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Gelfand-Tsetlin modules for gl(m|n)

VYACHESLAV FUTORNY, VERA SERGANOVA, AND JIAN ZHANG

We address the problem of classifying irreducible Gelfand-Tsetlin
modules for gl(m|n) and show that it reduces to the classification
of Gelfand-Tsetlin modules for the even part. We also give an ex-
plicit tableaux construction and the irreducibility criterion for the
class of quasi typical and quasi covariant Gelfand-Tsetlin modules
which includes all essentially typical and covariant tensor finite di-
mensional modules. In the quasi typical case new irreducible rep-
resentations are infinite dimensional gl(m|n)-modules which are
isomorphic to the parabolically induced (Kac) modules.
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1. Introduction

Throughout the paper the field is assumed to be the field of complex num-
bers. Denote by Let g be the Lie superalgebra gl(m|n) which consists of
(m +n) X (m+ n) complex matrices of the block form

) ~(o3)

where A, B,C and D are respectively m x m,m X n,n X m and n X n ma-
trices. The even subalgebra (g,, )5 = gl(m) @ gl(n) consists matrices with
B =0 and C = 0; the odd subspace (g,, )1 consists those with A =0 and
D = 0. The Lie superalgebra is then defined by the bracket [x,y] = zy —
(—1)|$Hy|y:n, where x and y are homogeneous elements.

The Cartan subalgebra b of gl(m|n) is the subalgebra of diagonal ma-
trices. We denote by U(g) the universal enveloping algebra of g.

A chain of subalgebras of g,

g=g' Dg>D...Dg"™m,

such that g* is isomorphic to gl(p|q) with p+¢=m +n — k + 1 is called a
complete flag in g if b¥ := h N g¥ is a Cartan subalgebra of gF. A complete
flag induces a chain of Cartan subalgebras

h=p'Dop2o...opmt"

Every complete flag C in g defines the commutative subalgebra I'¢ in
U(g) generated by the centers of the members of the chain. We will say that
I'¢ is the Gelfand-Tsetlin subalgebra of U(g)associated with the flag C.

Let I' = T'¢ be a Gelfand-Tsetlin subalgebra of U(g). A finitely generated
module M over g is called a Gelfand-Tsetlin module (with respect to I') if

M= & Mm)

meSpecm I

as a ['-module, where
M(m) = {z e M |mFz=0 forsome k >0}

and Specm I' denotes the set of maximal ideals of I'. Identifying maximal ide-
als of m € Specm I' with kernels of characters y € I', Gelfand-Tsetlin module
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M (with respect to I') will have the following form:

M =@M (),

xel'

where
M(x) = {ze M| (z—x(2)*z=0 forsome k>0 andall zeT}.

Recall that g = gl(m|n) has a consistent Z-grading g=g_; ® gy D g;-
There is a bijection between irreducible g-supermodules and irreducible g,-
supermodules [CM]|. The purpose of our paper is to address the classification
problem of irreducible Gelfand-Tsetlin modules. We show that this problem
reduces to the classification of Gelfand-Tsetlin modules for the even part
of g with respect to the Gelfand-Tsetlin subalgebra ¢(I"), where ¢ : U(g) —
U(gp) is the projection with the kernel g_; U(g) + U(g) g;. Our first result
is summarized in the following theorem

Theorem 1.1. Let I be a Gelfand-Tsetlin subalgebra of U(g),I'g = ¢(T).

(i) A g-module M is locally finite over I if and only if it is locally finite
over I'g.

(ii) Let M be an irreducible Gelfand-Tsetlin (with respect to I') g-module.
Then M is a unique simple quotient of the induced (Kac) module

K(N):=U(g) Qu(gy®g,) IV

for some irreducible Gelfand-Tsetlin (with respect to T'g) go-module N
(we assume gy N =0).

(iii) For any xo € Ly there ezists only finitely many non-isomorphic irre-
ducible Gelfand-Tsetlin (with respect to ') g-modules M with M (xo) #
0.

(iv) If T is another Gelfand-Tsetlin subalgebra of g such that ¢p(I") =T
then the categories of Gelfand-Tsetlin g -modules for T’ and I coincide.

(v) The subcategory of Gelfand-Tsetlin (with respect to ') g-modules with
a fixed typical central character is equivalent to the subcategory of
Gelfand-Tsetlin (with respect to T'o) gg-modules with a suitable cen-
tral character.
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A classical paper of Gelfand and Tsetlin [GT] gives a construction of
simple finite dimensional modules for g, with explicit basis consisting of
Gelfand-Tsetlin tableaux and the action of the Lie algebra. Infinite di-
mensional Gelfand-Tsetlin modules were studied extensively and many re-
markable connections and applications were discovered (cf. [DFO], [EMV],
[FGRZ], [FO], [H], [KWI1], [KW1], [KTWWY], [O], [W] and references
therein).

In [FRZ] a new combinatorial method of constructing of Gelfand-Tsetlin
modules was developed. It is based on the work of Gelfand and Graev |GG
and of Lemire and Patera [LP] who initiated a study of formal continuations
of both the labelling tableaux and the classical Gelfand-Tsetlin formulas.
Imposing certain modified conditions on the entries of a tableau new infinite
dimensional irreducible modules can be constructed explicitly with the Lie
algebra action given by the classical Gelfand-Tsetlin formulas.

Analogs of the Gelfand-Tsetlin bases for a certain class of finte dimen-
sional essentially typical representations of the Lie superalgebra gl(m|n)
were constructed in [Pall], [Pal2]. Essentially typical representations is a
class of typical representations that have consecutive restrictions to the sub-
algebras of the chain gl(m|1) C ... C gl(m|n) completely reducible. This al-
lows to apply the classical Gelfand-Tsetlin formulas to obtain explicit con-
struction of all essentially typical representations. A basis is given by special
Gelfand-Tsetlin tableaux.

Also alternative explicit construction of finite dimensional irreducible
covariant tensor modules over gl(m|n) was given in [M2], [SV]. Highest
weight of such representation is a m + n-tuple A = (A1, A2, ..., Appyn) of
non-negative integers such that

(2) )\i_)‘i-i—lEZzO; fori=1,....m+4+n—1, i#m
and
(3) A = #{i: i >0, m+1<i<m-+n}

We generalize the constructions of essentially typical and covariant ten-
sor representations using the combinatorial approach developed in [FRZ].
It allows us to obtain large families of quasi typical and quasi covariant
Gelfand-Tsetlin modules respectively, together with their explicit tableau
realization. In particular, these families contain all finite dimensional es-
sentially typical and covariant tensor representations. We give necessary
and sufficient conditions of the irreducibility of constructed modules. These
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results are subjects of Theorem Theorem Theorem [8.4] and Theo-
rem We summarize the statements in the following theorem.

Theorem 1.2. Let C be an admissible (respectively, covariant admissible)
set of relations.

(i) The formulas — define a quasi typical (respectively, quasi co-
variant) gl(m|n)-module structure on Ve ([I°]) for any tableau [I°] sat-
isfying C (respectively, for any C-covariant tableau [I°]).

(ii) The module Ve ([I°]) is irreducible if and only if C is the mazimal set of
relations satisfied by [I°] and lgwrm- #* l%+n7j, 1<i<m<j<m+n
i the quasi typical case.

(iii) The module Vc([I°]) is irreducible if and only if C is the mazimal set
of relations satisfied by [I°] in the quasi covariant case.

(iv) If Ve([I°)) is irreducible quasi typical module then it is isomorphic to
the induced module K (Ve ([1°])%1).

2. Preliminaries
2.1. Weight modules

A Zs-graded vector space g = gg @ g7 with even bracket [o,0] : g® g — g is
a Lie superalgebra iff the following conditions hold

0, = ~(= 1P O[p,a]

[a, [b, e]] = [[a, b], ] + (=1)"“PO[a, [b, ]].

Let g be a finite dimensional Lie superalgebra equipped with a grading
g=9_1PgyPy;, where g, are odd abelian subalgebras and g, = gy is
even. Assume that gy, gy, are semisimple gy-modules and g, contains an
element d such that [d,z] = iz for any = € g,.

Let h denote a Cartan subalgebra of gg and assume that it coincides
with its centralizer in g. Then g has a root decomposition

g:h@ @ Ja»

acEAChH*

where g, = {z € g|[h, z] = a(h)z}.
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We fix the sets of positive and negative roots A = AT U A~ and a cor-
responding triangular decomposition

g=n"®hodn",

where n = @ ga, a € AT,
A g-module (respectively, go-module) M is called a weight module (with
respect to b) if

M = @)\eh*M)\,

where My = {v € M|hv = A(h)v for all h € bh}.
Let M be a weight module over g,. Denote by K (M) the induced module:

K(M)=U(g) QU (g, @ g,) M,

where gy M = 0. If M is irreducible then K (M) has a unique irreducible
quotient which we will denote L(M).

Hence, K, which sends M to K (M), defines a functor from the category
of weight gy-modules to the category of weight g-modules. On the other
hand, for a weight g-module V' set R(V') = V9 which is a weight gy-module.
Thus we obtain the functor R, which sends V' to R(V'), from the category
of weight g-modules to the category of weight gy-modules.

The following statement is an immediate consequence of the Frobenius
reciprocity for induced modules.

Proposition 2.1. The pair (K, R) is adjoint.

Important examples of weight modules are Verma modules and their
irreducible quotients. Let b = h @ n™, A € h*. A Verma module with highest
weight A is the following induced module

M) = U(g) ®@u(p) Cua,

where ntv =0 and hv = A(h)v for all h € h. It has a unique irreducible
quotient L(\).

For a dominant weight A denote by Lg(A) the unique irreducible gg-
module with highest weight A. Then K (\) := K(Lo()\)) is the indecompos-
able Kac module with highest weight .

Let p = %EaeAJr(—l)p(a)a and A € h*. A dominant weight A is typical
if (A + p, ) # 0 for any odd positive root a. In the case of dominant typical
A, K(X) := L(A).
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We have U(g) =(9_1U(g) +U(g)g;) ®U(gy). Then the projection
onto U(gy) defines an analogue of the Harish-Chandra homomorphism ¢ :
U(g)* — U(gg) where U(g)? = {y € U(g) | [d,y] = 0}.

