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Motivated by an example of Shih [10], we compute the fundamen-
tal gap of a family of convex domains in the hyperbolic plane H

2,
showing that for some of them λ2 − λ1 < 3π

2

D2 , where D is the di-
ameter of the domain and λ1, λ2 are the first and second Dirichlet
eigenvalues of the Laplace operator on the domain. The result con-
trasts with what is known in R

n or S
n, where λ2 − λ1 ≥ 3π

2

D2 for
convex domains [1, 5, 7, 9]. We also show that the fundamental

gap of the example in Shih’s article is still greater than 3

2

π
2

D2 , even
though the first eigenfunction of the Laplace operator is not log-
concave.

1. Introduction

We consider the Laplace operator −∆ with Dirichlet boundary conditions
on a compact domain Ω of H2. This operator has a discrete spectrum with ∞
as its accumulation point. If we list the sequence of eigenvalues in increasing
order λ1 < λ2 ≤ λ3 ≤ · · · , the fundamental gap is the difference between the
first two eigenvalues

λ2 − λ1 > 0.

This spectral gap plays an important role in both mathematics and physics.
For example, in quantum mechanics, it characterizes the energy difference
between the ground state and the first excited state.

Finding a sharp lower bound for the fundamental gap of convex domains
in R

n is a difficult problem with a long and rich history (see e.g. the recent
survey article [6]). One notable development was the estimate λ2 − λ1 ≥ π2

D2
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[11, 12], where D is the diameter of the domain, defined by

D = sup
p,q∈Ω

∥p− q∥.

A key step in their proof was the fact that the first eigenfunction u1 is
log-concave (i.e. log u1 is concave), first proved by Brascamp and Lieb [3].

It was known that the estimate was not sharp: the optimal gap was
conjectured to be that obtained on an interval, with the saturated case
happening as the domains degenerate to a one-dimensional strip. Finally, in
2011, the fundamental gap conjecture was resolved in [1] by Andrews and
Clutterbuck: on a convex domain in R

n with Dirichlet boundary condition,
λ2 − λ1 ≥ 3π2/D2, where D is the diameter of the domain. They used a new
double-point technique in the proof.

Recently, Dai, He, Seto, Wang, and Wei (in various subsets)[5, 7, 9]
generalized the fundamental gap estimate to convex domains in S

n, showing
that λ2 − λ1 ≥ 3π2/D2.

In both these settings, the log-concavity of the first eigenfunction plays
an important role. While mere log-concavity is sufficient to obtain the coarse
estimate λ2 − λ1 ≥ π2

D2 , in order to obtain the optimal estimates in [1, 5, 7, 9]
it is shown that the first eigenfunction is super log-concave, namely that the
first eigenfunction is more log-concave than the first eigenfunction of the
following one-dimensional model operator,

(1) Ln,K,D(φ) = φ′′ − (n− 1)tnK(s)φ′

on [−D
2 ,

D
2 ] with Dirichlet boundary condition. Here

tnK(s) =











√
K tan(

√
Ks), K > 0

0, K = 0

−
√
−K tanh(

√
−Ks) K < 0

where K = 0 is the model for Rn and K = 1 is the model for Sn.
Surprisingly, K = −1 is not a good model for H

n. Actually, the first
eigenfunction of (1) whenK = −1 is still log-concave. Indeed, from [9, (2.16)]
we know that (log(φ̄1))

′′(0) = −λ̄1 < 0 for all K, where φ̄1 and λ̄1 are the
(positive) first eigenfunction and the first eigenvalue of (1). However, Shih
proved the existence of convex domains in H

2 such that the first eigenfunc-
tion is not log-concave [10]. Therefore comparison to φ̄1 with K = −1 will
not work in the hyperbolic case. Very little is known for the fundamental
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gap lower bound estimate for Hn and in fact, one expects 3π2/D2 not to be
a lower bound.

In this paper, we estimate the fundamental gap and the diameter of a
family of convex domains in the hyperbolic plane and confirm this intuition.

Theorem 1.1. There are convex domains in H
2 such that

(2) λ2 − λ1 < 3π2/D2,

where D is the diameter of the domain.

Our construction is motivated by Shih’s example, and the above domains
have very large diameter. For domains with small diameters, we conjecture
that 3π2/D2 still works as a lower bound. In fact, we have a family of
domains with gap greater than 3π2/D2 when the diameter is close to, but
less than, 1. See the beginning of Section 5.

