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Sharp lower bound for the first eigenvalue
of the weighted p-Laplacian II

XIAOLONG L1 AND Kul WANG

Combined with our previous work [14], we prove sharp lower bound
estimates for the first nonzero eigenvalue of the weighted p-
Laplacian with 1 < p < oo on a compact Bakry—Emery manifold
(M™, g, f), without boundary or with a convex boundary and
Neumann boundary condition, satisfying Ric +V?2f > k g for some
k€ R.

1. Introduction

The determination of lower bounds for the first nonzero eigenvalue of an
elliptic operator is an important issue in both mathematics and physics,
since this constant determines the convergence rate of numerical schemes in
numerical analysis, describes the energy of a particle in the ground state in
quantum mechanics, and determines the decay rate of heat flows in ther-
modynamics. Given its physical and mathematical significance, sharp lower
bounds of the first nonzero eigenvalue of the Laplace-Beltrami operator on
a compact Riemannian manifold or the f-Laplacian on a compact Bakry-
Emery manifold (without boundary or with a convex boundary and Neu-
mann boundary condition) in terms of geometric data have been established
via the efforts of many mathematicians including [5} [7, 8, (10, 24] by the year
2000. Simple alternative proofs via the estimates of the modulus of continu-
ity were found in recent years in [3| [4].

In the last two decades, much attention has been focused on eigen-
value problems of nonlinear operators, especially the p-Laplacian A, and
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the weighted p-Laplacian A, ¢, defined for 1 < p < oo by
Apu = div(|VulP2Vu)

and
A, pu = el div(e ™ |VuP2Vu),

respectively. On a compact Riemannian manifold satisfying Ric > (n — 1)kg
for k € R, sharp lower bounds for the first nonzero eigenvalue of A, have
been obtained in [16] for x > 0, [2I] for k =0, and [17] for x < 0, as well
as a sharpened result for x > 0. We refer the reader to [14, Theorem 1.3]
for a unified statement in terms of eigenvalue comparisons with associated
one-dimensional models.

The purpose of this paper is to prove sharp lower bounds for the first
nonzero eigenvalue of A, ; on compact Bakry—Emery manifolds in terms
of dimension, diameter, and lower bound of the Bakry-Emery Ricci ten-
sor Ric+V2f, thus completing our previous work [14] and generalizing the
above-mentioned results for compact Riemannian manifolds with Ricci cur-
vature lower bounds.

Recall that a triple (M™, g, f) consisting of an n-dimensional Rieman-
nian manifold (M™, g) and a function f € C°(M) is called a Bakry-Emery
manifold if it satisfies

Ric+V2f > kg

for some x € R. Here Ric denotes the Ricci curvature of (M, g) and V2f
denotes the Hessian of the function f. By taking f to be a constant function,
we see that Bakry—Emery manifolds include all Riemannian manifolds with
a lower bound on the Ricci curvature. The tensor Ric +V?2f is called the
Bakry—Emery Ricci tensor and it shares many important properties as the
Ricci curvature, see for instance [I5] and [22].

The first nonzero eigenvalue of A, ¢ on a closed Bakry—Emery manifold
(M™, g, f), denoted by A, ¢, is defined by

. VulPe=fd _ _ _
N g = inf { YRy € WP (M, e dp) \ {0}, [y [ulP~2ueTdp =0},

It was shown in [20] that this infimum is achieved by an eigenfunction u €
C1(M) satisfying the Euler-Lagrange equation

Appu= _/\p,f‘u|p72u~

In case OM # (), the Neumann boundary condition % = 0 on OM is always
imposed, where v is the outward unit normal vector along M. In our recent
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work [14], we obtained sharp lower bound estimates for X, ; in terms of p,
k, and the diameter of M, provided that either 1 < p <2 or k < 0. In this
paper, we take care of the remaining case p > 2 and x > 0.

Combined with our results in [14], we prove that

Theorem 1.1. Let (M", g, f) be a compact Bakry-Emery manifold (possi-
bly with a C* convex boundary) with diameter D and Ric+V2f > kg for
k € R. Forl < p < oo, let A, 5 be the first nonzero eigenvalue of the weighted
p-Laplacian Ay ¢ (with Neumann boundary condition if OM # (). Then we
have

(1'1) Apaf > HP(KJ? D)v

where py(k,D) 1is the first nonzero Neumann eigenvalue of the one-
dimensional eigenvalue problem

(1.2) (p— DI P2" =kt P20 = =Ml
on [-D/2,D/2].

When k = 0, the ODE (|1.2]) can be solved explicitly (see [6] or [21]) and
we have in particular that

2

AL o
psin(m/p)’

pp(0,D) = (p—1) <D> , Where 7, =

Therefore, we see that Theorem reduces to the sharp lower bound of
first nonzero eigenvalue of the Laplacian by Zhong and Yang [24] if p =2
and f =0, and to the sharp lower bound of first nonzero eigenvalue of the
p-Laplacian by Valtorta [21] if f = 0. Moreover, when x = 0, the equality
in is achieved when M is a one-dimensional circle (when M has no
boundary) or the line segment [—D/2, D/2] (when M has boundary).

