (n).

Lemma 2.4.1. The supercharacter of the thin Kac module ∇(λ) with weight
λ is

(2) sch∇(λ) = (−1)p(λ)
R−1

eρR0

∑

w∈W

(−1)ℓ(w)ew(λ+ρ).

Proof. Since ∇(λ) ∼=
∧
(g∗−1)⊗ V (λ) as h-modules, the supercharacter of∧

(g∗−1) and the character of V (λ) are

sch
∧

(g∗−1) =
∏

β∈∆(g−1)

(1− e−β)

and chV (λ) = (eρ0R0)
−1
∑

w∈W

(−1)ℓ(w)w(eλ+ρ0),

respectively, where ρ0 =
1
2

∑
α∈∆+(g0)

α. Since −ρ0 + wρ0 = ρ− wρ, we ob-
tain (2). □

2.5. Weight diagrams

Let {λ1, . . . , λn} ⊆ Z be such that λ+ ρ =
∑n

i=1 λiεi. The weight diagram dλ
corresponding to a dominant weight λ is the labeling of the line of integers
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by symbols • and ◦, where i has label • if i ∈ {λ1, . . . , λn}, and ◦ if i ̸∈
{λ1, . . . , λn}. For example, d0 is

· · · ◦
−1

•
0

•
1

· · · •
n−1

◦
n

◦
n+1

· · ·

and d−3εn−εn−1
is

· · · ◦
−4

•
−3

◦
−2

◦
−1

•
0

◦
1

•
2

•
3

· · · •
n−1

.

Note that λ ≤ µ if and only if λi ≥ µi for each i. In terms of weight
diagrams, the i-th black ball in dλ (counted from left) lies further to the
right of the i-th black ball of dµ.

2.6. The Grothendieck ring

Let K(P (n)) be the Grothendieck ring of Fn, and define

(3) J(P (n)) = K(P (n))/⟨[M ] + [ΠM ] : M ∈ Fn⟩.

The ring J(P (n)) is isomorphic to the reduced Grothendieck ring
K(P (n))/⟨[M ]− [ΠM ] : M ∈ Fn⟩, with the isomorphism given by [L(λ)] 7→
(−1)p(λ)[L(λ)], where L(λ) is the simple module of highest weight λ.

One may identify J(P (n)) as the ring of supercharacters as follows: let
Λ ⊆ h∗ be the abelian group of integral weights of g0 and W be the Weyl
group of g0. The supercharacter function sch : J(P (n)) → SpanZ{e

λ : λ ∈
Λ}, sends [M ] 7→ sch(M). Since isomorphic modules have the same super-
character and sch(M) = − schΠM , sch is well-defined. Furthermore, sch is
injective since two irreducible modules have the same character if and only
if they are isomorphic.

Throughout this manuscript, we will also write xi := eεi for 1 ≤ i ≤ n.
The ring

Jn := {f ∈ Z[x±1
1 , . . . , x±1

n ]Sn : f |xi=x−1
j =t is independent of t for i ̸= j}

is then identified with a subring of SpanZ{e
λ : λ ∈ Λ}.

The following lemma is proved using restriction to subalgebras of the
form g−α ⊕ h⊕ gα where α is an odd root and 2α is not a root.

Lemma 2.6.1 ([11, Prop. 4.3]). We have

J(P (n)) ⊆ Jn.
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2.7. Translation functors

Let Θ′ = −⊗ V : Fn → Fn be an endofunctor. Consider the involutive anti-
automorphism σ : gl(n|n) → gl(n|n) defined as

(
A B
C D

)σ

:=

(
−Dt Bt

−Ct −At

)
.

One can see that p(n) = {x ∈ gl(n|n) : xσ = x}, and we set p(n)⊥ := {x ∈
gl(n|n) : xσ = −x}.

Since p(n) and p(n)⊥ form maximal isotropic subspaces with respect to
the form strXY we obtain a nondegenerate bilinear p(n)-invariant pairing
⟨ · , · ⟩ : p(n)⊗ p(n)⊥ → C. Choose Z-homogeneous bases {Xi} in p(n) and
{Xi} in p(n)⊥ such that ⟨Xi, Xj⟩ = δij . We define the fake Casimir element
as

Ω := 2

n∑

i=1

Xi ⊗Xi ∈ p(n)⊗ p(n)⊥ ⊆ p(n)⊗ gl(n|n).