In the domains for which (2) is true, one can ask in addition whether
λ2 − λ1 < π2/D2 since Shih proved that the first eigenfunction is not log-
concave for some of them. We show that the inequality does not hold
and that the fundamental gaps of these examples are in fact greater than
3π2/(2D2), see the end of Section 5. This illustrates that log-concavity of
the first eigenfunction is not a necessary condition for the fundamental gap
to be greater or equal to π2/D2.

To the best of the authors’ knowledge, the examples above give the first
explicit fundamental gap estimates of the Dirichlet Laplacian for domains
in the hyperbolic spaces in terms of the diameter. In [2], an excellent upper
bound for the Dirichlet gap was obtained in terms of the gap of geodesic
balls whose size was determined by the first eigenvalue of the domain in H

n.
The organization of this paper is as follows: In Section 2, we set up

the domain and describe how the eigenfunctions are found via separation of
variables, and identify the first two eigenvalues. In Section 3, we give some
rough estimates for the first two eigenvalues and the gap. In Section 4, we
estimate the diameter of the domains. Finally, in Section 5, we improve the
estimate of the gap, thus proving Theorem 1.1.
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2. The domains and their first two eigenvalues

Let H2 be the hyperbolic space modelled by the Poincaré half-plane {(x, y) |
y > 0} = {(r, θ) | r > 0, θ ∈ (0, π)} with the metric

(3) g = ds2 =
dx2 + dy2

y2
=

dr2

r2 sin2 θ
+

dθ2

sin2 θ
.

In the orthonormal frame

e1 = r sin θ
∂

∂r
, e2 = sin θ

∂

∂θ
,

the non-vanishing Christoffel symbols are Γ2
11 = −Γ1

12 = −Γ1
21 = cos θ. With

this information, it is straighforward to compute the covariant derivatives
for any function v and find

v11 = r2 sin2 θ vrr + r sin2 θ vr − sin θ cos θ vθ,

v22 = sin2 θ vθθ + sin θ cos θ vθ,

∆v = v11 + v22 = r2 sin2 θ vrr + sin2 θ vθθ + r sin2 θ vr.(4)

2.1. The domains

We consider the family of domains

Ωc,θ0,θ1 = {(r, θ) | 1 < r < eπ/c, θ0 < θ < θ1},

where c > 0, θ0 ∈ (0, π2 ), and θ1 ∈ (π2 , π) (see Figure 1). In these coordinates,
geodesics are either vertical lines x = c or half-circles centred on the x-axis,
so the sets Ωc,θ0,θ1 are convex domains in H

2.

2.2. The separation of variables

Because the metric g from (3) is a warped product, we can use separation
of variables for the eigenfunctions (see e.g. [4, page 41]) and write

u(r, θ) = f(r)h(θ).
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θ0 θ1

Ωc,θ0,θ1

P

Q

R

S

(0, 1)

(0, eπ/c)

Figure 1: Domain Ωc,θ0,θ1 = {(r, θ) | 1 < r < eπ/c, θ0 < θ < θ1}.

We have, from our formulas for the Laplace operator (4), that ∆u = −λu
gives

r2 sin2 θ frr h+ r sin2 θ fr h+ sin2 θ f hθθ = −λfh,
(

r2
frr
f

+ r
fr
f

)

+

(

hθθ
h

+ λ csc2 θ

)

= 0.

We are looking for eigenfunctions with vanishing Dirichlet conditions on the
boundary, hence we should solve the two eigenvalue equations

r2frr + rfr = −µf, r ∈ [1, eπ/c],(5)

hθθ + λ csc2 θ h = µh, θ ∈ [θ0, θ1],(6)

both with Dirichlet boundary conditions. With the change of variable t =
log r, equation (5) becomes

(7) ftt = −µf, t ∈ [0, πc ].

In order for this to satisfy the boundary conditions, µ must be positive, so
we set µ = (kc)2, f(t) = sin(kct), where k are nonzero integers.