For general k € R, the p = 2 case of Theorem was due to Bakry and
Qian [5]. Andrews and Ni [4] gave a simple alternative proof using the mod-
ulus of continuity approach and they also demonstrated the sharpness in all
dimensions by constructing a sequence of Riemannian manifolds collapsing
to the interval [—D/2, D/2]. We refer the reader to [3| 5 14, 17] and the
references therein for more historical developments and other related results.

In [14], we used the method of modulus of continuity estimates to give
a simple proof of Theorem for 1 < p <2 and k € R. Recent years have
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witnessed the great success of this approach and sharp eigenvalues esti-
mates were obtained in [2H4, O, T1HI4) [I8] 19 23]. However, it seems dif-
ficult to handle the p > 2 case with this method, as pointed out in the
wonderful survey by Andrews [l Section 8]. The proof presented below uses
the classical gradient estimates method initiated by Li [8] and Li and Yau
[10], which indeed works for all 1 < p < co and x € R. This approach has
been used successfully by various authors to estimate eigenvalues, including
[5L 7, 18, [10] 14, 17, 21 24].

In order to handle the k > 0 case, we have to overcome two difficulties
in this paper. The sharp gradient comparison theorem (see Theorem ,
which is the most important ingredient, was only proved for x < 0 in [14] us-
ing a two-point maximum principle argument. In the present paper, we use a
Bochner type formula for the weighted p-Laplacian (see Proposition [2.1)) to
prove the sharp gradient comparison theorem. Despite its technicality, this
approach works regardless of the sign of x, and the value of p € (1,00). The
second key estimate that we shall establish in this paper is Proposition
which says that A, ¢ is bounded from below by the first nonzero eigenvalue
of the eigenvalue problem on the real line. This bound is trivial when
k < 0 (the first eigenvalue of the real line is zero in this case), but it is non-
trivial when x > 0 and turns out to be a consequence of the sharp gradient
comparison theorem and the compactness of the manifold. Once we have
these two key ingredients, the rest of proof consists of careful analysis of the
one-dimensional models and standard comparison arguments.

The paper is organized as follows. We derive the Bochner formula for
A, ¢ in Section 2 and use it to prove the sharp gradient comparison theorem
in Section 3. In Section 4, we study the qualitative behavior of solutions
to the ODE (1.2) and construct one-dimensional models for the purpose
of applying the gradient comparison theorem effectively. The proof of The-
orem [I.1] is then given in Section 5. Finally, examples are constructed in
Section 6 to demonstrate the sharpness of Theorem

2. Bochner formula for the weighted p-Laplacian

The goal of this section is to establish the Bochner formula for A, ¢ in
Proposition which will play a key role in proving the sharp gradient
comparison theorem in Section 3. This is a slight extension of |21, Section
3], where the author proves the Bochner formula for the p-Laplacian.
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Let H, denote the Hessian of u and set

H,(Vu,Vu)
Ay = XYY
[Vul?

whenever |Vu| # 0. The linearization of A, ¢ near a function u is given by

d
Pug() = 2| Bpgluttn)
t=0
= [VulP2Am + (p — 2)|VulP~*H,(Vu, Vu)
(Vu, Vi)
— DA A
+(p ) p,fU ]Vu|2
Vu [/ Vu
2p — 2 r=4g, — —
20 - 2 vup i, (Tu, v - oo () )

wherever |Vu| # 0. It is easy to see that this operator is strictly elliptic
where the gradient of u does not vanish. Let PL{If (n) be defined by

PIL(n) == [VulP2Apn + (p — 2)[VulP~*H, (Vu, V).

Proposition 2.1 (Bochner formula for A, ). Let x € M and U C M
be an open set containing x. For any function u € C3(U) with Vu # 0 on
U, we have at x,

1 _ _

P IVal) = [Vl VA pu, V) = (p = 2)Vul ™ Audy pu

+ [Vul*P2) (|Hyf? + p(p — 2) A7 + Ric (Vu, Vu)) ,
where Ricy = Ric+V?2f.

Proof. Let PH(n) := |VulP72An + (p — 2)|Vu[P~*H,(Vu, Vu) be the sec-
ond order part of P, r(n). The Bochner formula for the p-Laplacian, shown
in [21, Proposition 3.1], states that

1
];PJI(\VUW) = ]Vu\p*Q(VApu,Vu) —(p— 2)|Vu\p*2AuApu

+ [ Vu?®=2 (|H,* + p(p — 2) A% + Ric(Vu, Vu)) .
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We then compute, using the identities Apu = A, ju + |VulP~3(Vu, V f) and
Ric = Ricy —V2f, that

1
JSPJIOWV’) = [VulP"2(VA, ju, Vu) — (p — 2)|VulP 2 A,A, fu

+ [Vu?P=2) (| H, > + p(p — 2) A% + Ricy (Vu, Vu))
+ |VulP~2 (V(|Vul*(Vu, V), Vu)
— (p—2)|Vu>P=2D A, (Vu, V)
— |Vu]P®=2 (V2 £ (Vu, Vu))

= |Vu\p_2<VAp7fu, Vu) — (p— 2)]Vu|p_2AuAp,fu
+ [Vu?P=2) (|H, > + p(p — 2) A% + Rics(Vu, Vau))

1
+ ];IVUIP_2<V|VUI”,VJ‘>-
The desired formula then follows from

1 1 1
EPJ,if(qulp) = 5P51<|Vu|p> —~ ]BIWI”‘QWJ’, V|VulP).