Given a p(n)-module M , let ΩM : M ⊗ V → M ⊗ V be the linear map

ΩM (m⊗ v) = 2
∑

1≤i≤n

(−1)XimXim⊗Xiv,

where m ∈ M and v ∈ V are homogeneous. By [2, Lemma 4.1.4], we see that
ΩM commutes with the action of p(n) on M ⊗ V for any p(n)-module M .

For k ∈ C, define a functor Θ′
k : Fn → Fn as Θ′ = −⊗ V followed by the

projection onto the generalized k-eigenspace for Ω, i.e.,

Θ′
k(M) :=

⋃

m>0

ker(Ω− k Id)m
∣∣∣
M⊗V

.

Since Θ′
k = 0 if k /∈ Z, we set Θ′ =

⊕
k∈ZΘ

′
k, and Θk :=

∏k Θ′
k when k ∈ Z.

The endofunctors Θk of Fn for k ∈ Z are exact.
The following is [2, Prop. 5.2.2].

Proposition 2.7.1 (Translation of thin Kac modules). Let k ∈ Z.
Then
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1) Θ′
k∇(λ) = ∇(µ′′) if dλ looks as follows at positions k − 1, k, k + 1, with

dµ′′ displayed underneath:

dλ = •
k−1

•
k

◦
k+1

dµ′′ = •
k−1

◦
k

•
k+1

2) Θ′
k∇(λ) = Π∇(µ′) if dλ looks as follows at positions k − 1, k, k + 1,

with dµ′ displayed underneath:

dλ = ◦
k−1

•
k

•
k+1

dµ′ = •
k−1

◦
k

•
k+1

3) In case dλ looks locally at positions k − 1, k, k + 1 as below, there is a
short exact sequence

0 → ∇(µ′′) → Θ′
k∇(λ) → Π∇(µ′) → 0,

where dµ′ and dµ′′ are obtained from dλ by moving one black ball away
from position k (to position k − 1, respectively, k + 1) as follow:

dλ = ◦
k−1

•
k

◦
k+1

dµ′ = •
k−1

◦
k

◦
k+1

dµ′′ = ◦
k−1

◦
k

•
k+1

4) Θ′
k∇(λ) = 0 in all other cases.

2.8. Parabolic induction

We consider the standard scalar product on h∗ such that (εi, εj) = δi,j . Let
γ be some weight. Set

k := h⊕
⊕

(α,γ)=0

gα, r : =
⊕

(α,γ)>0

gα, q := k⊕ r.

The subalgebra q is called a parabolic subalgebra of g with the Levi sub-
algebra k and the nilpotent radical r. If Q is the corresponding parabolic
subgroup of G, then G/Q is a generalized flag supervariety.
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Let λ be a weight such that λ(h ∩ [k, k]) = 0. We denote by O(−λ) the
line bundle on G/Q induced by the one dimensional representation of Q
with weight −λ. Set

E(λ) =
∑

i

(−1)i schH i(G/P,O(−λ)).

By definition E(λ) is in J(P (n)). By [7, Prop. 1],

E(λ) =
1

eρR0

∑

w∈W

(−1)ww


eλ+ρ

∏

α∈∆1(r)

(1− e−α)




where ∆1(r) := {α ∈ ∆1 : (α, γ) > 0}. Since eρR0 is W-anti-invariant, this
can be written as

E(λ) =
∑

w∈W

w

(
eλ
∏

α∈∆1(r)
(1− e−α)

∏
α∈∆+

0
(1− e−α)

)
.

3. Duflo–Serganova homomorphism for P (n)

We show that the Duflo–Serganova functor induces a homomorphism be-
tween the rings of supercharacters, and discuss the kernel of this homomor-
phism (cf. [9]).