2.3. The identification of the first two eigenvalues

The first Dirichlet eigenvalue λ1 of ∆u = −λu on Ωc,θ0,θ1 corresponds to a
strictly positive eigenfunction, which implies that f in (7) is sin(ct), and so
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µ = c2. Hence, λ1 is given by the value λ solving

(8) hθθ + λ csc2 θ h = c2h, θ ∈ [θ0, θ1],

for h > 0 and h(θ0) = h(θ1) = 0. We denote by λc2
1 the smallest λ solving

the above equation, so we have λ1 = λc2
1 .

The second eigenvalue λ2 corresponds to a sign-changing eigenfunction:
either f or h changes sign. If f changes sign, then f in (7) is given by sin(2ct)
and µ = 4c2; in this case λ2 is given by λ4c2

1 solving

(9) hθθ + λ csc2 θ h = 4c2h, θ ∈ [θ0, θ1],

with h > 0 and Dirichlet boundary conditions. Otherwise h changes sign, f
is positive and is given by sin(ct) with µ = c2; then λ2 is given by λc2

2 solving
(8) with h changing sign exactly once.

Thus, the second eigenvalue is λ2 = min{λ4c2
1 , λc2

2 }.

3. Estimates on the first and second eigenvalues

In this section, we give some rough estimates for the first two eigenvalues
and the fundamental gap.

We define a convenient angle to simplify the exposition, so let

θ∗ := min(θ0, π − θ1).

Note that 1 ≤ csc2 θ ≤ csc2(θ∗), for all θ ∈ [θ0, θ1].
We thus have the following estimate on the first eigenvalue of (6).

Lemma 3.1. The first eigenvalue of (6), denoted by λµ
1 , satisfies

(10) sin2(θ∗)

(

µ+
π2

(θ1 − θ0)2

)

≤ λµ
1 ≤ µ+

π2

(θ1 − θ0)2
.

Proof. Let h be a solution of (6). We multiply both sides of the equation by
h, and integrate from θ0 to θ1, to obtain

λ =

∫ θ1
θ0
(|hθ|2 + µh2)dθ
∫ θ1
θ0
(csc2 θ)h2dθ

>
1

csc2(θ∗)

(

µ+

∫ θ1
θ0

|hθ|2dθ
∫ θ1
θ0

h2dθ

)

≥ sin2(θ∗)

(

µ+
π2

(θ1 − θ0)2

)

,
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where in the last step we use Wirtinger’s inequality

∫ D

0
(h′)2 dx ≥ (π/D)2

∫ D

0
h2 dx.

For the bound from above, we choose the test function ϕ = sin
(

θ−θ0
θ1−θ0

π
)

and recall that the first eigenvalue minimizes the Rayleigh quotient. Using
csc2 θ ≥ 1, we have the bound from above

λµ
1 ≤ µ+

π2

(θ1 − θ0)2
.

□

An alternate proof of (10) using Sturm’s comparison theorem can be
found in the appendix.

Lemma 3.2. We have the following estimate for λµ
2 , the second eigenvalue

of (6):

(11) sin2 θ∗

(

µ+
4π2

(θ1 − θ0)2

)

≤ λµ
2 ≤ µ+

4π2

(θ1 − θ0)2

Proof. Let hµ2 be an eigenfunction corresponding to the second eigenvalue
λµ
2 of (6). Then there is a unique θ2 ∈ (θ0, θ1) such that hµ2 (θ2) = 0. The

eigenvalue λµ
2 is the same as the first eigenvalue of hθθ + λ csc2 θ h = µh

with zero Dirichlet boundary condition on either [θ0, θ2] or [θ2, θ1]. Taking
the interval with smaller length and applying Lemma 3.1, we get

sin2 θ∗

(

µ+
4π2

(θ1 − θ0)2

)

≤ λµ
2 .

For the upper bound, we apply Lemma 3.1 with the longer interval. □

Combining (11) and Lemma 3.1, we have λc2
2 ≥ λ4c2

1 when

(12)
π2

(θ1 − θ0)2
(4 sin2 θ∗ − 1)

(4− sin2 θ∗)
≥ c2, θ∗ >

π
6 .

Except Section 4, in the rest of this article, we assume that c > 0 satisfies
(12), thereby the second Dirichlet eigenvalue of the Laplacian on Ωc,θ0,θ1 is
λ4c2
1 . Geometrically, this corresponds to a domain, as shown in Figure 1, in

which the opening angle is small in comparison to the vertical length.
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3.1. Rough estimate of the fundamental gap

Lemma 3.3. Assume that c, θ∗ satisfies (12). Then the fundamental gap
of Ωc,θ0,θ1 satisfies

(13) 3 sin2 θ∗c
2 < λ2 − λ1 < 3c2.

