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Scattering for the non-radial

inhomogeneous NLS

Changxing Miao, Jason Murphy, and Jiqiang Zheng

We extend the result of Farah and Guzmán [16] on scattering for
the 3d cubic inhomogeneous NLS to the non-radial setting. The
key new ingredient is a construction of scattering solutions corre-
sponding to initial data living far from the origin.

1. Introduction

We consider the 3d focusing cubic inhomogeneous nonlinear Schrödinger
equation:

(1.1)

{

(i∂t +∆)u+ |x|−b|u|2u = 0,

u|t=0 = u0 ∈ H1(R3),

where 0 < b < 1
2 . This is an Ḣsc-critical problem, where sc =

1+b
2 ∈ (12 ,

3
4).

In [16], the authors established a scattering result for initial data below
the ground state threshold. In particular, denoting by Q the ground state
solution to the equation

∆Q−Q+ |x|−bQ3 = 0

and the conserved mass and energy of solutions by

M [u] =

∫

|u|2 dx, E[u] =

∫

{1
2 |∇u|

2 − 1
4 |x|

−b|u|4} dx,

the authors of [16] proved the following:
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Theorem 1.1. Suppose u0 ∈ H1 is radial and satisfies

(1.2) E[u0]
scM [u0]

1−sc < E[Q]scM [Q]1−sc

and

(1.3) ∥∇u0∥
sc
L2∥u0∥

1−sc
L2 < ∥∇Q∥scL2∥Q∥1−sc

L2 .

Then the corresponding solution u(t) to (1.1) is global in time and scatters,
that is, there exist u± ∈ H1 so that

lim
t→±∞

∥u(t)− eit∆u±∥H1 = 0.

The purpose of this note is to extend Theorem 1.1 to the non-radial
setting:

Theorem 1.2. Theorem 1.1 holds without the radial restriction on u0.

In fact, as we will describe below, with the addition of one key ingredient
the arguments of [16] are already sufficient to obtain the non-radial result.
The missing ingredient in [16] is a method for producing scattering solutions
to (1.1) corresponding to initial conditions living far from the origin. We will
prove such a result in Proposition 3.3. In order to prove Theorem 1.2, we
will then simply walk through the steps carried out in [16] and demonstrate
how the addition of Proposition 3.3 allows for the inclusion of non-radial
initial conditions.

We would also like to point out that in [17], the authors extended the
result of [16] to higher dimensions. The methods we present should suffice
to extend the results of [17] to the non-radial case, as well (see e.g. [7]). We
have opted to focus on the 3d cubic case to keep technical complications to
a minimum. We also refer the reader to [41] for further simplifications to the
proof of scattering for (1.1).

Before proceeding to the proof, let us briefly discuss some background
related to the inhomogeneous NLS, as well as some works that capitalize on
results similar to Proposition 3.3.

The model (1.1), along with some generalizations, has been the subject
of recent mathematical interest; see, e.g. [10, 11, 16–19, 21]. The specific re-
sult of [16] under discussion in this paper fits in the context of many recent
results concerning sharp scattering thresholds (typically described in terms
of a ground state solution) for focusing intercritical nonlinear Schrödinger
equations. Such results were first established for the standard power-type
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NLS (see [2, 3, 9, 13–15, 20, 22]), although many extensions to related mod-
els are now available (see e.g. [1, 16, 35, 38, 39, 46, 47, 50]). Many of the works
just cited, including the work of [16], follow the ‘Kenig–Merle roadmap’ of
[29], reducing the problem of scattering for arbitrary sub-threshold solutions
to the preclusion of compact sub-threshold solutions. The reduction is car-
ried out using concentration-compactness arguments, while the preclusion
is typically achieved through virial arguments. Beginning with the work of
[13], there has also been a trend towards establishing sharp scattering re-
sults (for NLS and related models) using technically simpler arguments that
avoid concentration compactness entirely. This typically requires a radial
assumption on the initial data, which essentially provides enough compact-
ness (via tools like radial Sobolev embedding) to run a virial argument for
general sub-threshold solutions (see also [14] for a non-radial result).

Our interest in this paper is to employ some ideas coming from the study
of dispersive equations with broken symmetries to obtain the non-radial ana-
logue of the result of [16]. Particularly relevant are the works [32, 35, 39],
which consider the scattering problem for NLS with an inverse-square po-
tential (i.e power-type NLS with −∆ replaced by −∆+ a|x|−2), and also
proceed along the ‘Kenig–Merle roadmap’. This model shares some simi-
larities with the inhomogeneous NLS, in the sense that it retains a scaling
symmetry but has a broken space translation symmetry.

