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Ribbon knots, cabling, and handle

decompositions

Jennifer Hom, Sungkyung Kang, and JungHwan Park

The fusion number of a ribbon knot is the minimal number of
1-handles needed to construct a ribbon disk. The strong homo-
topy fusion number of a ribbon knot is the minimal number of
2-handles in a handle decomposition of a ribbon disk complement.
We demonstrate that these invariants behave completely differently
under cabling by showing that the (p, 1)-cable of any ribbon knot
with fusion number one has strong homotopy fusion number one
and fusion number p. Our main tools are Juhász-Miller-Zemke’s
bound on fusion number coming from the torsion order of knot
Floer homology and Hanselman-Watson’s cabling formula for im-
mersed curves.

1. Introduction

A knot is slice if it bounds a smoothly embedded disk in B4. Moreover, if a
slice knot K bounds a smoothly embedded disk D in B4 for which there are
no local maxima of the height function restricted to the disk, then we say
that K is ribbon and D is a ribbon disk. It is an outstanding open problem
due to Fox [Fox62] whether the two notions coincide.

One can also define notions that lie in between the two. A knot is said to
be strongly homotopy ribbon if it bounds a smoothly embedded disk in B4

such that the disk complement has a handlebody decomposition consisting
of only 0, 1 and 2-handles (see e.g. [Coc83, LM15, MZ19b]). Also, a knot
is said to be homotopy ribbon if it bounds a smoothly embedded disk in
B4 such that the fundamental group of the knot complement surjects to
the fundamental group of the disk complement [CG83].1 Hence we have the

The first author was partially supported by NSF grant DMS-1552285. The second
author was supported by the Institute for Basic Science (IBS-R003-D1).

1Note that the original definition of [CG83] assumed that the 4-manifold was a
homotopy 4-ball, but for our purposes we will assume that the 4-manifold is B4.
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following chain of implications:

K is ribbon ⇒ K is strongly homotopy ribbon

⇒ K is homotopy ribbon ⇒ K is slice.

Whether the converse of any of these implications holds is an interesting
open problem.

In this article, we study the complexity of ribbon disks using concepts
analogous to those above. Thus, we introduce the following terminologies.
First, recall that for any ribbon knot K, the fusion number F(K) is defined
to be the minimal number of 1-handles needed to construct a ribbon disk in
B4 (see e.g. [Miy86]). We define the strong homotopy fusion number Fsh(K)
to be the minimal number of 2-handles in a handle decomposition of a ribbon
disk complement and the homotopy fusion number Fh(K) to be the minimal
number of relations for a presentation of the fundamental group of a ribbon
disk complement.

Given a ribbon disk D in B4, let B4 ∖D denote the complement of an
open tubular neighborhood of D in B4. Recall that if a ribbon disk D in
B4 has n 1-handles, then B4 ∖D has a handle decomposition with n 2-
handles. Further, if B4 ∖D has a handle decomposition with n 2-handles,
then π1(B

4 ∖D) has a presentation with n relations. Hence for each ribbon
knot K, we have the following inequalities

Fh(K) ≤ Fsh(K) ≤ F(K).

Seemingly, the fusion number and the strong homotopy fusion number
are intimately related. Nevertheless, in this article, we show that these invari-
ants behave completely differently under one of the most basic operations
on knots, cabling. Let Kp,q denote the (p, q)-cable of K, where p denotes the
longitudinal winding, and let Kp1,q1;p2,q2;...;pn,qn denote the iterated cable of
K. We assume throughout that p > 1 and pi > 1.

Theorem 1.1. If K is ribbon with F(K) = 1, then Fsh(Kp,1) = 1 and
F(Kp,1) = p. Furthermore, Fsh(Kp1,1;...;pn,1) = 1 and F(Kp1,1;...;pn,1) =
p1p2 . . . pn.

