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Irreducibility of geometric Galois

representations and the Tate conjecture

for a family of elliptic surfaces

Lian Duan and Xiyuan Wang

Using Calegari’s result on the Fontaine-Mazur conjecture, we study
the irreducibility of pure, regular, rank 3 weakly compatible sys-
tems of self-dual ℓ-adic representations. As a consequence, we prove
that the Tate conjecture holds for a family of elliptic surfaces de-
fined over Q with geometric genus bigger than 1.

1. Introduction

Let ℓ be a prime and K be a field. We denote by GK the absolute Galois
group of K. The study of ℓ-adic representations of GK is not only interesting
in theoretic research in number theory, but also has important application
in arithmetic geometry. There are two natural sources of ℓ-adic Galois rep-
resentations. The first one arises from the Galois representations attached
to algebraic automorphic representations. The second comes from algebraic
geometry, i.e., from the subquotient of an ℓ-adic étale cohomology of smooth
projective varieties. Both sources of Galois representations are known to be
geometric. (For a precise definition of geometric and other basic definitions
related to Galois representations appeared in this introduction, we refer the
reader to Section 2 of this paper.) To study the geometric ℓ-adic represen-
tations, one natural question we can ask is the following.

Question 1.1. How to tell whether a geometric Galois representation is
(absolutely) irreducible?

It is a conjecture that the geometric Galois representations associated
to algebraic cuspidal automorphic representations are irreducible, see [5] for
more details. While if a Galois representation is a subquotient of the étale
cohomology of a smooth projective variety, it is hard to give a satisfactory
answer, since this question is closely related to the Grothendieck’s theory on
pure motives. In this paper, we focus our research on 3-dimensional ℓ-adic
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representations of GQ which come from algebraic geometry, and give a par-
tial answer to this question. As a corollary, for an elliptic surface satisfying
the condition (∗) and (∗∗) in Corollary 1.1.1, we prove the corresponding
Tate conjecture. We also prove that the conditions (∗) and (∗∗) are real-
izable for a concrete family of elliptic surfaces, and hence prove their Tate
conjecture.

1.1. Main results

The first main result of this paper provides a representation-theoretic an-
swer to Question 1.1. Recall that a geometric Galois representation coming
from pure motives will induce a weakly compatible system of ℓ-adic Galois
representations (see Definition 2.5).

Theorem 1.1. Let {ρℓ}ℓ be a rank 3 weakly compatible system of self-dual
ℓ-adic representations of GQ defined over Q. Suppose that it is regular and
pure of weight 0. Then either

1) ρℓ is absolutely irreducible for a Dirichlet density one subset of primes
ℓ, or

2) for each ℓ, ρℓ decomposes into irreducible Qℓ-subrepresentations as
follows

ρℓ ∼= ψℓ ⊕ rℓ,

where ψℓ is 1-dimensional and rℓ is 2-dimensional and odd.

Remark 1.1. This theorem can be deduced from the Fontaine-Mazur con-
jecture. However, the Fontaine-Mazur conjecture is only known by the work
of Kisin [11], Emerton [7], and Pan [16] for odd 2-dimensional Galois repre-
sentations and by Calegari [4] for even 2-dimensional Galois representations
with several additional conditions. (See our discussion about the proof of
Theorem 1.1.)

To speak about the application of Theorem 1.1 to arithmetic geometry,
let X be a smooth projective variety over K. Let NS(XK) be the Néron-
Severi group of XK . There is a GK-equivariant cycle class map

c1 : NS(XK) → H2
ét(XK ,Qℓ(1)).

The image of NS(XK)⊗Z Qℓ under c1 ⊗Qℓ is called the algebraic part of
H2

ét(XK ,Qℓ(1)). It is an ℓ-adic subrepresentation of GK . We define the tran-
scendental part Tranℓ(X) of H2

ét(XK ,Qℓ(1)) to be the quotient
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H2
ét(XK ,Qℓ(1))/(NS(XK)⊗Z Qℓ). In particular, it is known that when X

is an elliptic surface, then H2
ét(XK ,Qℓ(1)) ∼= Tranℓ(X)⊕ (NS(XK)⊗Z Qℓ)

since the algebraic equivalence classes of such surface is equivalent to its
numerical equivalence classes. Since the transcendental part is motivically
defined, {Tranℓ(X)}ℓ is a weakly compatible system of ℓ-adic Galois repre-
sentations. Let NS(X) be the subgroup of NS(XK) generated by the divisors
over K. We have an induced map

(1.1) C1 : NS(X)⊗Z Qℓ −→ H2
ét(XK ,Qℓ(1))

GK .

Tate makes the following conjecture [18].

Conjecture 1.1 (The Tate conjecture for divisors). Let K be a finitely
generated field over its prime field. Then the map C1 is an isomorphism.

If K is of characteristic 0, the above conjecture is known to hold for
abelian varieties [8], K3 surfaces [1], and, more generally, smooth projective
varieties with geometric genus 1 [14]. It is also known for elliptic modular
surfaces [17]. If K is of positive characteristic, it holds for abelian varieties
[19] and K3 surfaces [2], [15] [13], [6] and [12].

We call a GK-invariant class in H2
ét(XK ,Qℓ(1)) a Tate class. Roughly

speaking, the Tate conjecture claims that the Tate classes are in the algebraic
part. If a Tate class is in the transcendental part Tranℓ(X), it generates
an 1-dimensional (trivial) ℓ-adic subrepresentation. So to prove the Tate
conjecture for X, it is necessary to show that its transcendental part does
not have any 1-dimensional subrepresentation. Based on this idea, we have
the following corollary of Theorem 1.1. For an ℓ-adic representation ρ, we
will use ρss to denote its semi-simplification.

Corollary 1.1.1. Let X → P1
Q be a surface defined over Q which has an

elliptic fibration over P1
Q and admits a section. Assume that X satisfies the

following conditions.

(∗) For some positive integer s,

{Tranℓ(X)ss}ℓ ⊆
s⊕

i=1

{ρssℓ,i}ℓ,

where each {ρssℓ,i}ℓ is a regular rank 2 or 3 weakly compatible system of
self-dual ℓ-adic representations of GQ defined over Q.
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(∗∗) If, for any ℓ and i, ρssℓ,i is decomposes into irreducible Qℓ-subrepresen-
tations as follows

ρssℓ,i
∼= ψℓ,i ⊕ rℓ,i,

with dimψℓ,i = 1 and dim rℓ,i = 2 , then det rℓ,i = 1.

