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Inversive distance circle packing on surfaces was introduced by
Bowers-Stephenson [7] as a generalization of Thurston’s circle pack-
ing and conjectured to be rigid. The infinitesimal and global rigid-
ity of circle packing with nonnegative inversive distance were proved
by Guo [19] and Luo [25] respectively. The author [34] proved the
global rigidity of circle packing with inversive distance in (−1,+∞).
In this paper, we give a new variational proof of the Bowers-
Stephenson conjecture for inversive distance in (−1,+∞), which
simplifies the existing proof in [19, 25, 34] and could be general-
ized to three dimensional case. The new proof also reveals more
properties of the inversive distance circle packing on surfaces.

1. Introduction

In the study of hyperbolic structure on 3-dimensional manifolds, Thurston
[31] introduced circle packing with non-obtuse intersection angles on sur-
faces, which generalized the circle packing studied by Andreev [1, 2] and
Koebe [24]. Thurston proved the Andreev-Thurston theorem, which includes
the existence part and the rigidity part. The Andreev-Thurston rigidity the-
orem states that the circle packing is globally determined by the discrete
curvature on the triangulated surface, which is defined to be 2π less the cone
angle at a vertex. Recently, Andreev-Thurston theorem was generalized by
Zhou [37] to the case of obtuse angles. For a proof of Andreev-Thurston
Theorem, see [8, 9, 22, 27, 28, 31, 37].

Inversive distance circle packing was introduced by Bowers-Stephenson
[7] as a generalization of Thurston’s circle packing on surfaces, allowing the
adjacent circles to separate. SupposeM is a surface with a triangulation T =
{V,E, F}, where V,E, F are the sets of vertices, edges and faces respectively.
We use i, {ij}, {ijk} to denote a vertex, an edge and a face respectively,
where i, j, k are natural numbers. A weight on the triangulated surface is
a map I : E → (−1,+∞). We use Iij to denote I({ij}) for simplicity. A
weighted triangulated surface is denoted by (M, T , I) in this paper.
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Definition 1.1. Suppose (M, T , I) is a weighted triangulated surface. An
inversive distance circle packing metric is a map r : V → (0,+∞) such that

(1): The edge length lij of {ij} is

(1.1) lij =
√

r2i + r2j + 2rirjIij

for Euclidean background geometry and

(1.2) lij = cosh−1(cosh ri cosh rj + Iij sinh ri sinh rj)

for hyperbolic background geometry;

(2): With the assignment of edge lengths lij , ljk, lik by (1.1) (respectively
(1.2)), the triangle {ijk} could be embedded in 2-dimensional Eu-
clidean space E

2 (respectively 2-dimensional hyperbolic space H
2) as

a nondegenerate triangle.

The condition (2) in Definition 1.1 is called a nondegenerate condition.
If two circles Ci and Cj with radii ri and rj respectively are put in the
plane with lij as the distance of the centers of Ci, Cj , then the inversive
distance of the two circles is Iij . If Iij ∈ [0, 1] for any edge {ij} ∈ E, the
inversive distance circle packing is reduced to Thurston’s circle packing [31].
If Iij ∈ (−1, 1] for any edge {ij} ∈ E, the inversive distance circle packing is
reduced to the circle packing studied by Zhou [37]. If Iij ∈ [0,+∞) for any
edge {ij} ∈ E, the inversive distance circle packing was studied by Guo [19]
and Luo [25]. For more information on inversive distance circle packing, see
[6, 7, 19, 28].

Bowers-Stephenson [7] conjectured that the inversive distance circle pack-
ing on surfaces is rigid. The infinitesimal rigidity and global rigidity were
proved by Guo [19] and Luo [25] respectively for circle packings with non-
negative inversive distance, which generalize the Andreev-Thurston rigidity
theorem. Following the proof in [19, 25], the author [34] proved the rigidity
of circle packing for inversive distance in (−1,+∞) recently.

Theorem 1.1 ([19, 25, 34]). Suppose (M, T , I) is a weighted triangulated
surface with the weight I : E → (−1,+∞) satisfying the structure condition

(1.3) Iij + IikIjk ≥ 0, Iik + IijIjk ≥ 0, Ijk + IijIik ≥ 0, ∀{ijk} ∈ F.
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Then the inversive distance circle packing metric on (M, T , I) is uniquely
determined by the discrete curvature (up to scaling for the Euclidean back-
ground geometry).

The basic strategy in [19, 25, 34] to prove Theorem 1.1 is to apply the
variational principle introduced by de Verdière [9] to inversive distance circle
packing, which could be separated into the following three steps. The first
step is to prove the admissible space of inversive distance packing metrics
for a single triangle is simply connected; The second step is to prove that the
Jacobian matrix of the inner angles of a triangle in terms of some appropriate
parametrization of the circle radii is symmetric and negative semi-definite (or
negative definite), which ensures the definition of a locally concave function;
The third step is to extend the locally concave function to be a globally
defined concave function, which has been systematically studied in [3, 25],
and use this concave function to prove the rigidity.

In this paper, we give a new proof of Theorem 1.1. In the first step, the
proof in [19, 25, 34] for simply connectivity of the admissible space for a sin-
gle triangle is based on the triangle inequalities, which can not be generalized
to three or higher dimensional cases. In this paper, we give a new proof of
the simply connectivity using the Cayley-Menger determinant, which could
be used to characterize the nondegeneracy of a simplex in any dimension.
This proof enables us to prove the simply connectivity of admissible space
of Thurston’s sphere packing metrics for a single tetrahedron in three di-
mension [20, 21]. In the second step, the arguments in [19, 34] to prove the
negative semi-definiteness (or negative definiteness) of the Jacobian matrix
of inner angles in a triangle is based on a lengthy estimate of the eigenvalues
of the matrix under the nondegenerate condition. In this paper, we give a
new and short proof of the negative definiteness involving only the rank of
the Jacobian matrix and connectivity of the parameterized admissible space
for a triangle, which greatly simplifies the arguments in [19, 34]. The third
step is the same as that in [19, 25, 34].