Note that there are many ribbon knots with fusion number one. In fact,
it is known that any ribbon knot with fewer than 11 crossings has fusion
number one [Kaw96, Appendix F]. Further, if J is a 2-bridge knot and J
is the reverse of the mirror image of J , then J#J has fusion number one.
Also, the Kinoshita-Terasaka knot has fusion number one.
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Theorem 1.1 gives, in particular, examples of ribbon knots with strong
homotopy fusion number one and arbitrarily large fusion number. We remark
that it is also possible to produce such examples by combining previously
known results. It was shown in [JMZ19, Section 1.7] that Qp,q := Tp,q#T p,q,
where T p,q is the reverse of the mirror image of Tp,q, has fusion number
min{p, q} − 1. Moreover, if follows from Meier and Zupan [MZ19a, Proposi-
tion 5.3] that Fsh(Qp,q) = 1.

The main tool we use to prove Theorem 1.1 is called the torsion order
(see Definition 3.1) coming from knot Floer homology [OS04b, Ras03]. We
denote the torsion order of K by OrdU (K). This invariant was defined by
[JMZ19] and has many topological applications. For instance, it gives lower
bounds on the bridge number and the band unlinking number of a knot.
Also, it gives a lower bound on the fusion number of a ribbon knot and
we use this property to establish Theorem 1.1. The computation of this
invariant is based on bordered Floer homology [LOT18], interpreted in terms
of immersed curves as in [HRW16, HRW18]. In fact, we provide a lower
bound on the torsion order of cable knots, which may be of independent
interest. Let CFK F[U,V ](K) denote the knot Floer complex over F[U, V ]. We
say that a knotK has a unit box if CFK F[U,V ](K) contains a direct summand
generated by four elements {a, b, c, d}, where the differential acts by

∂a = Ub+ V c, ∂b = V d, and ∂c = Ud.

Proposition 1.2. If K has a unit box, then

OrdU (Kp1,q1;p2,q2;...;pn,qn) ≥ p1p2 . . . pn.

It is well known that the Kinoshita-Terasaka knot K bounds a rib-
bon disk D where π1(B

4 ∖D) ∼= Z. In particular, we have Fh(K) = 0 and
Fsh(K) = 1. Hence we ask the following natural question.

Question 1.3. Are there knots for which the difference Fsh −Fh is arbi-
trarily large?

In Sections 2, we show that F(Kp,1) ≤ pF(K) for any ribbon knot K
(see Proposition 2.1). Theorem 1.1 shows that the inequality is sharp for any
ribbon knot with fusion number one, as well as for any iterated (pi, 1)-cable
of such a knot. One can ask if the inequality is sharp in general.

Question 1.4. If K is ribbon, then F(Kp,1) = pF(K)?
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Lastly, we make a remark on previously known results. There were sev-
eral lower bounds on the fusion number prior to the torsion order. Most of
them come from cyclic branched covers of knots [NN82, Kan10, AGL18].
For instance, given any knot K, the minimum number of generators for
H1(Σ(K);Z) is a lower bound on 2F(K), where Σ(K) is the 2-fold cyclic
branched cover of K [NN82, Proposition 2]. This, in particular, implies that
if K is a ribbon knot and Σ(K) is not an integral homology sphere, then
the connected sum of n copies of K has fusion number at least n. More-
over, it is straightforward to verify that these lower bounds coming from
cyclic branched covers are, in fact, also lower bounds on Fsh. Note that the
Kinoshita-Terasaka knot has trivial Alexander polynomial, and thus any
cyclic branched cover of the (p, 1)-cable of the Kinoshita-Terasaka knot is
an integral homology sphere. In this case, none of the previous bounds apply.

Organization

We work in the smooth category in this article. In Section 2, we establish
an upper bound on Fsh using Kirby calculus. In Section 3, we prove Propo-
sition 1.2 and Theorem 1.1.

2. The strong homotopy fusion number of cables

In this section, we prove the following proposition.

Proposition 2.1. If K is ribbon, then Fsh(Kp,1) ≤ F(K) and F(Kp,1) ≤
pF(K).

Before proving the proposition, we briefly explain how to obtain a Kirby
diagram of a ribbon disk complement from a description of a ribbon disk.
For more details, see, for example, [GS99, Section 6.2]. Suppose that K is a
ribbon knot with a ribbon diskD such thatD in B4 has n+ 1 0-handles, and
n 1-handles. Then there exists a movie representing D, which starts with
n+ 1 births, followed by n saddles. We can draw births as small unknotted
components and saddles as red arcs, which gives us the diagram on the top
of Figure 1. Here each red arc is framed. Now, we replace each unknotted
component by a dotted circle and turn each saddle into a 0-framed simple
closed curve, as drawn on the bottom of Figure 1. The resulting diagram is
a Kirby diagram representing the disk complement B4 ∖D.