3. The gradient comparison theorem
In this section, we use the Bochner formula for A, ¢ proved in Proposition[2.1]

to derive sharp gradient comparison theorems for eigenfunctions of A, . We
emphasize that the proof works for all 1 < p < oo and x € R.

Theorem 3.1. Let (M", g, f) be a compact Bakry-Emery manifold (pos-
sibly with C? convex boundary) satisfying Ric+V2f > kg for some k € R.
Let u be a solution of

(3.1) Ay pu = —AulP~2u,
normalized so that —1 = min{u} < 0 < max{u} <1 (in case OM # (), we
assume that u satisfies the Neumann boundary condition). Suppose w : [a,b] —

R s a solution of the one-dimensional equation:

(3.2) (p— D[P0 — kt|w' P20 = —Aw|P?w
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which is strictly increasing on [a,b], and such that the range of u is contained
in [w(a),w(b)]. Then we have for all x € M,

|Vu(z)| < w' (w_l(u(x))) )

Proof. Case 1: OM = ().

We may assume that [min{u}, max{u}] C (w(a),w(d)), because otherwise
we can replace u by cu and then let o — 17. Let w := w,(t) be the solution
of the initial value problem

(3.3) (p— D' [P2w" — (k — &) t|w'|P~ 2w’ 4+ A|w|P~2w = 0,
' w(a) = —-1,w'(a) =0,

which is strictly increasing on [a, b;] with lim._,¢ b- = b. For € > 0 sufficiently
small, we still have that [min{u}, max{u}] C (w(a),w(be)).
Let ¢p > 1 be the number defined by

co = int{e > 1: Zo(x) = V(@) = ()] ) 1 uay < 0 on M},

Clearly ¢y is finite since Z.(z) approaches negative infinity uniformly as ¢
approaches infinity. By continuity, there exists g € M such that

0= ZCO (1‘0) = gg}@[{ ZCO('I)'

For simplicity of notations, we use t = (cow) !(u(r)) as an intermediate
variable and write p(t) = (cow)(t). Thus the function Z., (z) = |VulP — (¢')P
attains zero maximum at zg. Note that |Vu(zg)| # 0 since ¢ has positive
derivative.

Hereafter, we assume that u € C3(U) for some open neighborhood U
of xg. This is certainly the case if u(zg) # 0 or if p > 2, as pointed out in
Remark In case 1 < p < 2 and u(wg) = 0, then u has only C%® regularity
near xg. However, this regularity issue is not an obstacle to the argument,
as we will explain in Remark [3.3] Here and below, all the derivatives of ¢
are evaluated at to = (cow) ™ (u(xp)).

The first derivative test implies that VZ., (z¢) = 0, which produces the
following identity at xg,

p|VulP2H,Vu = %EpgoVu,
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where L, := (p — 1)(¢')P~2¢" is the one-dimensional p-Laplacian. In par-
ticular, we have

(3-4) (p = 1)|VulP Ay = Ly

Next we calculate and estimate the second derivatives. Using Proposi-
tion we obtain that at xg,

1
—PL(IVul?) = [VulP~2(VA, ju, Vu) — (p = 2)|VulP 24,0, ju
+ [Vul*P2) (|Hy[* + p(p — 2) A% + Ricy (Vu, Vu))
> 7A|Vu]p_2<v (|u|p_2u) ,Vu) — (p — 2))\|u|p_2u\Vu|p_2Au
+ |VuP=D ((p — 1)%A2 + K|Vul?)

-2
= ~(p = D Tup — A Puly

(3.5) + (L) + K| Vu?P72

where we have used |H,|*> > A2 and Rics(Vu, Vu) > k|Vu|? in the inequal-
ity, and (3.4)) in getting the last equality.
On the other hand, direct calculation shows

1 1
—V (Y = —L,¢oVu,
1 1 1 d

1
A ’pzic A — |Vul?

1 , 1 d 1
EH(('O/)P (VU, VU) = FﬁpgﬁAu|VU| + j&(ﬁp@)a|VU| .
Putting the above identities together, we obtain that

1 _ 1 _
Puf(( )P )ZEIVUV’ QAf(@’)erE(p—?)\VUV) THpy (Vu, V)

p
_ Lyp p—2 pd 1
- L2 v <Afu+Au>+|w| (L)
—/\\u]p 2y 1
3.6 — 7£ +vupd .
(3.6) . [Vul (psD)SO,

where we have used |Vu|P™? (Aju+ A,) = A, pu= —A|u[P"u in the last
equality:.
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The second derivative test implies Pi]f(Zg) <0 at xp, thus we have by
(3-5) and (3.6) that
0>1P]I 7 _EPII v P _EPI] "\p
> —P,(Ze) = — P, ([Vul’) g ((@)7)
p p p
-2
> —(p— DMP 2| Vulf — pil)\\u|p*2u£p<p
p—