Hence, as θ∗ approaches π
2 , the gap approaches 3c2.

Proof. Recall that the λ1 is the first eigenvalue of (8) and, from our condition
on c, λ2 is the first eigenvalue of (9). Let us denote by h(1) and h(2) the
corresponding eigenfunctions, i.e.

h
(1)
θθ + (λ1 csc

2 θ − c2)h(1) = 0,

h
(2)
θθ + (λ2 csc

2 θ − 4c2)h(2) = 0.

We argue by contradiction using Sturm comparison theorem I from the
appendix. Suppose that λ2 ≤ λ1 + 3c2 sin2 θ∗. We would have

λ2 csc
2 θ − 4c2 ≤ λ1 csc

2 θ + 3c2 sin2 θ∗ csc
2 θ − 4c2 ≤ λ1 csc

2 θ − c2,

where the last inequality is strict at interior points, and so there is no possi-
bility of the left- and right- hand terms being equivalent. This would mean
that h(2)(θ1) > 0, which contradicts the Dirichlet boundary conditions. The
other inequality is proved similarly using the fact that csc2 θ ≥ 1. □

4. Estimating the diameter

We start by recalling the well known distance formula between two points
in the hyperbolic plane

dist ((x1, y1), (x2, y2)) = arcosh

(

1 +
(x2 − x1)

2 + (y2 − y1)
2)

2y1y2

)

= arcosh

(

(x21 + y21) + (x22 + y22)− 2x1x2
2y1y2

)

.(14)

The last form of the distance shows that the distance from a point
(r cosα, r sinα) to another point (r cosβ, r sinβ) depends only on the an-
gles α and β and not on the radius r.

We label the corners of our domain: given Ωc,θ0,θ1 , we use cartesian
coordinates and set P = (cos θ0, sin θ0), Q = eπ/c(cos θ0, sin θ0), R =
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eπ/c(cos θ1, sin θ1), and S = (cos θ1, sin θ1) (see Figure 1). This convex do-
main has a piecewise smooth boundary. The top and bottom boundary
components are geodesics, while the lateral boundaries are not.

Proposition 4.1. The diameter Dc,θ0,θ1 of the domain Ωc,θ0,θ1 is given by

Dc,θ0,θ1 = max{dist(P,Q), dist(P,R), dist(R,S)}.

Proof. We consider the closure Ω := Ωc,θ0,θ1 of our domain. Because Ω is
compact, the diameter is achieved, so we can choose points V and W such
that Dc,θ0,θ1 = dist(V,W ). We denote by γ the geodesic segment between V
and W ; γ is either a segment of a circle centered on the x-axis or a vertical
line.

First, we observe that neither V nor W is in the interior of Ωc,θ1 , other-
wise one would be able to prolong γ and obtain a distance longer than the
diameter.

Next, we will show that neither V nor W can be in the interior of a
boundary segment, in other words both V and W must be end points of
boundary segments, which we also refer to as corners of the domain.

Suppose that one of the points V , W , say V , is in the interior of the
top boundary segment RQ. Since V is not a corner point, there exists T , T ′

points on the top boundary which is also a geodesic segment, such that V is
the midpoint between T and T ′. Since H2 has negative curvature, we obtain
the contradiction

D = dist(V,W ) <
1

2

(

dist(T,W ) + dist(T ′,W )
)

≤ D.

The same argument also shows that neither V nor W can belong to the
interior of the lower boundary segment, SP .