From the Kirby diagram of B4 ∖D obtained from a movie of D, we can
also see how the ribbon knot K sits in ∂B4. Instead of replacing all n+ 1
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0

Figure 1: Top, a diagram representing births and saddles of a ribbon disk
D for the stevedore knot (here, we are using the blackboard framing for the
red arc). Bottom, the induced Kirby diagram representing B4 ∖D.

unknotted components with dotted circles, we do the replacement process
except for one unknotted component, and label the remaining unknotted
component as K. This resulting diagram is drawn on the top of Figure 2.
It is straightforward to check that the diagram we get is indeed the Kirby
diagram of B4, and the labeled unknotted component is isotopic to the given
ribbon knot K. Moreover, the obvious disk that K bounds in the 0-handle of
the handle decomposition of B4, which is described by the Kirby diagram,
is isotopic to the ribbon disk D. Note that the embedding of the disk D in
the 0-handle is trivial. By trivial, we mean that the disk can be isotoped to
the boundary of the 0-handle. Now, we are ready to prove Proposition 2.1.

Proof of Proposition 2.1. Let K be a ribbon knot with a ribbon disk D.
We may assume that D in B4 has F(K) + 1 0-handles and F(K) 1-handles.
Consider the Kirby diagram of B4 together with the labeled unknotted com-
ponent representing K (the red curve on the top of Figure 2), as explained
above. Replacing the unknotted component by its (p, 1)-cable, as shown on
the bottom of Figure 2, gives a diagram for Kp,1. Note that the curve re-
placed by its (p, 1)-cable is still unknotted in the diagram. Let Dp be the
ribbon disk obtained by attaching p− 1 half-twisted bands to p parallel
copies of D. Since D is embedded trivially in the 0-handle, so is Dp. Hence
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0

0

Kp,1

· · ·

K

Figure 2: The knots K and Kp,1 in the Kirby diagram representing B4.

we can replace Kp,1 by a dotted circle to get a new Kirby diagram for a han-
dle decomposition of B4 ∖Dp, whose number of 2-handles is again F(K).
Therefore we conclude that Fsh(Kp,1) ≤ F(K).

Figure 3: A description of a ribbon disk Dp obtained by adding p− 1 1-
handles (blue arcs) to the p-parallel copies of D.

Now, we show the second inequality. First, note that the ribbon disk Dp

in B4 has pF(K) + p 0-handles and pF(K) + p− 1 1-handles. Here, pF(K)
1-handles are obtained from taking pF(K) parallel copies of 1-handles of D
in B4 (see the red arcs of Figure 3) and p− 1 1-handles corresponding to
the cabling operation (see the blue arcs of Figure 3). As the (p, 1)-cable of
the unknot is again the unknot, we see that p 0-handles and p− 1 1-handles
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corresponding to the cabling operation simplify to a single 0-handle. This
completes the proof. □

3. The fusion number of cables

First, we quickly recall some definitions and notations from knot Floer ho-
mology; see [Man16, Hom17] for survey articles on this subject. Throughout,
we work over F = Z/2Z and use the convention that N = Z≥0.

We write CFK F[U,V ](K) for the knot Floer complex over the ring F[U, V ],
following the notation of [DHST19, Section 2]. (This invariant contains the
same information as CFK∞(K), as described in [Zem19b, Section 1.5].) The
invariant CFK F[U,V ](K) is a finitely generated F[U, V ]-module. Recall that
we say a knot K has a unit box if CFK F[U,V ](K) contains a direct summand
of the form {a, b, c, d} with

∂a = Ub+ V c, ∂b = V d, and ∂c = Ud.

The minus version of knot Floer homology, denoted by HFK−(K), is de-
fined as the homology of the chain complex obtained from CFK F[U,V ](K)
by setting V = 0. Note that HFK−(K) is a finitely generated F[U ]-module.
Given an F[U ]-module M , we define

OrdU (M) := min {k ∈ N | Uk · Tors(M) = 0} ∈ N ∪ {∞}.