In [32, 35, 39], a key challenge arising from the broken translation sym-
metry appears in the construction of compact blowup solutions. As we will
discuss in Section 3 below, this construction relies first on a linear profile
decomposition for a sequence of initial data, and then subsequently on a
‘nonlinear profile decomposition’ obtained by constructing (scattering) non-
linear solutions associated to each profile. The difficulty arises from the fact
that each profile comes with some translation parameters xn, which will
either vanish identically or satisfy |xn| → ∞. In particular, since the trans-
lation symmetry is broken, one cannot construct solutions for profiles with
|xn| → ∞ by simply solving the equation with data given by the profile and
then incorporating the translation. The resolution in [32, 35, 39] comes from
the observation that in the regime |x| → ∞, the effect of the potential a|x|−2

becomes weak. Therefore, one can construct an approximate solution to the
full problem by using a solution to the standard NLS (i.e. with no potential),
and then appealing to a stability result to produce the true desired solution.
In this sense, one finds the standard NLS ‘embedded’ inside the model of
the NLS with inverse-square potential in the regime |x| → ∞.

In [16], the authors’ restriction to radial initial data for (1.1) means
that the translation parameters vanish from the problem entirely, i.e. one
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can always take xn ≡ 0. In particular, this allows them to avoid the issue
described above entirely. In fact, a careful study of [16] reveals that this is
the only job of the radial assumption in that work (i.e. there is no use of
radial Sobolev embedding, radial Strichartz estimates, or any other radial
tools). The key observation in the present paper is that one can remove
the radial assumption provided one can exclude the possibility of |xn| →
∞ by some other means. In particular, this can be achieved provided we
can produce scattering solutions associated to any profile with diverging
translation parameters. We achieve this in Proposition 3.3. To produce these
scattering solutions, we use the same philosophy as described above. This
time, however, we observe that in the regime |x| → ∞, the nonlinearity itself
becomes weak, and hence solutions to (1.1) should simply be approximated
by solutions to the underlying linear Schrödinger equation. Put differently,
we find the underlying linear equation ‘embedded’ inside (1.1) in the regime
|x| → ∞. For a more detailed explanation of the exact approximation we
use, see Remark 4.1.

In Section 3 we will discuss how, once we have incorporated Proposi-
tion 3.3, we can follow the rest of the arguments of [16] more or less verbatim
to deduce the sub-threshold scattering theorem for arbitrary (i.e. non-radial)
initial data. We then carry out the proof of Proposition 3.3 in Section 4.

We would like to point out that the works [32, 35, 39] are certainly not
the first works to capitalize on the ideas just discussed. In general, in the
setting of dispersive equations with broken symmetries, one needs to under-
stand the models that may be ‘embedded’ in the full equation in various
limiting scenarios. We refer the reader to the following list of references,
which is certainly not exhaustive, but hopefully serves to demonstrate the
importance and flexibility of these ideas: [24–28, 31–39, 43].

The rest of this paper is organized as follows: In Section 2, we set up
notation and collect a few preliminary results. In Section 3, we present the
proof of Theorem 1.2, taking the main new ingredient Proposition 3.3 for
granted. Finally, in Section 4, we prove Proposition 3.3.

2. Notation and preliminaries

We write A ≲ B to denote A ≤ CB for some C > 0. We also make use of
the notation a± to denote a± ε for some sufficiently small ε > 0. We use
the standard notation for Lebesgue space-time norms and Sobolev norms,
e.g. Lq

tL
r
x and L∞

t H
1
x.

We employ the standard Littlewood–Paley projections P≤N . These are
defined as Fourier multipliers, with the multiplier corresponding to a smooth
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cutoff to the region {|ξ| ≤ N}. We need only a few basic facts, e.g. the
Bernstein estimate

∥|∇|sP≤Nf∥L2
x
≤ N s∥f∥L2

x

and the fact that P≤Nf → f strongly in H1 as N → ∞.
To deal with the function |x|−b appearing in the nonlinearity, we have

found it convenient to utilize Lorentz spaces, defined via the quasi-norms

∥f∥Lp,q
x

=
∥

∥λ
∣

∣{x : |f(x)| > λ}
∣

∣

1

p

∥

∥

Lq((0,∞), dλ
λ
)

for 1 ≤ p <∞ and 1 ≤ q ≤ ∞. In particular Lp,p = Lp, while Lp,∞ corre-
sponds to the weak Lp space. In general we have the embedding Lp,q →֒ Lp,q′

for q < q′. These spaces are natural in the context of (1.1) since |x|−b ∈
L

3

b
,∞(R3).
Many standard functional inequalities have analogues in Lorentz space

(see e.g. [23, 42]). For example, we have the Hölder inequality

∥fg∥Lp,q ≲ ∥f∥Lp1,q1∥g∥Lp2,q2

for 1 ≤ p, p1, p2 <∞ and 1 ≤ q, q1, q2 ≤ ∞ satisfying 1
p
= 1

p1
+ 1

p2
and 1

q
=

1
q1

+ 1
q2
. We also have Young’s convolution inequality

∥f ∗ g∥Lp,q ≲ ∥f∥Lp1,q1∥g∥Lp2,q2

for the same range of exponents now satisfying 1
p
+ 1 = 1

p1
+ 1

p2
and 1

q
=

1
q1

+ 1
q2
.

