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Estimates for metrics of constant Chern

scalar curvature

Xi Sisi Shen

We prove a priori estimates for constant Chern scalar curvature
metrics on a compact complex manifold conditional on an upper
bound on the entropy, extending a recent result by Chen-Cheng in
the Kähler setting.

1. Introduction

Calabi introduced extremal Kähler metrics [7] as critical points of the L2

norm of the curvature tensor, now known as the Calabi functional, in his
search for the “best” canonical metric in a given Kähler class. Kähler-
Einstein and constant scalar curvature metrics are examples of extremal
metrics. Existence of Kähler-Einstein metrics was proved independently by
Yau [42] and Aubin [3] for manifolds of negative first Chern class and by
Yau [42] for those of zero first Chern class. For manifolds of positive first
Chern class (Fano manifolds), the Yau-Tian-Donaldson conjecture asserts
that K-stability is a necessary and sufficient condition for existence a of
Kähler-Einstein metric. The sufficiency was established by Chen-Donaldson-
Sun [11–13], building on the work of Tian-Yau [36], Tian [34] in the case of
Fano surfaces. The reverse implication was shown by Tian [35], Donaldson
[17], Stoppa [30] and the most general form by Berman [4]. The literature
in the field is vast and we refer the reader to the surveys [15, 18, 28, 32] for
references and some recent developments.

The Yau-Tian-Donaldson conjecture for constant scalar curvature Kähler
metrics, abbreviated cscK, remains open; while it is known that cscK implies
K-stability [4, 30], the converse is still not settled. A recent breakthrough
by Chen-Cheng [9] addressed the existence of a cscK metric within a given
Kähler class using the continuity path of Chen [8] (see also [21, 44]). Chen-
Cheng established a priori estimates under the assumption of a uniform
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upper bound for entropy, given by

Ent(ω̃, ω) =

∫

X
log ω̃n

ωn ω̃
n.

We note that the entropy is automatically bounded below since the map
x 7→ x log x for x > 0 has a lower bound. Using their estimates, Chen-Cheng
prove in [10] that the properness of K-energy in terms of L1 geodesic dis-
tance implies the existence of a cscK metric. In addition, they show that for
manifolds with discrete automorphism group, non-increasing K-energy and
the existence of a destablized geodesic ray is equivalent to the non-existence
of cscK. Chen-Cheng’s work has been extended by He [22, 23] to the cases
of Sasaki metrics and extremal metrics.

This paper addresses the question of whether the above theory can be
extended to the non-Kähler complex setting. Indeed there has been a surge
of interest recently in extending the study of geometric PDEs to the non-
Kähler setting [2, 25, 27, 29, 31, 33, 39–41, 43].

Let X be a compact complex manifold of complex dimension n and
define a Hermitian metric g on X to be a smooth tensor such that (gij̄) is a
positive definite Hermitian matrix at each point of X. Associate to g a real
(1, 1)-form ω given by

ω =
√
−1gij̄dz

i ∧ dzj

which we will also refer to as a Hermitian metric. Define the Chern scalar
curvature of ω by

R(ω) = −gij̄∂i∂j̄ log det g.

It is natural to ask:

Question 1. Let (X,ω) be a compact Hermitian manifold. Under what
conditions does there exist a constant Chern scalar curvature metric of the
form ω̃ = ω +

√
−1∂∂̄ϕ for a smooth function ϕ?

A different problem is to look for a Hermitian metric with constant
Chern scalar curvature within a given Hermitian conformal class, and this
was investigated by Angella-Calamai-Spotti [1].

In this paper, we seek to make progress towards answering Question 1.
We prove a generalization of the Chen-Cheng estimates in the non-Kähler
setting, under an assumption of the ∂∂̄-closedness of the metric ω and its
square. Namely:
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Theorem 1. Let (Xn, ω) be a compact Hermitian manifold of dimension n
such that ω satisfies ∂∂̄ωk = 0 for k = 1, 2. If ω̃ = ω +

√
−1∂∂̄ϕ is a constant

Chern scalar curvature Hermitian metric on X for smooth potential function
ϕ then for all k, there exists C(k) depending only on (X,ω) and upper bound
for Ent(ω̃, ω) such that ||ϕ||Ck(X,ω) ≤ C(k).

In our proof, the assumption that the given Hermitian metric ω satisfies
∂∂̄ωk = 0 for k = 1, 2 ensures that the average Chern scalar curvature R
for the metric remains unchanged up to addition of

√
−1∂∂̄ϕ and preserves

some other useful integral properties. In the case of complex surfaces, this as-
sumption is very natural since it coincides with the metric being Gauduchon
and it is a well-known result by Gauduchon that every Hermitian metric is
conformal to a Gauduchon metric [19]. We plan on using these estimates
towards building an existence theory for constant Chern scalar curvature
metrics in subsequent work.