Let Z(g) denote the center of universal enveloping algebra U(g) [BZV],
IK2|, [Se]. Then ¢(Z(g)) C Z(go), where Z(go) is the center of the universal
enveloping algebra U(gg). If ¢g is the classical Harish-Chandra homomor-
phism for gy, then ¢go ¢ : U(g) — U(h) = Pol(h*).

2.2. The Lie superalgebra gl(m|n)

The underlying vector space of the Lie superalgebra g,,, = gl(m|n) is
spanned by the standard basis elements F;;,1 <7, j < m + n. The Zs-grading
on gl(m|n) is defined by E;; + i + j, where i is an element of Zy which equals
0if ¢« <m and 1 if i > m. The commutation relations in this basis are given
by

(4) [Eijy En] = 03B — 8By (—1)0HDE+D,

Alternatively, g, can be defined as the quotient of the free Lie superalge-
bra g over C generated by e;, fi, (1 <i<m+n—1), h;,(1 <j<m+n),
subject to the following relations (unless stated otherwise, the indices below
run over all possible values):

(5) [hi, hs] = 0;
(6) [his €3] = (6ij — dij1)es;
(7) [ha, fi] = =(0s5 = bij+1) 33
(8) [es, f5] = 0if i # j;
(9) leis fi] = hi — hiy1 if @ # m;
(10) [ems fm] = B + hint1;
(11) lei, €] = [fi f5] = 0 if [i — j| > 1;
(12) [ems em] = [fms fm] = 0;
(13) lei, [eiy eix1]] = [fis [fis fixa]] = 0, for i # m;
(14) [emlemt1, [em, em:Flm = [fm[fm=1, [fms fm:Flm = 0;
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The isomorphism between two algebras is defined by e; — Ej i1, fi = Eit1,
1<i<m+n-—1and h; — E;, 1 <i<m+n. We define the parity func-
tion on {1,...,m + n} by setting

- _J0g<m
TP lizmt1

Let E be the (m +n) x (m + n) matrix with coefficients in U(g) whose
1j-th entry equals F;; = (1) E;;. The quantum Berezinian is an element in
U(g)[[t]] defined by

(15) B(t)= Y sgn(o)(1+tE)oy1 - (1 +tE —m+ 1)o(n)m
o€Sm,

stgn )1+ t(E — m+1))m+1m+7() 1+ t(E—m+n))*
TES,

m+n,m+7(n)"

The coefficients of quantum Berezinian generate the center of U(gl,, ), see
[Naz], [MI1].

Fix the Borel subalgebra g containing g,. Let x; = \; —¢+ 1 for ¢ =
L...,m,zj ==X +j—2m for j=m+1,...,m+n. Then B(t) acts on
L(\) by the scalar

(IL+txy) - (1 +tey)

(16)

The even and the odd roots in the standard basis are respectively the
following:

Ao = {(ei — )i, 5 <m}U{(6; — )i, 5 < n},

where
(€i,05) = 0, (g4,€5) = 6i5, (0i,65) = —04j.

3. Gelfand-Tsetlin subalgebras

Set g5, = gl(k|l) where k>0 and | > 0. We call a Gelfand-Tsetlin chain
any chain of subalgebras g;,; in g,,),, such that on every step we have either
Ok, 2 Bk—1,1 O Bk1 2 Bk 1—1-

Fix a Gelfand-Tsetlin chain of subalgebras. Let Zp; = Z(g;,;) be the
center of the universal enveloping algebra U (gy, ;). A commutative subalgebra
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I' € U(gy,.,) generated by the centers Zy; corresponding to the members of
the Gelfand-Tsetlin chain is called a Gelfand-Tsetlin subalgebra. We will say
that a Gelfand-Tsetlin subalgebra is special if it contains a Gelfand-Tsetlin
subalgebra of gl(n) or gl(m).

Consider a Gelfand-Tsetlin chain in g,, ,, and a corresponding Gelfand-
Tsetlin subalgebra I'. The Gelfand-Tsetlin chain of I' induces the Gelfand-
Tsetlin chain in the even part g, with subalgebras (g ;)o-

The centers Z((gy,;)o) of the universal enveloping algebras U((gy.;)o)
generate a Gelfand-Tsetlin subalgebra I'g of U(g).

Recall the homomorphism ¢ : U(g)? — Ul(g,). Since I' C U(g)? we can
consider the restriction ¢(I') C U(gy). Since ¢(Z; C Z((gx,;)o) we get
d)(F) C Tp.

Proposition 3.1. The restriction of ¢ : I' — Ty is surjective, that is p(I') =
Ip.

Proof. We will prove the statement by induction on the rank m + n. The
base of induction is trivial. Suppose that g’ = Om—1r, is the member of the
Gelfand-Tsetlin chain, IV C T is the corresponding Gelfand-Tsetlin subalge-
bra of U(g') and I'{; C I'y is the corresponding Gelfand-Tsetlin subalgebra
of U(gf). By induction assumption ¢(I') =TIY. This implies, in particular,
that ¢(I"”) contains Z(gl(n)). We need now the following

Lemma 3.2. Z(gl(n)) and ¢(Zm ) generate the center of U(gy).

Proof. Recall the description of the image under the Harish-Chandra homo-
morphism HC := ¢p¢ given in the the end of the previous section. Using
formula and the fact that HC(Z(gl(n))) is generated by coefficients
of (1 +txms1) -+ (1 + txpm4rn) we obtain that HC(Z(gl(n))) and HC(Zp, 5)
generate HC(Z(gy)). Since ¢ : Z(gy) — S(b) is injective, we obtain the
statement of Lemma. 0

Hence, ¢(Z,,,n) and I'{ generate Z(g,) and thus I'g. We conclude that ¢ is
surjective. O

Note that the restriction ¢ : Z(g,,,) — Z(gy) is injective but not sur-
jective. In contrast the restriction of ¢ to I' is surjective but not injective as
one can see from the following example.

Example 3.3. Let g = gl(1]1). In this case there exist two Gelfand-Tsetlin
chains gl(1|1) D gl(1]0) and gl(1]1) D gl(0|1). Both chains define the same
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Gelfand-Tsetlin subalgebra I generated by Foo, 11 and x = E1gFo1 € Ker ¢y.
Observe that we have the relation

x(x — Epop — E11) = 0.
The homomorphism ¢ : I' = I'g induces the dual map
¢*: Ty — T,
which is injective by the above proposition.

Remark 3.4. Since I'g is a polynomial algebra there exists an injective
homomorphism 1 : Ty — ' such that ¢op = id and ¥ ((Tx)o) C Ty

Remark 3.5. [t is not difficult to see that if g = gl(n|l) and T is the
Gelfand-Tsetlin subalgebra associated with the chain

gl(1) C gl(2) C--- C gl(n) C gl(n|1)
then I' contains I'y. In general, Ty is not a subalgebra of I

Example 3.6. Consider the chain of superalgebras:

gl(1) C gl(1[1) € gl(1[2).

Let us see that I" does not contain I'g, moreover, these two subalgebras do not
commute. Indeed, by the previous example x = E19Eo1 is an element of T’
and y = EsaFEa3 is an element of Ty, since the Casimir element of U(gl(2))
lies in U(h) 4+ 2y. A simple computation shows that

[2,y] = Es1E23E19 — En1E32Er3 # 0.
4. Gelfand-Tsetlin modules for gl(m|n)
4.1. Gelfand-Tsetlin modules over g,
Let g = gl(m|n) = g_1 © gy D g;. Let I'g be a Gelfand-Tsetlin subalgebra of
U(gy) ~ U(gl(m) @ gl(n)). We will denote by I'g = Hom/(T'y, C) the space of

characters of I'y.
The following is straightforward.
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Proposition 4.1. There exist a Gelfand-Tsetlin subalgebra T'(m) of
U(gl(m)) and a Gelfand-Tsetlin subalgebra I'(n) of U(gl(n)) such that T ~
I'(m)®(n).

Thus combining Gelfand-Tsetlin subalgebras of U(gl(m)) and U(gl(n))
we obtain all Gelfand-Tsetlin subalgebras of U(g,).

A finitely generated module M over g, is called a Gelfand-T'setlin module
(with respect to I'g) if

M= P M),

Xef‘o

where
M(x) = {zeM|(z—x(2)!z=0 forsome k>0 andall zeTg}.

Denote by M(T'g) the category of Gelfand-Tsetlin modules over g, with
respect to the subalgebra I'y. Clearly, all finite dimensional g;-modules be-
long to M(T'y).

Theorem 4.2. Let V be a finite dimensional gy-module. For M € M(T)
denote Fyy(M)= M ® V. Then the correspondance Fy : M — Fy (M) de-
fines a endofunctor of the category M(T'g).

Proof. First, note that Fy (M) is finitely generated for any M € M(Ty).
Indeed, it suffices to check this for a cyclic module M. But in this case M
is a quotient of a free module U(gy). Then M ® V' is a quotient of a free
module of rank dim V' and hence finitely generated.

Let Zi be the center of U(gl(k)) and suppose that Z C I'g. To prove
the statement it is sufficient to show that Zj acts locally finitely on Fy (M).
Consider both M and V' as gl(k)-modules. Tensor product with V' defines
a projective functor on the category of gl(k)-modules which restricts to the
functor on the subcategory with locally finite action of the center Zj by
[[BG], Corollary 2.6] or [[K1], Theorem 5.1]. Since Zj, is locally finite on M,
it will also act locally finitely on Fy (M). In particular, Z(gg) acts locally
finitely on V' ® W. The statement follows. g

Gelfand-Tsetlin theory for gl(n) was developed in [O]. The results can
be easily extended to Gelfand-Tsetlin modules over gg.