In this paper, we only study the rigidity of inversive distance circle pack-
ing in Euclidean and hyperbolic background geometry. For the rigidity of
inversive distance circle packing in spherical background geometry, see [4, 5,
26]. Deformation of inversive distance circle packing metrics on surfaces by
discrete curvature flows was also studied recently, see [11–13, 15]. Inversive
distance circle packing has lots of practical applications, see [6, 23, 35, 36].

This paper is organized as follows. In Section 2, we give a new proof of
Theorem 1.1 in Euclidean background geometry. In Section 3, we give a new
proof of Theorem 1.1 in hyperbolic background geometry.
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2. Rigidity of Euclidean inversive distance circle packing

2.1. Admissible space of Euclidean inversive distance circle
packing metrics for a single triangle

Suppose σ = {123} ∈ F is a topological triangle in (M, T , I). The corre-
sponding edge set of the triangle is denoted by Eσ = {{12}, {13}, {23}}. We
denote η as the restriction of the weight I : E → (−1,+∞) on the edge set
Eσ. Given a weight η on the edge set Eσ satisfying the structure condition
(1.3), the admissible space ΩE

123(η) of Euclidean inversive distance circle
packing metrics for the triangle {123} is defined to be the set of Euclidean
inversive distance circle packing metrics (r1, r2, r3) ∈ R

3
>0 such that the tri-

angle {123} with the edge lengths given by (1.1) exists in 2-dimensional
Euclidean space E

2.
To simplify the notations, we set

Ii = Ijk, {i, j, k} = {1, 2, 3}.

Then l2ij = r2i + r2j + 2rirjIk. Set

G0(l) =




0 1 1 1
1 0 l212 l213
1 l212 0 l223
1 l213 l223 0




to be the Cayley-Menger 4× 4-matrix. Recall the following result charac-
terizing the nondegeneracy of a Euclidean triangle {123} with positive edge
lengths l12, l13, l23.

Lemma 2.1 ([29], Proposition 2.4.1). A triangle with positive edge
lengths l12, l13, l23 exists in E

2 if and only if detG0(l) < 0.

Remark 2.1. By direct calculations, we have

detG0(l) = −(l12 + l13 + l23)(l12 + l13 − l23)(l12 + l23 − l13)(l13 + l23 − l12),

which implies detG0(l) < 0 is equivalent to the triangle inequalities. This
was also observed in [19]. The advantage of using detG0(l) < 0 to charac-
terize the nondegeneracy is that we just need one inequality detG0(l) < 0
instead of three triangle inequalities. Furthermore, this characterization of
nondegeneracy of simplex could be generalized to high dimensional case [29].
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Submitting (1.1) into detG0(l), we have

detG0(l) =− 4
[
r21r

2
2(1− I23 ) + r21r

2
3(1− I22 ) + r22r

2
3(1− I21 )

+ 2r21r2r3(I1 + I2I3) + 2r1r
2
2r3(I2 + I1I3) + 2r1r2r

2
3(I3 + I1I2)

]
.

Set

γi = Ii + IjIk, κi = r−1
i .

Note that γi ≥ 0 due to the structure condition (1.3). Denote

Q = κ21(1− I21 ) + κ22(1− I22 ) + κ23(1− I23 ) + 2κ1κ2γ3 + 2κ1κ3γ2 + 2κ2κ3γ1,

then we have

detG0(l) = −4r21r
2
2r

2
3Q.

Lemma 2.2 ([19, 34, 37]). A Euclidean triangle {123} with edge lengths
l12, l13, l23 given by (1.1) exists in E

2 if and only if Q > 0.

Set

(2.1)

h1 =κ1(1− I21 ) + κ2γ3 + κ3γ2,

h2 =κ2(1− I22 ) + κ1γ3 + κ3γ1,

h3 =κ3(1− I23 ) + κ1γ2 + κ2γ1.

By Lemma 2.2, (r1, r2, r3) ∈ R
3
>0 generates a degenerate Euclidean triangle

if and only if

(2.2) Q = κ1h1 + κ2h2 + κ3h3 ≤ 0.

Remark 2.2. For a nondegenerate inversive distance circle packing metric
of the triangle {123}, there exists a geometric center C123 of the triangle
{123} ([17] Proposition 4), which has the same circle power to the circles
attached to the vertices {1, 2, 3}. Here the circle power of a point x to a
circle with center p and radius r is defined to be πp(x) = d2(x, p)− r2, where
d(x, p) is the Euclidean distance between x and p. hi in (2.1) is a positive
multiplication of the signed distance hjk,i of C123 to the edge {jk}, which is
defined to be positive if C123 is on the same side of the line determined by
{jk} as the triangle {123} and negative otherwise (or zero if C123 is on the
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line). By direct calculations, we have

(2.3) hij,k =
r21r

2
2r

2
3

2lijA123
[κ2k(1− I2k) + κjκkγi + κiκkγj ] =

r21r
2
2r

2
3

2lijA123
κkhk,

where A123 is the area of the triangle {123}. Note that h1, h2, h3 are well-
defined for any (r1, r2, r3) ∈ R

3
>0, while h12,3, h13,2, h23,1 are defined for non-

degenerate inversive distance circle packing metrics. Refer to [16–18, 30] for
more information on the geometric center of triangles.

Suppose (r1, r2, r3) ∈ R
3
>0 is a degenerate inversive distance circle pack-

ing metric, then one of the following two cases happens by (2.2).

(1): At least one of h1, h2, h3 is zero;

(2): None of h1, h2, h3 is zero.

We will prove that case (1) never happens. Furthermore, we will prove that
only one of hi, hj , hk is negative and the others are positive in case (2).

Note that Q ≤ 0 is equivalent to the following quadratic inequality of κi

(2.4) Aiκ
2
i +Biκi + Ci ≥ 0,

where

(2.5)

Ai =I2i − 1,

Bi =− 2(κjγk + κkγj) ≤ 0,

Ci =κ2j (I
2
j − 1) + κ2k(I

2
k − 1)− 2κjκkγi.

with {i, j, k} = {1, 2, 3}. By direct calculations, the determinant ∆i = B2
i −

4AiCi is given by

(2.6) ∆i = 4(I21 + I22 + I23 + 2I1I2I3 − 1)(κ2j + κ2k + 2κjκkIi).