Using Young’s inequality for Lorentz spaces, we can also establish a
Lorentz-space version of Sobolev embedding, which will be useful below.
Indeed, writing d ≥ 1 for the spatial dimension and recalling F [|x|s−d] =
c|ξ|−s for 0 < s < d (see e.g. [45]), we have the estimate

∥|∇|−sf∥Lr,q ∼ ∥|x|s−d ∗ f∥Lr,q ≲ ∥|x|s−d∥
L

d
d−s

,∞∥f∥Lp,q ≲ ∥f∥Lp,q

for 1 < r, p <∞ satisfying d
r
= d

p
− s and 1 ≤ q ≤ ∞.

In [16], Strichartz estimates for the linear Schrödinger equation are
stated using the following notation. One defines the region As (for s ∈ R)
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to be the set of (q, r) satisfying

( 6
3−2s)

+ ≤ r ≤ 6− and 2
q
+ 3

r
= 3

2 − s.

When s = 0, the endpoints are included. The Strichartz norm is then defined
by

∥u∥S(Ḣs) = sup
(q,r)∈As

∥u∥Lq
tL

r
x
,

with dual Strichartz norm given by

∥F∥S′(Ḣ−s) = inf
(q,r)∈A−s

∥F∥
L

q′

t Lr′

x

.

If no time interval is indicated, this refers to space-time norms over all of
R× R

3. To denote the truncation to a finite time interval I, one writes
S(Ḣs; I).

One can characterize scattering versus ‘blowup’ for (1.1) according to the
S(Ḣsc) norm (see e.g. [16, Proposition 3.1]). In particular, solutions may be
extended as long as their S(Ḣsc) norm remains finite, and a global solution
with finite S(Ḣsc)-norm scatters to a free solution. On the other hand, by
‘blowup’ we typically refer to the blowup of the S(Ḣsc) norm, which may
occur in finite or infinite time.

We will utilize the following Strichartz estimates for the linear Schrö-
dinger equation:

Lemma 2.1 (Strichartz estimates). Let eit∆ denote the free Schrödinger
propagator. Then

∥eit∆f∥S(Ḣs) ≲ ∥f∥Ḣs .

While inhomogeneous estimates hold as well (and are essential for well-
posedness and stability results developed in [16]), in this note we will only
need to make explicit use the homogeneous estimates stated above.

We will rely fundamentally upon the following stability result, which
apppears as Proposition 4.10 in [16] and was already essential in that work.

Lemma 2.2 (Stability). Suppose I is a time interval and ṽ is an approx-
imate solution to (1.1) on I, in the sense that

i∂tṽ +∆ṽ + |x|−b|ṽ|2ṽ = e

for some function e on I. Suppose that ṽ satisfies

∥ṽ∥L∞

t H1
x(I×R3) + ∥ṽ∥S(Ḣsc ;I) ≤ C <∞.
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There exists ε1 = ε1(C) sufficiently small that if u0 ∈ H1 satisfies

∥u0 − ṽ(0)∥H1 < ε

and

∥e∥S′(L2;I) + ∥∇e∥S′(L2;I) + ∥e∥S′(Ḣ−sc ;I) < ε

for some 0 < ε < ε1, then there exists a unique solution u to (1.1) on I with
u(0) = u0, which satisfies

∥u− ṽ∥S(Ḣsc ;I) ≲C ε

and

∥u∥S(Ḣsc ;I) + ∥u∥S(L2;I) + ∥∇u∥S(L2;I) ≲C 1.

3. The proof of Theorem 1.2

In this section, we review the proof of Theorem 1.1 from [16]. As we proceed,
we will introduce one new ingredient (Proposition 3.3) into the argument
and show how this ingredient allows for the treatment of non-radial initial
conditions. Thus we will be able to conclude that the extension to non-radial
solutions (Theorem 1.2) holds as well.

The proof of Theorem 1.1 proceeds by contradiction. The first main step
is to prove that if the theorem fails, one may construct a compact blowup
solution living below the ground state threshold. The result may be stated
as follows (cf. [16, Propositions 6.4 and 6.5]):

Proposition 3.1 (Existence of a critical solution). Suppose Theo-
rem 1.2 fails. Then there exists a function uc,0 ∈ H1 such that the corre-
sponding solution uc to (1.1) is global and uniformly bounded in H1. This so-
lution is below the ground state threshold (that is, it satisfies (1.2) and (1.3)),
blows up in both time directions (that is, ∥uc∥S(Ḣsc ;R−) = ∥uc∥S(Ḣsc ;R+) =

∞), and has a pre-compact orbit in H1.

With Proposition 3.1 in hand, the authors conclude the proof of Theo-
rem 1.1 by carrying out a localized virial argument (see [16, Theorem 7.3]).
In the context of (1.1), the virial identity is the following formula for the
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time derivative of the weighted momentum for solutions to (1.1):

(3.1) d
dt
Im

∫

x · ū∇u dx = c

∫

|∇u|2 − |x|−b|u|4 dx.