Then, for a Dirichlet density one subset of primes ℓ, the corresponding
Tate conjecture for X is true. Precisely, we have the following isomorphism

(1.2) NS(X)⊗Z Qℓ
∼−→ H2

ét(XQ,Qℓ(1))
GQ .

Remark 1.2. Here we explain that det rℓ,i = 1 in condition (∗∗) is rea-
sonable if ρℓ,i is in the transcendental part. The self-dual condition of ρssℓ,i
implies that rℓ,i is also self-dual, thus det rℓ,i is a quadratic character. If this
quadratic character is nontrivial, it is a conjecture that there exist a CM
elliptic curve E such that ρssℓ,iε

−1
ℓ

∼= Sym2 TℓE (up to a quadratic twist). In
this case, ρssℓ,i has a finite image 1-dimensional subrepresentation. This is a
contradiction with the Tate conjecture.

In [20], van Geemen and Top construct a family of non-isotrivial elliptic
surfaces Sa parameterized by a ∈ P1. Each member in this family has geo-
metric genus 3 and is not an elliptic modular surface. We apply our method
to this family and show the following result.

Theorem 1.2. For each a ∈ Q, if a ≡ 2, 3 mod 5, and none of 2(1 + a)
or 2(1− a) is a square in Q, the surface Sa satisfies the conditions (∗) and
(∗∗) in Corollary 1.1.1.

In particular, for a Dirichlet density one subset of primes ℓ, the cor-
responding Tate conjecture for Sa is true. Precisely, we have the following
isomorphism

(1.3) NS(Sa)⊗Z Qℓ
∼−→ H2

ét((Sa)Q,Qℓ(1))
GQ .

Remark 1.3. 1) To the best of the knowledge of the authors, the con-
clusion in Theorem 1.2 does not follow from the known theory. In fact,
the method based on the Kuga-Satake construction requires the vari-
eties to have geometric genus one, and also requires the knowledge of
the moduli of such kind of varieties. These prerequisites are not sat-
isfied in our case. In addition, our case is not modular. Although we
are not sure if this family can be constructed as quotient of varieties
whose Tate conjecture is known, but this is highly nontrivial.
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2) Although our example comes from pullback of K3 surfaces, the main
contribution of our method is to deal with the transcendental part
which is the complement of the transcendental part from the K3 sur-
faces.

3) According to the construction of [20], examples of higher genus can be
found. And our method can also be applied to those examples.

1.2. Our approach to proving Theorem 1.1

We first note that ρℓ is not a direct sum of characters. Otherwise, the regular-
ity of ρℓ forces this representation to have distinct Hodge-Tate weights, which
contracts the pure weight condition. Suppose that ρℓ has a 2-dimensional ab-
solutely irreducible subrepresentation rℓ. If rℓ is odd, by [16, Theorem 1.0.4],
rℓ lives in a weakly compatible system. So {ρℓ}ℓ is a direct sum of 1-
dimensional compatible system and an odd 2-dimensional compatible sys-
tem. If rℓ is even, we apply [4, Theorem 1.1] and show that under self-dual
condition, all the conditions in Calegari’s result will be fulfilled. This im-
plies rℓ is odd, hence contradicts our assumption. And this contradiction
completes our proof.

1.3. Our approach to proving Theorem 1.2

The geometry of Sa implies that Tranℓ(Sa) generically has a decomposition
into three 3-dimensional subrepresentations. One of them is automatically
absolutely irreducible, and the rest two are isomorphic and self-dual when
a ̸= ±1. Let ρℓ be one of the two subrepresentations, and assume rℓ is a
2-dimensional absolutely irreducible subrepresentation of ρℓ. We show that
rℓ is also self-dual and thus by class field theory, there is an integer D such
that

det rℓ(Frobp) =

(
D

p

)

for the prime p ∤ D. To prove that det rℓ = 1, it is enough to show that D is 1
(up to a square). For the later, we study the relationship between tr ρℓ(Frobp)
and det rℓ(Frobp) under the self-dual condition. And Theorem 1.2 follows
immediately after combining our results with counting trick used to compute
the trace of ρℓ.
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1.4. Remark on our method

We want to talk about our method and its potential generalization in mo-
tivic aspect. Suppose rℓ exists. By the Tate conjecture, rℓ is not motivically
defined. But the Fontaine-Mazur conjecture predicts that rℓ is motivically
defined. This is the fundamental contradiction in our proof. To realize the
contradiction in our proof, we make use the oddness condition, which reflects
the motivic property of geometric Galois representations. Thus in order to
generalize our result to non self-dual representations or higher dimensional
representations, we expect (1) a proper analog of the oddness condition for
higher dimensional representations as well as a geometric method to check
this condition; (2) a generalization of known results which predicts the odd-
ness of geometric Galois representations. Those problems are interesting to
the authors. We hope to report a further result in this direction in a future
paper.

1.5. Outline of the paper

In Section 2, we collect necessary definitions and facts on Galois represen-
tations. In particular, a theorem of Calegari about the Fontaine-Mazur con-
jecture is mentioned. In Section 3 we prove Theorem 1.1. Then, as an appli-
cation of this theorem, we use it to prove the Tate conjecture for the elliptic
surfaces satisfying the conditions (∗) and (∗∗). In Section 4, we first recall a
family of elliptic surfaces constructed in [20]. Then we verify that the con-
ditions (∗) and (∗∗) of Corollary 1.1.1 are satisfied for about 40% members
in this family. Then as a corollary we prove the Tate conjecture for those
members.

1.6. Notations and conventions

For a field K, we fix the separable closure K of K. If K is a number field
and p is a finite place of K, we let Frobp denote the geometric Frobenius.

IfX is aK-scheme, we letXK denote the base-changeX ×SpecK SpecK.
The symbol dim in this paper means the dimension over Qℓ

For a rational number a = n
m with gcd(m,n) = 1, we say p is a divisor of

a if either p|m or p|n. And we denote by
(
a
p

)
the classical Legendre symbol(

mn
p

)
.
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2. Backgrounds of Galois representations

In this section, we recall some definitions and facts on Galois representa-
tions. The readers who are familiar with Galois representations can skip
this section.

Let L be a topological field and V be a finite dimensional topological
vector space over L. A Galois representation (or a L-representation of GK)
is a continuous linear group action of GK on V . Up to a choice of basis of
V , we can realize this representation as a continuous homomorphism

ρ : GK −→ GLn(L).