Lemma 2.3. Suppose η = (I1, I2, I3) is a weight on the edges of a triangle
{123} satisfying the structure condition (1.3). If Ii > 1, then ∆i > 0.

Proof. It is straight forward to check that κ2j + κ2k + 2κjκkIi > 0. We just

need to check I21 + I22 + I23 + 2I1I2I3 − 1 > 0 by (2.6). If Ij ≥ 0, Ik ≥ 0, then

I21 + I22 + I23 + 2I1I2I3 − 1 > I2j + I2k + 2I1I2I3 ≥ 0.



✐

✐

“15-Xu” — 2021/11/10 — 16:08 — page 1289 — #7
✐

✐

✐

✐

✐

✐

A new proof of Bowers-Stephenson conjecture 1289

If Ij < 0, then Ij ∈ (−1, 0) and

I21 + I22 + I23 + 2I1I2I3 − 1 = (Ik + IiIj)
2 + (1− I2j )(I

2
i − 1) > 0.

Similar argument applies for the case Ik < 0. Therefore, under the structure
condition (1.3) and Ii > 1, we have I21 + I22 + I23 + 2I1I2I3 − 1 > 0. □

Now we can prove that the case (1) never happens.

Lemma 2.4. Suppose (r1, r2, r3) ∈ R
3
>0 is a degenerate Euclidean inversive

distance circle packing metric for a triangle {123} with a weigh η : Eσ →
(−1,+∞) satisfying the structure condition (1.3), then none of h1, h2, h3 is
zero.

Proof. We prove the lemma by contradiction. By the degenerate condition
(2.2), if one of h1, h2, h3 is zero, then there is another one of h1, h2, h3 that
is nonpositive. Without loss of generality, we assume h1 = 0, h2 ≤ 0 for a
degenerate Euclidean inversive distance circle packing metric (r1, r2, r3) ∈
R
3
>0.
By h1 = 0, we have κ1(I

2
1 − 1) = κ2γ3 + κ3γ2, which implies I1 ≥ 1 by

the structure condition (1.3). If I1 > 1, we can rewrite Q ≤ 0 as a quadratic
inequality in κ1:

(2.7) A1κ
2
1 +B1κ1 + C1 ≥ 0,

where A1, B1, C1 are given by (2.5) with A1 = I21 − 1 > 0. By Lemma 2.3,
we have ∆1 > 0. Then (2.7) implies

κ1 ≥
−B1 +

√
∆1

2A1
or κ1 ≤

−B1 −
√
∆1

2A1
,

which is equivalent to

−2h1 = 2A1κ1 +B1 ≥
√

∆1 > 0 or − 2h1 = 2A1κ1 +B1 ≤ −
√

∆1 < 0.

This contradicts h1 = 0. Therefore, I1 = 1. By h1 = 0 again, we have γ2 =
γ3 = 0, which implies I2 + I3 = 0.

By h2 = κ2(1− I22 ) + κ1γ3 + κ3γ1 ≤ 0, we have I2 ≥ 1, which implies
I3 = −I2 ≤ −1. This is impossible. □

By Lemma 2.4, if (r1, r2, r3) ∈ R
3
>0 is a degenerate Euclidean inversive

distance circle packing metric for a triangle {123}, at least one of h1, h2, h3
is negative and the others are nonzero. Furthermore, we have the following
result.
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Lemma 2.5. Suppose {123} is a triangle with a weigh η : Eσ → (−1,+∞)
satisfying the structure condition (1.3) and (r1, r2, r3) ∈ R

3
>0. Then there

exists no subset {i, j} ⊂ {1, 2, 3} such that hi < 0 and hj < 0.

Proof. Without loss of generality, we consider the case h1 < 0, h2 < 0. By
h1 < 0, h2 < 0, we have

(I21 − 1)κ1 > κ2γ3 + κ3γ2, (I22 − 1)κ2 > κ1γ3 + κ3γ1,

which implies I1 > 1, I2 > 1 and (I21 − 1)(I22 − 1) > γ23 by the structure con-
dition (1.3). Note that

(I21 − 1)(I22 − 1)− γ23 = −I21 − I22 − I23 − 2I1I2I3 + 1 < 0

by the proof of Lemma 2.3. This is a contradiction. □

Remark 2.3. No matter (r1, r2, r3) ∈ R
3
>0 is a nondegenerate or degenerate

inversive distance circle packing metric for the triangle {123}, Lemma 2.5 is
valid. For nondegenerate inversive distance circle packing metrics, Lemma
2.5 implies that the geometric center does not lie in some special regions in
the plane relative to the triangle.

Now we can prove the main result of this subsection.

Proposition 2.1 ([19, 34]). Suppose σ = {123} ∈ F is a triangle in (M, T )
with a weight η : Eσ → (−1,+∞) satisfying the structure condition (1.3).
Then the admissible space ΩE

123(η) of Euclidean inversive distance circle
packing metrics (r1, r2, r3) ∈ R

3
>0 is nonempty and simply connected. Fur-

thermore, the set of degenerate inversive distance circle packing metric is a
disjoint union ∪i∈PVi, where P = {i ∈ {1, 2, 3}|Ii > 1} and

Vi =

{
(r1, r2, r3) ∈ R

3
>0|κi ≥

−Bi +
√
∆i

2Ai

}

is bounded by an analytic graph on R
2
>0.

Proof. Suppose (r1, r2, r3) ∈ R
3
>0 is a degenerate inversive distance circle

packing metric for the triangle {123}, then we have Q = κ1h1 + κ2h2 +
κ3h3 ≤ 0. By Lemma 2.4 and Lemma 2.5, one of h1, h2, h3 is negative and
the others are positive.

Suppose hi < 0 and hj > 0, hk > 0 with {i, j, k} = {1, 2, 3}. Then we
have Ii > 1 by hi < 0. Rewrite Q ≤ 0 as a quadratic inequality in κi: Aiκ

2
i +



✐

✐

“15-Xu” — 2021/11/10 — 16:08 — page 1291 — #9
✐

✐

✐

✐

✐

✐

A new proof of Bowers-Stephenson conjecture 1291

Biκi + Ci ≥ 0, where Ai, Bi, Ci are defined by (2.5) with Ai = I2i − 1 > 0.
By Lemma 2.3, we have ∆i > 0. Then Aiκ

2
i +Biκi + Ci ≥ 0 implies

κi ≥
−Bi +

√
∆i

2Ai
or κi ≤

−Bi −
√
∆i

2Ai
.