The constant Chern scalar curvature Hermitian metric ω̃ = ω +
√
−1∂∂̄ϕ

equation can be written as the following coupled equations:

F = log ω̃n

ωn

∆̃F = −R + trω̃ Ric(ω)
(1)

where ∆̃ and trω̃ denote the Chern Laplacian and trace with respect to ω̃,
respectively.

Our proof of Theorem 1 follows the basic outline of Chen-Cheng [9].
However, difficulties arise from the non-Kählerity of ω. To prove the theo-
rem, it is sufficient to prove that ω̃ is quasi-isometric to ω since all higher
derivatives of ϕ can then be obtained by a straightforward bootstrapping
method (see Proposition 1.2 of [9]) where we use the result in [37] for the
C2,α estimate since we are working in the non-Kähler setting.

We cover several well-known identities for covariant derivatives, curva-
ture and torsion and establish the notation and conventions used in this
paper in Section 2.

In Section 3, we secure C0 bounds on ϕ and F in terms of (X,ω) and
the entropy following the sequence of arguments from [9], but using instead
a non-Kähler generalization of Yau’s theorem [14, 38], a non-Kähler gener-
alization of Tian’s α-invariant, and a uniform estimate in the non-Kähler
setting by Dinew-Ko lodziej [16] and B locki [6].

A bound on the gradient of ϕ depending only on (X,ω) and the entropy
is established in Section 4 by applying a maximum principle to a modified
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quantity from that of Chen-Cheng [9] to account for the new torsion terms
that arise.

In Section 5, we obtain an Lp bound on trω ω̃ depending only on p,
(X,ω) and the entropy using an inequality by Cherrier [14] from the study
of the non-Kähler complex Monge-Ampère equation (see also (9.5) of [39])
and a modified quantity from that of Chen-Cheng [9] to provide control over
torsion terms. We use a step involving integration by parts and note that an
additional term arises from the derivative landing on the volume form since
the volume form is not assumed to be closed.

Finally, we bound trω ω̃ depending on Lp bounds in Section 6 following
the method of [9]. In order to control several bad terms arising from tor-
sion, we make a very specific choice of the quantity to which we apply the
maximum principle. From this, we obtain the bounds needed for the Moser
iteration (see Section 4 of [9]) that lead us to the desired L∞ bound on
trω ω̃, with the Lp bound from Section 5 serving as the base case for the
iteration. This bound immediately gives us the L∞ bound on trω̃ ω since we
have bounds on F = log ω̃n

ωn from Section 3, proving the quasi-isometry of ω
and ω̃.

2. Preliminaries

In this section, for the convenience of the reader, we include several well-
known identities that will be needed for computations in the subsequent
sections (see also Section 2 of [39]).

Let X be a compact complex manifold of complex dimension n. In this
paper, we will frequently compute in complex coordinates z1, . . . , zn and
write tensors in terms of this coordinate system. Let g = gij̄ be a Hermi-

tian metric on X with associated (1, 1)-form ω =
√
−1gij̄dz

i ∧ dzj where all
repeated indices are to understood as being summed from 1 to n. We will
often also refer to ω as a Hermitian metric.

Let ∇ be the Chern connection associated to g, defined for a (1, 0)-form
a = akdz

k as

∇iak = ∂iak − Γjikaj , ∇iak = ∂iak(2)

and for a vector field X = Xk∂k as

∇iX
k = ∂iX

k + ΓkijX
j , ∇iXk = ∂iXk



✐

✐

“11-Shen” — 2022/8/9 — 0:08 — page 1529 — #5
✐

✐

✐

✐

✐

✐

Estimates for metrics of constant Chern scalar curvature 1529

where Γkij = gkp̄∂igjp̄ is the Christoffel symbol of g and gkp̄gip̄ = δik. For a
function f , ∇if = ∂if . The Chern connection is compatible with the metric
g in the sense that ∇kgij̄ = 0 ∀i, j, k.

The metric ω defines a pointwise norm on any tensor. Given a,X as
above we have that

|a|2ω = gij̄aiaj , |X|2ω = gij̄X
iXj .

For a tensor Y ik̄
m , we have that |Y |2ω = gij̄gℓk̄g

mn̄Y ik̄
m Y jℓ̄

n .

We define the trace of a real (1, 1)-form α = αij̄dz
i ∧ dzj with respect

to ω by

trω α = gij̄αij̄ = nωn−1∧α
ωn .