The following knot invariant was defined in [JMZ19].

Definition 3.1 ([JMZ19, Definition 1.1]). If K is a knot in S3, we
define its torsion order as

OrdU (K) := OrdU (HFK
−(K)).

Moreover, recall that the torsion order of a ribbon knot gives a lower
bound on the fusion number [JMZ19, Corollary 1.8]. The goal of this section
is to understand the behavior of torsion order under cabling. To be more
precise, we will prove Proposition 1.2, which we restate here.

Proposition 1.2. If K has a unit box, then OrdU (Kp1,q1;p2,q2;...;pn,qn) ≥
p1p2 . . . pn.

We have the following immediate corollary.

Corollary 3.2. If K is ribbon and has a unit box, then F(Kp1,1;...;pn,1) ≥
p1p2 . . . pn.
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Proof. By [JMZ19, Corollary 1.8], we have F(J) ≥ OrdU (J) for any ribbon
knot J . □

The proof of Proposition 1.2 relies on bordered Floer homology [LOT18],
interpreted as immersed curves as in [HRW16]. If K is a knot in S3, denote
the complement of an open tubular neighborhood of K in S3 by MK . Given
a 3-manifold M with torus boundary, the immersed multicurve invariant,
denoted by ĤF (M), was defined in [HRW16, Theorem 1]. Further, it was

shown that one can recover HFK−(K) from ĤF (MK) [HRW18, Theorem

51]. Hence if ĤF (MK) is given, then we can compute invariants that come
from HFK−(K).

x

y

x

y

Figure 4: Left, the immersed curve intersecting p = 7 vertical gray lines.
Right, the segment of the immersed curve that contributes an F[U ]/Up sum-
mand to HFK−.

Lemma 3.3. Let K be a knot in S3. If ĤF (MK) contains a curve as in
Figure 4, then OrdU (K) ≥ p.

Proof. In order to translate from the immersed multicurve ĤF (MK) to
HFK−(K), we apply Theorem 51 of [HRW18]. (See [HRW18, Figure 36]
for an example illustrating Theorem 51.) A segment of an immersed curve
lying entirely to the right of p pegs (see the right of Figure 4) tells us that
CFK F[U,V ](K)/(V = 0) has a summand generated by x and y with

∂−x = Upy.
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Here, p is just the number of times that the segment intersects the vertical
gray lines. This implies that y generates a F[U ]/Up summand in HFK−(K)
and we conclude OrdU (K) ≥ p. □

We combine [HW19, Theorem 1], which provides an explicit algorithm

for computing ĤF (MKp,q
) from ĤF (MK), with Lemma 3.3 to prove Propo-

sition 1.2. Before proceeding to the proof of the proposition, we give some
examples of knots with unit boxes.

Example 3.4. A direct computation from a genus one doubly pointed
Heegaard diagram shows that the figure eight knot has a unit box. See
Figure 5. More generally, it follows from [Pet13, Lemma 7] that any non-
trivial thin knot K with τ(K) = 0 has a unit box.

A

m

F

F3

F

(a)

i

j

(b) (c)

Figure 5: Left, ĤFK (41) in the Alexander-Maslov plane. Center, CFK∞(41)
in the (i, j)-plane. Right, the immersed curves associated to the complement
of 41.

Example 3.5. The Kinoshita-Terasaka knot 11n42 and the Conway knot
11n34 both have a unit box. By [BG12], we have that ĤFK (11n42) and

ĤFK (11n34) each have rank 33 with higher differentials as in Figure 6. Then
a computation similar to the one in the proof of [Pet13, Lemma 7] yields that
CFK F[U,V ](11n42) and CFK F[U,V ](11n34) each consist of a direct sum of a
single generator and eight unit boxes. See Example 49 of [HRW18] for the
immersed curves associated to the Kinoshita-Terasaka and Conway knots.

Proof of Proposition 1.2. We first prove OrdU (Kp,q) ≥ p. By [HRW18,
Proposition 47] (see in particular the third diagram in Figure 10 of [HRW18]),
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A

m

F

F F4

F4 F6

F7 F4

F4 F

F

(a)

A

m

F

F F3

F3 F3

F3 F2

F3 F3

F3 F3

F3 F

F

(b)

Figure 6: Left, ĤFK (11n42) in the Alexander-Maslov plane. Right,

ĤFK (11n34). The arrows represent the higher differentials.

we have that if K has a unit box, then the immersed multicurve for MK

contains a figure eight curve, as in the leftmost diagram in Figure 7.
We now apply the three step process following Theorem 1 of [HW19].