Note that hi < 0 is equivalent to κi >
−Bi

2Ai
. This implies κi ≥ −Bi+

√
∆i

2Ai
.

Therefore, the set of degenerate inversive distance circle packing metrics
is contained in ∪i∈PVi.

On the other hand, if Ii > 1, then for any (r1, r2, r3) ∈ Vi, we have Q ≤ 0,
which implies any element (r1, r2, r3) ∈ Vi is a degenerate inversive distance
circle packing metric. Therefore, ΩE

123(η) = R
3
>0 \ ∪i∈PVi, where P = {i ∈

{1, 2, 3}|Ii > 1}.
For any (r1, r2, r3) ∈ Vi, we have κi >

−Bi

2Ai
, which is equivalent to hi < 0.

This implies Vi ∩ Vj = ∅ if Ii > 1 and Ij > 1 by Lemma 2.5.
Note that Vi is bounded by an analytic graph on R

2
>0. In fact

Vi =

{
(r1, r2, r3) ∈ R

3
>0|ri ≤

2Ai

−Bi +
√
∆i

}
.

This implies ΩE
123(η) = R

3
>0 \ ∪i∈PVi is homotopy equivalent to R

3
>0. There-

fore, ΩE
123(η) is simply connected. □

Remark 2.4. Suppose σ = {123} ∈ F is a triangle with a weight η : Eσ →
(−1,+∞) satisfying the structure condition (1.3). For (r1, r2, r3) ∈ Vi, we
have hi < 0 and hj > 0, hk > 0.

Remark 2.5. The simply connectivity of the admissible space of nonde-
generate inversive distance circle packing metrics was first proved by Guo
[19] for nonnegative inversive distance and then by the author [34] for in-
versive distance in (−1,+∞) satisfying the structure condition (1.3). The
proof of simply connectivity presented here is motivated by the proof of
simply connectivity of admissible space of sphere packing metrics of a tetra-
hedron in 3-dimension [10, 14, 33]. The advantage of the proof of Proposition
2.1 is that we have a precise description of the boundary of the admissible
space, each connected component of which is an analytic graph on R

2
>0, and

the proof could be generalized to 3-dimensional case to prove the simply
connectivity of admissible space of Thurston’s sphere packing metrics for a
tetrahedron [20, 21].

In a single triangle {123}, we denote θi as the angle at vertex i. We have
the following result.
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Lemma 2.6 ([25, 34]). Suppose {123} ∈ F is a triangle with a weight
η : Eσ → (−1,+∞) satisfying the structure condition (1.3). Then θ1, θ2, θ3
defined for (r1, r2, r3) ∈ ΩE

123(η) could be extended by constants to be contin-

uous functions θ̃1, θ̃2, θ̃3 defined on R
3
>0.

Proof. If r = (r1, r2, r3) ∈ ΩE
123(η) tends to a point r = (r1, r2, r3) in the

boundary ∂Vi of Vi in R
3
>0, we have the area A123 → 0, lij(r) → lij(r) > 0

and lik(r) → lik(r) > 0, which implies sin θi =
2A123

lij lik
→ 0. Therefore, θi → π

or 0.
Take ui = ln ri. By Lemma 2.9, we have

∂θi

∂ui
= −∂θj

∂ui
− ∂θk

∂ui
= −hij,k

lij
− hik,j

lik
.

As hj > 0, hk > 0 for r ∈ ∂Vi by Remark 2.4, we have ∂θi
∂ui

< 0 for r ∈ ΩE
123(η)

around r by (2.3). Therefore, if we increase ri at r, which results the trian-
gle does not degenerate, we shall have θi decrease. This implies θi → π as
(r1, r2, r3) → (r1, r2, r3). By θi + θj + θk = π, we have θj , θk → 0.

Then we can extend θ1, θ2, θ3 defined on ΩE
123(η) to be continuous func-

tions defined on R
3
>0 by setting

θ̃i(r1, r2, r3) =





θi, if (r1, r2, r3) ∈ ΩE
123(η);

π, if (r1, r2, r3) ∈ Vi;

0, otherwise.

□

Denote

Γ = {(I1, I2, I3) ∈ (−1,+∞)3|γ1 ≥ 0, γ2 ≥ 0, γ3 ≥ 0}

as the space of weights on the edges of a triangle {123} satisfying the struc-
ture condition (1.3).

Lemma 2.7. Γ is connected.

Proof. It is obviously that [0,+∞)3 ⊂ Γ. By γi = Ii + IjIk ≥ 0, i = 1, 2, 3,
we have I1 + I2 ≥ 0, I1 + I3 ≥ 0, I2 + I3 ≥ 0, which implies that at most one
of I1, I2, I3 is negative. Without loss of generality, we consider the case
(I1, I2, I3) ∈ Γ with I1 < 0, I2 ≥ 0, I3 ≥ 0. It is straight forward to check that
(tI1, I2, I3) ∈ Γ for any t ∈ [0, 1], which implies Γ is connected. □
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Using the space Γ, we can further define the following 6-dimensional
parameterized admissible space

ΩE
123 = ∪η∈ΓΩ

E
123(η).

Lemma 2.8. ΩE
123 is connected.

Proof. Suppose η0 ∈ Γ, then there exists r0 ∈ ΩE
123(η0) with Q(η0, r0) > 0 by

the nonempty property of ΩE
123(η0) in Proposition 2.1. Consider the contin-

uous function Q(η, r0) of η. As Q(η0, r0) > 0, there is a connected neighbor-
hood Uη0

⊂ Γ of η0 such that Q(η, r0) > 0 for any η ∈ Uη0
. This implies that

for any η ∈ Uη0
, any two points (η, rA) ∈ ΩE

123 and (η0, rB) ∈ ΩE
123 could be

connected by a path in ΩE
123 by Proposition 2.1. In this case, we call the space

ΩE
123(η) and ΩE

123(η0) could be connected by a path in Uη0
. Taking ΩE

123(η)
as a point. Then for any ηA, ηB ∈ Γ, the existence of a path from ΩE

123(ηA) to
ΩE
123(ηB) in Γ follows from the connectivity of Γ and finite covering theorem,

which implies that ΩE
123 is connected. □

2.2. Negative semi-definiteness of the Jacobian matrix

Set ui = ln ri. The following result on the matrix ΛE
123 =

∂(θ1,θ2,θ3)
∂(u1,u2,u3)

is known.