The curvature tensor is defined as

R p
ij̄k

= −∂j̄Γpik , Rij̄kℓ̄ = gpℓ̄R
p

ij̄k

where we note that Rij̄kℓ̄ = Rjīℓk̄.
The torsion of g is defined by

T kij = Γkij − Γkji.

We have the following formulae for commuting indices of the curvature
tensor:

R p
ij̄k

−R p
kj̄i

= ∂j̄Γ
p
ki − ∂j̄Γ

p
ik = ∂j̄T

p
ki

R k̄
ij̄ p̄ −R k̄

ip̄ j̄ = ∂iΓkpj − ∂iΓkjp = ∂iT kpj .
(3)

We write the Chern-Ricci curvature of ω as

Rij̄ = gkℓ̄Rij̄kℓ̄ = −∂i∂j̄ log det g,

its associated form as

Ric(ω) =
√
−1Rij̄dz

i ∧ dzj

and its Chern scalar curvature as

R(ω) = gij̄Rij̄ = trω Ric(ω).
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Let ω̃ = ω +
√
−1∂∂̄ϕ be another Hermitian metric on X. From this

definition, it is clear that

(∂ω)jkℓ̄ = (∂ω̃)jkℓ̄

where (∂ω)jkℓ̄ = ∂jgkℓ̄ − ∂kgjℓ̄. Denoting the torsion of ω̃ by T̃ , it follows
that

T pjkgpℓ̄ = (∂ω)jkℓ̄ = (∂ω̃)jkℓ̄ = T̃ qjkg̃qℓ̄

T pjℓgkp̄ = (∂̄ω)j̄kℓ̄ = (∂̄ω̃)j̄kℓ̄ = T̃ qjℓg̃kq̄.
(4)

where g̃ij̄ is the metric in coordinates for ω̃.

For simplicity, we will use the notation T̃jkℓ̄ = T̃ pjkg̃pℓ̄ and Tjkℓ̄ = T qjkgqℓ̄
and so the above equality can be rewritten as T̃jkℓ̄ = Tjkℓ̄.

We provide some commutation formulae which we will need for compu-
tations in the next few sections. For a (1, 0)-form a = akdz

k , we have

[∇i,∇j̄ ]ak = −R ℓ
ij̄k aℓ

[∇i,∇j̄ ]al = R k̄
ij̄ ℓ̄ak

[∇i,∇j ]ak = −T rij∇rak

[∇ī,∇j̄ ]ak = −T rij∇r̄ak

(5)

and for a scalar function f , we have

[∇i,∇j ]f = −T rij∇rf

[∇ī,∇j̄ ]f = −T rij∇r̄f.
(6)

The Chern Laplacian with respect to g of a function f is defined as

∆f = trω
√
−1∂∂̄f = gij̄∂i∂j̄f = gij̄∇i∇j̄f.

For a complex manifold, if we assume that

∂∂̄ωk = 0 for k = 1, 2,(7)

then in fact it vanishes for all k = 1, . . . , n− 1, following from a straightfor-
ward computation. Under this assumption,

∫

X
(ω +

√
−1∂∂̄ψ)n =

∫

X
ωn
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for any ψ ∈ PSH(X,ω) where

PSH(X,ω) = {ϕ ∈ C∞(X) : ω +
√
−1∂∂̄ϕ > 0}

and ensures the vanishing of the integrals of Chern Laplacians of functions:

∫

X
∆fωn = n

∫

X

√
−1∂∂̄f ∧ ωn−1 = n

∫

X
f
√
−1∂∂̄ωn−1 = 0.

Our assumption from (7) also gives us that the average Chern scalar cur-
vature quantity R is invariant under addition of

√
−1∂∂̄ϕ for any smooth

function ϕ since

R(ω̃) =
∫
X
R(ω̃)ω̃n∫
X
ω̃n

=
∫
X
nRic(ω̃)∧ω̃n−1

∫
X
ω̃n

=
n
∫
X
(Ric(ω)−

√
−1∂∂̄F )∧(ω+

√
−1∂∂̄φ)n−1

∫
X
ω̃n

=
n
∫
X
Ric(ω)∧ωn−1

∫
X
ωn

= R(ω) = R

does not depend on ϕ, where we used the fact that ω̃n = eFωn and that the
Chern-Ricci form is closed.

These properties will be necessary for the proofs in the later sections.
Note that throughout this paper, the constants may vary from line to line.