3.1. The dsn homomorphism

Let x ∈ g1 ⊕ g−1 such that [x, x] = 0. Then x2 is zero in U(g) and for every
g-module M , we define

Mx = kerM x/xM,

and similarly,

gx = gx/[x, g],

where gx = {g ∈ g : [x, g] = 0}. By [3, Lemma 6.2], Mx carries a natural gx-
module structure. Moreover, the Duflo–Serganova functor DSx : M 7→ Mx

is a symmetric monoidal functor from the category of g-modules to the
category of gx-modules. We consider a special case of the DS functor:

DSn : Fn → Fn−2, DSx(M) = Mx,

defined as follows. Suppose x = xβ for β ∈ ∆(g−1). By [4, Lemma 5.1.2],
gx ∼= p(n− 2). We embed gx in g such that the Cartan subalgebra hx of gx
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is contained in {h ∈ h : β(h) = 0}. By [9, Sec. 3], the map

(4) dsx : J(P (n)) → J(P (n− 2)), where dsx(schM) = sch(DSx(M)),

is well-defined and equal to (schM)|hx
. Since β = −εi − εj and f ∈ J(P (n))

satisfies that f |xi=x−1
j =t is independent of t, we get that

f |hx
= f |{h∈h:εi(h)=−εj(h)} = f |xi=x−1

j
.

Let −εi − εj ∈ ∆(g−1), and define

(5) dsn : J(P (n)) → J(P (n− 2)), dsn = p ◦ dsxα
,

where p is a bijection p : {1, . . . , n} \ {i, j} → {1, . . . , n− 2}. Since the ele-
ments in J(P (n)) are Sn-invariant, dsn is independent of i and j. Moreover,
the map dsn extends naturally to Jn by the evaluation dsn(f) = f |xn−1=x−1

n =t

(eventually we show that J(P (n)) = Jn but for now Jn ⊇ J(P (n))).
We define

(6) ds(k)n := dsn−2k+2 ◦ · · · ◦ dsn.

Note that applying ds
(k)
n is the same as applying dsx for x of higher rank.

3.2. The kernel of dsn

The following proposition is a straightforward generalization of [9, Thm. 17].

Proposition 3.2.1. The kernel of dsn : Jn → Jn−2 is spanned by the su-
percharacters of thin Kac modules.

Proof. Suppose f ∈ ker dsn. Then f is divisible by 1− xn−1xn. Since f is
W -invariant, f is also divisible by

∏
i<j(1− xixj) and hence

f =
∏

i<j

(1− xixj)g = R−1 · g,

where g is also W -invariant. Write g as a linear combinations of Schur func-
tions

g =

finite∑

λ∈h∗

aλe
−ρR−1

0

∑

w∈W

(sgnw)w(eλ+ρ).

Thus f =
∑finite

λ∈h∗ aλ∇(λ). □
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3.3. Translation functors and DSn

We will need the following statement, see [5, Corollary 3.0.2].

Lemma 3.3.1. The functor DSn commutes with translations functors Θ′
k.

Corollary 3.3.2. If [M ] ∈ Im dsn, then [Θi(M)] ∈ Im dsn for every trans-
lation functor Θi.

Proof. Suppose that DSn(A) = M for some finite-dimensional P (n)-module
A. By Lemma 3.3.1, we have

dsn([Θi(A)]) = [DSn(Θi(A))] = [Θi(DSn(A))] = [Θi(M)].

□

4. Surjectivity of the Duflo-Serganova map for P (n)

As explained in Proposition 3.2.1, the kernel of dsn is well-understood. We
now turn to discuss the image of dsn and prove the following theorem.

Theorem 4.0.1. The map dsn : J(P (n)) → J(P (n− 2)) is surjective.

We prove Theorem 4.0.1 in three steps. We first show that if [∇(0)] is

in the image of ds
(k)
n for some k ≥ 0 (see (6) for the definition), then [∇(µ)]

is also in the image of ds
(k)
n for every µ. We then show that [∇(0)] is in the

image of dsn by explicitly constructing its preimage. Finally, we show that

the fact that [∇(µ)] is in the image of ds
(k)
n for every µ implies that the map

is surjective.