The variational characterization of the ground state Q implies that for func-
tions below the ground state threshold (i.e. obeying (1.2) and (1.3)), the
right-hand side of the identity above is coercive, e.g. bounded below by a
constant times the Ḣ1 norm. If the weighted momentum were uniformly
bounded in time, then integrating the identity above over a sufficiently long
time interval would lead to a contradiction (since the Ḣ1-norm is uniformly
bounded below). However, this quantity is not uniformly bounded due to
the presence of the weight x. The solution is to localize the argument above
in space, say to |x| ≤ R. Then the identity above no longer holds exactly,
but instead contains error terms controlled by the following:

∫

|x|>R

|∇u(t, x)|2 +R−2|u(t, x)|2 +R−b|u(t, x)|4 dx.

As the orbit of u is pre-compact in H1, these error terms can be made
small (say ≤ η) uniformly in time provided R = R(η) is chosen sufficiently
large; furthermore, the localization of the quantity on the right-hand side of
(3.1) is still coercive (uniformly in time). In particular, one can successfully
carry out the scheme described above and derive a contradiction. Indeed,
one arrives at an inequality of the form

c(u)T ≲ C(u)R(η) + ηT for any T > 0,

and the contradiction is obtained by choosing η = η(u) sufficiently small and
then T sufficiently large.

The discussion above shows that once Proposition 3.1 is obtained, the
proof can be completed. Thus we turn our attention to the proof of Propo-
sition 3.1.

By the well-posedness theory for (1.1), initial data obeying (1.3) and
with the quantity in (1.2) small enough lead to global scattering solutions.
Thus, if Theorem 1.1 (or Theorem 1.2) fails, there is a critical value (de-
noted δc in [16]) for E[u0]

scM [u0]
1−sc that obeys δc < E[Q]scM [Q]1−sc and

separates the scattering and blowup regions for solutions obeying (1.3). To
prove Proposition 3.1, the scheme is then the following:
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(i) Construct a sequence of initial conditions un,0 obeying (1.3) and satis-
fyingM [un,0]

1−scE[un,0]
sc → δc, with corresponding solutions un blow-

ing up their space-time norms as n→ ∞.

(ii) Prove that un,0 converges along a subsequence in H1 to a limit uc,0.

(iii) Solve (1.1) with initial data uc,0 to obtain uc, and prove the desired
properties of uc.

The main point is to establish (ii). Once this is in place, step (iii) is
obtained by essentially repeating the arguments of step (ii) and appealing
to the small-data and stability results for (1.1); see e.g. [16, Proposition 6.5]
for the details.

The approach to establishing (ii) is to expand the sequence un,0 in a
linear profile decomposition adapted to the S(Ḣsc) Strichartz estimate. This
means that the un,0 may be written as a linear combination of fixed profiles,
translated in space-time, plus a remainder term that becomes small in the
Strichartz norm. Convergence in H1 holds provided there is only one profile
(with no space-time translation) and the remainder tends to zero inH1-norm
as well.

The precise result we need is the following proposition.

Proposition 3.2 (Linear profile decomposition). Let {ϕn} be a bounded
sequence in H1. Then for every M , there exist profiles {ψj}Mj=1 ⊂ H1, time

shifts tjn, translation parameters xjn, and remainders WM
n so that (passing

to a subsequence in n):

ϕn =

M
∑

j=1

e−itjn∆ψj(x− xjn) +WM
n

with the following properties:

• Orthogonality of parameters: for j ̸= k,

|tjn − tkn|+ |xjn − xkn| → ∞ as n→ ∞.

• Vanishing of the remainder:

lim sup
M→∞

lim sup
n→∞

∥eit∆WM
n ∥S(Ḣsc ) = 0.
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• Energy decoupling: for any M and any s ∈ [0, 1],

∥ϕn∥
2
Ḣs

=

M
∑

j=1

∥ψj∥2
Ḣs

+ ∥WM
n ∥2

Ḣs
+ on(1) as n→ ∞.

Finally, we may assume either tjn ≡ 0 or tjn → ±∞, and either xjn ≡ 0 or
|xjn| → ∞.

Similar decompositions now appear in many works, beginning with some
fundamental results in [4, 5, 8, 30, 40]. The analogue of Proposition 3.2 for
radial sequences appears as Proposition 6.1 in [16]; a non-radial version can
be found in [44], for example. In the setting of [16], the radial assumption
implies that the translation parameters xjn may be taken to be identically
zero. In fact, this is the only place in their entire paper that they rely directly
on the radial assumption! We return to this point below.

Applying the linear profile decomposition to the sequence un,0, we are
now tasked with proving the following:

(a) there is a single profile ψ present,

(b) the time shifts tn obey tn ≡ 0,

(c) the translation parameters xn obey |xn| ≡ 0, and

(d) the error Wn coverges to zero strongly in H1.

(Again, we remark that (c) is automatic in [16] due to the radial assumption.)
Item (a) is proven by contradiction, with the general approach as follows.

Suppose there are multiple profiles ψj . Recalling item (i) above and using
energy decoupling, we can show that each profile lives below the critical
threshold (that is, M [ψj ]1−scE[ψj ]sc < δc and ψj obeys (1.3)). We would
then like to associate scattering solutions to (1.1) to each ψj .