3. C0 bounds on F and ϕ in terms of the entropy

In this section, we prove that an upper bound on the entropy implies C0

bounds for ϕ and F . We follow the sequence of arguments of Chen-Cheng [9]
employing, where necessary, the non-Kähler generalizations of the original
theorems. In particular, we show:

Lemma 1. Let (ϕ, F ) be a smooth solution to (1), then there exists a C
depending only on (X,ω) and an upper bound on Ent(ω̃, ω) such that ||F ||0 +
||ϕ||0 ≤ C.

In particular, the proof relies on a non-Kähler generalization of Yau’s
theorem by Cherrier [14] and Tosatti-Weinkove [38], a non-Kähler general-
ization of Tian’s α-invariant and a result by Dinew-Ko lodziej [16] and B locki
[6] (see also [5, 26] for the original Kähler results).

The non-Kähler generalization of Yau’s theorem proved by Tosatti-
Weinkove [38] can be stated as follows:
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Corollary 1. For every smooth real-valued function G on X there exist
a unique real number b and a unique smooth real-valued function ψ on X
solving

(ω +
√
−1∂∂̄ψ)n = eG+bωn,

with ω +
√
−1∂∂̄ψ > 0, sup

X
ψ = 0.

In particular, when ∂∂̄ωk = 0, for k = 1, 2, then the constant b must equal

log
∫
X
ωn∫

X
eGωn

.

The following lemma by Hörmander (see Proposition 4.2.9 in [24]) will be
needed in the proof of the non-Kähler generalization of Tian’s α-invariant:

Lemma 2. There exists a constant C such that for every ψ ∈ C∞(X) sat-
isfying

√
−1∂∂̄ψ ≥ 0 and ψ(z) ≤ 0 in {|z| < 1} ⊂ Cn with ψ(0) ≥ −1, we

have

∫

{|z|<1/2}

e−ψ(z)dλ(z) ≤ C.

We are now ready to provide a proof of the generalized Tian’s α-invariant
for Hermitian metrics for the convenience of the reader and which we believe
is known to experts:

Proposition 1. Given (X,ω) a Hermitian manifold, there exist constants
α > 0 and C > 0 depending only on (X,ω) such that

∫

X
e−α(ψ−supX ψ)ωn ≤ C

for all ψ ∈ PSH(X,ω).

Proof. Following the argument by Tian [34], let us cover X with N geodesic
balls B16r(xi) with respect to ω such that ∪iBr(xi) covers X, with N and
r uniform. Let us assume that each B16r(xi) is contained in a holomorphic
coordinate chart, (U, {zj}), rescaled in r and {zj} so that for all w ∈ Br(xi),
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we have that

B2r(w) ⊂ {|z − w| ≤ 1/2} ⊂ B4r(w) ⊂ {|z − w| ≤ 1} ⊂ B8r(w).

By a result in [38] (see also Proposition 2.1 in [16]), having supX ψ = 0 and
ψ ∈ PSH(X,ω) implies that there is a uniform L1 bound on ψ in B16r(xi).
Hence, there exists a point yi ∈ Br(xi) such that

ψ(yi) ≥ −C

for a uniform C. Then, we have that

Br(xi) ⊂ B2r(yi) ⊂ {|z − yi| ≤ 1/2} ⊂ {|z − yi| ≤ 1} ⊂ B8r(yi) ⊂ B16r(xi)

and, in particular, on {|z − yi| < 1} we have that

ψ(yi)
C ≥ −1 ψ

C ≤ 0.

By the result by Hörmander (Lemma 2), it follows that

∫

|z−yi|<1/2

e−ψ(z)/Cdλ(z) ≤ C.

From this, we obtain that

∫

Br(xi)

e−ψ(z)/Cdλ(z) ≤
∫

{|z−yi|<1/2}

e−ψ(z)/Cdλ(z) ≤ C.

Since this holds on each of the N balls with which we have covered X, we
are done. □

Given Corollary 1, Proposition 1 and a result by Dinew-Ko lodziej [16]
and B locki [6], Lemma 1 follows verbatim from [9]. We provide here a proof
for the convenience of the reader.

Proof. (of Lemma 1) Firstly, we will normalize ϕ so that supX ϕ = 0 and ω
such that

∫

X ω
n = 1. Then, taking G = F log

√
F 2 + 1, we have by Corollary
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1 and the assumption in (7) that there exists a unique function ψ solving

(ω +
√
−1∂∂̄ψ)n = eG+bωn = eF

√
F 2+1ωn∫

X
eF

√
F 2+1ωn

with ω +
√
−1∂∂̄ψ > 0, supX ψ = 0. By Proposition 1, there exists α > 0

such that
∫

X
e−αφωn ≤ C,

∫

X
e−αψωn ≤ C.(8)

Let ε, δ, θ ∈ (0, 1) be constants to be determined. Let p ∈ X and choose a
coordinate ball B(p). Let η be a smooth cut-off function on X such that
1 − θ ≤ η ≤ 1 with

η(p) = 1, η|∂B = 1 − θ, |∂η|2ω = O(θ2), |∇2η|ω = O(θ).