Proposition 4.3. Let V be some finite-dimensional g-module.
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(i) Let x € L. There exists a finite set S(x) C Ty such that for any Gelfand-
Tsetlin module M we have

M(x)eVc @ MaV)0).
0eS(x)

(ii) For every x € L' the set S (x) := {0 | x € S(0)} is finite.
(iii) If dim M (x) < oo for all x € Ty then dim[M @ V](0) < oo for all § € Ty

Proof. Let us prove (i). The proof goes by induction on the rank of g,. We as-
sume that the statement is true for the previous term (gg, I'y) in the Gelfand-
Tsetlin chain. Let x’ be the restriction of x to I';, and £ be the central char-
acter obtained by restriction of x to Z(gy). Then M(x) = M(x') N M (&).
We have

Mx)@V=MKXx)eVnMEaV.

By the Kostant theorem
M(E) @V = Deese)[M @ V](()

for some finite set S(&). Hence

Mx)eVvec @ MevIOnMeVe)= @ MeV)0),
¢eS(€),0'eS(x) 0€S(x)

where S() consists of all characters 6 such that its restriction to I}, lies in
S(#') and the restriction to Z(g,) lies in S(£).

Now (ii) is a consequence of the proof of (i) since S~1(&) is finite for any
central character €.

Finally, (iii) follows immediately for (ii) and (i). O

4.2. Gelfand-Tsetlin g-modules

Let T" be a Gelfand-Tsetlin subalgebra of g = gl(m|n), g =g_; gy D g;- We
will denote by I' = Hom(I', C) the space of characters of .

A finitely generated g-module M is called a Gelfand-Tsetlin module
(with respect to I') if

M = EPM(x),

xer
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where
M(x) = {zeM | (z— X(Z))k(]} =0 forsome k>0 andall ze€Tl}.

Denote by M(T") the category of Gelfand-Tsetlin modules over g with
respect to the subalgebra I'. In particular, all finite dimensional g-modules
belong to M(T"). Let F(T") be the category of g-modules with locally finite
action of I" and F4(I'g) be the category of g-modules with locally finite action
of Ty. Obviously, M(T") is a full subcategory of F(I'). Moreover, every object
of F(T') is a direct limit of objects in M(T).

Lemma 4.4. If Z(g,) acts locally finitely on a g-module M then Z(g) acts
locally finitely on M.

Proof. Let N := M9 . Obviously, N is a gy-submodule of M. Since zv =
¢(z)v for any z € Z(g) and any v € N, and ¢(Z(g)) C Z(g,), we obtain
that Z(g) acts locally finitely on N and hence on U(g)N.

Consider a filtration

0Cc FY(M)c F*(M)c---c F*(M) C ...,
defined inductively by
FYM)/F='M = U(g)(M/F= M),

By repeating the above argument we get that Z(g) acts locally finitely on
F{(M) for all i.

On the other hand, dimU(g;)v < 2™" for any v € M, hence M =
UZ" F{(M) and the statement follows. O

Theorem 4.5. Let T' be a Gelfand-Tsetlin subalgebra of U(g) such that
I'yo=o¢([I'). Then F(I') = Fy4(Ty) and M(I') = Mgy(T'o) where Fg(T'g) (resp.,
My(Ty)) is the category of g-modules (resp., finitely generated g-modules)
locally finite over I'y.

Proof. Suppose M € F(I'). Consider the filtration F*(M) defined in the
proof of Lemma To prove that M € Fy(I'g) it suffices to show that
[y acts locally finitely on F; := F{(M)/F*"'M. Indeed, consider F; as a
go-module. Then Fj is a quotient of A(g_;) ® (M/F*"1M)%:. For any v € '
and v € (M/F"='M)% we get yv = ¢()v. Since ¢ : I' — I'g is surjective by
Proposition we obtain that I'g acts locally finitely on (M/Fi=1M)%:.
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Furthermore, F'(M)/Fi~'M considered as a gy,-module is a quotient of
A(g_,) ® (M/F=1M)%:. Hence by Theorem we obtain that Ty acts lo-
cally finitely on F*(M)/F*~'M.

Suppose now that M € F4(I'g). By Lemma we get that Z(gy ;) acts
locally finitely on M. Therefore I' acts locally finitely on M.

The second assertion is a consequence of the obvious fact that U(g) is
a finitely generated as U(gg)-module and hence a g-module M is finitely
generated over U(g,) if and only if it is finitely generated over U(g). g

As a consequence we obtain the following super analog of Theorem

Corollary 4.6. Let V be a finite dimensional g-module. For M € F(I')
set Fy(M)= M ® V. Then the correspondence Fy M~ Fy (M) defines

a functor on the category F(T'). The restriction of Fy on M(T) defines a
functor on the category M(T).

Proof. Indeed, we have M € F(I') = F(I'o) by Theorem Hence Fyy (M) €
F(To) by Theorem Applying Theorem again we conclude that
Fy (M) € F(T). O

We also have the following surprizing result

Corollary 4.7. IfT and I are two Gelfand-Tsetlin subalgebras of g such
that ¢(T') = ¢(I"), then F(I') = F(I').

Proof. Indeed, by Theorem [4.5 we have

O

Let M be a g-module. We will say that v € M is a Gelfand-Tsetlin
vector with respect to I' of weight x if v € M (x). We have the following key
property of Gelfand-Tsetlin modules.

Proposition 4.8. Let M be a g-module, I' a Gelfand-Tsetlin subalgebra of
Ulg), x €', M(x) #0. Assume that M is generated by M(x). Then M
F(T). Furthermore, if dim M (x) < oo then M is a Gelfand-Tsetlin module
with respect to I'.

Proof. We prove the statement by induction in m +n. Let g’ = Omn—1 OF
Om—1, be the previous term in the defining chain. By induction assump-
tion M' :=U(g')M(x) € F(I'"). Furthermore M is a quotient of the induced
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module U(g) @y gy M'. The latter is isomorphic to S(g/g') ® M’ as a g'-
module. By CorollaryU(g) Ry (gy M' € F(T') and hence M € F(T'). On
the other hand, Z,, , is locally finite on M. Hence M € F(T').

0

Corollary 4.9. Let M be a g-module, $(I') =Ty, xo € Do. If M(x0) # 0
then M(x) # 0 for some x € L. If in addition V is generated by V (xo) then
V € F(T'). Furthermore, if M is an irreducible g-module and M (xo) # 0
then M € M(T).

Proof. Consider the g-submodule N of M generated by M(xp). Let N’ =
U(go)M(x). Then N is a quotient of the induced module U(g) @y (q,) N'-
Hence N, N € F(I'g) by Theorem Applying Theorem we conclude
that N € F(T'). Therefore, N(x) # 0 for some y € I' implying the first as-
sertion. Two other assertions are straightforward. O

5. Classification of Gelfand-Tsetlin modules
5.1. Restriction and induction functors

Denote by Kg the restriction of the functor K introduced above to the
category of Gelfand-Tsetlin gy-modules M(Iy).

Let N € M(I'g) and M = K(N). Then M is generated by the gg-
submodule My C M? isomorphic to N. For v € My we have zv = ¢(2)v
for all z € I'; where I' is any Gelfand-Tsetlin subalgebra of g such that
'y = ¢(T"). Hence My is a Gelfand-Tsetlin gy-module with respect to I'g
and

Mo = &, pMo(x) = &, cp, Mo(xo)-
Applying Corollary we conclude that M € F(I'). Moreover, since M

is finitely generated (as N is finitely generated) we have that M = K(N) is
a Gelfand-Tsetlin g-module with respect to I'. Hence K¢ defines a functor:

Moreover we have:

Corollary 5.1. Let M be an irreducible g-module and M (xo) # 0 for some
Xo € Lo. Then M is a unique irreducible quotient of K(N) for some irre-
ducible Gelfand-Tsetlin (with respect to T'g) go-module N. Furthermore, M
is a Gelfand-Tsetlin g-module with respect to any T' such that Tg = ¢(T').
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We also have

Corollary 5.2. (i) Given any xo € [ there exists an irreducible M €
M(T) with M(xo) # 0.

(i1) If My is a Gelfand-Tsetlin module for g, with respect to a Gelfand-
Tsetlin subalgebra 'y, then Indg0 My is a Gelfand-Tsetlin module for g
with respect to any Gelfand-Tsetlin subalgebra T such that T'o = ¢(T").

Proof. Let N be an irreducible go-module such that N(xo) # 0 and M be the
unique simple quotient of K (N). Then M (xo) # 0 and the first statement
follows.

Since M = Indg0 My is generated by My then it is a Gelfand-Tsetlin gg-
module with respect to I'g by Theorem[£.2] Then M € F(T') by Theorem 4.5
Moreover, M is finitely generated as My is finitely generated as a gy-module.
Hence, M is a Gelfand-Tsetlin module for g with respect to any Gelfand-
Tsetlin subalgebra I' such that I'g = ¢(T). O

Denote by Rg the restriction of the functor R to the Gelfand-Tsetlin
category M(T"). For a g-module M, R(M)= M% is a gy-module. Since
¢: ' — T is an epimorphism then R(M) is a Gelfand-Tsetlin gy-module
with respect to I'g, hence

R() : M(F) — M(Fo).
By Proposition the pair (Ko, Rp) is adjoint.
5.2. Reduction to the even part

The results obtained in the previous section allow to reduce the classifica-
tion problem of irreducible Gelfand-Tsetlin g-modules to the classification
of irreducible Gelfand-Tsetlin go-modules.

Theorem 5.3.

(i) For any irreducible Gelfand-Tsetlin (with respect to T') g-module M there
exists a unique irreducible Gelfand-Tsetlin (with respect to T'y) gg-module N
such that M is a unique irreducible quotient of K(N).

(ii) Let M be an irreducible Gelfand-Tsetlin module with respect to a Gelfand-
Tsetlin subalgebra T such that ¢(I") =Ty. Then M is a Gelfand-Tsetlin
module with respect to any Gelfand-Tsetlin subalgebra I such that ¢(I") = T'y.
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Proof. The first statement follows from Corollary [5.1I] and Theorem The
second statement follows from Corollary O

It is shown in [O] (see also [FOL Theorem 4.12(c)]) that Gelfand-Tsetlin
multiplicities of any irreducible Gelfand-Tsetlin gy-module are finite and
uniformly bounded. Then we have

Corollary 5.4. If M is an irreducibe Gelfand-Tsetlin module. Then Gelfand-
Tsetlin multiplicities of M are finite and uniformly bounded.