Suppose now that one of the points, say V , belongs to the interior of
the lateral segment RS. The closed geodesic ball of radius Dc,θ0,θ1 centered
at W contains Ω and the boundaries of the ball and the domain touch
at V . Since the boundary of Ω is smooth at V , the tangent directions to
the ball and the domain match. By Gauss’ Lemma, the geodesic γ, which
is a radius of the ball, is perpendicular to ∂Ω. The only geodesic starting
at V and perpendicular to RS is the arc of circle centered at the origin.
If V = (r cos θ1, r sin θ1), then W = (r cos θ0, r sin θ0) with the same r, and
dist(V,W ) = dist(Q,R).
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The discussion implies that

Dc,θ0,θ1 = max{dist(P,Q), dist(P,R), dist(Q,R), dist(R,S)},

since dist(S,Q) = dist(R,P ) and dist(S, P ) = dist(Q,R). We finish the proof
by computing all the distances using formula (14),

dist(P,Q) = arcosh(Ψ(θ0, θ0)) dist(P,R) = arcosh(Ψ(θ0, θ1))

dist(Q,R) = arcosh

(

1− cos θ0 cos θ1
sin θ0 sin θ1

)

dist(R,S) = arcosh(Ψ(θ1, θ1))

where Ψ(α, β) = e2π/c+1−2eπ/c cosα cosβ
2eπ/c sinα sinβ . Note that

cosh(dist(P,R))− cosh(dist(Q,R)) =
(

eπ/c − 1
)2

/
(

2eπ/c sin θ0 sin θ1

)

> 0,

so dist(P,R) > dist(Q,R). □

It is worth mentioning that Ψ(θi, θi) ≤ Ψ(θ∗, θ∗) for i = 0, 1, so dist(P,Q)
and dist(R,S) ≤ arcosh (Ψ(θ∗, θ∗)). Note also that Ψ(θi, θi) ≤ Ψ(θ∗, π − θ∗)
for i = 1, 2, so the diameter of Ωc,θ∗,π−θ∗ is achieved by dist(P,R). From
these remarks, and Proposition 4.1, we get the following estimates for the
diameter.

Corollary 4.2. The following double inequality holds for the diameter
Dc,θ0,θ1 :

arcosh (csc θ∗ cosh(π/c)) ≤ Dc,θ0,θ1(15)

≤ arcosh
(

csc2 θ∗ cosh(π/c) + cot2 θ∗
)

.

Proof. The right inequality holds because the domain Ωc,θ0,θ1 ⊆ Ωc,θ∗,π−θ∗

and the right hand side is the diameter of Ωc,θ∗,π−θ∗ . The left inequality is
proved by noting that the diameter is greater than the distance from P (or
R) to the point (0, eπ/c). □

We will now estimate the diameter more explicitly in terms of c in order
to compare it with the fundamental gap.

Lemma 4.3. The following limit holds: π2

c2D2

c,θ0,θ1

→ 1 as c → 0 or θ∗ → π
2 .
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Proof. We use (15) and the formula arcosh(x) = ln(x+
√
x2 − 1) to find

arcosh (csc θ∗ cosh (π/c)) = ln

(

csc θ∗ cosh (π/c) +

√

csc2 θ∗ cosh
2 (π/c)− 1

)

≥ ln(csc θ∗) + (π/c) .

Writing a = cosh(π/c) + cos2 θ∗ for brevity, we estimate the upper bound in
a similar way

arcosh(a csc2 θ∗) = 2 ln(csc θ∗) + ln
(

a+
√

a2 − sin4 θ∗

)

≤ 2 ln(csc θ∗) + ln
(

a+
√

a2 − 1 +
√

1− sin4 θ∗

)

.

We remark that both ln and arcosh are concave functions, and that f(x+
b) ≤ f(x) + f ′(x) b for concave functions, thereby

arcosh(a csc2 θ∗) ≤ 2 ln(csc θ∗) + (π/c) +
cos2 θ∗

sinh(π/c)
+

√

1− sin4 θ∗

a+
√
a2 − 1

= 2 ln(csc θ∗) + (π/c) + η(θ∗, c),

where η(θ∗, c) =
cos2 θ∗

sinh(π/c) +
√
1−sin4 θ∗

a+
√
a2−1

, which goes to zero as c tends to zero

or θ∗ → π
2 .

Therefore, we have

c2
(

1 +
c

π
(2 ln(csc θ∗) + η)

)−2
(16)

≤ π2

D2
c,θ0,θ1

≤ c2
(

1 +
c

π
ln (csc θ∗)

)−2
< c2.