4.1. Thin Kac modules are in the image of dsn

We prove the following proposition using the action of translations functors
Θk on thin Kac modules.

Proposition 4.1.1. If [∇(0)] ∈ Im ds
(k)
n for some k ≥ 0, then [∇(µ)] ∈

Im ds
(k)
n for all µ ∈ Λn.

Proof. Assume that [∇(0)] ∈ Im ds
(k)
n for some k ≥ 0. Consider Θ0(∇(0)) =

∇(−εn). By Corollary 3.3.2, [∇(−εn)] is also in the image. Now, apply Θ−1 to
∇(−εn). Then [Θ−1(∇(−εn))] = −[∇(−2εn)] + [∇(0)] by Proposition 2.7.1
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(3). Since [Θ−1(∇(−εn))]− [∇(0)] is in the image, −[∇(−2εn)] is also in
the image. We can inductively apply Θ−kn

, where kn ≥ 1, to ∇(−knεn) to
obtain

[Θ−kn
(∇(−knεn))] = −[∇(−(kn + 1)εn)] + [∇(−(kn − 1)εn)],

Thus [∇(−knεn)] is in the image for every kn ≥ 1.
Now assume that ∇ (−

∑n
i=r kiεi) is in the image for all kn ≥ · · · ≥

kr ≥ n− r, r ≥ 2. In a similar way, we apply Θn−r+1 to ∇ (−
∑n

i=r kiεi)
to obtain that ∇ (−εr−1 −

∑n
i=r kiεi) is also in the image. Now suppose

that ∇ (−jεr−1 −
∑n

i=r kiεi) is in the image for some 1 ≤ j < kr. We apply
Θn−r+1−j to ∇ (−jεr−1 −

∑n
i=r kiεi) to obtain that

∇

(
−(j + 1)εr−1 −

n∑

i=r

kiεi

)

is also in the image.
Thus, we obtain that ∇ (−

∑n
i=2 kiεi) is in the image for all kn ≥ · · · ≥

k2 ≥ 1. Finally, we can obtain all other thin Kac modules via tensoring with
powers of the supertrace representation. Indeed, L (k1

∑n
i=1 εi) is in the im-

age because schL (k1
∑n

i=1 εi) = (x1 · · ·xn)
k1 and dsn

(
[L
(
k1
∑n+2

i=1 εi

)
]
)
=

[L (k1
∑n

i=1 εi)]. Since

∇(µ)⊗ L

(
k1

n∑

i=1

εi

)
= ∇

(
µ+ k1

n∑

i=1

εi

)
,

the assertion follows. □

We now show that [∇(0)] is in fact in the image of ds
(k)
n . We construct

the preimage using parbolic induction.

Proposition 4.1.2. One has [∇(0)] ∈ Im ds
(k)
n .

Proof. Choose the parabolic subalgebra q associated with γ = −
∑n

l=2k+1 εl
(see Section 2.8). Then we have k ≃ p(2k) + gl(n− 2k) and

∆0(r) = {εi − εj : 1 ≤ i ≤ 2k < j ≤ n},

∆1(r) = {−εi − εj : i < j, 1 ≤ i ≤ n, 2k < j ≤ n}.

We set λ = a(ε1 + · · ·+ ε2k) for a ∈ Z and define d̃s
(k)

n as an evaluation

at xi = ti, xi+k = t−1
i for i = 1, . . . , k (namely the same as ds

(k)
n up to a
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permutation). So

E(λ) =
∑

w∈Sn

w

(
eλ
∏

1≤i≤n,2k<j≤n,i<j(1− xixj)∏
1≤i<j≤n(1− x−1

i xj)

)
.

Note that if w ̸∈ S2k × Sn−2k, then there exists i ≤ k such that w−1({i, i+
k}) ̸∈ {1, . . . , 2k}. This implies that for any w ̸∈ S2k × Sn−2k, we have

d̃s
(k)

n


w


 ∏

1≤i≤n,2k<j≤n

(1− xixj)




 = 0.

Thus, we have

(7) d̃s
(k)

n (E(λ)) =
∑

w∈S2k×Sn−2k

d̃s
(k)

n

(
w

(
eλ
∏

1≤i≤n,2k<j≤n,i<j(1− xixj)∏
1≤i<j≤n(1− x−1

i xj)

))
.