First, if xjn ≡ 0 and tjn ≡ 0, we take vj to be the scattering solution to
(1.1) with data ψj . If instead x

j
n ≡ 0 and t

j
n → ±∞, we take vj to be the

solution that scatters to eit∆ψj (cf. [16, Proposition 5.3]). In both cases we
set vjn(t, x) = vj(t+ t

j
n, x).

In the case of [16], this covers all possibilities, as |xjn| ≡ 0 always holds.
Then one can define the sequence

(3.2) uMn (t) =

M
∑

j=1

vjn(t) + eit∆WM
n ,
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and immediately observe that uMn match u0,n closely in H1 at t = 0 by con-
struction. To complete the argument, one shows that due to the orthogonal-
ity of the parameters, the functions uMn are approximate solutions to (1.1)
that obey global space-time bounds. Using the stability lemma (Lemma 2.2),
this implies that uMn and the true solutions un are close for all times, and in
particular the solutions un inherit the good bounds from the uMn . As the un
were constructed to have diverging space-time norms, this yields the desired
contradiction and completes the proof of (a).

We can now see precisely what is needed to extend the result of [16] to
the non-radial setting: we need a method to construct scattering solutions to
(1.1) corresponding to profiles ψj with |xjn| → ∞. We cannot simply solve
(1.1) with initial data ψj and then translate the solution by x

j
n, as the

inhomogeneity in the nonlinearity breaks the translation invariance of the
equation. It is here that we introduce our new ingredient:

Proposition 3.3 (Scattering for data living far from the origin).
Fix ϕ ∈ H1. Let {tn} be a sequence of times obeying tn ≡ 0 or tn → ±∞
and {xn} a sequence in R

3 satisfying |xn| → ∞. Then for all n sufficiently
large, there exists a global solution vn to (1.1) with

vn(0) = ϕn := eitn∆ϕ(x− xn)

that scatters in both time directions and obeys

∥vn∥S(Ḣsc ) + ∥vn∥S(L2) + ∥∇vn∥S(L2) ≲ 1,

with implicit constant depending on ∥ϕ∥H1.
Furthermore, for ε > 0, there exists N and ψ ∈ C∞

c (R× R
3) such that

∥vn − ψ(·+ tn, · − xn)∥S(Ḣsc ) < ε for n ≥ N.

With Proposition 3.3 in place, we can construct scattering solutions cor-
responding to profiles with |xjn| → ∞, and we can once again construct the
‘nonlinear profile decomposition’ (3.2). The rest of the argument then goes
through as described above. Note that one may need to exploit orthogo-
nality of the xjn rather than that of the tjn in order to show that the uMn
are approximate solutions. In fact, the argument is the same as the one ap-
pearing in [16, Proof of Claim 1, p. 4218]. As approximation by functions
in C∞

c (R1+3) is needed for this step, we have included such a statement in
Proposition 3.3.
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Having established item (a) above (i.e. the presence of a single profile),
items (b)–(d) follow quickly using either stability theory or Proposition 3.3.
As complete details are provided in [16], let us only briefly give the ideas
here: (b) If the time shifts diverge, one can use stability theory (comparing
un to linear solutions) to prove that the solutions un would obey uniform
space-time bounds. (c) Similarly, if |xn| → ∞ then Proposition 3.3 and the
stability result would imply the same. (d) Finally, the strong convergence of
the remainder to zero follows from the fact that if the remainder captured a
nontrivial amount of H1-norm, then ϕ would be below the critical threshold
and hence the solutions un would scatter.

This completes our discussion of the proof of Proposition 3.1 in the non-
radial setting, and hence concludes the proof of Theorem 1.2. It only remains
to prove Proposition 3.3, which we do in the following section.

We conclude this section with a few general remarks about some re-
lated problems. As we have discussed, in the setting of (1.1), the presence
of the decaying factor |x|−b ultimately precludes the possibility of diverg-
ing translation parameters. For the standard NLS, one really must contend
with the possibility that such parameters are present. In particular, in con-
structing the minimal blowup solution one finds that the sequence of initial
data u0,n only converge in H1 modulo translation. When constructing the
corresponding compact solution uc, one then obtains that the orbit of uc
is pre-compact in H1 modulo translation by some time-dependent spatial
center x(t). The job of the radial assumption is basically to impose x(t) ≡ 0,
so that the localized virial argument may be applied. To treat the non-radial
NLS, the authors of [15] made a further argument utilizing the conservation
of momentum to prove that |x(t)| = o(t), which provides enough control
over x(t) to close the localized virial argument sketched above. For models
with broken translation symmetry (and so no conserved momentum), results
analogous to Proposition 3.3 can provide an alternate route to establishing
x(t) ≡ 0, even in the non-radial setting (see e.g. [32, 35, 39]).