Such data is denoted by {V, ρ} (or one of V or ρ for simple). If L is a finite
extension of Qℓ or Qℓ, we call ρ an ℓ-adic representation.

2.1. ℓ-adic representations

We begin with recalling some basic definitions in ℓ-adic Hodge theory. In
this paper, we will only need those definitions formally. We refer the reader
to [9] for details. Suppose K/Qℓ is a finite extension. Let BdR be Fontaine’s
de Rham periods ring. It is a filtered K-algebra with a continuous K-linear
action of GK .

Definition 2.1. Let V be a Qℓ-representation of GK . We say V is de Rham
if dimQℓ

(BdR ⊗K,τ V )GK = dimQℓ
V for all Qℓ-embedding τ : K →֒ Qℓ. If V

is de Rham, for each Qℓ-embedding τ : K →֒ Qℓ, we define the dimQℓ
V -

element multi-set of τ -Hodge-Tate weights, HTτ (V), to be the multi-set of
integers h such that

grh(BdR ⊗K,τ V)
GK ̸= 0

where h has multiplicity dimQℓ
grh(BdR ⊗K,τ V)

GK .

Example 2.1. Let εℓ : GQ → Q
×

ℓ be the ℓ-adic cyclotomic character. Then
εℓ|GQℓ

is de Rham. The Hodge-Tate weight of εℓ (more precisely, εℓ|GQℓ
) is

−1.

Now we can talk about global ℓ-adic representations.

Definition 2.2. Let K/Q be a finite extension and ρ be an ℓ-adic repre-
sentation of GK . We say ρ is geometric if ρ is unramified almost everywhere
and ρ|GKv

is de Rham for every place v of K above ℓ.
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Example 2.2. Suppose that X is a smooth projective variety over a num-
ber field K. Then the ℓ-adic representation H i

ét(XK ,Qℓ) of GK , for 0 ≤ i ≤
2 dimX, is geometric. Furthermore, any subquotient of the ℓ-adic represen-
tation H i

ét(XK ,Qℓ) is geometric.

If V is an ℓ-adic representation, we use V (n) to denote V tensored with
the nth power of the ℓ-adic cyclotomic character.

Lemma 2.3. Let K/Q is a totally real field. Suppose ρ : GK → Q
×

ℓ is a
geometric ℓ-adic representation. Then

ρ = τ · εnℓ |GK

for some non-negative integer n, where εℓ is the ℓ-adic cyclotomic character
of GQ and τ is of finite order.

Proof. By class field theory, it is enough to study the algebraic Hecke char-
acters of A×

K/K
×. Then this lemma follows from a classification of such

characters [21]. □

Let c ∈ GQ be a fixed complex conjugation. For an ℓ-adic representation of
GQ, det ρ(c) ∈ {1,−1}.

Definition 2.3. We say an ℓ-adic representation ρ of GQ is odd (resp.
even) if det ρ(c) is −1 (resp. 1).

Definition 2.4. We say a Galois representation ρ is self-dual if ρ ≃ ρ∗,
where ρ∗ is the dual of ρ.

One of the main problem concerning the geometric ℓ-adic representa-
tions is the Fontaine-Mazur conjecture. In this paper, an important input is
Calegari’s result on Fontaine-Mazur conjecture (see [4, Theorem 1.1]), which
we state here for the convenience of readers.

Theorem 2.4. Let r : GQ → GL2(Qℓ) be an ℓ-adic representation. Suppose
that ℓ > 7, and, furthermore, that

(a) r is geometric, i.e., unramified almost everywhere and de Rham at ℓ.

(b) r|GQℓ
has distinct Hodge-Tate weights.
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(c) r|GQℓ
is not a twist of a representation of the form

(
εℓ ∗
0 1

)

where εℓ is the mod ℓ cyclotomic character.

(d) The residue representation r is not of dihedral type.

(e) The residue representation r is absolutely irreducible.

Then r is modular. In particular, r is odd.

2.2. Weakly compatible system of ℓ-adic representations

The following definition of compatible system follows from [3, Section 5.1].
For the convenience of readers, we also state it here.

Definition 2.5. Let K denote a number field. A rank n weakly compatible
system of ℓ-adic representations R of GK defined over M is a 5-tuple

(M,S, {Qv(T )}, {ρλ}, {Hτ}),

where

1) M is a number field.

2) S is a finite set of primes of K.

3) for each v /∈ S, Qv(T ) is a monic degree n polynomial in M [T ].

4) for each prime λ of M (with residue characteristic ℓ)

ρλ : GK → GLn(Mλ)

is a continuous, semi-simple representation such that
• if v /∈ S and v ∤ ℓ, is a prime of K, then ρλ is unramified at v and
ρλ(Frobv) has characteristic polynomial Qv(T ).

• if v|ℓ then ρλ|GKv
is de Rham.

5) for τ : K →֒M , Hτ is a multiset of n integers such that for any M →֒
Mλ over M we have HTτ (ρλ) = Hτ .

We will call R regular if for each τ : K →֒M every element of Hτ has
multiplicity 1. Suppose that K is Q and n is 2, we will call R is odd if every
representation in R is odd.
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We will call R pure of weight w if

• for each v ̸∈ S, each root α of Qv(T ) in M and each ι :M →֒ C we
have

|ια|2 = qwv ,

where qv is the cardinality of the residue field of Kv;

• and for each τ : K →֒M and each complex conjugation c inGal(M/Q)
we have

Hcτ = {w − h : h ∈ Hτ}.

We will sometimes simply write {ρλ}λ for a weakly compatible systemR.

Example 2.5. Let X be a projective smooth variety over a number field
K, then for 0 ≤ i ≤ 2 dimX, {H i

ét(XX ,Qℓ)}ℓ is a weakly compatible system
of ℓ-adic representations of GK defined over Q.

LetR1 = (M,S1, {Qv,1(T )}, {ρv,1}, {Hτ,1}) andR2 = (M,S2, {Qv,2(T )},
{ρv,2}, {Hτ,2}) be two weakly compatible systems of ℓ-adic representations
of GK defined over M . We can define direct sum R1 ⊕R2 a new weakly
compatible system of ℓ-adic representation of GK defined over M by

(M,S1 ∪ S2, {Qv,1(T )Qv,2(T )}, {ρv,1 ⊕ ρv,2}, {Hτ,1 ⊔Hτ,2}}).