Now, we notice that λ is S2k × Sn−2k-invariant and d̃s
(k)

n (eλ) = 1. Moreover,
set

A :=

∏
1≤i≤2k<j≤n(1− xixj)∏
1≤i≤2k<j≤n(1− x−1

i xj)
,

then A is also S2k × Sn−2k-invariant, and d̃s
(k)

n (A) = 1. We can further sim-
plify (7) as

d̃s
(k)

n (E(λ)) =
∑

w∈S2k×Sn−2k

d̃s
(k)

n

(
w

( ∏
2k<i<j≤n(1− xixj)∏

1≤i<j≤2k(1− x−1
i xj)

∏
2k<i<j≤n(1− x−1

i xj)

))
.

Finally, the latter expression can be rewritten as

d̃s
(k)

n



( ∑

u∈S2k

u

(
1∏

1≤i<j≤2k(1− x−1
i xj)

))
 ∑

v∈Sn−2k

v

( ∏
2k<i<j≤n(1− xixj)∏
2k<i<j≤n(1− x−1

i xj)

)


 .

By the denominator identity of sl(2k) and sl(n− 2k), we have that

∑

u∈S2k

u

(
1∏

1≤i<j≤2k(1− x−1
i xj)

)
=

∑

v∈Sn−2k

v

(
1∏

2k<i<j≤n(1− x−1
i xj)

)
= 1.
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So we finally get

d̃s
(k)

n (E(λ)) =
∑

v∈Sn−2k

v

( ∏
2k<i<j≤n(1− xixj)∏
2k<i<j≤n(1− x−1

i xj)

)
=

∏

2k<i<j≤n

(1− xixj),

and ds
(k)
n (E(λ)) =

∏
1≤i<j≤2k−i(1− xixj) = sch∇(0), as desired. □

4.2. Surjectivity of the dsn map

The following proposition concludes the proof of Theorem 4.0.1.

Proposition 4.2.1. If Span{[∇(λ)] : λ ∈ Λn−2} ⊆ Im dsn, then J(P (n−
2)) ⊆ Im dsn.

Consider

J (P (n))
dsn−→ J(P (n− 2))

dsn−2
−→ J(P (n− 4))

dsn−4
−→ · · ·

dsx−→ J
(
P
(
n− 2

⌊
n
2

⌋))
,

where x = n− 2
⌊
n
2

⌋
+ 2. Then there is a filtration

(8) 0 = ker ds(0)n ⊆ ker ds(1)n ⊆ ker ds(2)n ⊆ · · · ⊆ ker ds
(⌊n

2
⌋)

n = J(P (n)).

We write the associated graded of J(P (n)) with respect to this filtration,
namely,

Gr J(P (n)) =

⌊n

2
⌋⊕

k=1

J
k
n,

where J
k
n := ker ds

(k)
n / ker ds

(k−1)
n . Let dsn : Gr J(P (n)) → Gr J(P (n− 2))

and

ds
(k)
n : J

k
n →֒ J

k−1
n−2

be the corresponding maps. Note that ds
(1)
n is the zero map.

Remark 4.2.2. The filtration (8) is also used in [8, Prop. 42].

We now prove Proposition 4.2.1.

Proof. It is enough to prove the statement for the associated graded, namely,
if Span{[∇(λ)]}λ∈Λn−2

⊆ Im dsn, then J(P (n− 2)) ⊆ Im dsn. We will con-
sider the cases when n is even and odd separately.
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We have the following diagram of maps when n is even

Gr J(P (n)) Gr J(P (n−2)) · · · Gr J(P (6)) Gr J(P (4)) Gr J(P (2)) Gr J(P (0))

J
(n/2)+1

n
•

ds
((n/2)+1)

n

((J
n/2

n
•

ds
(n/2)

n

((

J
n/2

n−2

•

...
J

(n/2)−1

n−2

•
. . .

J
k

n
•

ds
(k)

n

((

...
. . .

J
4

6
•

ds
(4)

6
''...