Proof. By Theorem [5.3| (i) it suffices to check this property for K(N) for
some irreducible Gelfand-Tsetlin module N. The Gelfand-Tsetlin multiplic-
ities of N are finite and uniformly bounded. Since K(N) ~ A(g_;) ® N as
a go-module, the statement follows from Proposition (iii). O

Finally we have the following finiteness result.

Theorem 5.5. Let I' be a Gelfand-Tsetlin subalgebra of U(g).

(i) Given xo € Lo, there exist finitely many non-isomorphic irreducible
Gelfand-Tsetlin (with respect to T') g-modules M such that M9 N

M (xo) # 0.

(ii) For any xo € [ there exist finitely many non-isomorphic irreducible
Gelfand-Tsetlin (with respect to I') g-modules M with M (xo) # 0.

Proof. The first statement is an immediate consequence of Theorem (i).

By the finiteness theorem for g, ([O]), for any @ € Ty there are finitely
many up to isomorphism irreducible Gelfand-Tsetlin modules N such that
N(6y) # 0. We claim that there are finitely many N such that K(N)(xo) #
0. For this we recall that K(N) is isomorphic to N ® V for V = A(g_;).
By Proposition [4.3 (i), K (N)(xo) # 0 implies that N (6p) # 0 for some 6y €
S~1(x0). By Proposition (ii), the set S~1(x) is finite, hence the statement
follows from the above mentioned result for gy-modules. O

5.3. Equivalence of subcategories

Recall that the category of representations of a basic classical Lie superal-
gebra of type I with a fixed typical central character is equivalent to the
category of representations of its even part with a suitable central character
[PS],[G]. Due to Proposition this equivalence restricts to the Gelfand-
Tsetlin categories M(T") and M(Ty). Namely we have the following.
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Let £ € Z(g) and M&(T) denote the full subcategory of M(T') consisting
of modules admitting the central character £. Let & := ¢*(£) and M (Tg)
the subcategory of Gelfand-Tsetlin g,-modules which admit the central char-
acter &g.

Recall that & is typical if € is the central character of a Verma module
with typical highest weight.

It is shown in [PS] that if £ is typical then the functors R and K de-
fine equivalence between the categories of g-modules admitting & and the
category of gg-modules admitting &y. Since K and R restrict to the functors

Ko : M*(Tg) = MS(T), Rg: ME(T) — M (Ty),
we obtain the following theorem.

Theorem 5.6. If& € Z(g) is typical then Ko and Rg define the equivalence
between the categories ME(T) and M (Ty).

6. Gelfand-Tsetlin bases

Given a tuple A of complex numbers of the form A = (A1, A2, ..., Angn)s
the irreducible highest weight module L(\) of the Lie superalgebra gl(m|n)
with the highest weight A is generated by a nonzero vector v satisfying the
conditions:

(17) hiv = A\v,1 <i <m+n,
eiv=01<1<m+n-—1.
Recall that the weight A is dominant if
(18) )\i*)\iJrlGZZ(J, fori=1,....m+n—1, i#m.
The dominant weight A (and the module L(\)) is typical if (A + p,e; — 9;) #
Ofor1 <i<m,1<j<n.
Set

(19) Li=XN—i+1(1<i<m)
lj:—/\j+j—2m,(m+1§j§m+n).

Since (A + p,&; — 0;) = l; — l;, the condition for typicality is equivalent to
li#ljfor1<i<m<j<m+n.
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For a,b € C such that b — a is nonnegative integer, we set
[a;0) ={a+s|0<s<b—a}.

The dominant weight A (and the module L(\)) is called essentially typ-
ical if

(20) {lly l2a cee 7lm} N [lm—l—l; lm+n] = @

Clearly, every essentially typical weight is typical.
Our main combinatorial device is an array of complex numbers A = (\;)
presented in the following form:

/\m+n,1 o )\ern,m /\m+n,m+1 e /\m+n71,m+n )\m+n,m+n
)\m+n71,1 e )\m+n71,m )\m+n71,m+1 e )\m+n71,m+n71
(21) )\m+1,1 e >\m+1,m )\’VTL+1,77L+1
ml mm
Am—11
A1l

We will call A a Gelfand-Tsetlin tableau. Given A = (\;;) we set

(22)
i =AM =i+ 1, (1<i<m)y Dy =X +j—2m,(m+1<j<k).

For an essentially typical highest weight A\ a basis of the irreducible
module L(A) parameterized by Gelfand-Tsetlin tableaux was constructed in
[Pall]. We will use the following modified version of these formulas.

Theorem 6.1. Let A\ be an essentially typical highest weight. Then L(\)
admits a basis &x parameterized by all Gelfand-Tsetlin tableaux A which
satisfy the following conditions:

1) Am—l—n,i :>\i7 1 §Z§m+n;
2) Mei —M—1i =01, €{0,11, 1 <i<mim+1<k<m+n;
3) Mi — Myit1 €Z>0,1 <i<m—-1Iim+1<k<m+n—1;

4) M1 — Aki € Z>0 and Mgy — Mer1,i41 € Zso, 1 <i<k<m—1 or
m+1<i<k<m+n-—1.
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The action of the generators of gl is given by the formulas

m,n

k k—1
(23) hipén = Z)\k‘] Z)\k 15| ér, 1<EkE<m+n;
=1 j=1
BT (e — k)

(24) exén = Z o

§A+5ki7 1<k<m-1;
i1 (lej — Lka)

P T (k1 — Ike)
(25) fréa =Y = oot LSk<m—L
i=1 gAig=1\"k] T ki

m
emén = Z Opmi(— 1) (1)l bt i

X H1§j<i(lmj — i — 1) §A 5
H2<j§m(lm] - lmZ)Hgéz,]:l(lm—&-l,g _ lmz _ 1) +0mis

m

fméa = Z(l — Hmi)(—1)1*1(_1)0m1+.‘.+9m,i_1
(27) i=1 3
(Ui = bt rma ) icj<m (g — i + DILE (I—1,5 — lina)

x A6,
M <j<i(lmj — lmi) '

m
ekéA _ Z gki(_1>9k1+...+0k,i—1+9k—1,i+1+...+0k—1,1n(1 _ kal,i)

s lpj — ki — 1
X H <l]m_1) £A+5m

lk+1,j
Z H ( lkj lkz)(lk] — lki + 1) )
(w1 — i) (k=15 — ks + 1)

) (kg — e
imﬂ(+m J&mw m+1<k<m+n—1;
H];éz j= m+1(lkj = i)
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(29)
m
fké.A _ Z ek‘_lﬂ'(_1)6k1+.-.+6k,i—1+0k—1,i+1+-.-+6k—1.m,(1 _ 9]“)
=1
y 1’-”[ (lzkj—szJrll)
iz \tE=1j = Ui +

I (g — b)) (ke — D + 1)

A=k
5 (g — Ui (I — Tei + 1)

k k—1
i Lo — ki
HJ—m+1( 1,5 z) Ase, mAl<k<m+n—1.

T k
izt Hzigmmer (e — lha)

The arrays A & 0; are obtained from A by replacing Ag; by A\i; = 1. We
assume that &Ex = 0 if the array A does not satisfy the conditions of the

theorem.

The formulas in the theorem above can be obtained from [Pall] by mul-
tiplying the basis elements by /|a(A)], where a(A) = [T72]" ar(A).

(30)
(Iei — li—1,5)! (i — Iy — 1)!
ar(A) = ’ . 1<k<m,
1gg<k (-1, — lg—1,5)! 1gggk (1, — lgj — 1)!
(le=1,5 — lpi)!
A) = :
ar(A) . H (e = lm1)!
1<i<j<mm+1<i<j<k i ’
(lej — Ui — 1)!
1<k< .
% H P m+1<k<m+n

1<i<j<m,m+1<i<j<k

Here the function a! is defined by

1-2---a, for a € Z~g,

1, fora=0o0r +1,
1

(a+1)(a+2)---(-1)

In the following sections we will identify £y with the tableau [I] for

(31) al =

, for a € Zg.

convenience.
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7. Quasi typical modules
7.1. Relation modules for gl(n)

Let us recall the construction of relation modules for gl(n) [FRZ]. Set U :=
{(i,j) | 1 <j <i<n} and consider the following subsets of U x U:

(32) T={((i,g); i —-1,t) |2<j<i<n, 1<t<i—1}
(33) = {((6,§);(i+1,8) |1<j<i<n—1,1<s<i+1}
(34) RO ={((n,i);(n,j)) | 1 <i#j<n}

Set R := R~ URPUR?T. Any subset C C R will be called a set of rela-
tions. Let C* = CNRY and C* =CNR*.

To any C C R we can associate a directed graph G(C) with the set of
vertices U as follows: there is an arrow from (,7) to (r,s) if and only if
((i,7); (r,s)) € C. Given (i,7), (r,s) € U we will write (4, j) =¢ (r, s) if there
exists a path in G(C) starting in (7, j) and ending in (r, s).

Definition 7.1. Let C be any set of relation and [I] = (l;;), 1 <i<mn, 1<
Jj <1, a Gelfand-Tsetlin tableau for gl(n).

(i) We will say that [l] satisfies C if:
o l;j — ls € Z>q for any ((3,7); (r,s)) € CTUCC.
o ljj—ls € Zwg for any ((4,));(r,s)) € C™.
o For any 1 <k <n—1 we have, ly; — ly; € Z if and only if (k,7)
and (k,j) are in the same connected component of G(C).
(ii) If [l] satisfies C then Be([l]) will be the set of all [l + z|, where z €
75 satisfying C with zp; =0 for 1 <i <mn. By V¢([l]) we denote
the complex vector space spanned by Be([l]).