3. Irreducibility of ℓ-adic representations

In this section, we will prove Theorem 1.1 and Corollary 1.1.1. We will fix
{ρℓ}ℓ to be the weakly compatible system in Theorem 1.1 and take T to
be the exceptional set which consists of primes ℓ where ρℓ is not absolutely
irreducible. Assuming that the Dirichlet density of T is greater than 0, we
will show that there exists an ℓ ∈ T such that ρℓ : GQ → GL3(Qℓ) has an
odd 2-dimensional irreducible subrepresentation and thus T is the whole set
of rational primes. To state our strategy, notice that since ρℓ is not absolutely
irreducible for ℓ ∈ T , ρℓ has one of the two decompositions

χℓ,1 ⊕ χℓ,2 ⊕ χℓ,3, or ψℓ ⊕ rℓ,

where χℓ,i (i = 1, 2, 3) and ψℓ are 1-dimensional Qℓ-representations and rℓ
is an irreducible 2-dimensional Qℓ-representation. In the following, we will
say the former case is of type 1 + 1 + 1, and say later case is of type 1 + 2.
This definition can be generalized to a 3-dimensional GK-representation for
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a number field K. In subsection 3.1 we first exclude the possibility for ρℓ
to be of type 1 + 1 + 1. Then we show that, if ρℓ is of type 1 + 2 and the
2-dimensional subrepresentation rℓ is odd, {ρℓ}ℓ is in fact a direct sum of
a rank 1 weakly compatible system and a rank 2 odd weakly compatible
system. Finally we show the nonexistence of the “ even 2-dimensional sub-
representation rℓ” up to a density zero subset of all primes. So Theorem 1.1
follows. In subsection 3.2, as an application of Theorem 1.1, we prove Corol-
lary 1.1.1.

3.1. Proof of Theorem 1.1

In this subsection we will specialize {ρℓ}ℓ to be the regular weakly compatible
system of self-dual representations in Theorem 1.1, and let T be the set of
primes where ρℓ is of type 1 + 2. In order to prove Theorem 1.1, we first
assume that ρℓ : GQ → GL3(Qℓ) is of type 1 + 1 + 1 and try to deduce a
contradiction. Note that if this was the case, then for every Galois extension
K/Q, the restriction ρℓ|GK

is also of type 1 + 1 + 1.

Proposition 3.1. Let K/Q be a totally real extension. Let {πℓ}ℓ be a rank
3 weakly compatible system of GK defined over Q. If {πℓ}ℓ is regular and
pure of weight 0, then πℓ is not of type 1 + 1 + 1 for any ℓ. In particular,
under the condition of Theorem 1.1, ρℓ|GK

is not of type 1 + 1 + 1.

Proof of Proposition 3.1. Suppose πℓ0
∼= πℓ0,1 ⊕ πℓ0,2 ⊕ πℓ0,3 is of type 1 +

1 + 1 for a fixed prime ℓ0. Then by Lemma 2.3 we know that for each i ∈
{1, 2, 3}, πℓ0,i ∼= χiε

ni has to be a product of a finite character χi and a power
of cyclotomic character ε. On one side, by the pure of weight zero condition,
all the ni are the same. However, by the regularity, ni’s are distinct. This
contradiction implies that πℓ0 cannot be of type 1 + 1 + 1. □

Now we start to discuss the type 1 + 2 case. First we prove a lemma
about the oddness condition in our setting.

Lemma 3.2. If ρℓ is of type 1 + 2, then the 2-dimensional subrepresenta-
tion rℓ is odd if and only if det rℓ is nontrivial.

Proof. The self-dual condition of ρℓ implies that rℓ is also self-dual, thus
det rℓ is a quadratic character. Since it is a fact that the image of a self-dual
2-dimensional representation is contained in either O2(Qℓ) or in SL2(Qℓ),
suppose that det rℓ is nontrivial, then rℓ(GQ) is not in SL2(Qℓ). Let K be
the quadratic field fixed by the kernel of det rℓ, then we have rℓ(GK) ⊂
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SO2(Qℓ) is an abelian group. Then rℓ|GK
is not irreducible. So ρℓ|GK

is of
type 1 + 1 + 1. By Proposition 3.1, K is imaginary, hence rℓ is odd. The
other direction is easy. □

Proposition 3.3. If ρℓ0 is of type 1 + 2 with an odd 2-dimensional subrep-
resentation rℓ0 for some prime ℓ0, then so is ρℓ for every prime ℓ.

Proof. By assumption, we have ρℓ0
∼= ψℓ0 ⊕ rℓ0 where rℓ0 is of 2-dimension

and is absolutely irreducible and odd. By [16, Theorem 1.0.4], rℓ0 comes
from a cuspidal eigenform. So rℓ0 lives in an odd weakly compatible system
{rℓ}ℓ. We can also extend ψℓ0 to a weakly compatible system since ρℓ is
geometric. So {ρℓ}ℓ ∼= {ψℓ}ℓ ⊕ {rℓ}ℓ. □

The above Proposition 3.3 proves possibility (2) in Theorem 1.1. And
combining this proposition with the Proposition 3.4 below, we can complete
the proof of Theorem 1.1. Recall that the exceptional set is defined by T =
{ℓ prime|ρℓ is of type 1 + 2}.

Proposition 3.4. If T has positive Dirichlet density, then there exists at
least one ℓ ∈ T such that rℓ is odd.

The strategy of proving Proposition 3.4 is proof by contradiction. As-
sume that Proposition 3.4 is false, then T has positive density and for every
ℓ ∈ T , ρℓ has a 2-dimensional irreducible even subrepresentation rℓ : GQ →
GL2(Qℓ). By Lemma 3.2, det rℓ = 1 for ℓ ∈ T . (This is really the condition
we will use later.) In the rest part of this subsection, we will use Calegari’s
theorem on the Fontaine-Mazur conjecture (Theorem 2.4) to show that for
some ℓ ∈ T the corresponding rℓ are also odd, which is impossible, and hence
deduce to contradiction.

In order to use Theorem 2.4, without loss of generality, we can assume all
primes in T are greater than 7, then, under the conditions of Theorem 1.1,
we need to show that there is a subset T ′ ⊂ T consisting of infinity many ℓ
such that rℓ satisfies all the five conditions of Theorem 2.4.

Lemma 3.5. For ℓ ∈ T , rℓ is geometric and has distinct Hodge-Tate weights.
Equivalently, conditions (a) and (b) of Theorem 2.4 are true for rℓ with
ℓ ∈ T .