J
k−1

n−2

•
. . .

J
3

6
•

ds
(3)

6

''

J
3

4
•

ds
(3)

4
''J

2

n
•

ds
(2)

n

((

...
. . .

J
2

6
•

ds
(2)

6

''

J
2

4
•

ds
(2)

4

''

J
2

2
•

ds
(2)

2
''J

1

n
•

J
1

n−2

•
J

1

6
•

J
1

4
•

J
1

2
•

J
1

0,
•

and we have a similar diagram when n is odd, with Gr J(P (n)) =

(n+1)/2⊕

k=1

J
k
n.

We show that all the arrows in the diagram are bijective. Since

J
k
n = ker ds(k)n / ker ds(k−1)

n ,

the map ds
(k)
n is injective for every k and n. It remains to show that ds

(k)
n is

surjective. We prove it by induction on n, separately for even and odd n.
For n = 2 , note first that J(P (0)) = Z. Since the map

ds2 : J(P (2))/ ker ds2 → J(P (0))

sends the supercharacter of the trivial representation to the supercharacter
of the trivial representation, i.e., ds2(1) = 1, we have that ds2 is surjective,
and that is an isomorphism of vector spaces. For n = 3, note that J(P (1)) =

Z[x±1
1 ]. Since ds3 : J

2
3 → J

1
1 maps ds3(x1x2x3) = x1, it is an isomorphism.

Now suppose that we proved the statement up to n− 2. We will prove it
for n. Namely, we show that the maps in the leftmost column in the above

diagrams are surjective. The lowest map in the diagram ds
(2)
n : J

2
n →֒ J

1
n−2 is

surjective. Indeed, by Proposition 3.2.1, J1
n−2 is spanned by [∇(λ)], λ ∈ Λn−2

which is assumed to be in the image of dsn. Consider ds
(k)
n : J

k
n →֒ J

k−1
n−2,

where 2 < k ≤ ⌊n2 ⌋+ 1.
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First, consider the map g in the diagram below

J
k+1
n

ds
(k+1)

n //

g

55
J
k
n−2

ds
(2)

2 ◦···◦ds
(k)

n−2 // J
1
n−2k,

where g = ds
(2)
2 ◦ · · · ◦ ds

(k)
n−2 ◦ ds

(k+1)
n . The map g is surjective since when

n is even, g(1) = 1, and when n is odd, g(x1 · · ·xn) = x1. By induction hy-

pothesis, ds
(2)
2 ◦ · · · ◦ ds

(k)
n−2 is bijective. Thus, ds

(k+1)
n is a surjection. □

5. Grothendieck rings of periplectic Lie superalgebras

5.1. Proof of Theorem 1.0.1

We will now prove the main theorem.

Proof. By Lemma 2.6.1, we have that J(P (n)) ⊆ Jn. Let us show the reverse
inclusion. Suppose by induction that J(P (n− 2)) = Jn−2.

By Theorem 4.0.1, the evaluation map

dsn : Jn → J(P (n− 2))

given by dsn(f) = f |xn−1=x−1
n =t is surjective when restricted to J(P (n)).

Thus, every element of Jn is a sum of elements from J(P (n)) and ker dsn.
By Proposition 3.2.1, ker dsn ⊆ J(P (n)) and the claim follows. □

5.2. The Grothendieck ring of the Lie superalgebra p(n)

The description of the ring of supercharacters of finite-dimensional represen-
tations over the Lie superalgebra p(n) can be deduced from the description
of the ring corresponding to the Lie supergroup P (n).

Proposition 5.2.1. Denote by S the additive group of C and by T its
subgroup Z. We have

J(p(n)) ≃ Z[S]⊗Z[T ] Jn.

Proof. The character of any simple module can be written in the form
(x1 · · ·xn)

a schL, where (x1 · · ·xn)
a is a complex power of the character of

the supertrace representation and L ∈ Fn. Such presentation is unique up
to the relation (x1 · · ·xn)⊗ 1 = 1⊗ (x1 · · ·xn). The statement follows. □
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5.3. The Grothendieck ring of SP (n) and sp(n)

Let sp(n) be the special periplectic Lie superalgebra defined as

sp(n) =

{(
A B
C −At

)
∈ p(n) : tr(A) = 0

}
,

and SP (n) := P (n) ∩ SL(n|n) denote the corresponding Lie supergroup.
Note that SP (n) has two connected components detA = 1 and detA = −1.
The following statement is straightforward.