4. Proof of Proposition 3.3

We turn to the proof of Proposition 3.3, which we reproduce here:

Proposition. Fix ϕ ∈ H1. Let {tn} be a sequence of times obeying tn ≡ 0
or tn → ±∞ and {xn} a sequence in R

3 satisfying |xn| → ∞. Then for all
n sufficiently large, there exists a global solution vn to (1.1) with

vn(0) = ϕn := eitn∆ϕ(x− xn)
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that scatters in both time directions and obeys

∥vn∥S(Ḣsc ) + ∥vn∥S(L2) + ∥∇vn∥S(L2) ≲ 1,

with implicit constant depending on ∥ϕ∥H1.
Furthermore, for ε > 0, there exists N and ψ ∈ C∞

c (R× R
3) such that

∥vn − ψ(·+ tn, · − xn)∥S(Ḣsc ) < ε for n ≥ N.

Proof. We introduce a sequence of smooth cutoffs χn obeying

χn(x) =

{

1 |x+ xn| >
1
2 |xn|,

0 |x+ xn| <
1
4 |xn|,

with χn obeying the symbol bounds |∂αχn| ≲ |xn|
−|α| for all multiindices α.

In particular, we have χn → 1 pointwise as n→ ∞.
We next define a family of approximations ṽn,T parametrized both by n

and by times T > 0. First, we let

ṽn,T (t, x) = χn(x− xn)e
it∆Pnϕ(x− xn) for |t| ≤ T,

where we have set

Pn = P≤|xn|θ for some small 0 < θ ≪ 1.

Next, for |t| > T we take the free evolution:

ṽn,T (t) =

{

ei(t−T )∆[ṽn,T (T )] t > T,

ei(t+T )∆[ṽn,T (−T )], t < −T.

Our goal is to prove that (for sufficiently large n and T ) the ṽn,T are
approximate solutions to (1.1) obeying global space-time bounds, with initial
data close to ϕn. Once we have shown this, we can apply the stability result
(Lemma 2.2) to deduce the existence of scattering solutions to (1.1) with
initial data ϕn, as desired.

Remark 4.1. We would like to pause and explain the logic of designing the
approximate solutions in this way. The basic idea is that since the profiles
ϕn are being translated far away from zero, the nonlinear term (contain-
ing |x|−b) should essentially become negligible, and so we expect that we
can approximate a solution to (1.1) by a solution to the linear Schrödinger
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equation. The role of the cutoff χn is to make this assertion precise (cf. the
estimate of (4.4) below). However, the insertion of a spatial cutoff means that
the ṽn,T are no longer true solutions to the Schrödinger equation. In particu-
lar, when computing the errors (i.e. (i∂t +∆)v + |x|−b|v|2v), we will have to
contend with error terms that are linear in v, which arise when derivatives
land on the cutoff function. Because these error terms must be integrated in
time, we are ultimately led to bounds that grow with the length of the time
interval. This means that we should only include the cutoff on a finite time
interval [−T, T ] and look for smallness in the regime |t| > T by other means.
In particular, in the long-time regime we take ṽn,T to be a true solution to
the linear Schrödinger equation, and the smallness as T → ∞ is obtained
by Strichartz estimates combined with the monotone convergence theorem.
Finally, the role of the frequency projection arises from the fact that our
stability lemma (Lemma 2.2) demands control over one derivative of the
error in space-time norms, leading to error terms of the form ∇(∇χ · ∇ϕ).
As we only know ϕ ∈ H1, we are therefore forced to truncate ϕ in frequency.
As we still need to obtain ϕ in the n→ ∞ limit, we use a slowly growing
frequency cutoff (specifically, to frequencies below |xn|

θ). With this choice,
the losses that come from estimating this term via Bernstein’s inequality
can be overcome using other terms that come with negative powers of |xn|.

Let us first establish closeness of the initial data:

(4.1) lim sup
n→∞

∥ṽn,T (tn)− ϕn∥H1 = 0.

Proof of (4.1). First suppose tn ≡ 0. Then

∥ṽn,T (tn)− ϕn∥H1 = ∥χnPnϕ− ϕ∥H1 → 0 as n→ ∞

by the dominated convergence theorem. Suppose instead tn → ∞ and fix
T > 0. Then for n sufficiently large,

ṽn,T (tn) = ei(tn−T )∆χn(x− xn)e
iT∆Pnϕ(x− xn),

and hence

∥ṽn,T (tn)− ϕn∥H1 ≤ ∥Pnϕ− ϕ∥H1 + ∥[χn − 1]eiT∆Pnϕ∥H1 ,

which again tend to zero by dominated convergence. The case tn → −∞ is
similar, and hence we complete the proof of (4.1). □
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We next prove global space-time bounds for the functions ṽn,T .

(4.2) lim sup
T→∞

lim sup
n→∞

{

∥ṽn,T ∥L∞

t H1
x
+ ∥ṽn,T ∥S(Ḣsc )

}

≲ 1,

where all space-time norms are over R× R
3.