Proof. Every ρℓ is geometric, and so is rℓ since the geometric property is
closed under taking subquotient, this proves the condition (a).

Recall that the weakly compatible system {ρℓ}ℓ is regular. So ρℓ has
distinct Hodge-Tate weights. The rℓ is a subquotient of ρℓ, hence condition
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(b) is true. Indeed, one easily sees that the Hodge-Tate weights of rℓ are
{m,−m} for some nonzero integer m. □

Lemma 3.6. Assume that Proposition 3.4 is false. The representation rℓ|GQℓ

is not a twist of an extension of trivial character by mod ℓ cyclotomic char-
acter εℓ. In particular, condition (c) of Theorem 2.4 is true for rℓ with ℓ ∈ T .

Proof. Note that the mod ℓ cyclotomic character εℓ is a surjective map to
F×

ℓ . Taking g ∈ GQℓ
such that εℓ(g) ∈ F×

ℓ is not a square. If rℓ|GQℓ
is a

twist of an extension of trivial character by mod ℓ cyclotomic character,
then det rℓ|GQℓ

(g) is not a square element. So det rℓ is nontrivial. This is a
contradiction. □

Lemma 3.7. There exists a subset T ′ of Dirichlet density one with respect
to T , such that rℓ is not of dihedral type for any ℓ ∈ T ′. Hence condition (d)
of Theorem 2.4 is true for rℓ with ℓ ∈ T ′.

Proof. By Proposition 2.7 in [5], there is a Dirichlet density one subset J
of primes, such that if ρλ has a 2-dimensional even absolutely irreducible
subrepresentation rλ for λ ∈ J , then rλ is not of dihedral type. Then the set
T

′

= J ∩ T is our desired subset. □

At last, we need to speak about the irreducibility of rℓ.

Lemma 3.8. There exists a subset T ′′ of Dirichlet density one with respect
to T, such that the residue representation rℓ is absolutely irreducible for any
ℓ ∈ T

′′

. Equivalently, condition (e) of Theorem 2.4 is true for rℓ with ℓ ∈ T
′′

.

Proof. This is a corollary of Proposition 5.3.2 of [3]. □

Finally, by combing all the above discussions, we can complete the proofs
to Proposition 3.4 and Theorem 1.1.

Proof of Proposition 3.4. Assume that Proposition 3.4 is false, then T has
positive density, and for every ℓ ∈ T , ρℓ has a 2-dimensional irreducible even
subrepresentation rℓ : GQ → GL2(Qℓ). Following the Lemmas 3.5, 3.6, 3.7
and 3.8 and the notations in their proofs, we can find a density one subset
T̃ := T ′ ∩ T ′′ of T such that rℓ satisfies all assumptions of Theorem 2.4 for
every ℓ ∈ T̃ . Hence, for ℓ ∈ T̃ , rℓ is modular, hence odd. However, this is
impossible since by our setups. Thus by all above, we cannot assume rℓ is
even for every ℓ ∈ T , and this completes the proof of Proposition 3.4 □

Proof of Theorem 1.1. This theorem follows by combining Proposition 3.1,
Proposition 3.3, and Proposition 3.4. □
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3.2. Proof of Corollary 1.1.1

Following the notations of Corollary 1.1.1, by Theorem 1.1 and condition
(∗∗) of Corollary 1.1.1, we know that for a Dirichlet density one set of primes
ℓ, all 3-dimensional GQ-representations ρssℓ,i are absolutely irreducible. One
can also easily argue that all the 2-dimensional GQ-representations ρssℓ,i are
absolutely irreducible following exactly the same idea in the proof of Propo-
sition 3.1. This means these transcendental parts have no contribution to
the Galois invariant part of H2

ét(XQ,Qℓ(1)). Thus to prove Corollary 1.1.1,
it is sufficient to show that

(3.1) NS(X)⊗Qℓ → (NS(XQ)⊗Qℓ)
GQ

is an isomorphism. Indeed this is true when X is an elliptic surface over base
curve P1. This result should be known for experts. But for the convenience of
readers, we write a proof in this section. Our proof is not original, it follows
the idea in [10, Chapter 17, Section 3], especially its Remark 3.2.

Proposition 3.9. If X → P1
Q is a surface defined over Q which has an

elliptic fibration over P1
Q and admits a section, then (3.1) holds.

Proof. Note that NS(XQ) is generated by the geometric divisors of XQ.
This means that we can find a finite Galois extension K/Q such that all the
generators are defined over K, i.e.

NS(XQ) = NS(XK).

Thus to prove the corollary, it is reduced to show

(NS(XK)⊗Qℓ)
GQ = NS(X)⊗Qℓ.

To show this, we note that for elliptic surfaces with section over a base curve
of genus 0, we have NS(XQ) = Pic(XQ), i.e. the linearly equivalent class and
the algebraic equivalent class coincide by the fact that the pull back map
from Pic0(CQ) to Pic0(XQ) is an isomorphism (here C is the genus 0 base

curve of X). Note that Pic(X) = H1(X,Gm), and similarly for Pic(XK) and
consider the Hochschild-Serre spectral sequence

Ep,q
2 = Hp(Gal(K/Q), Hq(XK ,Gm)) ⇒ Hp+q(X,Gm)
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and apply the facts that H1(Gal(K/Q),K∗) = 0 (i.e. Hilbert 90) we get

0 → Pic(X) → Pic(XK)Gal(K/Q) → H2(Gal(K/Q),K∗).

According to the fact that H2(Gal(K/Q),K∗) is torsion, we have

(Pic(XK)⊗Qℓ)
GQ = Pic(X)⊗Qℓ.

This finishes the proof. □

4. The Tate conjecture of the surfaces of

van Geemen and Top

In this section, we will apply Corollary 1.1.1 to the construction of van
Geemen and Top [20]. As a result, we show that the Tate conjecture is true
for a sub family of their construction.

More precisely, in Section 4.1 we recall the construction of a family of
elliptic surfaces Sa in [20], and the properties of the corresponding weakly
compatible system {Vℓ(1)}ℓ which is constructed by van Geemen and Top.
(Recall that Vℓ(1) ∼= Vℓ ⊗ εℓ.) In Section 4.2, we apply some calculation tricks
to work out several technical properties of the trace of Vℓ which can be used
in proving Theorem 1.2. Finally, in Section 4.3 we prove Theorem 1.2.

4.1. The surfaces of van Geemen and Top

We simply recall the construction of van Geemen and Top here. Readers
who are interested in more details are referred to Section 2 and Section 5 of
the original paper.