P2 d 1
Ayl U,

(3.7) + (Lpp)? + k| VP72 4 Z—— 1 — \Vu|p%(£pg0)a

Substituting |Vu(zo)[P = (¢'(to))P and u(xg) = p(to) into (3.7) gives that at
to,

(p—2)

0> —(p—DA" ()P + o AIsO\”’Qsoﬁpso

(L) 4 ()2 4 ‘;f'p Lo — (Y L)
> Ly (Lpp — (5 — )t )P+ AP 2p) + ()P
— (@ () + - a2
(3.5) ~ (5= Dty = (s 2P
Since ¢ satisfies the ODE
Lyp — (k= )t(" )P~ + AP0 =0,

it follows that L,y satisfies

L) (5 — NP~ (5=t Ly + (p— AP 76! =0

We then easily get from (3.8]) that
0> e()* 7% >0,

which is clearly a contradiction. The desired gradient estimate follows im-
mediately since the solutions w,. converges in C'' to the solution w as & — 0.
Case 2: OM # () and u satisfies the Neumann boundary condition.
The proof for Case 1 remains valid as long as xg is in the interior of M. If zg €
OM , we follow the argument in [17, Lemma 18] to show that VZ,., (z9) = 0.
Once this is established, it then follows that P?fff(ZCU (z0)) <0 and the rest



1468 X. Li and K. Wang

of the proof proceeds as in Case 1. Thus it suffices to show the following
claim.
Claim: The equation VZ, (xg) = 0 remains valid even if g € M.

Proof of Claim. Let v be the outward unit normal vector field of 9M. Since
Z¢,(x) attains its maximum at ¢ € M, we know that all tangential deriva-
tives of Z,,(x) vanish at xy and

0 < (VZe,y,v)(x0) = p|VulP > Hy(Vu,v) — p(¢' )P 20" (Vu, v)
= p|VulP"? H,(Vu, v)
= —p|VuP2I1(Vu, Vu) < 0.

Here the last step is because of the convexity of M. Therefore we have

VZ. (x9) = 0 and the claim is proved. O
The proof of Theorem [3.1]is complete now. O

Remark 3.2. The eigenfunction u is in general not smooth. We have
u € CH¥(M)NWYP(M), and elliptic theory ensures that u is smooth where
Vu#0 and u # 0. If Vu # 0 and u(z) =0, then u € C3>*(U) if p > 2 and
u € C?*(U) if 1 <p <2, where U is a small neighborhood of x. We refer
the reader to [20] for these results.

Remark 3.3. If1 < p < 2 and u(xg) = 0, we only know that u is C** near
xg and Z is CY near xo. Thus PJ’IJC(Z) may not be defined since there are
two diverging terms in its expression. As we can see in equation , these
terms are L4
Eﬁ(ﬁp@'

Since Vu(xo) # 0, there exists an open set U containing xo such that U\
{u =0} is open and dense in U. On this set, we see that these two terms
ezactly cancel each other, and all the other term in P,L{’If(ZCO) are well-defined
and continuous on U. Thus the formula PiIfZCO < 0 is valid even in this low
reqularity setting.

—(p — DA[u|P2|VulP and — |VulP

4. One-dimensional models for kK > 0

In this section, we study the qualitative behavior of the one-dimensional
equation

(4.1) (p — D' [P~%w" — Kt [P~ 2w + Nw|P~?w = 0.
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for k > 0. The case k < 0 was treated in [14].

We recall some basic definitions and properties of p-trigonometric func-
tions and refer the reader to |6, Chapter 1] for more details. For 1 < p < oo,
let m, be the positive number defined by

_ _/1 ds  2r&
P ) (@ —=sp)l/p  psin(n/p)’

The p-sine function sin, : R — [—1, 1] is defined implicitly on [—m,/2, 37, /2]
by

t= ()Sinp(t)(l_glﬁ 1ft€ [_%’%]7
siny (1) = siny(m, — ) if ¢ € [, %3],

and is periodic on R with period 2m,. It’s easy to see that for p # 2 this
function is smooth around noncritical points, but only CY*(R) with a =
min{p — 1, (p — 1)~'}. By defining

i siny, (¢
cosp(t) = pn siny(t) and tan,(t) = COSP (37
P

we then have the following generalized trigonometric identities:

| sing (D) [P + | cosp (1) = 1,

d

= tany(t) = ———— = 1+ | tan,(¢)|?,

dt anp() |COSp(t)|p +| anp( )|
t t) = !

PRI any(t) = s

1/
Let a = (%) p. We introduce the p-polar coordinates r and 6 defined by
(4.2) aw = rsin,(6), w' = rcosy(h),
or equivalently,

(! T aw
(4.3) r= ((w')? + aPwP)7 , 6 = arctan, ( ” ) .

/

If w is a solution of (4.1]) with w(a) = —1 and w'(a) = 0, then direct calcu-
lation shows that 6 and r satisfy
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(4.4) 0 =a— S5 cosh ™ (0) sin, (0),
' 0(a) = =2, (modmy,);
(4.5) % logr = p’% cosh(#),
r(a) = a.