We call C noncritical if ly; # ly;, 1 <i < j <k <n-—1, for all []] that
satisfies C.

Following [FRZ|, Definition 4.18, we call a set of relations C reduced if
for every (k,7) € 2U(C) the following conditions are satisfied:

(i) There exists at most one ¢ such that ((k,7); (k+1,7)) € C
(ii) There exists at most one i such that ((k: +1,4);(k,j)) €
(iii) There exists at most one ¢ such that ((k,7); (k —1,7)) €
(iv) There exists at most one i such that ((k — 1,4); (k,j)) €
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(v) No relations in the top row follow from other relations.

Let C be a set of relations. For ¢ < j we say that (k,7) and (k, j) form an
adjoining pair if they are in the same indecomposable subset of C and there
is no pair (k,s) such that (k,i) =¢ (k,s) =¢c (k,j).

Denote by § the set of all indecomposable sets of relations C satisfying
the following condition:

(i) C is noncritical and reduced,;

(ii) C has no subsets of the form {((k,7);(k+ 1,t)), ((k+1,s);(k,7))}
with ¢ < j and s < ¢;

(iii) If (n,4) and (n,j), ¢ # j, are in the same indecomposable subset of C,
then (n,z) ) (n7]) or (n7]) =c (TL,’L)

(iv) For every adjoining pair (k,i) and (k,j), 1 <k <n —1, there exist
p, q such that C; C C or, there exist s < t such that Co C C, where the
graphs associated to C; and Cy are as follows

(k+1,p) (k+1,s) (k+1,t)
G(C)= (k) (k,9); G(Co)= (k) (k.3)
(k_ l,q)

Disconnected unions of sets of § are called admissible. We have

Theorem 7.2. [FRZ| Let C be an admissible set of relations. Then for any
[1°] satisfying C, Ve([I°]) has a gl(n)-module structure and the action of the
generators of gl,, on any basis tableau [l] is given by

k
[LUkt1i = ley) kj
E — 1 9 P J
el = =2 oy ity 000

k
(35) Epy1xlll = Z ll:llz(lku : lk]) - §*9),
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Here [l + 6] is the tableau obtained from [I] by adding £1 to the (k,j)th
entry of [I]; if [I] is not in Be([IV]) then it is assumed to be zero.

Module V¢([I°]) in Theorem is a relation gl(n)-module. We will ex-
tend the construction of relation modules to the Lie superalgebra gl(m|n)
in the next section.

7.2. Relation modules for gl(m|n)

Definition 7.3. The set C = (C1,C2) is called admissible if C; and Co are
admissible sets of relations of gl(m) and gl(n) respectively.

Definition 7.4. Let C = (C1,C2) be admissible.

(i) We will say that a tableau [I] of gl(m|n) satisfies Cy if:
o lij = lys € Z>o for any ((i,4); (r,s)) € C;
i lij —lrs € Z>o for any ((%.7)7 (Ta 3)) S Cl_ UC?;
e For any 1 <k <n we have, ly; — ly; € Z if and only if (k,i) and
(k,7) are in the same connected component of G(Cy).

(il) We will say that [I] of gl(m|n) satisfies Cy if:
o Ui — s € Z<g for any ((i,7); (r,s)) € C5 UCY;
° lz’j - lrs S Z<0 fOT‘ any ((%])7 (Tv 8)) € 02_7
o For any m+ 1<k <m+n we have, ly; —l; € Z if and only if
(k,i) and (k,j) are in the same connected component of G(Ca).
(ili) We say that a tableau [I] of gl(m|n) satisfies C if:
1) (1] satisfies C1 and Co;
2) lpi — lkfl,i = akfl,i(l) € {0, 1}, 1<i<mm+1<k<m+n;
3) i =l #0 form+1<k<m+n—-11<i<m<j<k;
4) If ['] satisfies conditions (1)-(2) and l'y; = lg; + zki, where zy; € Z,
Zm+n,i = 0 for all i, then [I'] satisfies condition (3).

Let [1°] = (1%;) be a tableau satisfying C and Bc([I°]) the set of all pos-
sible tableaux [I] = (I;;) such that
(1) lki:l kit 2k, 2ki €2, 1 <kE<m+n—-1,1<i<k;
(2) [I] satisfies C.

Let Vz([1°]) be the vector space spanned by Be([1°]).
We are now in the position to state the main result of this section.
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Theorem 7.5. LetC = (C1,C2) be an admissible set of relations for gl(m|n),

[I°] a tableau satisfying C. Then the formulas (23)-(29) define a gl(m|n)-
module structure on Ve ([1Y]).

The module V¢([I°]) is called quasi typical gl(m|n)-module. Note that
any essentially typical module is quasi typical. Also note that quasi typical
module need not be typical. The module V¢([1°]) is infinite dimensional in
general, it may or may not be highest weight module.

The formulas (23)-(29) define a g-module structure on the space V¢ (1%).
Recall that we have a homomorphism € : g — gl(m|n) given by e; — E; ;11,
firr Eit1:,1 <i<m+n—1andh; — E;;,1 < j < m+ n. Denote the ker-
nel of the homomorphism € by K.

7.3. Relation removal method

Let C = (C1,C2). Suppose (k, 1) is a vertex involved in the set of relations C,
that is (k,7) is the starting or the ending vertex of an arrow in the graph
of C. We call a vertex (k,7) in the graph of Ci(resp. C2) mazimal if there
is no (s,t) such that ((s,t);(k,i)) € Ci(resp. ((k,i); (s,t)) € C2). A minimal
pair is defined similarly. Suppose C is admissible set and (k,7) is maximal
or minimal. Denote by Cg; the set of relations obtained from C by removing
all relations that involve (k,7). Following [FRZ] we will say that Cx; € C
is obtained from C by the relation removal method, or the RR-method for
short.

Theorem 7.6. Let C = (C1,C2) be an admissible set of relations for which
Theorem holds. If C' is obtained from C by the RR-method then C' is
admissible and Theorem holds for C'.

Proof. Suppose that C’ is obtained from C by removing (i, 7). Then clearly
C' is admissible. To show that Theorem holds for C’ we need to prove
that for any generator g € K and for any tableau [I'] satisfying C one has
gll'T=0.

Consider a tableau [I] satisfying C and the following conditions. If i # m
then .y =1, if (r,t) # (4,7). If i =m then I =1, for (r,t) # (k,j),m <
k<m+mn and 0(1) =0(l') for m <k <m+n—1. Also define § = ¢;; if
i#mand § =Y 70" 6 if i = m.

Let s be positive (respectively, negative) integer if (7, ) is maximal (re-
spectively minimal) with |s| >> 0. Expand g[l + sd] and g[l'] step by step
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(using formulas (23))-(29)). We have

gll+ 58] = ga(l+ s0)[1 + 50 + 2],
z€A

where A is the set of z such that [l 4 sd + 2] € B¢([l]). Suppose that the
tableau [l 4+ sd + z| appears in the expansion of g[l 4+ sd]. Then the tableau
[I' + z] appears in the expansion of g[l']. Moreover, [l + sd + z| belongs to
Be([1)) if and only if [I” + z] belongs to Be/([I']). Hence we have

Zgz Z+Z

z€A

Since for which Theorem [7.5| holds for C, one has that g[l + sé] = 0 and
the values of rational functions g, (I + sd) are 0 for infinitely many values of
s for all z € A. Thus g,(I') =0 for all z € A and hence Theorem holds
for C'. O

7.4. Proof of Theorem [7.5]

Now we prove Theorem The proof follows the idea of the proof of [FRZ],
Theorem 4.33 for gl(n). We provide the details for the sake of completeness.
Let C be an admissible set of relations and [I°] is a tableau satisfying C.
Our goal is to show that K vanishes on [19].
We say that a tableau [I] satisfies the generic condition if

36 i — i @ Zfor 1 <i<mm+1<j<k<m+n.
( j J

Lemma 7.7. Let g € U(g), [I9] is a tableau satisfying C. If g[l] = 0 for any
tableau [l] satisfying C and the generic condition then g[l°] = 0.

Proof. We have

Zgz [+ z],

zEA

for some finite set of integers A. Here g, is some rational function and g,(I)
is its evaluation in [. Let 1,, be the tableau such that the (k,j)th entry is 1
form+1<j <k <m+n and all other entries are 0. There exist infinitely
many z € C such that [I¥ + z1,] satisfies the generic condition (36), and for
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each such x one has

gl +wla) = Y g:(I° + 1) [l + 2] = 0
z€A

by the assumption. Hence g.(I° + z1,) = 0 for infinitely many 2. We con-
clude that g,(I%) = 0 and the statement follows. O

By Lemma it is sufficient to prove the statement of the theorem for
[[] with the generic condition (36]). Let g be a generator of K. Then

gl =Y e +=].

Our goal is to verify that g[l] = 0. To do so we consider every pair of indices
(k,1) involved in C with z; # 0 and construct an admissible set of relations C’
for which Theorem |7.5(holds. Let [v] be a tableau with some variable entries
that satisfies C’ (hence g[v] = 0). Then ¢, (1) is equal to the evaluation of the
coefficient o, (v) of [v + 2| in g[v] at [I] which is 0. This proves that ¢, (1) = 0.
Note that for same g and different z one chooses different sets of relations
C’ and tableaux [v]. In the following we provide the sets of relations C" and
the tableaux [v] for each generator g € K.

Define
(37) B ={(i, 7)1 <j<i<m},
(38) B, = {(4,§)/m+1<j<i<m+n},
(39) V={U7)m+1<i<m+n—-1,1<j<m}.

Let v be the variable tableau such that v, are variables for (a,b) €
B, UY, and O,p(v) = 0,p(1) for (a,b) € V.