Lemma 2.9 ([8, 19, 31, 34, 37]). Suppose (r1, r2, r3) is a nondegenerate
Euclidean inversive distance circle packing metric for a triangle {123} with
a weight η satisfying the structure condition (1.3), then

(2.8)
∂θi

∂uj
=

∂θj

∂ui
=

r21r
2
2r

2
3

2A123l
2
ij

[
κ2k(1− I2k) + κjκkγi + κiκkγj

]

for any adjacent vertices i, j, where A123 is the area of the triangle {123},
and

(2.9)
∂θi

∂ui
= − ∂θi

∂uj
− ∂θi

∂uk
.

Specially, for η = (I1, I2, I3) = (1, 1, 1) ∈ Γ, the Jacobian matrix ΛE
123 =

∂(θ1,θ2,θ3)
∂(u1,u2,u3)

is negative semi-definite with a zero eigenvalue and two negative
eigenvalues.

Remark 2.6. By (2.3), (2.9) and Remark 2.4, if η ∈ Γ and (r1, r2, r3) ∈
ΩE
123(η) tends to a point (r1, r2, r3) ∈ ∂Vi, we have ∂θi

∂uj
→ +∞, ∂θi

∂uk
→ +∞

and ∂θi
∂ui

→ −∞.
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Set dij =
∂lij
∂ui

and dji =
∂lij
∂uj

. Then dij =
ri(ri+rjIk)

lij
, dji =

rj(rj+riIk)
lij

and

dij + dji = lij . This is a type of conformal metric studied in [16–18, 30].

Lemma 2.10 ([19, 34]). Suppose r = (r1, r2, r3) ∈ R
3
>0 is a nondegenerate

Euclidean inversive distance circle packing metric for a triangle {123} with
a weight η satisfying the structure condition (1.3), then the Jacobian matrix

ΛE
123(η) =

∂(θ1,θ2,θ3)
∂(u1,u2,u3)

is negative semi-definite with one dimensional kernel

{t(1, 1, 1)|t ∈ R}.

Proof. By the chain rules, we have

ΛE
123 =

∂(θ1, θ2, θ3)

∂(l23, l13, l12)
· ∂(l23, l13, l12)
∂(u1, u2, u3)

.

By direct calculations,

det
∂(l23, l13, l12)

∂(u1, u2, u3)
= det




0 d23 d32
d13 0 d31
d12 d21 0




=
r1r2r3

l12l13l23
[2r1r2r3(1 + I1I2I3) + r1(r

2
2 + r23)(I1 + I2I3)

+ r2(r
2
1 + r23)(I2 + I1I3) + r3(r

2
1 + r22)(I3 + I1I2)]

≥ 2r21r
2
2r

2
3

l12l13l23
(1 + I1I2I3 + I1 + I2I3 + I2 + I1I3 + I3 + I1I2)

=
2r21r

2
2r

2
3

l12l13l23
(1 + I1)(1 + I2)(1 + I3) > 0,

which implies the matrix ∂(l23,l13,l12)
∂(u1,u2,u3)

is nondegenerate. Therefore, the rank

of ΛE
123 is the same as that of the matrix ∂(θ1,θ2,θ3)

∂(l23,l13,l12)
, which is known to be 2

for nondegenerate Euclidean triangles.
Taking ΛE

123 as a matrix-valued function defined on ΩE
123, then the two

nonzero eigenvalues of ΛE
123 are continuous functions of (η, r) ∈ ΩE

123. By the
connectivity of ΩE

123 in Lemma 2.8, the nonzero eigenvalues do not change
sign in ΩE

123. Note that ΛE
123(η0) is negative semi-definite with two nega-

tive eigenvalues for η0 = (1, 1, 1) by Lemma 2.9. This implies that ΛE
123(η)

is negative semi-definite with two negative eigenvalues for any η ∈ Γ. The
kernel of ΛE

123(η) is {t(1, 1, 1)|t ∈ R} follows from the scaling invariance of
θ1, θ2, θ3. □
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Remark 2.7. The negative semi-definiteness of the Jacobian matrix ΛE
123

for Thurston’s circle packing metric is well-known, see [8, 31, 37]. The nega-
tive semi-definiteness of ΛE

123 for inversive distance circle packing metrics is
proved by Guo [19] for nonnegative inversive distance and by the author [34]
for inversive distance in (−1,+∞) satisfying the structure condition (1.3).
The proof we give here simplifies the proof in [19, 34].

2.3. Proof of the rigidity for Euclidean inversive distance
circle packing

As the rest of the proof for the rigidity is standard and the same as that in
[19, 25, 34], we just give a sketch of the proof here. For more details of the
proof, see [19, 25, 34].

By Lemma 2.9 and Proposition 2.1, we can define the following function

Fijk(ui, uj , uk) =

∫ (ui,uj ,uk)

(ui,uj ,uk)
θidui + θjduj + θkduk

on ln(ΩE
ijk(η)), which is locally concave by Lemma 2.10. Recall the following

definition and extension theorem of Luo [25].

Definition 2.1. A differential 1-form w =
∑n

i=1 ai(x)dx
i in an open set

U ⊂ R
n is said to be continuous if each ai(x) is continuous on U . A con-

tinuous differential 1-form w is called closed if
∫
∂τ

w = 0 for each triangle
τ ⊂ U .