This shows that π2

c2D2

c,θ0,θ1

→ 1 as c → 0 or θ∗ → π
2 . □

5. Estimating the fundamental gap

From Lemmas 4.3 and 3.3, we have that the gap of the domains Ωc,θ0,θ1

approaches 3π2

D2 as θ∗ → π
2 . In fact, combining (13) and (16) gives

sin2 θ∗

(

1 +
c

π
ln(csc θ∗)

)2
(17)

< (λ2 − λ1) ·
D2

c,θ0,θ1

3π2 <
(

1 +
c

π
(2 ln(csc θ∗) + η)

)2
.
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The left hand side is ≥ 1 when c > π and sin θ∗ ≥ exp(πc − 1). For any
fixed c > π, and for all θ∗ sufficiently close to π

2 , we have that c, θ∗ satisfy
sin θ∗ ≥ exp(πc − 1) and condition (12). For these domains, the gap satisfies

the inequality λ2 − λ1 >
3π2

D2 .
In order to prove Theorem 1.1 though, we have to improve the upper

bound estimate of the fundamental gap in (13). We use the variation method
as in [8] and Sturm comparison for Jacobi equations to obtain the estimate.

Since we assume that c, θ∗ satisfy (12), the first and second Dirichlet
eigenvalues of −∆ on Ωc,θ0,θ1 are given by the first eigenvalues of (8) and
(9), respectively.

Consider a family of problems generalizing (6), indexed by a parameter t

(18) h′′ + v(t)h = µ(t)h on I = [θ0, θ1],

with vanishing Dirichlet boundary conditions. Here h(θ) = ht(θ) depends
on t, and v also depends on t, via setting v(t) = λ(t) csc2 θ. Let λ(t) be
the first eigenvalue for each t, which is smooth in t, and ht(θ) are all first
eigenfunctions, so ht(θ) > 0 on (θ0, θ1).

Denoting derivatives with respect to t as
•
h, we get

(19)
•
h′′ +

•
vh+ v

•
h =

•
µh+ µ

•
h on I.

To relate changes in µ with changes in v, we multiply (19) by h, integrate
over I, and use (18) to find

•
µ

∫

h2dθ =

∫

•
vh2dθ.

Therefore, if we set µ(t) = c2 + 3c2t, which determines λ(t), we have

3c2
∫

h2dθ =

∫

•
λ(csc2 θ)h2dθ =

•
λ

∫

(csc2 θ)h2dθ.

If we rearrange this as

•
λ = 3c2

∫

(ht)2dθ
∫

(csc2 θ)(ht)2dθ
,

and integrate over t from 0 to 1, recalling that λ(0) = λ1 and λ(1) = λ2, we
find

(20) λ2 − λ1 ≤ 3c2 max
t∈[0,1]

∫

(ht)2dθ
∫

(csc2 θ)(ht)2dθ
.
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Proposition 5.1.

(21) max
t

∫

(ht)2dθ
∫

(csc2 θ)(ht)2dθ
≤ 1− δ,

for some δ = δ(θ0, θ1) > 0, independent of c.

Before we start the proof of Proposition 5.1, we will compare ht to an
explicit function.

Lemma 5.2. Define σ1 =
π2 csc2 θ∗
(θ1−θ0)2

+ (csc2 θ∗ − 1)4c2 and w1(θ) =
1√
σ1

sin
√
σ1(θ − θ0). For t ∈ [0, 1], the solution ht to (18) with µ(t) = c2 +

3c2t and v(t) = λ(t) csc2 θ and boundary condition h(θ0) = 0, h′(θ0) = 1,
h(θ1) = 0 satisfies

ht(θ) ≤ w1(θ), for θ ∈ (θ0, θ̃), t ∈ [0, 1],

where θ̃ = π/
√
σ1 + θ0.

Proof. First, note that from (10), we have

v(t)− µ(t) ≤ sup
t

(

λ(t) csc2 θ − µ(t)
)

≤ sup
t

(

λ(t) csc2 θ∗ − µ(t)
)

≤ σ1.

Since w1(θ) satisfies

w′′
1 + σ1w1 = 0, w1(θ0) = 0, w′

1(θ0) = 1,

and w1 > 0 on (θ0, θ̃), by Sturm comparison theorem II in the Appendix, we
have ht(θ) ≥ w1(θ) for all θ ∈ (θ0, θ̃) and t ∈ [0, 1]. □

Similarly, since

v(t)− µ(t) ≥ inf
t
(λ(t) csc2 θ − µ(t) ≥ σ2,

where σ2 = sin2 θ∗
π2

(θ1−θ0)2
− cos2 θ∗4c

2, and ht(θ) > 0 on (θ0, θ1), using Sturm

comparison theorem II in the appendix again, we have, for all t ∈ [0, 1],

(22) w2(θ) ≥ ht(θ) on (θ0, θ1),

where w2(t) is the solution of

w′′ + σ2w = 0, w(θ0) = 0, w′(θ0) = 1.
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Proof of Proposition 5.1. We choose an angle α so that

θ0 < α < min
(π

2
, θ̃
)

.