(i) [hi, hj][l] = 0. Let g = [h4, hj]. Then

Then (1) is the evaluation of the coefficient of [v] in g[v] at [I] which
is 0. Thus [h;, h;][l] = 0.
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(ii) [hi, ej][l] = (51J — 5i,j+1)€j [l] Denote g = [hi, 6j] — ((51 — (5,‘7]‘_1_1). Then

g[l] = Z@s(l)[l =+ 5]'5]'
s=1

For nonzero vector [l + ¢;4], the coefficient ¢4(1) is equal to the evalu-
ation of the coefficient of [v 4 d;5] in g[v] at [I] which is 0. Therefore,

[, e5]ll) = (95 — dig+1)e; ]
(i) [hs, f5]1l] = —(6s5 — i j+1) f5[l]. The proof is similar to (ii).

(iv) [ei, fj][l] = 0 if i # j. Denote g = [e;, f;]. Then

%

gl1 =" earDl + 6is — 3]

s=1 t=1

(a) Suppose there is no relation between (i, s) and (j,t). Let [v] be the
tableau with variable entries.

(b) Suppose there is a relation between (i,s) and (j,t). Then it is
(i, 5); (G,)) or ((4,£); 5, 5)) and j=i+1. We set. C'={(i,8); (j, 1))}
or C' = {((j,1); (,8))} respectively. Then C’ is admissible. More-
over, applying Theorem to the "standard” set of relations (sat-
isfied by all essentially typical tableaux), we obtain that C” satisfies
Theorem Let vis = l;s, vjs = lj; and all other entries of [v] are
variables.

In both cases above, the coefficient ¢ +(1) by the tableau [l + d;5 —

d;¢) is the evaluation of the coefficient ¢, +(v) of [v+ d;s — 0j¢] in g[v]

at [I] which is 0. Hence ¢,+(1) and [e;, f;][l] = 0.

(v) [ei, filll] = (hi — hit1)[l] for i # m. If i < m, the desired equality fol-
lows from [FRZ|], Theorem 4.33. Suppose i > m. Denote g = [e;, fi] —
hi + hit1. Then

gl =D el + 6is — Su) + (D[],
s#t

Since there is no relation between (i, s) and (4, t), it can be verified that
©s+(l) = 0 using the same argument as in (a) of (iv). Define operators
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éi and fz by

5 Z' lit - lis +1 Hi—:‘r/)];rl+1(li+lt — lzs)
o) el = > e ( ) i)y,
5%1 t limi = lis + 1 Hf;ég:m_t,_l(lit —lis)

7 m g i—1 ) ¢+ — lis
an dm= 3 TT () e ek

sttt Nivne = s = 1 Ty (lie = Lis)

Since the 6 is 0 or 1, ¢(l) is equal to the coefficient of [I] in (& f; —
fiéi — hi + his1)[l]. Since the set €' = (0, 0) is admissible by Theorem
then the coefficient of [v] in g[v] is 0. Thus the coefficient of [v] in
(& fz - fiéi — hi 4+ hi+1)[v] is 0. Using the argument of [FRZ|, Lemma
4.31, we have that the coefficient of [I] in (éif‘i — fiéi — h; + hiz1)[l]
is the limit of the coefficient of [v] in (¢; fz - fiéi — hi + hi+1)[v] by
taking v to [. Therefore, (1) = 0.

(Vi) [em, fm]ll] = (hm + hm+1)[l]. The proof is similar to the case (v).

(vii) [es, e;][l] = [fi, f5][]] = 0 if | — j| > 1. The equality can be obtained by
the same argument as in (a) of (iv).

(viii) [em,em][l] = [fm, fm][l] = 0. It can be proved using the same argument
as in (vi).
Denote g = [em, €m]. Then

9l =" @aa(Dll + Gms + Omi].

s<t

If s — lme > 1 or s =t, then ¢, (l) is equal to the evaluation of
the coefficient of [v 4 d;5 + 5] in g[v] at [I] which is 0. If L5 — Ly = 1
then without loss of generality we can assume that there exists p
such that ((m,s);(m —1,p)),((m —1,p);(m,t)) € C. Thus ly,_1, =
lm,s and [l 4+ s + Ope] does not satisfy C. This proves [epm, ex][l] = 0.
Using the same arguments one has that [f,,, fm][l] = 0.

(ix) [es, [ei, €ixn])[l] = [fi, [fis fiza]][l] = 0, for ¢ # m. The equalities follow
from [FRZ] for i < m. We show the equalities for i > m. Denote g =
[ei, [e@-, eiﬂ]]. Then

gll] = Z Z @r,s,t (D[l + Gir + Gis + Fiz1,t]-

r<s t
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(a) Suppose that r,s,t > m + 1.

(1)
(2)

If there is no relation between (i,7), (i,s) and (i = 1,¢) then
take C' = (0, ) and the variable tableau [v].

Suppose one of {(i,7), (¢,s)} is connected to (i £ 1,¢). Let C’
be the set consisting of this relation. Then C’ is admissible
and satisfies Theorem Without loss of generality we may
assume that C' = {((¢,7); (i £ 1,¢))}. Choose [v] with v = l;y
and vi+1¢ = li+1,¢. Applying the argument as above in both
cases (1) and (2) we obtain g[l] = 0.

Suppose there are relations between (i + 1,¢) and both (i,7)
and (i, s). Without loss of generality we may assume that r <
s. Then {((¢,7); (4 + 1,%)), ((: + 1,); (¢,5))} C C and there ex-
ists p such that {((¢,7); (i —1,p)), (( — 1,p); (4,5))} CC. Set
&' = (i) i+ 1,0)), (G + 1,2): 0, ), ((67): (0 — 1)), (G —
1,p);(i,8))}. Then C’ is admissible with the associated graph
as follows.

i+1,t)

(iﬂ“)/ \(ivs)
/
\(?Lp)
Hence C’ satisfies Theorem We choose [v] such that v;, =
Liry Vis = lis, Vic1,p = lic1,p, Vig1,t = g1t
The coefficient ¢, s¢(l) of the nonzero vector [l + i + d0is +
dit+1,4) is the evaluation at [I] of the coefficient of [v + d; +
dis + 0i+1.] in g[v], which is 0. Hence ¢;. 5 ¢(1) = 0.
Suppose there are relations between (i — 1,¢) and both (i,7)
and (i, s). Without loss of generality we may assume that r < s.
Then, either there exists p such that {((i,7); (i —1,p)), ((i —
1,p);(i,8))} CC, or there exist ppr<gqr, 1 <k<m+n
such that p;=r,¢; =s and ((ix,pk); (ik+1, Pr+1)), ((ik, Gk );
(tkt1,qk+1)) € Cfori+1 <k <m+n — 1. In the first case we
choose C' = {((Za T); (i_la t))7 ((i_lv t); (Za 5))> ((Za T); (i+17p))7
((i +1,p); (4,s))} and tableau [v] such that vy = liy, vis = lis,
Vi—1p = li—1,p, Vit1t = lit+1¢. In the second case we choose
C'= ((i,’l"); (7’ - 17t))7 ((Z - 17t); (17 8)} U {((m + napm—l-n);
(m + 1, @rmtn)) } U A{((iks PE)s (g1, Pe1))[i <k <m4n— 11U
{(Cis qet1); (g1, qx))|i < k < m+n —1,} and tableau [v] such
that Vi1t = li—l,ta Vkpr = lik,pw Vk,qr = lk,qm 1 <k<m-+n.
The associated graphs are respectively as follows.
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(m+n7pm+n) - (m+n7qm+n)

f |
(i+1,p)

(i,r) (178) (i—l—l,th‘-u) (i+1:Lq7:+1)
NS } |

(=1t) G,r) (4,5)

(i—1,t)
In each of these cases the set C’ is admissible and it satisfies
Theorem The coefficient ¢, s +(I) of the nonzero vector [ 4
dir + 0is + 0i—1+] is the evaluation at [I] of the coefficient of
[v 4 0ir + 0is + di—1,4] in g[v] which equals 0. Hence ¢, 5 (1) =
0.

(b) Suppose that only one number in {r, s,¢} is < m. Then there exists
at most one relation between (i, 7), (i, s) and (i = 1, ¢). By the above
argument, ¢, s (1) = 0.

(c) Suppose that two numbers in {r,s,t} are > m. Similarly to (viii),
Sor,s,t(A) =0.

The equation [f;, [fi, fix1]][l] = 0 can be shown by a similar argument.

(x) [emlemr, [ems emzalllll] = [fm[fmz1; [fm, fmsa]l]ll] = 0. Denote
g = lem[em=1, [em, emz1]]]. Let C" = (0, ) be the empty set of relations
and v = (v;;) the tableau with variable entries. Applying the Gelfand-
Tsetlin formulas to a nonzero x € g one can write x[v] as follows:

zfo] = ) a(v)[o+ 2]+ ) d(v)[o+ 2,

z

where [l + 2] satisfies C and [l + 2] does not satisfy C. Hence g[v] has
the form:

glv] = Z(‘Ps,t,p,q(v) + Sols,t,p,q(”))[v + dms + Omt + Omt1p + 5m—1,q]‘

Since C' is admissible, @5 1p4(v) + @51, 4(v) = 0. Evaluating at [I] we
have

g[l] = Z Z @s,t7p,q(l)[l + 5ms + 5mt + 5m+1,p + 5m71,q]-

s<t D,q
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If [I + dpms + Omt + Om+1,p + Om—1,4) does not satify C, then ¢ ¢ p.4(1)
is zero by definition. So we can assume that [l 4+ 0pms + Opt + Omt1,p +
Om—1,4) satisfies C. If ly; —lpmj #Z Or ly; — lmj # Z, then all the
tableaux appearing in the expansion of g[l| satisfy C. So we do not
have o5, ,(v) in this case and @5 4(1) = 0. Suppose by — iy = 1.
The rational function ¢;7t7p,q is regular at vy,; = vp,; — 1. Moreover, its
evaluation at [l] is zero. Thus ¢ 4(l) = 0.

Using the same argument, we have [fp,[fm+1, [fm, fmr1]]][l] = 0.