Theorem 2.1 ([25], Corollary 2.6). Suppose X ⊂ R
n is an open convex

set and A ⊂ X is an open subset of X bounded by a real analytic codimension-
1 submanifold in X. If w =

∑n
i=1 ai(x)dxi is a continuous closed 1-form

on A so that F (x) =
∫ x

a
w is locally convex on A and each ai can be ex-

tended continuous to X by constant functions to a function ãi on X, then
F̃ (x) =

∫ x

a

∑n
i=1 ãi(x)dxi is a C1-smooth convex function on X extending F .

By Proposition 2.1, Lemma 2.6 and Theorem 2.1, Fijk could be extended
to be a C1-smooth concave function

F̃ijk(ui, uj , uk) =

∫ (ui,uj ,uk)

(ui,uj ,uk)
θ̃idui + θ̃jduj + θ̃kduk
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defined on R
3. Using F̃ijk, we can further define the following C1 convex

function F̃ on R
|V |

F̃ (u1, . . . , u|V |) = 2π
∑

i∈V
ui −

∑

{ijk}∈F
F̃ijk(ui, uj , uk),

which has gradient ∇ui
F̃ = 2π −∑

{ijk}∈F θ̃
jk
i = K̃i, where K̃i is a continu-

ous extension of Ki. Then the global rigidity of K on the admissible space
of Euclidean inversive distance circle packing metrics for (M, T , I) follows
from the convexity of F̃ and the null space of ΛE

ijk(η) is {t(1, 1, 1)|t ∈ R}. □

3. Rigidity of hyperbolic inversive distance circle packing

3.1. The admissible space of hyperbolic inversive distance circle
packing metrics for a single triangle

Similar to the Euclidean case, we can define the admissible space of hyper-
bolic inversive distance circle packing metrics for a triangle σ = {123} ∈ F .
Given a weight η on the edge set Eσ of {123} satisfying the structure con-
dition (1.3), the admissible space ΩH

123(η) of hyperbolic inversive distance
circle packing metrics for the triangle σ = {123} is defined to be the set of
hyperbolic inversive distance circle packing metrics (r1, r2, r3) ∈ R

3
>0 such

that the triangle with edge lengths given by (1.2) exists in 2-dimensional
hyperbolic space H

2.
Set

G−(l) =




−1 − cosh l12 − cosh l13
− cosh l12 −1 − cosh l23
− cosh l13 − cosh l23 −1


 .

Recall the following result characterizing nondegeneracy of a hyperbolic tri-
angle {123} with positive edge lengths l12, l13, l23.

Lemma 3.1 ([29], Proposition 2.4.1). A triangle with positive edge
lengths l12, l13, l23 exists in H

2 if and only if detG−(l) < 0.

Remark 3.1. By direct calculations, we have

detG−(l) = −4 sinh s sinh(s− l12) sinh(s− l13) sinh(s− l23),

where s = 1
2(l12 + l13 + l23) is the semiperimeter. This implies that

detG−(l) < 0 is equivalent to the triangle inequalities. This was also ob-
served by Guo in [19]. Similar to the Euclidean case, this approach has the
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advantage that we just need one inequality to characterize the nondegener-
acy instead of three triangle inequalities. Furthermore, this approach could
be generalized to higher dimension [29].

For simplicity, we set

Ci = cosh ri, Si = sinh ri.

Submitting the definition of lij (1.2) into G−(l), we have

− detG−(l) = 2S2
1S

2
2S

2
3(1 + I1I2I3)

+ S2
1S

2
2(1− I23 ) + S2

1S
2
3(1− I22 ) + S2

2S
2
3(1− I21 )

+ 2C2C3S
2
1S2S3γ1 + 2C1C3S1S

2
2S3γ2 + 2C1C2S1S2S

2
3γ3,

where γi = Ii + IjIk ≥ 0 due to the structure condition (1.3). Set

κi = coth ri,

then

− detG−(l) = S2
1S

2
2S

2
3Q,

where

Q = κ21(1− I21 ) + κ22(1− I22 ) + κ23(1− I23 ) + 2κ1κ2γ3 + 2κ1κ3γ2 + 2κ2κ3γ1

+ I21 + I22 + I23 + 2I1I2I3 − 1.

Then we have the following criterion of nondegeneracy for hyperbolic trian-
gles.

Lemma 3.2 ([19, 34]). A hyperbolic triangle {123} with edge lengths
l12, l13, l23 given by (1.2) exists in H

2 if and only if Q > 0.

Similar to the Euclidean case, set

h1 = κ1(1− I21 ) + κ2γ3 + κ3γ2,

h2 = κ2(1− I22 ) + κ1γ3 + κ3γ1,

h3 = κ3(1− I23 ) + κ1γ2 + κ2γ1,

we have

Q =κ1h1 + κ2h2 + κ3h3 + I21 + I22 + I23 + 2I1I2I3 − 1.
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Then (r1, r2, r3) ∈ R
3
>0 is a degenerate hyperbolic inversive distance circle

packing metric for a single triangle {123} if and only if

(3.1) Q = κ1h1 + κ2h2 + κ3h3 + I21 + I22 + I23 + 2I1I2I3 − 1 ≤ 0.

If I1, I2, I3 ∈ (−1, 1], we have hi ≥ 1− I2i + γj + γk by κi = coth ri > 1,
which implies

Q ≥ (1− I21 ) + γ3 + γ2 + (1− I22 ) + γ3 + γ1

+ (1− I23 ) + γ2 + γ1 + I21 + I22 + I23 + 2I1I2I3 − 1

= 2(1 + I1)(1 + I2)(1 + I3) > 0

for any (r1, r2, r3) ∈ R
3
>0. Therefore, if (r1, r2, r3) ∈ R

3
>0 is a degenerate hy-

perbolic inversive distance circle packing metric for a triangle {123}, at
least one of I1, I2, I3 is strictly larger than 1, which implies I21 + I22 + I23 +
2I1I2I3 − 1 > 0 by the proof of Lemma 2.3.

Therefore, if (r1, r2, r3) ∈ R
3
>0 is a degenerate inversive distance circle

packing metric for a triangle {123}, we have

κ1h1 + κ2h2 + κ3h3 < 0

by (3.1), which implies one of the following two cases happens.

(1): At least one of h1, h2, h3 is zero;

(2): None of h1, h2, h3 is zero.