Proof of (4.2). Once we have uniform H1 bounds on [−T, T ], all of the de-
sired bounds on {|t| > T} follow from Strichartz. Thus, we may restrict our
attention to {|t| ≤ T}. In this range, the desired L2 bounds are immediate,
while

∥∇ṽn,T ∥L∞

t L2
x
≲ ∥∇(χn)∥L3

x
∥ϕ∥L6

x
+ ∥χn∥L∞

x
∥∇ϕ∥L2

x
≲ ∥ϕ∥H1

by Sobolev embedding and the properties of χn. Similarly, we can establish
L
q
tL

r
x bounds for any (q, r) ∈ Asc immediately from Sobolev embedding and

Strichartz estimates. This completes the proof of (4.2). □

Finally, we need to prove that the ṽn,T define good approximate solutions
to (1.1). We define the errors

en,T = (i∂t +∆)ṽn,T + |x|−b|ṽn,T |
2ṽn,T ,

and we will show:

(4.3) lim
T→∞

lim sup
n→∞

{

∥en,T ∥S′(L2) + ∥∇en,T ∥S′(L2) + ∥en,T ∥S′(Ḣ−sc )

}

= 0.

Proof of (4.3). We first consider the region t > T , with the region t < −T
being treated by similar arguments. In this region

en,T = |x|−b|ṽn,T |
2ṽn,T .

We will show that

lim
T→∞

lim sup
n→∞

{

∥en,T ∥L1
tL

2
x({t>T}) + ∥∇en,T ∥L1

tL
2
x({t>T})

+ ∥en,T ∥
L

4
1−b

−

t L
6
5
+

x ({t>T})

}

= 0.

The last norm corresponds essentially to the endpoint of the admissible
region for the dual Strichartz norm (which appears in the stability result,
Lemma 2.2). In most instances below, we will simply estimate the endpoint,
since the arguments we give always allow the spaces to be perturbed slightly.
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It is only in the estimation of (4.6) below that we need to avoid the exact
endpoint.

We begin by using Hölder’s inequality, Sobolev embedding, and Strichartz
to estimate

∥|x|−b|ṽn,T |
2ṽn,T ∥L1

tL
2
x({t>T}) ≲ ∥|x|−b∥

L
3
b
,∞

x

∥ṽn,T ∥
3

L3
tL

18
3−2b

,6

x ({t>T})

≲ ∥|∇|
1+b

3 ṽn,T ∥
3

L3
tL

18
5

,6

x ({t>T})

≲ ∥|∇|
1+b

3 eit∆[ṽn,T (T )]∥
3

L3
tL

18
5

x ({t>0})
.

Now we recall the definition of ṽn,T (T ) and estimate the final norm as follows:

∥|∇|
1+b

3 eit∆χnPne
iT∆ϕ∥

L3
tL

18
5

x ({t>0})
≲ ∥(χn − 1)Pne

iT∆ϕ∥
Ḣ

1+b
3

x

+ ∥|∇|
1+b

3 eit∆ϕ∥
L3

tL
18
5

x ({t>T})
.

The first term above tends to zero as n→ ∞ by dominated convergence.
The second term is bounded by ϕ in Ḣ

1+b

3 and hence the norm tends to zero
as T → ∞ by monotone convergence.

Next, we consider the term in (4.3) with the derivative. This leads to two
terms, one of the form |x|−bO(v2∇v) and one of the form |x|−bO(v2|x|−1v).
By Hardy’s inequality, we can treat these terms identically, provided we work
in a space below L3

x for |x|−1v and ∇v. In particular, choosing 4 < q < 2
b
, we

use Sobolev embedding and Strichartz to estimate (on the region {t > T}):

∥∇[|x|−b|ṽn,T |
2ṽn,T ]∥L1

tL
2
x
≲ ∥|x|−b∥

L
3
b
,∞

x

∥ṽn,T ∥
2

L
2q

q−1

t L
6q

2−bq
,3q

x

∥∇ṽn,T ∥
L

q
tL

6q
3q−4
x

≲ ∥|∇|
1+b

2 ṽn,T ∥
2

L
2q

q−1

t L
6q

q+2
,3q

x

∥ṽn,T (T )∥H1
x

≲ ∥|∇|
1+b

2 eit∆[ṽn,T (T )]∥
2

L
2q

q−1

t L
6q

q+2
x ({t>0})

uniformly in n, T . Noting that 1+b
2 < 1, we find that we are in the same

position as above, and so we may estimate as before to conclude that this
term tends to zero as n, T → ∞.
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We now consider the final norm over the region {t > T}. Using Sobolev
embedding, we get

∥|x|−b|ṽn,T |
2ṽn,T ∥

L
4

1−b
t L

6
5
x

≲ ∥|x|−b∥
L

3
b
,∞

x

∥ṽn,T ∥
3

L
12

1−b
t L

18
5−2b

, 18
5

x

≲ ∥|∇|
1+b

2 ṽn,T ∥
3

L
12

1−b
t L

18
8+b

, 18
5

x

≲ ∥|∇|
1+b

2 eit∆[ṽn,T (T )]∥
3

L
12

1−b
t L

18
8+b
x ({t>0})

.

Once again, we are in a similar situation to the ones encountered above,
and so the same analysis suffices to show that this term tends to zero as
n, T → ∞.