Let Q := eδ(F+εψ−λφ) and A := δ(F + εψ − λϕ). Assume that Q attains
a maximum at p ∈ X. In order to apply the Alexandrov-Bakelman-Pucci
(ABP) maximum principle (see Lemma 9.3 in [20]), we need to compute

e−A∆̃(Qη) = (∆̃A+ |∂A|2ω̃)η + ∆̃η + 2Re(g̃ij̄Aiηj̄)

∆̃A = δ
(

− R + trω̃ Ric(ω) + εg̃ij̄(gψ)ij̄ − εg̃ij̄gij̄ − λn+ λg̃ij̄gij̄
)

≥ δ
(

− (R + λn) + (λ− C − ε) trω̃ ω + εn(
√

F 2 + 1I−1
F )1/n

)

where we used the fact that

g̃ij̄(gψ)ij̄ ≥ n
(

ωnψ
ω̃n

)

1
n

= n(
√

F 2 + 1I−1
F )

1
n

where IF =
∫

X e
F
√
F 2 + 1ωn. We have the following bounds:

∆̃η ≥ −(trω̃ ω)O(θ)

2Re(g̃ij̄Aiηj̄) ≥ −η|∂A|2ω̃ − (trω̃ ω)O(θ2)
η .

Combining these inequalities together, and choosing λ sufficiently large, δ
such that 2nδλ = α and θ small compared to δ, we have

e−A∆̃(Qη) ≥ δη(−R − λn+ nε(
√

F 2 + 1I−1
F )1/n) + δη(trω̃ ω

(

λ− C − ε)
)

− trω̃ ω
(

O(θ) + O(θ2)
η

)

≥ δη(−R − λn+ εn(
√

F 2 + 1)1/nI
−1/n
F ).
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Applying ABP to Qη = eδ(F+εψ−λφ)η, we have

sup
B
Qη ≤ sup

∂B
Qη

+ Cn

(

∫

B
δQ2ne2F ((−R − λn+ εn(

√

F 2 + 1I−1
F )1/n)−)2nωn

)1/2n
.

(9)

The integral vanishes except when −R − λn+ εn(
√
F 2 + 1I−1

F )1/n < 0. By

the positivity of (
√
F 2 + 1)1/n and I

−1/n
F , we find that the integral on the

right-hand side of (9) is bounded above by
∫

B∩{F≤C}

δe2nδ(F+εψ−λφ)e2F (|R| + λn)ωn

≤ C

∫

B∩{F≤C}

e2nδ(εψ−λφ)ωn

≤ C

∫

X

e−2nδλφωn = C

∫

X

e−αφωn ≤ C

since ψ ≤ 0 and by applying (8), where C depends on ε and IF . This gives
us that

Q(p) = sup
X
Q ≤ (1 − θ) sup

X
Q+ C ⇒ F + εψ − λϕ ≤ C.(10)

Now, in order to arrive at an upper bound on F , it suffices to prove C0

bounds on ψ and ϕ. A bound on ϕ can be accomplished by showing that
eF = ω̃n

ωn ∈ Lq(X) for q > 1 and using a result of Dinew-Ko lodziej [16] and
B locki [6]. By (8), (10) and the fact that ϕ ≤ 0, we have that

∫

X
eαF/εωn ≤

∫

X
eα(C−εψ+λφ)/εωn ≤

∫

X
e−αψωn ≤ C.

Choosing ε such that ε = α
q for q > 1, we arrive at an Lq bound for eF which

by the previously stated result gives us ||ϕ||0 ≤ C. We also have that

ωnψ
ωn = eF

√
F 2+1∫

X
eF

√
F 2+1ωn

≤ CeqF

for some C > 0 and q > 1 and so by the same argument, we also obtain
bounds on ||ψ||0. Since IF can be bounded from above in terms of Ent(ω̃, ω),
the dependence of the constant on IF passes over to Ent(ω̃, ω). Thus, we have
shown an upper bound on F , as well as a C0 bound on ϕ, as desired.
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It remains to show a lower bound on F . For K > 0 to be determined,
we can compute

∆̃(F +Kϕ) = −R + g̃ij̄Rij̄ +Kg̃ij̄ϕij̄ ≤ −R +Kn− (K − C)g̃ij̄gij̄ .