Since both sin,(t) and cosﬁfl(t) are Lipschitz functions with Lipschitz con-
stant 1, we can apply Cauchy’s theorem to obtain existence, uniqueness, and

continuous dependence on the parameters for (4.1)), (4.4]) and (4.5). Indeed,
we have the following proposition.

Proposition 4.1. For any a € R, there exists a unique solution w to
with w(a) = —1 and w'(a) =0, defined on R with w, (w' )P~ 2w € C1(R).
Moreover, the solution depends continuously on the parameters in the sense
of local uniform convergence of w and w in R.

Let Ag be the first nonzero eigenvalue of the eigenvalue problem (4.1]) on
the real line, i.e.,

(4.6)
Ao = inf {W cpe WHP(R, e~ 5% ds) \ {0}, Iz lp|P~2pe™ 5% ds = O}.

fR\ga\Pe 2°7ds

Let’s first discuss the special case p = 2. In this case, equation (when
normalizes so that x = 1) is the so-called Hermite’s differential equation
and solutions with polynomial growth are given by Hermitian polynomials.
In particular, we have A\g = k and the corresponding eigenfunction is kt.
On the other hand, it is known that the first nonzero eigenvalue of the f-
Laplacian is bounded from below by  if Ric+V?2f > kg, see for example
[14, Theorem 1.6]. Thus when p =2, we have A, y > A¢ (strict inequality
when M is compact) and this inequality plays an important role in the
construction of one-dimensional models in [5].

Our first step here is to get the non-sharp bound A, y > Ag forall 1 < p <
oo and k > 0. It turns out that this is a consequence of the sharp gradient
estimates in Theorem and the compactness of M.

Proposition 4.2. Let (M™, g, f) be a compact Bakry-Emery manifold (pos-
sibly with C? convex boundary) satisfying Ric +V2f > kg for some k > 0.
Let A\, ¢ be the first nonzero eigenvalue of Ay ¢ (with Neumann boundary
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condition if OM # 0). Then
/\p,f > Ao,

where g is defined in .
We first prove an elementary lemma.
Lemma 4.1. For any A < X\, the ODE
(4.7) (p — D' |P72w" — Kt P72 4+ AMwP~%w = 0
admits an odd solution w: R — R satisfying w'(t) > 0 for all t € R.

Proof of Lemmal[{.1 By Proposition there exists a solution w of (4.7
satisfying w(0) = 0 and w’(0) = 1. The oddness of w follows from uniqueness

of solutions. The condition w’(t) > 0 for all ¢ € R is a consequence of A < \g.
Otherwise, we get a solution of on some interval [—a, a] with w'(—a) =
w'(a) =0 and w'(t) >0 on (—a,a), implying that X\ is the first nonzero
eigenvalue of on [—a, a], which would contradict A < A. O

Proof of Proposition[{.9 We argue by contradiction. Suppose A < )¢, then
by Lemma there exists an odd solution v : R — R of the ODE (4.7))
satisfying v/(t) > 0 for all ¢t € R. Since v(t) is strictly increasing, we have
that either v(¢) approaches infinity as ¢t — oo or limy_o v(t) = A € (0, 00).

Let u be an eigenfunction associated to the eigenvalue A, y normalized so
that —1 = min{u} < 0 < max{u} < 1. Consider two points x¢ and yy such
that u(zg) = minge s u(x), and u(yp) = maxgens u(z). Let L = d(zo, yo) and
v :[0,L] = M be a unit speed geodesic joining xg and yp. Define h(t) =
u(y(t)) and choose I C [0, L] such that &’ > 0 on I and h~! is well-defined
in a subset of full measure of [—1, max{u}].

For any number ¢ such that the range of cv contains the interval [—1, 1],
we can apply Theorem with w =cv on the interval [w™!(—1),
w~!(max{u})] to conclude that

L max{u} dy max{u} dy
px [Ttz [a= [ [ s
0 I -1 W(h='(y)) -1 w'(w=(y))

_ /w SO e max () — w0 (1) > (1) = o <1> .

(- ¢

If limy 00 v(t) = 00, we see that the right hand side goes to infinity by letting
c— 0. If limy o v(t) = A € (0,00), the right hand side goes to infinity by
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letting ¢ decrease to A~!. Either way, this is a contradiction to the finiteness
of the diameter of M. O

For the purpose of getting sharp eigenvalue estimates, we need to show
that for any eigenfunction u of A, y with eigenvalue A > Xg, there exist an
interval [a,b] and a solution w of such that w is strictly increasing on
[a,b] with w(a) = min{u} and w(b) = max{u}. As we shall see, this can be
achieved by varying the initial data.

The rest of this section is a slight modification of [I4], Section 4]. Fix A >
Ao and k > 0. Let w, be the solution of the following initial value problem
(IVP)

(4 8) {(p _ 1)|w/|p—2w// _ ﬁt|w/|p—2w/ 4 )\|w’p—2w — 0’

w(a) = -1,w'(a) =0,
with a € R.