It remains to consider the region |t| ≤ T in (4.3). In this region we can
compute

en,T (t, x) = |x|−bχ3
n(x− xn)|e

it∆Pnϕ(x− xn)|
2eit∆Pnϕ(x− xn)(4.4)

+ ∆[χn(x− xn)]e
it∆Pnϕ(x− xn)(4.5)

+ 2∇[χn(x− xn)] · ∇e
it∆Pnϕ(x− xn).(4.6)

We will show that for fixed T , each of these terms tends to zero as n→ ∞.
Let us first consider the contribution of (4.4). On the support of this

term, we have the pointwise estimate |x|−b ≲ |xn|
−b. Thus, using Hölder’s

inequality Sobolev embedding as well, we may bound

∥(4.4)∥L1
tL

2
x
≲ |xn|

−b∥eit∆Pnϕ∥
3
L3

tL
6
x

≲ T |xn|
−b∥ϕ∥3H1

x
→ 0 as n→ ∞.

We next consider the derivative of this quantity. If the derivative lands on
|x|−b or on the cutoff, we can estimate exactly as above, attaining the bound
|xn|

−b−1 instead of |xn|
−b. If instead the derivative lands on a copy of the

free solution, then we recall that Pnϕ is frequency localized to frequencies
≤ |xn|

θ. Thus the extra derivative would ultimately contribute |xn|
θ to the

estimate above (via Bernstein’s inequality), which is acceptable provided we
choose θ < b. Finally, we can estimate the remaining space-time norm via
Hölder’s inequality and Sobolev embedding:

∥(4.4)∥
L

4
1−b
t L

6
5
x

≲ |xn|
−b∥eit∆Pnϕ∥

3

L
12

1−b
t L

18
5

x

≲ T
1−b

4 |xn|
−b∥ϕ∥3H1

x
→ 0 as n→ ∞.
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We turn to (4.5) and (4.6). The L1
tL

2
x-norm is estimated by

T{|xn|
−2 + |xn|

−1}∥ϕ∥H1 ,

which is acceptable. For the L1
tL

2
x-norm of the derivative, we are led instead

to

T{|xn|
−3 + |xn|

−2 + |xn|
−1}

{

∥ϕn∥L2 + ∥∇ϕn∥L2 + ∥∆Pnϕn∥L2

}

≲ T |xn|
−1+θ∥ϕ∥3H1 → 0 as n→ ∞.

Finally, we consider the L
4

1−b

t L
6

5
x -norm. For (4.5), we use Hölder’s inequality

to estimate

T
1−b

4 ∥∆χn∥L3∥ϕ∥L2 ≲ T
1−b

4 |xn|
−1∥ϕ∥L2 → 0 as n→ ∞.

For (4.6), we instead have

∥∇χn · ∇eit∆Pnϕ∥
L

4
1−b

−

t L
6
5
+

x

≲ T
1−b

4
+∥∇χn∥L3+

x
∥∇ϕ∥L2

≲ T
1−b

4
+|xn|

0−∥ϕ∥H1 → 0 as n→ ∞.

This completes the proof of (4.3) in the regime |t| ≤ T . □

Having established (4.1), (4.2), and (4.3), we can now appeal to the
stability result, Lemma 2.2 to deduce the existence of a global solution vn
to (1.1) satisfying vn(0) = ϕn and obeying

∥vn∥S(Ḣsc ) + ∥vn∥S(L2) + ∥∇vn∥S(L2) ≲ 1

for all n sufficiently large.
It remains to establish the approximation by C∞

c functions. We first
observe that the construction above yields

lim
T→∞

lim sup
n→∞

∥vn(· − tn)− ṽn,T (·)∥S(Ḣsc ) = 0.

Given ε > 0, we choose ψ ∈ C∞
c (R1+3) so that

∥eit∆ϕ− ψ∥S(Ḣsc ) < ε,

which then reduces the problem to proving

∥ṽn,T (t, x)− eit∆ϕ(x− xn)∥S(Ḣsc ) < ε
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for n, T large. We consider the region {|t| ≤ T} and {|t| > T} separately.
First, on {|t| ≤ T} we estimate

∥ṽn,T (t, x)− eit∆ϕ(x− xn)∥S(Ḣsc ) ≲ ∥[χn − 1]eit∆ϕ∥S(Ḣsc ) + ∥Pnϕ− ϕ∥H1

= o(1) as n→ ∞

by dominated convergence. For t > T , say, we need to estimate

∥eit∆e−iT∆χne
iT∆Pnϕ− eit∆ϕ∥S(Ḣsc ;(T,∞)).

In fact, applying the triangle inequality and using monotone convergence,
the problem is reduced to proving

lim
T→∞

lim sup
n→∞

∥eit∆[χne
iT∆Pnϕ]∥S(Ḣsc ;(0,∞)) = 0.

To this end, we note that the norm above can be bounded by

∥[χn − 1]eiT∆Pnϕ∥Ḣsc
+ ∥eit∆ϕ∥S(Ḣsc ;(T,∞)) + ∥Pnϕ− ϕ∥Ḣsc

.

Then we can see that the first and third terms tend to zero as n→ ∞ (by
dominated convergence), while the second term can be shown to tend to zero
by Strichartz and monotone convergence. This completes the proof. □
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