(Since our curve does not have loose ends, we may skip step (2).) Namely, we
first draw p copies of the figure eight curve next to each other, each scaled
vertically by a factor of p, staggered in height such that each copy of the
curve is a height of q units lower than the previous copy. We then translate
the pegs horizontally so that they lie in the same vertical line, carrying the
curves along with them. See Figure 7.

Note that the rightmost copy of the p-scaled copy of the figure eight
curve is the same as the immersed curve in Figure 4. Hence by Lemma 3.3,
we conclude that OrdU (Kp,q) ≥ p, as desired.

For iterated cables, we simply repeat this argument. That is, we consider
the rightmost p1-scaled copy of the figure eight curve, and take p2 copies of
it, each scaled vertically by a copy of p2 and staggered in height such that
each copy is q2 units lower than the previous copy. An identical argument
to the one above shows that the rightmost copy of the p2-scaled curve will
have a segment that lies entirely to the right of p1p2 pegs. Iterating this
argument shows that OrdU (Kp1,q1;...;pn,qn) ≥ p1p2 . . . pn, as desired. □
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Figure 7: The (3, 1)-cable of a unit box. Far left, the immersed curve asso-
ciated to a unit box. Second from left, p = 3 copies of the immersed curve,
each scaled by a factor of p, staggered in height such that each copy of the
curve is q = 1 units lower than the previous copy. Second from right, the
result after the pegs are translated horizontally so that they lie in the same
vertical line. Right, the segment of the immersed curve that contributes an
F[U ]/Up summand to HFK−.

Before we prove the main theorem, we show that the knot Floer complex
over F[U, V ] of any slice knot K with OrdU (K) = 1 splits as a direct sum
of F[U, V ] and unit boxes. Recall that since the torsion order gives lower
bound for the fusion number, if a ribbon knot has fusion number one, then
it has torsion order one (recall that knot Floer homology detects the unknot
[OS04a]). Hence the following proposition in particular shows that the knot
Floer complex over F[U, V ] of any ribbon knot with fusion number one splits
as a direct sum of F[U, V ] and unit boxes.

Proposition 3.6. If K is a slice knot with OrdU (K) = 1, then K has a
unit box. Moreover, CFK F[U,V ](K) splits as a direct sum of F[U, V ] and unit
boxes.

Proof. Since K is slice, by [Hom17, Theorem 1] (see also [Zem19a, Theo-
rem 1.5], forgetting the involutive part), we have that CFK F[U,V ](K) splits
as F[U, V ]⊕A for some free, finitely generated differential graded F[U, V ]-
module A.

At times, it will be convenient to consider A/(U = 0), which is naturally
an F[V ]-module. We denote the induced differential on A/(U = 0) by ∂V .
Similarly, denote the induced differential on A/(V = 0) by ∂U . The module
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H∗(A/(U = 0)) is annihilated by UOrdU (K) and the module H∗(A/(V = 0))
is annihilated by V OrdU (K). (Recall that by symmetry between U and V ,
OrdU can be defined in terms of H∗(CFK F[U,V ](K)/(U = 0)) or equivalently
H∗(CFK F[U,V ](K)/(V = 0)).)

Suppose that A is generated over F[U, V ] by {xi}
n
i=1. We may assume

that A is reduced, i.e., ∂xi is in the image of U or V (or possibly both) for
all i. Note that the notion of reducedness is preserved under basis changes
of the form xi 7→ xi +

∑
j∈J U

ℓjV mjxij . We will use the grading conventions
of [Zem19b]; see also [DHST19, Section 2]. Recall that multiplication by U
lowers the Alexander grading by 1, multiplication by V raises the Alexander
grading by 1, and the differential preserves the Alexander grading.