Proposition 4.3. Fiz A > Ao and & > 0. There exists a unique a > 0 such
that the solution w_g to the IVP (4.8) is odd. In particular, w_g restricted
to [—a, a] has nonnegative derivative and has mazimum value equal to one.

Proof. Consider the initial value problem

p—1

(49) {9 = o~ =4 cosh(0) sing 6),
' 6(0) = 0.

The uniqueness of solutions implies that 6(t) is an odd function. The fact
A > )¢ implies there exists @ > 0 such that 6(a) = m,/2. It’s easily seen that
the corresponding solution r(t) to is even, regardless of its initial value.
The proposition follows by translating obtained information on 6 and r back
to w. ]

For the solution w = w, of (4.8]), we define

b(a) = inf{b > a : w'(b) = 0},
m(a) = wa(b(a)),
0(a) =b(a) — a.

In other words, b(a) is the first value b > a such that w'(b) = 0 with the
convention that b(a) = oo if such a value does not exist. Thus w is strictly
increasing on the interval [a, b(a)] and m(a) is the maximum of w on [a, b(a)].
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The function d(a) measures the length of the interval where w(a) increases
from —1 to m(a).

We are concerned with the range of the function m(a) as a varies. Clearly
m(a) > 0 since the eigenfunction w changes sign. Also, Proposition im-
plies m(—a) = 1. We shall show in the next proposition that m(a) goes to
zero as a goes to —oo. It then follows from the Intermediate Value Theorem
that the range of m(a) covers (0, 1] when a varies in (—oo, —aj.

Proposition 4.4.

all>r—noo m(a) = 0.

Proof. The argument is dual to the proof of [14, Proposition 4.3], and we
omit it here. O

Proposition 4.5. We have 6(a) > §(—a) for all a < —a with strict inequal-
ity if a # —a.

Proof. The argument is dual to the proof of [I4, Proposition 4.4], and we
omit it here. 0

At last, we study 6 := 6(—a) = 2a as a function of \, having fixed p and
k. It’s easy to see that 0 is a strictly decreasing function and so invertible.
Thus we can define its inverse A(J), which is a continuous and decreasing
function. Moreover, it can be characterized in the following equivalent way.

Proposition 4.6. For fized Kk > 0,1 < p < oo, we have that given 6 > 0, A
is the first nonzero Neumann eigenvalue of the one-dimensional problem

(p— D' P2w" — ktjw P20 = —Nw|P~?w
on [—6/2,8/2].
5. Proof of Theorem [1.1]

After all the preparations in the previous two sections, we finally prove
Theorem [L.1] in this section.

Proof of Theorem[1.1]. Tt suffices to prove the case k > 0, as the case K <0
was proved in [I4]. Let u be an eigenfunction of A, s associated to the
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eigenvalue \. In view of

/ luP2ue~' =0,
M

we can normalize u so that min{u} = —1 and max{u} € (0, 1].

By Proposition and there exist an interval [a,b] and a solution
w of such that w is strictly increasing on [a,b] with w(a) = —1 =
min{u} and w(b) = max{u} € (0,1]. Moreover, we have A = \,([a,b]), the
first nonzero Neumann eigenvalue of the eigenvalue problem |w’|P~2w”
kt(p — 1)|w'[P72w" + Mw[P~2w = 0 on [a, b].

Let 2 and y be such that u(x) = miny; v and u(y) = maxys u. Consider
a unit speed minimizing geodesic « : [0,d(x,y)] — M joining x and y. Let
h(t) = u(y(t)) and choose I C [0,d(x,y)] such that A’ >0 on I and h™?! is
well-defined in a subset of full measure of [—1, umax|. Then we get, by change
of variables and the sharp gradient estimate proved in Theorem that

71/ Umax Wmax
Dz/ dt>/dt>/ dy Z/ Ay
W(h=y) =)o w(w(y))

:/a(dt:( ) > 6(a)

where the last inequality is proved in Proposition This and Proposi-
tion [£.6] yield immediately the desired estimate. O

6. Sharpness

In this section, we show that the lower bound given in Theorem
is sharp for n > 3 for any k or n > 2 for k < 0. More precisely, for each
£ > 0, we construct a Bakry-Emery manifold (M, g, ) with diameter D and
satisfying A\, ¢ < pp(k, D) + .

For manifolds with boundary, the construction is rather simple. Take a
cylinder rS™"~1 x [~D/2, D /2] for r sufficiently small, with quadratic poten-
tial f = 332. It is easy to see this is a Bakry—Emery manifold with diameter
D(1+o(r)) and Ric+V2f > kg. Let w be an eigenfunction associated to
the eigenvalue i, (k, D) of the one-dimensional eigenvalue problem on
[—D/2, D/2]. Substituting the test function ¥(z, s) = w(s) into the Rayleigh
quotient yields

D/2 _
Ju IVUPe=fdpg J- [/)/2 w'[Pe~7 ds

)\7 < = =W (’%7D)
nf Jar lIPe=Fdpg fD/2 |w|Pe=Tds .
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It follows that A, — up(x, D) as v — 0, proving the sharpness of the esti-
mate in Theorem (1.1