Similar to the Euclidean case, we can prove that case (1) never happens.
Furthermore, we can prove that only one of hi, hj , hk is negative and the
others are positive in case (2).

Similar to the Euclidean case, we can rewrite Q ≤ 0 as a quadratic in-
equality in κi:

Aiκ
2
i +Biκi + Ci ≥ 0,

where

(3.2)

Ai = I2i − 1,

Bi = −2(κjγk + κkγj) ≤ 0, {i, j, k} = {1, 2, 3},
Ci = κ2j (I

2
j − 1) + κ2k(I

2
k − 1)− 2κjκkγi

− (I21 + I22 + I23 + 2I1I2I3 − 1)
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with {i, j, k} = {1, 2, 3}. By direct calculations, we have the determinant
∆i = B2

i − 4AiCi is given by

∆i = 4(κ2j + κ2k + 2κjκkIi)(I
2
1 + I22 + I23 + 2I1I2I3 − 1)(3.3)

+ 4(I2i − 1)(I21 + I22 + I23 + 2I1I2I3 − 1).

Similar to the Euclidean case, we have the following results.

Lemma 3.3. If Ii > 1 and the structure condition (1.3) is satisfied, then
∆i > 0.

Lemma 3.4. Suppose (r1, r2, r3) ∈ R
3
>0 is a degenerate hyperbolic inversive

distance circle packing metric for a triangle {123} with a weight η : Eσ →
(−1,+∞) satisfying the structure condition (1.3), then none of h1, h2, h3 is
zero.

Lemma 3.5. Suppose {123} ∈ F is a triangle with a weight η : Eσ →
(−1,+∞) satisfying the structure condition (1.3) and (r1, r2, r3) ∈ R

3
>0. Then

there exists no subset {i, j} ⊂ {1, 2, 3} such that hi < 0 and hj < 0.

Proposition 3.1 ([19, 34]). Suppose σ = {123} ∈ F is a triangle in (M, T )
with a weight η : Eσ → (−1,+∞) satisfying the structure condition (1.3).
Then the admissible space ΩH

123(η) of hyperbolic inversive distance circle
packing metrics (r1, r2, r3) ∈ R

3
>0 is nonempty and simply connected. Fur-

thermore, the set of degenerate inversive distance circle packing metric is a
disjoint union ∪i∈PVi, where P = {i ∈ {1, 2, 3}|Ii > 1} and

Vi =

{
(r1, r2, r3) ∈ R

3
>0|κi ≥

−Bi +
√
∆i

2Ai

}

is bounded by an analytic graph on R
2
>0 with Ai, Bi, Ci,∆i given by (3.2)(3.3).

Lemma 3.3, Lemma 3.4, Lemma 3.5 and Proposition 3.1 could be proved
similarly to that of Lemma 2.3, Lemma 2.4, Lemma 2.5 and Proposition 2.1
by repeating the proof line by line. We omit the details of the proof here.
Similar to Remark 2.4, we have the following remark.

Remark 3.2. If (r1, r2, r3) ∈ Vi is a degenerate hyperbolic inversive dis-
tance circle packing metric for a triangle {123} with a weight η : Eσ →
(−1,+∞) satisfying the structure condition (1.3), then hi < 0, hj > 0, hk >

0, where {i, j, k} = {1, 2, 3}.
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Similar to the Euclidean case, the inner angles of a hyperbolic triangle
could be extended by constants to be globally defined continuous functions.

Lemma 3.6 ([25, 34]). Suppose {123} ∈ F is a triangle with a weight η :
Eσ → (−1,+∞) satisfying the structure condition (1.3). Then the functions
θ1, θ2, θ3 defined for (r1, r2, r3) ∈ ΩH

123(η) could be extended by constants to

be continuous functions θ̃1, θ̃2, θ̃3 defined on R
3
>0.

Proof. Suppose (r1, r2, r3) ∈ ΩH
123(η) tends to a point (r1, r2, r3) ∈ ∂Vi. By

direct calculations, we have

− detG−(l) = 4 sinh s sinh(s− lij) sinh(s− lik) sinh(s− ljk)

= (cosh(ljk + lik)− cosh lij)(cosh lij − cosh(ljk − lik))

= (cosh2 ljk − 1)(cosh l2ik − 1)− (cosh ljk cosh lik − cosh lij)
2

= sinh2 ljk sinh
2 lik − sinh2 ljk sinh

2 lik cos
2 θk

= sinh2 ljk sinh
2 lik sin

2 θk,

where {i, j, k} = {1, 2, 3}. As (r1, r2, r3) ∈ ΩH
123(η) tends to (r1, r2, r3) ∈ ∂Vi,

we have detG−(l) → 0, which implies θ1, θ2, θ3 → 0 or π.
By Lemma 3.8, we have

∂θj

∂ui
=

S2
i S

2
jSk

2Ã123 sinh
2 lij

[κk(1− I2k) + κiγj + κjγi] =
S2
i S

2
jSkhk

2Ã123 sinh
2 lij

,

where ui = ln tanh ri
2 and Ã123 =

1
2 sinh lik sinh lij sin θi. Note that for

(r1, r2, r3) ∈ ∂Vi, we have hk > 0 by Remark 3.2. Therefore, for (r1, r2, r3) ∈
ΩH
123(η) sufficiently close to (r1, r2, r3) ∈ ∂Vi, we have

∂θj
∂ui

> 0, which implies
θj , θk → 0 as (r1, r2, r3) → (r1, r2, r3) ∈ ∂Vi.

Furthermore, we have the following formula [32] for the area A123 of the
hyperbolic triangle {123}

tan2
A123

4
= tanh

p

2
tanh

p− l12

2
tanh

p− l13

2
tanh

p− l23

2

=
− detG−(l)

64 cosh2 p
2 cosh

2 p−l12
2 cosh2 p−l13

2 cosh2 p−l23
2

,

where p = 1
2(l12 + l13 + l23). This implies A123 → 0 as (r1, r2, r3) →

(r1, r2, r3) ∈ ∂Vi. Further note that A123 = π − θ1 − θ2 − θ3 and θj , θk → 0,
we have θi → π as (r1, r2, r3) → (r1, r2, r3) ∈ Vi.
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Therefore, we can extend θ1, θ2, θ3 defined on ΩH
123(η) to be continuous

functions defined on R
3
>0 by setting

θ̃i(r1, r2, r3) =





θi, if (r1, r2, r3) ∈ ΩH
123(η);

π, if (r1, r2, r3) ∈ Vi;

0, otherwise.
□

Similar to the Euclidean case, we can define the following 6-dimensional
parameterized admissible space

ΩH
123 = ∪η∈ΓΩ

H
123(η).