Without loss of generality, let x1 be a generator in Alexander grading
g(K). Since knot Floer homology detects genus [OS04a] and A is reduced,
there are no xi in Alexander grading greater than g(K). Hence no V -power
of x1 (that is, no V nx1 for any natural number n) is in the image of ∂V . Since
H∗(A/(U = 0)) is V -torsion, it follows that ∂V x1 ̸= 0. Since OrdU (K) = 1,
we have that ∂V x1 = V xi0 + V

∑
j∈J V

njxij for some index set J , where
nj ≥ 0 for each j. We may reorder our basis elements such that i0 = 2 and
we may perform a change of basis to replace x2 with x2 +

∑
j∈J V

njxij , so
that

∂V x1 = V x2.

We now consider how ∂U interacts with x1. Since the Alexander grading
of x1 is g(K), it follows that ∂Ux1 = 0. Because H∗(A/(V = 0)) is U -torsion,
we have that Unx1 ∈ Im ∂U for some natural number n. Moreover, since
OrdU (K) = 1, we have that n = 1. Hence ∂U of some linear combination of
the form xi +

∑
j∈J U

ℓjxij is equal to Ux1, and so (after a possible basis
change) we may assume that there is a basis element x3 such that

∂Ux3 = Ux1.

We now consider ∂2x3. We have that ∂Ux3 = Ux1 and ∂V x1 = V x2.
Recall that ∂U is the induced differential on A/(V = 0); hence

∂x3 = Ux1 + V
∑

j∈J1

U ℓjV mjxij

for some index set J1, where ℓj ,mj ≥ 0 for each j. Similarly,

∂x1 = V x2 + U
∑

j∈J2

UpjV qjxij
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for some index set J2, where pj , qj ≥ 0 for each j. (In fact, since A(x1) =
g(K), we have that ℓj ≤ mj + 2 and pj + 1 ≤ qj .) Thus,

∂2x3 = UV x2 + U2
∑

j∈J2

UpjV qjxij + V
∑

j∈J1

U ℓjV mj∂xij .

Since ∂2x3 = 0, we must have qj ≥ 1 for all j ∈ J2, and also ℓj′ ≤ 1 and
mj′ = 0 for some j′ ∈ J1. Moreover, since our basis for A is reduced, we in
fact have that ℓj′ = mj′ = 0 for some j′ ∈ J1. After possibly reordering our
basis elements, we may assume that ij′ = 4. We may then perform a change
of basis and replace x4 with

∑
j∈J1

U ℓjV mjxij , so that ∂x3 = Ux1 + V x4.

We may also replace x2 with x2 + U
∑

j∈J2
UpjV qj−1xij . Then setting

a = x3, b = x1, c = x4 d = x2,

we see that

∂a = Ub+ V c, ∂b = V d, ∂c = Ud.

It is straightforward to check that {a, b, c, d} generate a direct summand of
A. Hence K has a unit box.

i

j

x2

x1

x4

x3

Figure 8: The unit box from the proof of Proposition 3.6, drawn as a direct
summand of CFK∞(K) in the (i, j)-plane. Here, g(K) = 2.

We now inductively apply the above change of basis to show that A splits
as a direct sum of unit boxes. We have that A is generated over F[U, V ] by
{xi}

n
i=1 and we have shown that {x1, x2, x3, x4} generate a direct summand

of A. Without loss of generality, let x5 be a generator of maximal Alexander
grading in {xi}

n
i=5. We can now apply the above argument verbatim, with

x5 playing the role of x1, to split off a unit box generated by x5, x6, x7, x8.
Repeated applications of this argument shows that A splits a direct sum of
unit boxes, as desired. □
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Finally, we prove Theorem 1.1.

Proof of Theorem 1.1. Suppose K is a ribbon knot with fusion number one.
As mentioned above, since the torsion order gives lower bounds for the
fusion number and the knot Floer homology detects the unknot, we have
OrdU (K) = 1. By Proposition 3.6, we see that K has a unit box. Moreover,
Proposition 2.1 and Corollary 3.2 imply that F(Kp,1) = p.

For the strong homotopy fusion number, Proposition 2.1 implies that
Fsh(Kp,1) ≤ 1. Note that a knot has strong homotopy fusion number zero if
and only if it is the unknot [Gab87]. Hence Fsh(Kp,1) = 1, as desired.

The statement for iterated cables follows analogously. □
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