To demonstrate the sharpness of in the smaller class of manifolds
without boundary, we need a more involved construction. The idea is to
attach spherical caps to the ends of the above examples. The Bakry-Erery
manifolds are constructed exactly the same as in [4]. The Riemannian man-
ifold M, which is approximately a thin cylinder with hemispherical caps
attached at each end, is constructed as follows. Let v be the curve in R?
with curvature k given as function of arc length for suitably small » > 0 and
0 > 0 small compared ro r, by

1 56[07%_5]7
%a 56[%_67%—1—5]’

(6.1) k() = 2w ()
0, s €[ +4,D],

and extended to be even under reflection in both s =0 and s = D /2. Here
¢ is a smooth nonincreasing function with ¢(s) =1 for s < —1, ¢(s) =0
for s > 1, and satisfying ¢(s) + ¢(—s) = 1. Geometrically, this corresponds
to a pair of line segments parallel to the x axis, capped by semicircles of
radius 7 and smoothed at the joins. Let (z(s),y(s)) be the corresponding
embedding and we choose the point corresponding to s = 0 to have y(0) =0
and y/(0) = 1. Let (M™, g) be the hypersurface of rotation in R"*! given by
{(z(s),y(s),2) : s € R,z € S" 1}

The function f on M is a function of s only, given by f/(0) =0 (the
value of f(0) is immaterial) and

" n(1-2), sel0,% -4,
sy = e (55) (1= 2) 4w (1-0 (55)), selF-6%+4,
K, s €[5 +46,D].

This implies f/(D/2) = 0. We also extend f to be even under the reflection
ins=0and s=D/2.

With the above choices, let’s compute the Bakry—Emery Ricci tensor
of (M, g, f). The eigenvalues of the second fundamental form are k(s) (in

the s direction) and 7”;@)2 in the orthogonal directions. Therefore the
Gauss-Codazzi equations imply that the Ricci tensor has eigenvalues (n —
l)k(s)# in the s direction, and k(s)# + (n— 1)11(/7%)2 in the
orthogonal directions. The eigenvalues of the Hessian of f can be calculated
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as follows: The curves of fixed z in M are geodesics parametrized by s, so
the Hessian in this direction is just f” as given in . Since f depends
only on s we also have that V2f(ds,e;) =0 for e; tangent to S"~! and
V2f(ei e5) = L f'6i5.

The identities y(s) = [ cos(0(7))dr and y/(s) = cos(6(s)), where §(s) =
Js k(7)dT applied to yields that as § — 0,

o) — rsin(s/r), se€ [0, — 0],
u(s) {r(1+0(5)), se[m -6 D

and
cos(s/r), s€ [0, — 0],
Y (s) = { 0(9), s[5 —0,% — 4,
0, s [ +46,D].

Straightforward calculations then give the following expressions for the
Bakry-Emery Ricci tensor Ricy = Ric +V2f:

S ] sel0.% -0
Rics(0,,0,) = { i+ (552 ) (Z2H(1 +0(0)) = 22), s € [F —6,% — 4],
K, s €[5 +6,D],
and
= e se 0.5 -0
Ricy(e,e) = 4 252 4 o(6), s €[ 5,1 4],
2 (1+0(6), s€ZF+4,D],

while Ricf(0ds, e) = 0 for any unit vector e tangent to S™~1. Clearly, we have
Ricy > kg for r and  small enough for any x € R if n > 3 and for x < 0 if
n = 2. Moreover, the diameter of M is D(1 + 0(9)).

Finally, we show that for the Bakry-Emery manifold (M, g, f) constructed
above, the first nonzero eigenvalue A, r of A, ¢ can be made arbitrarily close
to up(k, D) by choosing r and ¢ sufficiently small. Let ¢ be defined by

U(z,8) = w(s — D/2), s€ [T +6,D— (T +9)],
: w(D/2— T ~§), s€[0,T+35U[D~= ~4 D],

where w is the solution of

(p— D' [P~ 2w" — ks|w' [P~ 2w + pp(k, D — 7r — 28) [w[P~?w = 0



First nonzero eigenvalue of the weighted p-Laplacian 1477

with w(0) = 0, w'(0) = 1 and w'(D/2 — &F — ) = 0. Plugging the test func-
tion 1) into the Rayleigh quotient gives

Aps < fM |v¢}|p€_fdﬂg
n= jh{|¢ﬂp€_fdﬂg
pp(k, D — 7 — 6) f?&i;gﬂ lwPe=f ds
fOD |w|Pe=7 ds
< 1yl D — 7 )

It follows that A, ; — u,(k, D) as r and 6 approach zero, thus proving the
sharpness of the estimate (1.1)) in Theorem

Acknowledgments

The authors would like to thank Professors Ben Andrews, Zhigin Lu, Lei
Ni, Guofang Wei and Richard Schoen for their interest in this work.

1]

References

B. Andrews, Moduli of continuity, isoperimetric profiles, and multi-
point estimates in geometric heat equations, in Surveys in differential
geometry 2014. Regularity and evolution of nonlinear equations, Vol. 19
of Surv. Differ. Geom., 1-47, Int. Press, Somerville, MA (2015).