Proposition 5.3.1. The ring J(SP (n)) is isomorphic to the quotient ring

Jn/((x1 · · ·xn − 1)(x1 · · ·xn + 1))

and the ring J(sp(n)) is isomorphic to Jn/(x1 · · ·xn − 1)).

5.4. A Weyl groupoid for p(n)

In this section, we describe the polynomial invariants of certain affine action
of the super Weyl groupoid W of p(n). We follow the definition of the Weyl
groupoid given in [11, Section 9] (see also [12]).

We identify the Cartan subalgebra h with its dual using the scalar prod-
uct (·, ·) for which the standard basis {εi : i = 1, . . . , n} is orthonormal. Let
T be a groupoid with the set of objects {[εi − εj ] : i ̸= j} = ∆(g0) and the
set of morphisms MorT([α], [β]) = ∅ if α ̸= ±β, and MorT([α], [±α]) of car-
dinality 1. For every object [α], we denote by rα the unique morphism in
MorT([α], [−α]). We have the relation rαr−α = id[−α].

The Weyl groupW = Sn acts on ∆(g0) and we have the naturally defined
homomorphism Φ from W to the group of autoequivalences of T. This yields
the semidirect product groupoid T̃ = W ⋉ T. The objects of T̃ are the same
as the object of T. The morphisms in T̃ are generated by rα and wα,wα ∈
Mor

T̃
([α], [wα]), where w ∈ W , satisfying the relations

uwα,uwαwα,wα = (uw)α,uwα, rwαwα,wα = w−α,−wαrα.

The Weyl groupoid is defined as

W := W
∐

T̃,

where W is considered as a groupoid with a single point base [W ].
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Example 5.4.1. For p(2), let s = sε1−ε2 ∈ W . Then W takes the following
form

[ε1 − ε2]

sε1−ε2,ε2−ε1

((

rε1−ε2

  

[W ]

s

��

[ε2 − ε1]

rε2−ε1

``

sε2−ε1,ε1−ε2 .

hh

Let H denote the category of all affine subspaces of h with morphisms
given by affine transformations. For any α = εi − εj ∈ ∆(g0), let

Πα = {h ∈ h : (h, εi + εj) = 0}.

Note that Πα = Π−α. Define τα ∈ MorH(Πα,Πα) by the formula

τα(h) = h+ α.

Define the functor F : W → H by setting

F ([α]) = Πα, F ([W ]) = h, F (rα) = τα,

F (w) = w, F (wα,wα) = ResΠα
w.

A function f on h is called W-invariant if for any φ ∈ MorW(A,B)

F (φ)∗ResFB f = ResFA f.

Let P0 ⊆ h∗ be the abelian group of the integral weights of the Lie su-
peralgebra p(n)0. The description of J(P (n)) can be formulated as follows:

Theorem 5.4.2. The reduced Grothendieck ring J(P (n)) of finite-dimen-
sional representations of the supergroup P (n) is isomorphic to the ring(
SpanZ{e

λ : λ ∈ P0}
)W

of invariants of the Weyl groupoid W as defined
above.

Remark 5.4.3. One can enlarge the groupoid W to a slightly bigger cat-
egory Ŵ by adding the morphisms iα : [α] → [W ] and the relations wiα =
iwαwα,wα, i−αrα = iα. Note that the functor F : W → H can be extended

to F̂ : Ŵ → H by mapping iα to the embedding Πα →֒ h. In this way F̂
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is a functor from Ŵ to the category of all affine spaces. An invariant func-
tion is then the collection fA ∈ O(F̂A) = Γ(F̂A,OF̂A) for all objects A ∈ Ŵ

satisfying fA =
(
F̂ (φ)

)∗
fB for all φ ∈ Mor

Ŵ
(A,B).
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