Then

∫ θ1

θ0

(csc2 θ)h2dθ =

∫ θ1

θ0

h2dθ +

∫ α

θ0

(csc2 θ − 1)h2dθ +

∫ θ1

α
(csc2 θ − 1)h2dθ

≥
∫ θ1

θ0

h2dθ +

∫ α

θ0

(csc2 θ − 1)w2dθ

≥
∫ θ1

θ0

h2dθ + (csc2 α− 1)

∫ α

θ0

w2dθ

=

∫ θ1

θ0

h2dθ + (csc2 α− 1)b,

where b = 1
2σ1

(

(α− θ0)− 1
2
√
σ1

sin(2
√
σ1(α− θ0))

)

is a positive constant

which does not go to zero when c tends to zero.
By (22),

∫ θ1
θ0

h2dθ is bounded from above for all t ∈ [0, 1]. Therefore there
is a δ > 0 for which

max
t

∫

h2dθ
∫

(csc2 θ)h2dθ
≤ max

t

∫

h2dθ
∫

h2dθ + (csc2 α− 1)b
≤ 1− δ.

□

We are now ready to prove our main theorem.

Proof of Theorem 1.1. Combining the estimates (20) and (21), with Lemma
4.3, we get that for all c sufficiently small, and θ∗ >

π
6 , the fundamental gap

of the domains Ωc,θ0,θ1 is less than 3π2/D2. □

In Shih’s example,

θ0 =
π
4 , θ1 ∈ (π2 ,

3π
4 ), c2 < π

5 cot(
19
40π)

(

1 + π
40 cot(

19
40π)

)−1
.

Hence θ∗ =
π
4 and c, θ∗ satisfy the condition (12). Then, we can use (13) to

get the gap estimate λ2 − λ1 ≥ 3
2c

2. By (16), c2 > π2

D2 , therefore the gap is

strictly greater than 3
2
π2

D2 , i.e. λ2 − λ1 >
3π2

2D2 .
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6. Appendix

For convenience, we state here two versions of Sturm comparison for Jacobi
equations.

Sturm comparison theorem I: For i = 1, 2, let fi > 0 satisfy

fi
′′ + bifi = 0 on (0, xi),

and fi(0) = 0, fi(xi) = 0. Suppose that b1 ≥ b2. Then x1 ≤ x2. If x1 = x2,
then b1 ≡ b2.

Sturm comparison theorem II:

fi
′′ + bifi = 0 on (0, l),

and fi(0) = 0, f ′
i(0) = 1. Suppose that b1 ≥ b2 and f1 > 0 on (0, l). Then

f1 ≤ f2 on (0, l). If f1 = f2 at t1 ∈ (0, l), then b1 ≡ b2 on (0, t1).
We present below an alternative proof of Lemma 3.1, using Sturm com-

parison theorem I.

Alternative proof of Lemma 3.1. Let h > 0 satisfy (6) on (θ0, θ1).
We consider two comparison functions, h1 > 0 and h2 > 0, satisfying

(hi)θθ + bihi = 0 on (θ0, ai),

where b1 = λ csc2 θ∗ − δ, b2 = λ− δ, with the boundary conditions hi(θ0) =
0 and hi(ai) = 0.

Note that

b2 ≤ (λ csc2 θ − δ) ≤ b1,

so the Sturm comparison theorem I implies that

(23) a1 < θ1 < a2.

However

h1 = sin(
√

λ csc2 θ∗ − δ(θ − θ0)) with a1 = θ0 + π(λ csc2 θ∗ − δ)−1/2,

and

h2 = sin(
√
λ− δ(θ − θ0) with a2 = θ0 + π(λ− δ)−1/2.

So (23) implies

sin2 θ∗

(

δ +
π2

(θ1 − θ0)
2

)

< λ < δ +
π2

(θ1 − θ0)
2 .

□
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