For each a ∈ Q \ {±1}, considering the elliptic surface

(4.1) Ea : Y 2 = X

(
X2 + 2

(
a+ 1

t2
+ a

)
X + 1

)
.

Remark 4.1. The original surface in their paper has two parameters a and
s, while when s ∈ Q∗, we can parameterize the equation to get the form as
above.

Define the elliptic surfaces Xa and Sa as fiber products of Ea which
satisfies the following Cartesian diagram
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Sa Xa Ea

P1
z P1

u P1
t

j h

where j : z 7→ u = (z2 − 1)/z and h : u 7→ t = (u2 − 4)/(4u). One can see
that Sa is not isotrivial by computing its j-invariant. In this and the fol-
lowing sections, we will denote by Ea,t (resp. Xa,u, Sa,z) the fiber above
t ∈ P1(Q) (resp. u, z) of the surface Ea (resp. Xa, Sa).

Considering the geometric action on P1
z defined by

σ : z 7→ z + 1

−z + 1

which has order 4. As an element of the Galois group of P1
z over P1

t , σ
is totally ramified over t = ±i and this is all the ramifications. Also, one
sees that j : P1

z → P1
u defined above identifies P1

u with the quotient space
P1
z/⟨σ2⟩. This means that both of the two étale cohomology H2

ét((Sa)Q,Qℓ)

and H2
ét((Xa)Q,Qℓ) are stable under the GQ × ⟨σ⟩-action. Moreover, if we

denote by Aℓ(Sa) the Qℓ-subspace in H
2
ét((Sa)Q,Qℓ) spanned by all compo-

nents of bad fibers of Sa → P1
Q
, then Aℓ(Sa) is also GQ × ⟨σ⟩-stable.

Define

Wℓ := H2
ét((Sa)Q,Qℓ)/(H

2
ét((Xa)Q,Qℓ) +Aℓ(Sa)).

Then Wℓ has dimension 6 and is also equipped with a GQ × ⟨σ⟩-action.
The σ has two eigenvalues ±i on Wℓ. We take Vℓ (resp. V ℓ) to be the 3-
dimensional eigenspace corresponding to eigenvalue i (resp. −i).

Remark 4.2. From now on, we work on the representation Vℓ. But all the
following results are also true for V ℓ due to the isomorphism between V ℓ

and Vℓ.

Proposition 4.1. [20, Proposition 5.2] For a ∈ Q \ {±1}, the correspond-
ing Vℓ(1) is self-dual (up to semi-simplification).

We have the following facts about the geometry of Ea,Xa and Sa, which
follow from the proof of Proposition 4.2 and Remark 5.3 in [20].

Lemma 4.2. In the above construction,



✐

✐

“4-WangXY” — 2022/7/10 — 16:25 — page 1369 — #17
✐

✐

✐

✐

✐

✐

Irreducibility of Galois representations & the Tate conjecture 1369

1) Ea are rational elliptic surfaces.

2) Xa are K3 surfaces with Picard number at least 19.

3) Sa has (complex) Hodge numbers h2,0 = h0,2 = 3, h1,1 = 40. And the
Picard number for it is at least 37.

4.2. Trace of Vℓ(1)

Now we want to deduce a trace formula of Vℓ(1) for future use. Note that the
ramified primes of Vℓ are the divisors of 2(1 + a)(1− a) (for notation, see
Section 1.6). For a fixed prime integer p which is not dividing 2(1 + a)(1− a),
and let p be a prime ideal in a number field K and p be lying above p. Let
q = NmK/Q(p) = pr and ρℓ : GQ → GL3(Qℓ) be the semi-simplification of

Vℓ(1). Moreover, we take the notation Sa,t (resp. X a,t, Ea,t) to represent the
reduction of Sa,t (resp. Xa,t, Ea,t) with respect to p. Then the formula to
compute the trace of corresponding geometric Frobenius Frobp attached to
Vℓ is (see [20, Theorem 3.5] for more details)

(4.2) tr ρℓε
−1
ℓ (Frobp) =

#Sa(Fq)−#X a(Fq)

2
.

With this formula, we can compute the trace of Frobp modulo an integer
m. In order to do this, we compute #Sa(Fq)−#X a(Fq) fiberwisely with
respect to t ∈ P1

Fq
. First, the following lemma about the fibers of Ea over

algebraic closed field Fq will be useful.

Lemma 4.3. With the above notations, assume p ∤ 2(1 + a)(1− a). Let
the parameter go over P1

Fq

, then fiber Ea,t is smooth if and only if t ̸=
0,±

√
−1,±

√
1+a
1−a .

Proof. This follows directly from that the discriminant of the fibration Ea,t

is
64(a+ 1)(t2 + 1)((a− 1)t2 + (a+ 1))

t4
.

□

In the following, we will say a fiber Ea,t is special if t ∈ {0,±
√
−1,

±
√

1+a
1−a ,∞}, otherwise, we say the corresponding fiber is general. Note in

particular that Ea,∞ is special even it is smooth. Recall the construction
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at the beginning of Section 4.1. We have degree 2 morphisms j : P1
z → P1

u

and h : P1
u → P1

t . We will still keep using the same notations to refer their
reduction to finite fields Fq.

Due to the way we compute tr ρℓε
−1
ℓ (Frobp), one sees that for a fiber Ea,t

only when
√
t2 + 1 ∈ Fq, each component its pulling back via h is defined

over Fq and the right hand side of (4.2) has contribution to the trace. In
this case, we say that Ea,t has contribution to (4.2). In the followings, we
will discuss the contribution of general and special fibers respectively. Since
we are only interested in the nontrivial contribution from the fibers, we will
assume

√
t2 + 1 ∈ Fq.

For a general fiber Ea,t, under our assumption above, we know h−1(t) ⊂
Fq. Now the two fibers X a,u with u ∈ h−1(t) are defined over Fq, and can
contribute to the trace formula (4.2). In addition, every X a,u is isomor-
phic to Ea,t, hence their contribution is 2#Ea,t(Fq)/2 = #Ea,t(Fq) in (4.2).
Similarly, when (j ◦ h)−1(t) ⊂ Fq, the four fibers Sa,z with z ∈ (j ◦ h)−1(t)
contribute 4#Ea,t(Fq)/2 = 2#Ea,t(Fq) to (4.2). Moreover, due to the defin-
ing equation (4.1) we have 2|#Ea,t(Fq), and due to the symmetry E t ≃ Ea,−t

we have #Ea,t(Fq) = #Ea,−t(Fq). Hence for general t ∈ Fq we have

4|#Ea,t(Fq) + #Ea,−t(Fq).