This completes the proof of Theorem

Example 7.8 (Highest weight modules). Let A = (\1,..., Aptn) such
that \i = Xj ¢ ZoorAi—Xj>i—jforl<i<j<m,m+1<i<j<m+
noand s + M\ ¢ Z for 1 <s <m < t<m+n. Let [I°] be the tableau such
that

i =i —i+1,(1<i<m); By =~y +j—2m,(m+1<j<k),

where A\g; = A, i1 =1,...,m+n. Let C; and Co be maximal sets of relations
satisfied by [I°]. Then the irreducible highest weight module L(\) is isomor-
phic to Ve ([I°)).

8. Irreducibility of quasi typical modules

In this section we obtain necessary and sufficient conditions for the irre-
ducibility of quasi typical g-modules. We have

Proposition 8.1. The action of B(t) on any basis tableau [I] of Ve([I°]) is
given by

(L tlir) -+ (1 4 2l [1], if1<k<m,
(42) Bp@®)[l) =q (L4 tg1) - (1 + thm)
(T4 tlemrr) - (14t k)

0, ifm+1<k<m+n.

Proof. Let C be an admissible set of relations. If C is obtained from C by
the RR-method then By(t) acts on Vg([IV]) by for any [(°] if and only
if it acts by on V;([19) for any [I°]. This follows by the argument from
[FRZ], Lemma 5.1. Since the set () can be obtained from any admissible set
by the RR-method, the statement follows. ([

Corollary 8.2. Let Y ., a;[l;] € Ve([l]) with all a; non-zero, and [l;] are
mutually distinct. Then [l;] € Ve([l]) for all 1 < i <.
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Proof. It follows from Proposition that the Gelfand-Tsetlin subalgebra
has different characters on tableaux [I] # [I']. Then [l;] € Ve([I]) for all 1 <
1< r. O

Theorem 8.3. Let C be an admissible set of relations and [I°] a tableau
satisfying C. The quasi typical g-module Ve([I°]) is irreducible if and only
if C is the mazimal set of relations satisfied by [I°] and I, ; # 19, is1 <
t<m<j<m+n.

Proof. Suppose C is the maximal set of relations satisfied by [I°] and l?n i 7
1 <i<m<j<m+n. First we show that V¢([I°]) is generated by
[19]. For any tableau [I] € V¢ ([I°]) there exist {(i, ji, )}, & = £1,1 <t < s,
such that for any r <s, [I°47_,€d;, j,] satisfies C and [I] = [I°+
=1 €1di, g -

(a) Suppose [] and [I] = [I° + 8] satisfy C.

() Hf1<i<k<m-1 thenlkH ;élk forany 1 < j < k + 1. There-
fore the coefficient of [I] in E}, k+1[l | is nonzero by the maximality
of C. Hence [I] € g[i°] by Corollary .

(ii) If 1 <i < m,k=m, then 6,,,(I1°) =1, i.e. Z%HZ l?n,i‘ Since [{]
satisfies C, we have l,,; # l;n; for any 1 < j < m. It implies that
l0 - lO —1#0 for any 1 < j < m. Therefore, the coefficient of
[l] in F k:+1[l ] is nonzero. By Corollary ] € g[l°.

(iii)) f1<i<m,m+1<k<m+n-—1, then 0;(1°) = 1,0,_1,(1°) =
0. Since [I] satisfies C, l,gj —19. —1#0 for any j #i,1<j<m.
Therefore, the coefficient of [I] in By 1 £[I°] is nonzero. By Corollary
[1] € gll].

(iv) Suppose that m+1<i <k <m+n — 1. Since C is the maximal
set of relations satisfied by [1%], ly; # l—1,; forany m +1 < j < k —
1. Then the coefficient of [I] in Ejy1 x[l°] is nonzero. By Corollary
1 € ot

(b) Suppose [I°] and [I] = [I° — 6] satisfy C. f 1 <i<m <k <m+n—
1, then 6;(1%) = 0. Since [I] satisfies C, lgj — 19410 for any 1<
Jj<m.

In the following we show that

H?—:’—ylrz+1(lk+1 i = Ue)IIE = U1y — b + 1)
H?:erl(lkj lkz)(lk] lki + 1)
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If lpy1,; = lp; for some j, then there exist tableau [I'] such that
Ukqg = lig + 2kq, Where 2zpg € Z, Zming =0 for all ¢, [I'] satisfies C;
and Co, L, —l 1, =0k-1,40) € {0,1},1 <g<m,m+1 <k <m+n,
lk+1,; = lg+1,; which contradicts with the definition of tableau satis-
fying set of relations. Therefore the coefficient of [I] in Ejy1.[1] is

nonzero. By Corollary ., a[l°].
Using the same argument, 1t can be shown that [I] € g[lY] in all other
cases.

Repeating the argument s times we conclude that V¢ ([I°]) is generated
by [I]. Suppose W is a nonzero submodule of V¢([I]). Then W contains
a tableau [I] by Corollary Using the above argument one can show
that [I] generates V¢ ([l]) which is in fact equal to V¢ ([IY]). This proves the
irreducibility of V¢ ([1°]).

Conversely, suppose C is not the maximal set of relations satisfied by [1°].
Then 9 1 l0 € Z for some indexes and there is no relation between (k +
1,4) and (k 7). So there exist tableaux [I1],[1?] € V¢([I']) such that lk+1 ;=
lk, € Z>o and l/w l,%_H ; € Z>o. By the Gelfand-Tsetlin formulas one has
that [[?] is not in the submodule of V¢[I°]) generated by [I!] and thus V¢ ([I°])
is not irreducible.

Suppose that lm+n7i = lm4n,; for some 1 <i<m < j<m+mn. Then
there exist tableaux [I'], [I?] € V¢[I°]) such that Opyqpn—1,(1*) = 0,ie. 1}, 4 i
= l,anrn j and 0,4 n-1 Z(l ) = 1. By the Gelfand-Tsetlin formulas one has that
[I?] is not in the submodule of V¢[I']) generated by [I!] and thus V¢([1]) is
not irreducible. O

Theorem 8.4. V¢([1°) ~ K (Ve([1°))%) if Ve([1V]) is irreducible.

Proof. 1t follows immediately from the Gelfand-Tsetlin formulas that
(43)
W ={[l] € Ve(I'D| 0rs(1) =0,1 <i <m <k <m+n—1} C Ve(I'])"

Suppose there exists v ¢ W such that v € V¢([19])%. Since I' separates the
tableaux by Proposition we may assume that v = [I!]. For any tableau
[l] € W we have (EH + -+ Emm)[l] = (lml + -+ lmm)m Then (EH +

o+ By 1] = (Lna + - -+ + Ly — «)[I1] for some positive integer . Since
the elements of U(g,) commute with Ej; + - - + Ejum, then all tableaux in
U(g)[l'] have eigenvalues which are smaller or equal than the eigenvalue of
[I1]. This contradicts the irreducibility of V¢ ([1°]). Thus W = V¢([I°])% and
K (Ve([l°])®) = K(W) = U(g_,) ® W.
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Define the linear map 7 : K(W) — Ve([1Y]) by
(44) m(z @ [l]) = «l],

z e U(g_,) and [I] € W. It is easy to see that 7 is a g-module homomor-
phism. Since the image of 7 is nonzero and V¢ ([I%]) is irreducible, then 7 is
surjective.

The algebra U(g_;) has a basis

€1 €2 €m €m+1 €Emn J— 1
BB BBy Bgttym, € =00r 1,1 <i<mn.

Suppose 7(v) = 0. Then v can be written as
V= Z T; Q w;,
i

where x; is a product of Ey;, 1 < j<m <k <m+n with x; # x; fori # j
and w; is a nonzero vector in W. Without loss of generality we assume that
x1 has the smallest number of factors. Let y be the product of all negative
odd root elements Ej;’s which are not factors of z1. Then we have 7(yv) = 0
and yxr = z ® wy, where z is the product of all negative odd root elements.
Thus zw; = 0 in Ve([1°).

The module V¢ ([1°]) is irreducible, thus C = (Cy,Cz) is a maximal set of
relations satisfied by [I°] and W = U(gq)w, is irreducible gy-module. Now
we will show that zw; # 0 which gives a contradiction. Let [I'] be the tableau
in Ve([1°]) such that

ki =li—(m+n—k),1<i<m<k<m+n

Then there exists an element u € U(g) such that uw; = [I']. The element u
can be written in the following form:

(45) u=>"u{"ufu,

where ugi)l € U(g4q), u(()i) € U(gg)- By the formula we have (E11 + -+ +

Enm)[l'] = (lm1 4+ + lypm — mn)[l']. Since ug) does not change the eigen-
value of the tableau and [I'] has the smallest eigenvalue, then ugi) = a; and
u@l = b;z, a;,b; € C for any 7. Thus u has the form wugz, ug € U(g). There-
fore, [I'] = uw; = upzw; which implies that zw; is nonzero vector in V¢ ([1°])
which is a contradiction. We conclude that 7 is injective and V¢ ([IY]) ~

K (Ve([I°])e). M
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9. Quasi covariant modules

In this section we extend our construction of quasi typical modules to include
all covariant tensor modules constructed in [SV]. We recall their construc-
tion.

Theorem 9.1. [SV] The set of vectors {x parameterized by all the Gelfand-
Tsetlin tableaux A satisfying the conditions

1) )\m+n,i S ZZO are ﬁZIIed and >\m+n,j — >\m+n,j+1 € Zzo,j 75 m,1 <7<
m+n—1, Apgnm = #{: Mpgni >0, m+1<i<m+n};

2) i — M1, =01 €{0, 11,1 <i <mym+1<k<m+n;
3) Mem > #{i: Mg >0, m+1<i<k}m+1<k<m-+n;
4) if Amg1m =0, then Opym = 0;

5) Mei — Meiv1 € 20,1 <i<m—1m+1<k<m+n-—1;

6) )\k+1,i_>\ki€Z20 and )\k,i_)\k+1,i+1€Z207 1<i<k<m-1 or
m+1<i<k<m+4+n-—1,

constitutes a basis of L(\), where X = (A1, A2, ..., Aman) and Nj = Appjni,
i=1,...,m+n. The action of generators of gl(m|n) on the irreducible co-
variant tensor module L(\) is given by the formulas -.