Choosing K > C and using the arithmetic-geometric mean inequality

trω̃ ω ≥ n
(

ωn

ω̃n

)

1
n = ne−

F
n ,

we find that at a minimum p0 of F +Kϕ, we have

0 ≤ −R +Kn− n(K − C)e−
F
n

giving us the desired lower bound for F in terms of ||ϕ||0 which can be
bounded in terms of (X,ω) and Ent(ω̃, ω). □

Remark 1. In the paper by Chen-Cheng [9], they also bound the entropy
in terms of ||ϕ||0 using the fact that a cscK metric is a minimizer of K-
energy. In the Hermitian case, it is not known whether there exists a notion
of K-energy and so it is unclear whether such an implication should hold.

4. Gradient bound on the potential

In this section, we prove a bound on |∂ϕ|2ω by applying a maximum principle
argument to a modified quantity from that of Chen-Cheng [9]. This gradient
term appears in the computation for proving bounds on the Lp norms of
trω ω̃. We use the fact that we have secured C0 bounds on F and ϕ depending
only on (X,ω) and the entropy, as shown in the last section.

Lemma 3. Let (ϕ, F ) be a smooth solution to (1). Then there exists a
constant C depending only on (X,ω) and Ent(ω̃, ω) such that

|∂ϕ|2ω ≤ C.(11)

Proof. Consider the quantity Q := e−(F+λφ)+
1
2φ

2

(|∂ϕ|2ω + 1) and let A :=
−(F + λϕ) + 1

2ϕ
2. We will compute ∆̃Q for λ > 0 to be determined.
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Firstly, we have

e−A∆̃Q = (∆̃A+ |∂A|2ω̃)(|∂ϕ|2ω + 1) + ∆̃(|∂ϕ|2ω)

+ 2Re
(

g̃ij̄Ai(|∂ϕ|2ω)j̄
)

.
(12)

Firstly, we have that

∆̃A = −∆̃F − λ∆̃ϕ+ 1
2∆̃ϕ2

= R − g̃ij̄Rij̄ − (λ− ϕ)n+ (λ− ϕ)g̃ij̄gij̄ + |∂ϕ|2ω̃.

Let ∇ be the covariant derivative with respect to g. The second term in
(12) can be computed as

∆̃(|∂ϕ|2ω) = g̃ij̄∇i∇j̄(g
kℓ̄ϕkϕℓ̄)

= g̃ij̄gkℓ̄(∇k∇i∇j̄ϕϕℓ̄ + T rki∇r∇j̄ϕϕℓ̄ + ∇iϕk∇j̄ϕℓ̄

+ ∇j̄ϕk∇iϕℓ̄ + ϕk∇i∇ℓ̄∇j̄ϕ+ ϕk∂i(T
r
lj)ϕr̄ + ϕkT

r
ℓjϕir̄)

= gkℓ̄Fkϕℓ̄ + 2Re(g̃ij̄gkℓ̄T rkiϕrj̄ϕℓ̄) + g̃ij̄gkℓ̄ϕkiϕℓ̄j̄ + g̃ij̄gkℓ̄ϕkj̄ϕℓ̄i

+ gkℓ̄g̃ij̄ϕk∇ℓ̄∇i∇j̄ϕ+ gkℓ̄g̃ij̄ϕkR
r̄

iℓ̄ j̄ϕr̄ + gkℓ̄g̃ij̄ϕk∂i(T
r
ℓj)ϕr̄

= 2Re(gkℓ̄Fkϕℓ̄) + 2Re(g̃ij̄gkℓ̄T rkiϕrj̄ϕℓ̄) + g̃ij̄gkℓ̄ϕkiϕℓ̄j̄

+ g̃ij̄gkℓ̄ϕkj̄ϕℓ̄i + gkℓ̄g̃ij̄ϕkR
r̄

iℓ̄ j̄ϕr̄ + gkℓ̄g̃ij̄ϕk∂i(T
r
ℓj)ϕr̄,

where we used the commutation formula from (5) and the fact that

g̃ij̄∇k∇i∇j̄ϕ = Fk.