In particular, when
√

2(1 + a) ∈ Fq, we have a 4-torsion point(
1,

√
2(1+a)(t2+1)

t

)
in each of Ea,±t(Fq), thus in this case, 8|#Ea,t(Fq) +

#Ea,−t(Fq).
Now we discuss the special fibers.

1) When t = 0, the corresponding fiber is

Ea,0 : Y
2 = X2(X + 2(a+ 1)).

Hence one can see that the singular point is (0, 0) with two tan-
gent lines Y = ±

√
2(a+ 1)X. Moreover, the u-fibers above t = 0 are

u = ±2, and the z-fibers are z = ±1±
√
2. Hence we can tabular the

contribution of Ea,0 in Table 1. In each of the first two columns of this
table, we write 1 to indicate the element at the top of this column is
in Fq, and −1 otherwise. If we leave the block unfilled, it means that
the contribution is independent with the value. At the last column, we
list the contribution of each situation.

2) When t = ±i, since the corresponding u-fibers are u = ±2i and the
z-fibers are z = ±i, we know that Ea,±i have no contribution.
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√
2(1 + a)

√
2 contribution

1 1 q

1 −1 −q
−1 1 q + 2

−1 −1 −q + 2

Table 1: Contribution of t = 0.

3) When t = ±
√

1+a
1−a , the corresponding fiber is

Ea,t : Y
2 = X(X + 1)2.

The singular point is (−1, 0), with two tangent lines Y = ±i(X + 1).

Then the u-fibers above are u = ±2
√

1+a
1−a ± 2

√
2

1−a . The the z-fibers

are z = ±
√

1+a
1−a ±

√
2

1−a ±
√

4±2
√

2(1+a)

1−a . Hence by the same manner

as above, we have Table 2.

√
1+a
1−a

√
2

1−a

√
4±2

√
2(1+a)

1−a i contribution

1 1 1 1 2q

1 1 1 −1 2(q + 2)

1 1 −1 1 −2q

1 1 −1 −1 −2(q + 2)

−1 0

−1 0

Table 2: Contribution of t = ±
√

1+a
1−a .

4) When t = ∞, the corresponding fiber is smooth (recall a ̸= ±1). In
particular, we have

Ea,∞ : Y 2 = X(X2 + 2aX + 1).

When
√

2(1 + a) ∈ Fq, we have a 4-torsion point (1,
√

2(1 + a)). More-
over, when

√
a2 − 1 ∈ Fq, then we have three distinct 2-torsion points

over Fq. The u-fibers above are u = 0,∞, and the z-fibers are z =
0,∞,±1. Hence
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a) When
√

2(1 + a) /∈ Fq, 2|#Ea,∞(Fq) and Ea,∞ contributes #Ea,∞(Fq).
b) When

√
2(1 + a) ∈ Fq, 4|#Ea,∞(Fq) and Ea,∞ contributes #Ea,∞(Fq).

c) When
√
a2 − 1 ∈ Fq, 4|#Ea,∞(Fq) and Ea,∞ contributes #Ea,∞(Fq).

d) When
√

2(1 + a) ∈ Fq and
√
a2 − 1 ∈ Fq, 8|#Ea,∞(Fq) and Ea,∞

contributes #Ea,∞(Fq).

Proposition 4.4. Let p ∤ 2ℓ(1 + a)(1− a) and let
(
2(1+a)

p

)
=

(
2(1−a)

p

)
=

−1. Take q = p2, then

tr ρℓε
−1
ℓ (Frobp) = −q (mod 8).

Proof. According to the above discussion, we can see that when q = p2, then

i,
√
2,
√
1 + a,

√
1− a ∈ Fq.

This means

1) The contribution of general fiber is 0 (mod 8).

2) t = 0 contributes q to trace.

3) If

√
4±2

√
2(1+a)

1−a ∈ Fq, then t = ±
√

1+a
1−a contribute 2q for trace, other-

wise −2q.

4) The contribution of t = ∞ is 0 (mod 8).

To determine whether

√
4±2

√
2(1+a)

1−a ∈ Fq, we need to tell whether

Fp(
√

4± 2
√

2(1 + a)) ⊂ Fq. Notice that α :=
√

4 + 2
√

2(1 + a) is a root of

the polynomial T 4 − 8T 2 + 8(1− a). In fact, let β =
√

4− 2
√

2(1 + a), then

the four roots of this polynomial are±α and±β. Now let σ ∈ Gal(Fp(α)/Fp)
be a generator, then if σ has order 2, then it either exchanges α with −α,
or exchanges α with one of ±β. For the former, we know that it means
α2 ∈ Fp, i.e.

√
2(1 + a) ∈ Fp. For the later, we know it means αβ ∈ Fp, i.e.√

2(1− a) ∈ Fp. If σ has order 1, i.e. α ∈ Fp, then α
2 = 4− 2

√
2(1 + a) ∈

Fp, and thus
√

2(1 + a) ∈ Fp. Hence under the assumption of the proposi-

tion we know that

√
4±2

√
2(1+a)

1−a ∈ Fq is not in Fq, and thus

tr ρℓε
−1
ℓ (Frobp) = q − 2q = −q mod 8.

□
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4.3. Proof of Theorem 1.2

Now we want to prove Theorem 1.2, i.e., Sa satisfies the conditions (∗) and
(∗∗) of Corollary 1.1.1. Recall that

H2
ét((Sa)Q,Qℓ(1)) ∼= (NS((Sa)Q)⊗Qℓ)⊕ Tranℓ(Sa).

By the construction of Vℓ and V ℓ in Section 4.2 and Lemma 4.2 (2), we have

Tranℓ(Sa)
ss ⊆ Vℓ(1)

ss ⊕ V ℓ(1)
ss ⊕ Uℓ(1)

ss,

as ℓ-adic representations of GQ, where Uℓ(1)
ss is the transcendental part of

the H2
ét((Xa)Q,Qℓ(1)). Then {Uℓ(1)

ss}ℓ is a rank 2 or 3 weakly compatible
system of ℓ-adic representations of GQ defined over Q since the K3 surface
Xa has Picard number 19 or 20. Moreover, due to the fact that the Tate
conjecture is known for K3 surface, Uℓ(1)

ss is absolutely irreducible as GQ-
representation.