B. Andrews and J. Clutterbuck, Proof of the fundamental gap conjec-
ture, J. Amer. Math. Soc. 24 (2011), no. 3, 899-916.

, Sharp modulus of continuity for parabolic equations on man-
ifolds and lower bounds for the first eigenvalue, Anal. PDE 6 (2013),
no. 5, 1013-1024.

B. Andrews and L. Ni, Eigenvalue comparison on Bakry-Emery man-
ifolds, Comm. Partial Differential Equations 37 (2012), no. 11, 2081—
2092.

D. Bakry and Z. Qian, Some new results on eigenvectors via dimension,
diameter, and Ricci curvature, Adv. Math. 155 (2000), no. 1, 98-153.

0. Dosly and P. Rehdk, Half-linear differential equations, Vol. 202 of
North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam
(2005), ISBN 0-444-52039-2.



1478 X. Li and K. Wang

[7] P. Kroger, On the spectral gap for compact manifolds, J. Differential
Geom. 36 (1992), no. 2, 315-330.

[8] P. Li, A lower bound for the first eigenvalue of the Laplacian on a
compact manifold, Indiana Univ. Math. J. 28 (1979), no. 6, 1013-1019.

[9] X.Li, Modulus of continuity estimates for fully nonlinear parabolic equa-
tions, Calc. Var. Partial Differential Equations 60 (2021), no. 5, Paper
No. 182, 23 pp.

[10] P. Li and S. T. Yau, Estimates of eigenvalues of a compact Rieman-
nian manifold, in Geometry of the Laplace operator (Proc. Sympos.
Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure
Math., XXXVI, 205-239, Amer. Math. Soc., Providence, R.I. (1980).

[11] X. Li and Y. Tu and K. Wang, On a class of quasilinear operators on
smooth metric measure spaces, arXiv:2009.10418 (2020)

[12] X. Li and K. Wang, Eigenvalue estimates on quaternion-Kdhler mani-
folds, arXiv:2105.06303 (2021)

[13] , Lower bounds for the first eigenvalue of the Laplacian on Kdhler

manifolds, Trans. Amer. Math. Soc. 374 (2021), no. 11, 8081-8099.

[14] , Sharp lower bound for the first eigenvalue of the weighted p-

Laplacian I, J. Geom. Anal. 31 (2021), no. 8, 8686—8708.

[15] J. Lott, Some geometric properties of the Bakry—E’mery—Rz’cci tensor,
Comment. Math. Helv. 78 (2003), no. 4, 865-883.

[16] A.-M. Matei, First eigenvalue for the p-Laplace operator, Nonlinear
Anal. 39 (2000), no. 8, Ser. A: Theory Methods, 1051-1068.

[17] A. Naber and D. Valtorta, Sharp estimates on the first eigenvalue of
the p-Laplacian with negative Ricci lower bound, Math. Z. 277 (2014),
no. 3-4, 867-891.

[18] L. Ni, Estimates on the modulus of expansion for vector fields solving
nonlinear equations, J. Math. Pures Appl. (9) 99 (2013), no. 1, 1-16.

[19] S. Seto, L. Wang, and G. Wei, Sharp fundamental gap estimate on
convex domains of sphere, J. Differential Geom. 112 (2019), no. 2, 347—
3809.

[20] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic
equations, J. Differential Equations 51 (1984), no. 1, 126-150.



First nonzero eigenvalue of the weighted p-Laplacian 1479

[21] D. Valtorta, Sharp estimate on the first eigenvalue of the p-Laplacian,
Nonlinear Anal. 75 (2012), no. 13, 4974-4994.

[22] G. Wei and W. Wylie, Comparison geometry for the Bakry-Emery Ricci
tensor, J. Differential Geom. 83 (2009), no. 2, 377-405.

[23] Y. Zhang and K. Wang, An alternative proof of lower bounds for the first
eigenvalue on manifolds, Math. Nachr. 290 (2017), no. 16, 2708-2713.

[24] J. Q. Zhong and H. C. Yang, On the estimate of the first eigenvalue of
a compact Riemannian manifold, Sci. Sinica Ser. A 27 (1984), no. 12,
1265-1273.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, IRVINE
IrvINE, CA 92697, USA

E-mail address: xiaololl@uci.edu

Current address:

DEPARTMENT OF MATHEMATICS, STATISTICS AND PHYSICS

WICHITA STATE UNIVERSITY

WicHiTA, KS, 67260, USA

E-mail address: xiaolong.li@wichita.edu

SCHOOL OF MATHEMATICAL SCIENCES, SOOCHOW UNIVERSITY
SuzHou, 215006, CHINA
E-mail address: kuiwang@suda.edu.cn

RECEIVED DECEMBER 18, 2019
AcCCEPTED MAY 3, 2020






	Introduction
	Bochner formula for the weighted p-Laplacian
	The gradient comparison theorem
	One-dimensional models for >0
	Proof of Theorem 1.1
	Sharpness
	Acknowledgments
	References