From there we commute the indices of the curvature tensor as in (3) and
use the fact that

Fk = −Ak − λϕk + ϕϕk

to obtain

∆̃(|∂ϕ|2ω) = −2Re(gkℓ̄Akϕℓ̄) + 2Re(g̃ij̄gkℓ̄T rkiϕrj̄ϕℓ̄) + g̃ij̄gkℓ̄ϕkiϕℓ̄j̄

+ g̃ij̄gkℓ̄ϕkj̄ϕℓ̄i + gkℓ̄g̃ij̄ϕkR
r̄

ij̄ ℓ̄ϕr̄ − 2(λ− ϕ)|∂ϕ|2ω.
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Substituting back into (12), we arrive at the following equality:

e−A∆̃Q = |∂A|2ω̃ +
(

R − (λ− ϕ)n+ g̃ij̄((λ− ϕ)gij̄ −Rij̄)

+ |∂ϕ|2ω̃
)

(|∂ϕ|2ω + 1)

− 2Re(gkℓ̄Akϕℓ̄) + 2Re(g̃ij̄gkℓ̄T rkiϕrj̄ϕℓ̄) + g̃ij̄gkℓ̄ϕkiϕℓ̄j̄

+ g̃ij̄gkℓ̄ϕkj̄ϕℓ̄i + gkℓ̄g̃ij̄ϕkR
r̄

ij̄ ℓ̄ϕr̄ − 2(λ− ϕ)|∂ϕ|2ω̃
+ 2Re(g̃ij̄Aig

kℓ̄(ϕkϕℓ̄j̄ + ϕkj̄ϕℓ̄)).

Now, we use the completed square

0 ≤ g̃ij̄gkℓ̄(ϕki +Aiϕk)(ϕℓ̄j̄ +Aj̄ϕℓ̄)

= g̃ij̄gkℓ̄ϕkiϕℓ̄j̄ + |∂A|2ω̃|∂ϕ|2ω + 2Re(g̃ij̄gkℓ̄ϕℓ̄j̄Aiϕk),

the simplification

gkℓ̄Akϕℓ̄ − gkℓ̄g̃ij̄Aiϕkj̄ϕℓ̄ = gkℓ̄ϕℓ̄(Ak − g̃ij̄Ai(g̃kj̄ − gkj̄)) = g̃ij̄Aiϕj̄

and rewrite the torsion term as

2Re(g̃ij̄gkℓ̄T rkiϕrj̄ϕℓ̄) = 2Re(g̃ij̄gkℓ̄T rki(g̃rj̄ − grj̄)ϕℓ̄)

= 2Re(gkℓ̄T ikiϕℓ̄) − 2Re(g̃ij̄gkℓ̄grj̄T
r
kiϕℓ̄),

to obtain

e−A∆̃Q ≥ |∂A|2ω̃ + (R − (λ− ϕ)n+ g̃ij̄((λ− ϕ)gij̄ −Rij̄)

+ |∂ϕ|2ω̃)(|∂ϕ|2ω + 1)

+ 2Re(gkℓ̄T ikiϕℓ̄) − 2Re(g̃ij̄gkℓ̄grj̄T
r
kiϕℓ̄) + g̃ij̄gkℓ̄ϕkj̄ϕℓ̄i

+ gkℓ̄g̃ij̄ϕkR
r̄

ij̄ ℓ̄ϕr̄ − 2(λ− ϕ)|∂ϕ|2ω − 2Re(g̃ij̄Aiϕj̄).

Applying a few instances of Young’s inequality and choosing λ suffi-
ciently large, we have

e−A∆̃Q ≥ −C(|∂ϕ|2ω + 1) + C trω̃ ω(|∂ϕ|2ω + 1) + |∂ϕ|2ω̃|∂ϕ|2ω.(13)

Noting an elementary consequence of the fact that eF = ω̃n

ωn (see page 12 in
[9]), we have the inequality

|∂ϕ|2ω̃|∂ϕ|2ω + |∂ϕ|2ω trω̃ ω ≥ 1
n−1(|∂ϕ|2ω)1+

1
n e−

F
n .
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Applying this inequality to the last term in (13), we see that at a maximum
of Q, we have the bound

0 ≥ (|∂ϕ|2ω)1+
1
n e−

F
n − C(|∂ϕ|2ω + 1).

Since we have bounds on F depending on (X,ω) and the entropy, we arrive
at the desired upper bound on |∂ϕ|2ω. □

5. Lp bound on the trace

We are now ready to compute Lp bounds on trω ω̃. Our approach reflects
that of Chen-Cheng [9] using a modification of the quantity to which we
apply the maximum principle to account for new torsion terms. The result
of this section will be crucial for obtaining the L∞ bound on the trace in
the next section. We prove the following:

Theorem 2. Let (ϕ, F ) be a smooth solution to (1). For any p > 0, there
exists a constant C(p) depending only on p, (X,ω) and Ent(ω̃, ω) such that

∫

X
(trω ω̃)pωn ≤ C(p).