Proposition 4.5. For each a ∈ Q \ {±1}, the surface Sa satisfies the con-
dition (∗) of Corollary 1.1.1.

Proof. By the above discussion, {Uℓ(1)}ℓ is a rank 2 or 3 regular weakly
compatible system of self-dual ℓ-adic representations of GQ defined over Q.

Considering the representations Vℓ and V ℓ. They are motivically defined,
and the complex Hodge number are h2,0 = h1,1 = h0,2 = 1 (see [20, proof of
Proposition 4.2]). So {Vℓ(1)ss}ℓ, and {V ℓ(1)

ss}ℓ are also rank 3 self-dual
regular weakly compatible system of ℓ-adic representations of GQ defined
over Q. □

Before we consider the condition (∗∗) of Corollary 1.1.1, we need to state
a lemma for later use.

Lemma 4.6. Let ρ : GQ → GL3(Qℓ) be an self-dual ℓ-adic representation
and ρ ∼= ψ ⊕ r decomposes into the direct sum of two irreducible Qℓ-
subrepresentations with dimψ = 1 and dim r = 2. Then, for an element g,
det r(g) = 1 in any one of the following cases:

(a) tr ρ(g2) ̸= 3 (mod m) for some integer m ≥ 5.

(b) tr ρ(g) ̸= ±1.
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Proof. Since ρ is self-dual, ψ ⊕ r ∼= ρ ∼= ρ∗ ∼= ψ∗ ⊕ r∗. By Jordan-Holder The-
orem, ψ ∼= ψ∗ and r ∼= r∗, i.e., ψ and r are self-dual. In particular, ψ and
det r are quadratic characters.

Also notice that, since ρ is self-dual, its image is in the orthogonal group
O3(Qℓ). Then, for any g ∈ GQ, ρ(g) is a diagonalizable matrix. Assume

that the Jordan canonical form of ρ(g) is

(
α 0 0
0 β 0
0 0 γ

)
. Since ρ(g) is similar to

(ρ(g)−1)t. Then there are two cases.

1) α = ±1, β = ±1, and γ = ±1.

2) αβ = 1(α ̸= ±1), and γ = ±1.

Observe that, in case (2), det r(g) = αβ = 1 since ψ is a quadratic char-
acter. And, in case (1), if α = β = γ = ±1, det r(g) = 1. Then this lemma
follows. □

Proposition 4.7. For each a ∈ Q, if a ≡ 2, 3 mod 5, and none of 2(1 + a)
or 2(1− a) is a square in Q, the surface Sa satisfies the condition (∗∗) of
Corollary 1.1.1.

We denote Vℓ(1) by ρℓ for any prime ℓ. By Proposition 4.2, ρssℓ is self-
dual, If ρssℓ is decomposed into irreducible Qℓ-subrepresentations as follows

ρssℓ
∼= ψℓ ⊕ rℓ

with dimψℓ = 1 and dim rℓ = 2. We want to prove that det rℓ = 1.

Proof. By the proof of Lemma 4.6, we know that det rℓ is a quadratic char-
acter. Thus there is an integer D such that

det rℓ(Frobp) =

(
D

p

)

for prime p ∤ D.
We first prove that, if neither 2(1 + a) nor 2(1− a) is a square in Q,

then D is 1 or 1− a2 (up to a square). Suppose that this is not the case,
then by Chinese reminder theorem we can find a prime integer p such that

(
D

p

)
= −1,

(
2(1 + a)

p

)
=

(
2(1− a)

p

)
= −1.



✐

✐

“4-WangXY” — 2022/7/10 — 16:25 — page 1375 — #23
✐

✐

✐

✐

✐

✐

Irreducibility of Galois representations & the Tate conjecture 1375

So det rℓ(Frobp) =
(
D
p

)
= −1. On the other hand, by Proposition 4.4,(

2(1+a)
p

)
=

(
2(1−a)

p

)
= −1 implies that tr ρℓ(Frob

2
p) = −1 (mod 8). Then

according to Lemma 4.6, we have det rℓ(Frobp) = 1. This is a contradiction.
So D is 1 or 1− a2 (up to a square).

Secondly, we want to show that, if a ≡ 2, 3 (mod5) and neither 2(1 + a)
nor 2(1− a) is a square in Q, D is 1 up to a square. Suppose not, then det r

has to be
(
1−a2

•

)
. Now let p = 5, then 1− a2 = 2 ∈ Fp, hence det r(Frob5) =(

1−a2

p

)
= −1. Then by part (2) of Lemma 4.6, we know that tr ρℓ(Frob5)

has to be ±1, or equivalently, tr ρℓε
−1
ℓ (Frob5) = ±5. In the following, we will

use the trace formula (4.2) to show that this is impossible by calculation.
Notice that over F5, the general fiber (cf. Lemma 4.3) are t = 1, 4. None

of them contribute to the trace tr ρℓε
−1
ℓ (Frob5) since t

2 + 1 = 2 ∈ F5 is not a
square. So we only need to consider the singular fiber t = 0 and ∞. Suppose
a ≡ 2 (mod 5), then by Table 1 we know that the fiber t = 0 contributes
−5 to tr ρℓε

−1
ℓ (Frob5). By point counting, we know that the fiber t = ∞

contributes 8 to tr ρℓε
−1
ℓ (Frob5). Hence now we have

tr ρℓε
−1
ℓ (Frob5) = 8− 5 = 3 ̸= ±5.

Similarly, suppose a = 3, then the fiber t = 0 contributes −7, and t = ∞
contributes 8 to tr ρℓ(Frob5). Hence

tr ρℓε
−1
ℓ (Frob5) = 8− 7 = 1 ̸= ±5.

By all above, one sees that for each a = 2 or 3 (mod 5), we have

tr ρℓε
−1
ℓ (Frobp) ̸= ±5,

hence we obtain a contradiction. So we are done. □

Remark 4.3. In fact,
(
a
5

)
= −1 in Theorem 1.2 is only a technical con-

dition and seems easy to generalize. For instance one can also show that if
a = 3 or 4 (mod 7), then det rℓ is trivial.

Now combine all the results above, we are able to give a proof to Theo-
rem 1.2.

Proof of Theorem 1.2. By Propositions 4.5 and 4.7, the surface Sa satisfies
all the conditions of Corollary 1.1.1. Then by Corollary 1.1.1, for a Dirichlet
density one subset of primes ℓ, the corresponding Tate conjecture for Sa is
true. □
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