Let C = (C1,C2) be an admissible set of relations. We will say that C is
a covariant admissible set of relations if it satisfies the following conditions:

1) Co has a subset
C'={((G);(+Lit+D)p<i<m+n-—1},

for a fixed p with m+1 < p <m+n and there is no (p — 1,7) such
that ((p,p); (p — 1,7)) € C2 or ((p — 1,1); (p,p)) € Ca).

2) If (k,1) is in the component of C’ then (k, 7) is in the same component
fori <j<k.
Definition 9.2. A tableau [l] of gl(m|n) is called C-covariant if:
1) [l] satisfies C1 and Cq;
2) g —lp—15=0r—1,4(1) €{0,1},1 <i<m,m+1<k<m+n;
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3) lmtnn — bngnyman € Z, and ly; — lj € Z form+1<k<m+mn, 1 <
i <m < j <k with (k,j) not in the component of C’.
4) If lmtnn — lmgnmin < 0 then form+1<k<m+n
® lim > lmanmtn — M — n + p, if there exists py, such that py, is the
smallest number among {m + 1,m+ 2, ..., k} withl p, — lyntnmin
=pL—m—n.
® lim = lmsnmen —m —n+k+ 1 if there exists no such py.

5) If lm+1.m — lmgnman = 1 — 1 then Oy, = 0.
Let [I] = (l%) be a C-covariant tableau and Bc([1°]) the set of all possible
C-covariant tableaux [I] = (l;;) satisfying

i =10+ 20, 20 €2, 1<k<m+n—-1,1<i<k.

Denote by V¢ ([I]) the vector space spanned by Be([I°]). We have the
following extension of Theorem[7.5)and Theorem [8.3]for covariant admissible
set of relations.

Theorem 9.3. Let C be a covariant admissible set of relations.

(i) The the formulas (23)-(29) define a gl(m|n)-module structure on
Ve ([1V]) for any C-covariant tableau [1°].

(ii) The action of B(t) on any basis tableau [I] of Vo ([I°]) is given by
(L 1) -+ (1 4ty ) [1], if1<k<m,

(46) Bip(t)[l] =q (14 tg1) - (1 + them)
(I +tlemar) - (L4t k)

1, fm+1<k<m+n.

(iii) The module Vc([I°]) is irreducible if and only if C is the mazimal set
of relations satisfied by [I°].

The proof of this theorem is fully analogous to the proof of Theorem
and Theorem so we leave the details out. The module V¢([1°]) in The-
orem will be called quasi covariant g-module. Note that all covariant
tensor finite dimensional modules are quasi covariant. Hence, we have a
generalization of the class of finite dimensional covariant tensor modules.

Acknowledgements

V.F. is supported by CNPq (200783/2018-1) and by Fapesp (2018/23690-
6). J. Z. was supported by Fapesp (2015/05927-0). V.S. was supported by



1416 V. Futorny, V. Serganova, and J. Zhang

NSF grant 1701532. J. Z. acknowledges the hospitality and support of Max
Planck Institute for Mathematics in Bonn. All authors are grateful to the In-
ternational Center for Mathematics of SUSTech for support and hospitality
during their visit when the paper was completed.

References

[BG] J. N. Benstein, S. I. Gelfand, Tensor products of finite and infinite
dimensional representations of semisimple Lie algebras, Compositio
Math. 41 (1980), 245-285.

[BZV] M. Bershadsky, S. Zhukov, A. Vaintrob, psi(n|n) sigma model as a
conformal field theory, Nuclear Phys. B, 559 (1999), no. 1-2, 205-234.

[CM] C.-W. Chen, V. Mazorchuk, Simple supermodules over Lie superal-
gebras. Preprint, arXiv:1801.00654.

[DFO] Y. Drozd, S. Ovsienko, V. Futorny, Harish-Chandra subalgebras and
Gelfand-Zetlin modules, Math. and Phys. Sci. 424 (1994), 72-89.

[EMV] N. Early, V. Mazorchuk, E. Vishnyakova, Canonical Gelfand-Zeitlin
modules over orthogonal Gelfand-Zeitlin algebras, arXiv:1709.
01553.

[FGRZ] V. Futorny, D. Grantcharov, L. E. Ramirez, P. Zadunaisky, Gelfand-
Tsetlin theory for rational Galois algebras, Preprint, arXiv:1801.
09316, 2018.

[FRZ] V. Futorny, L. E. Ramirez, J. Zhang, Combinatorial construction
of Gelfand-Tsetlin modules for gl,, Advances in Mathematics 343
(2019): 681-711.

[FO] V.Futorny, S.Ovsienko, Fibers of characters in Gelfand-Tsetlin cate-
gories, Trans. Amer. Math. Soc., 366 (2014), 4173-4208.

[GG] I. Gelfand, M. Graev, “Finite-dimensional simple representations of
the unitary and complete linear group and special functions associ-
ated with them.” Izvestiya Rossiiskoi Akademii Nauk. Seriya Matem-
aticheskaya 29.6 (1965): 1329-1356.

[GT] I. Gelfand, M. Tsetlin, Finite-dimensional representations of the
group of unimodular matrices, Doklady Akad. Nauk SSSR (N.s.) 71
(1950), 825-828.



Gelfand-Tsetlin modules for gl(m|n) 1417

[G] M. Gorelik, Strongly typical representations of the basic classical
superalgebras. Journal of AMS 15,1(2002),167-184.

[H] J.Hartwig, Principal Galois Orders and Gelfand-Zeitlin modules,
Preprint, arXiv.1710.04186, 2017.

[K1] B. Kostant, On the Tensor Product of a Finite and an Infinite Di-
mensional Representation. Journ. Funct. Anal. v. 20 (1975) 257-285.

[K2] V. G. Kac, Characters of typical representations of Lie superalgebras,
Comm. Alg. 5 (1977) p.889-997.

[KTWWY] J. Kamnitzer, P. Tingley, B. Webster, A. Weekes, O. Yacobi,
On category O for affine Grassmannian slices and categorified tensor
products, 2018, Preprint, arXiv:1806.07519.

[KW1] B. Kostant, N. Wallach, Gelfand-Zeitlin theory from the perspec-
tive of classical mechanics I, In Studies in Lie Theory Dedicated to
A. Joseph on his Sixtieth Birthday, Progress in Mathematics, 243
(2006), 319-364.

[KW2] B. Kostant, N. Wallach, Gelfand-Zeitlin theory from the perspective
of classical mechanics II. In The Unity of Mathematics In Honor of
the Ninetieth Birthday of I. M. Gelfand, Progress in Mathematics,
244 (2006), 387-420.

[LP] F. Lemire, J. Patera, “Formal analytic continuation of Gel’fand’s fi-
nite dimensional representations of gl(n, C), Journal of Mathematical
Physics. 20 (1979), 820-829.

[M1] A. Molev, Factorial supersymmetric Schur functions and super
Capelli identities. American Mathematical Translations (1998): 109—
138.

[M2] A. Molev, Combinatorial bases for covariant representations of the
Lie superalgebra gl(m|n), Bull. Inst. Math. Acad. Sin.(N.S.) 6 (2011),
415-462.

[Naz] M. L. Nazarov, Quantum Berezinian and the classical capelli identity,
Letters in Mathematical Physics 21 (1991), no. 2, 123-131.

[O] S. Ovsienko, ”Finiteness statements for Gelfand-Zetlin modules.” In
Third International Algebraic Conference in the Ukraine, pp. 323—
338. Natsional. Akad. Nauk Ukrainy, Inst. Mat. Kiev, 2002.



1418 V. Futorny, V. Serganova, and J. Zhang

[Pall] T. D. Palev, Essentially typical representations of the Lie superalge-
bra gl(n|m) in a Gelfand-Zetlin basis , Funkt. Anal. Prilozh. 23, No.
2 (1989), 69-70 (in Russian); Funct. Anal. Appl. 23 (1989), 141-142
(English translation).

[Pal2] T. D. Palev, Irreducible finite-dimensional representations of the Lie
superalgebra gl(n/1) in a Gelfand-Zetlin basis, J. Math. Phys. 30
(1989), 1433-1442.

[PS] I. Penkov, V. Serganova, Representation of classical Lie superalge-
bras of type I, Indag. Mathem., N.S. 3 (4) (1992), 419-466.

[Se] A. N. Sergeev, Invariant polynomial functions on Lie superalgebras,
C.R.Acad. Bulgare Sci. 35 (1982), 573-576.

[SV] N. I. Stoilova and J. Van der Jeugt, Gel’fand-Zetlin basis and
Clebsch-Gordan coefficients for covariant representations of the Lie
superalgebra gl(m|n), Journal of Mathematical Physics 51 (2010),
no. 9, 1-15.

[W] B. Webster, Gelfand-Tsetlin modules in the Coulomb context,
arXiv:1904.05415v1.

INSTITUTO DE MATEMATICA E ESTATISTICA

UNIVERSIDADE DE SAO PAULO

05508090 SA0 PAauLo, BRAZIL

AND INTERNATIONAL CENTER FOR MATHEMATICS, SUSTECH
SHENZHEN 518055, CHINA

E-mail address: futorny@ime.usp.br

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA
970 Evans HALL, BERKELEY, CA 94720-3840, USA
E-mail address: serganov@math.berkeley.edu

SCHOOL OF MATHEMATICS AND STATISTICS
CENTRAL CHINA NORMAL UNIVERSITY
WUHAN 430079, CHINA

E-mail address: jzhang@ccnu.edu.cn

RECEIVED FEBRUARY 15, 2020
ACCEPTED MAY 3, 2020



	Introduction
	Preliminaries
	Gelfand-Tsetlin subalgebras
	Gelfand-Tsetlin modules for `39`42`"613A``45`47`"603Agl(m|n)
	Classification of Gelfand-Tsetlin modules 
	Gelfand-Tsetlin bases
	Quasi typical modules
	Irreducibility of quasi typical modules
	Quasi covariant modules
	References