Lemma 3.7. ΩH
123 is connected.

The proof of Lemma 3.7 is the same as that of Lemma 2.8, we omit the
proof here.

3.2. Negative definiteness of the Jacobian matrix

Set ui = ln tanh ri
2 . The following result on the matrix ΛH

123 =
∂(θ1,θ2,θ3)
∂(u1,u2,u3)

is
known.

Lemma 3.8 ([8, 19, 31, 34, 37]). Suppose (r1, r2, r3) ∈ R
3
>0 is a non-

degenerate hyperbolic inversive distance circle packing metric for a triangle
{123} with a weight η satisfying the structure condition (1.3), then

(3.4)
∂θi

∂uj
=

∂θj

∂ui
=

S2
i S

2
jSk

2Ã123 sinh
2 lij

[
κk(1− I2k) + κjγi + κiγj

]
,

where Ã = 1
2 sinh lik sinh lij sin θi and {i, j, k} = {1, 2, 3}. Specially, for η =

(I1, I2, I3) = (1, 1, 1), the matrix ΛH
123 =

∂(θ1,θ2,θ3)
∂(u1,u2,u3)

is negative definite at

(r1, r2, r3) = (1, 1, 1).

Remark 3.3. By (3.4) and Remark 3.2, if η ∈ Γ and (r1, r2, r3) ∈ ΩH
123(η)

tends to a point (r1, r2, r3) ∈ ∂Vi, we have ∂θi
∂uj

→ +∞, ∂θi
∂uk

→ +∞. Recall

the following formula obtained in Proposition 9 of [18]

∂A123

∂ui
=

∂θj

∂ui
(cosh lij − 1) +

∂θk

∂ui
(cosh lik − 1),
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we have ∂A123

∂ui
→ +∞, which implies

∂θi

∂ui
= −∂A123

∂ui
− ∂θj

∂ui
− ∂θk

∂ui
→ −∞.

Lemma 3.9. Suppose r = (r1, r2, r3) ∈ R
3
>0 is a nondegenerate hyperbolic

inversive distance circle packing metric for a triangle {123} with a weight η

satisfying the structure condition (1.3), then the matrix ΛH
123(η) =

∂(θ1,θ2,θ3)
∂(u1,u2,u3)

is negative definite.

Proof. By the chain rules, we have

ΛH
123 =

∂(θ1, θ2, θ3)

∂(l23, l13, l12)
· ∂(l23, l13, l12)
∂(u1, u2, u3)

.

By direct calculations, we have

det
∂(l23, l13, l12)

∂(u1, u2, u3)
=

S1S2S3

sinh l12 sinh l13 sinh l23
×
[
2C1C2C3S1S2S3(1 + I1I2I3)

+ C1S1γ1(C
2
2S

2
3 + C2

3S
2
2) + C2S2γ2(C

2
1S

2
3 + C2

3S
2
1)

+ C3S3γ3(C
2
1S

2
2 + C2

2S
2
1)
]

≥ 2C1C2C3S
2
1S

2
2S

2
3

sinh l12 sinh l13 sinh l23
(1 + I1I2I3 + γ1 + γ2 + γ3)

=
2C1C2C3S

2
1S

2
2S

2
3

sinh l12 sinh l13 sinh l23
(1 + I1)(1 + I2)(1 + I3) > 0,

which implies the matrix ∂(l23,l13,l12)
∂(u1,u2,u3)

is nondegenerate. Therefore, the rank

of ΛH
123 is the same as that of the matrix ∂(θ1,θ2,θ3)

∂(l23,l13,l12)
, which is 3 for nonde-

generate hyperbolic triangles.
Taking ΛH

123 as a matrix-valued function defined on ΩH
123, then the three

nonzero eigenvalues of ΛH
123 are continuous functions of (η, r) ∈ ΩH

123. By the
connectivity of ΩH

123 in Lemma 3.7, the three nonzero eigenvalues do not
change sign on ΩH

123. Note that ΛH
123(η0) is negative definite at (r1, r2, r3) =

(1, 1, 1) for η0 = (1, 1, 1) by Lemma 3.9, we have ΛH
123(η) is negative definite

for any η ∈ Γ. □
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3.3. Proof of the rigidity for hyperbolic inversive distance circle
packing metrics

Similar to the Euclidean case, we just sketch the proof of rigidity for hyper-
bolic inversive distance circle packing here. For more details of the proof,
see [19, 25, 34].

By Lemma 3.8 and Proposition 3.1, we can define the following function

Fijk(ui, uj , uk) =

∫ (ui,uj ,uk)

(ui,uj ,uk)
θidui + θjduj + θkduk

on the image of ΩH
ijk(η) under the map ui = ln tanh ri

2 , which is locally con-
cave by Lemma 3.9. By Proposition 3.1, Lemma 3.6 and Theorem 2.1, Fijk

could be extended to be a C1-smooth concave function

F̃ijk(ui, uj , uk) =

∫ (ui,uj ,uk)

(ui,uj ,uk)
θ̃idui + θ̃jduj + θ̃kduk

defined on R
3
<0. Using F̃ijk, we can further define the following C1 convex

function F̃ on R
|V |
<0

F̃ (u1, . . . , u|V |) = 2π
∑

i∈V
ui −

∑

{ijk}∈F
F̃ijk(ui, uj , uk),

which has gradient ∇ui
F̃ = 2π −∑

{ijk}∈F θ̃
jk
i = K̃i, where K̃i is a contin-

uous extension of Ki. Then the global injectivity of K on the admissible
space of hyperbolic inversive distance circle packing metrics for (M, T , I)
follows from the convexity of F̃ . This is equivalent to the global rigidity of
the curvature map K. □
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