Proof. Define Q := e−α(F+λφ)(trω ω̃ + 1) and let A := −α(F + λϕ) where
α, λ > 0 are constants to be determined. We first compute

e−A∆̃(eA(trω ω̃ + 1)) = (∆̃A+ |∂A|2ω̃)(trω ω̃ + 1) + ∆̃ trω ω̃

+ 2Re(g̃ij̄Ai∂j̄ trω ω̃).

Using an inequality due to Cherrier [14] (see also (9.5) of [39]) and the
fact that g is a fixed metric whose torsion terms and their derivatives are
bounded by uniform constants, we have the following:

∆̃ log trω ω̃ ≥ 1
trω ω̃

(

2Re(g̃kq̄T iik
∂q̄ trω ω̃
trω ω̃

) + ∆F − C trω ω̃ trω̃ ω
)

⇒ ∆̃ trω ω̃ ≥ 2Re(g̃kq̄T iik
∂q̄ trω ω̃
trω ω̃

) + ∆F − C trω ω̃ trω̃ ω + |∂ trω ω̃|2ω̃
trω ω̃

where we used the fact that we have uniform lower bounds on trω ω̃ and
trω̃ ω by the geometric-arithmetic mean inequality. We will use the following
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completed square:

0 ≤ 1
trω ω̃

g̃ij̄(Ai trω ω̃ + T kki + ∂i trω ω̃)(Aj̄ trω ω̃ + T ℓℓj + ∂j̄ trω ω̃)

= |∂A|2ω̃ trω ω̃ +
g̃ij̄T kkiT

ℓ
ℓj

trω ω̃
+ |∂ trω ω̃|2ω̃

trω ω̃
+ 2Re(g̃ij̄AiT ℓℓj)

+ 2Re(g̃ij̄Ai∂j̄ trω ω̃) + 2
trω ω̃

Re(g̃ij̄T kki∂j̄ trω ω̃).

Putting this together, we have

e−A∆̃Q ≥ ∆̃A(trω ω̃ + 1) + |∂A|2ω̃(trω ω̃ + 1) + 2
trω ω̃

Re(g̃ij̄T kki∂j̄ trω ω̃)

+ ∆F − C trω ω̃ trω̃ ω + |∂ trω ω̃|2ω̃
trω ω̃

+ 2Re(g̃ij̄Ai∂j̄ trω ω̃)

≥ α(R − trω̃ Ric(ω) − λ∆̃ϕ)(trω ω̃ + 1) + |∂A|2ω̃ + ∆F

− C trω ω̃ trω̃ ω − g̃ij̄T kkiT
ℓ
ℓj

trω ω̃
− 2Re(g̃ij̄AiT ℓℓj̄)

≥ α(R − λn+ (λ2 − C
α ) trω̃ ω)(trω ω̃ + 1) + ∆F

(14)

where we used in the last line the following instance of Young’s inequality:

2Re(g̃ij̄AiT ℓℓj̄) ≥ −g̃ij̄T kkiT ℓℓj − |∂A|2ω̃ ≥ −C trω̃ ω − |∂A|2ω̃

and chose λ sufficiently large compared to Ric(ω).
Using the fact that

1
2p+1∆̃(Q2p+1) = 2pQ2p−1|∂Q|2ω̃ +Q2p∆̃Q ≥ 2pQ2p−2|∂Q|2ωeA +Q2p∆̃Q

and integrating with respect to ω̃n = eFωn, we have at

∫

X
2peA+FQ2p−2|∂Q|2ωωn +

∫

X
eA+F (λα2 − C) trω̃ ω(trω ω̃ + 1)Q2pωn

+

∫

X
eA+FQ2p∆Fωn ≤

∫

X
αeA+F (λn− R)(trω ω̃ + 1)Q2pωn.

Integrating by parts the integral involving ∆F , where we note that an ad-
ditional term arises from the derivative landing on the volume form, and



✐

✐

“11-Shen” — 2022/8/9 — 0:08 — page 1541 — #17
✐

✐

✐

✐

✐

✐

Estimates for metrics of constant Chern scalar curvature 1541

using Young’s inequality, we see that
∫

X
eA+FQ2p∆Fωn =

∫

X
e(1−α)F−αλφQ2p

√
−1∂∂̄F ∧ ωn−1

≥
∫

X
e(1−α)F−αλφQ2p

√
−1((α− 1)∂F + αλ∂ϕ) ∧ ∂̄F ∧ ωn−1

−
∫

X
e(1−α)F−αλφ2pQ2p−1

√
−1∂Q ∧ ∂̄F ∧ ωn−1

− C

∫

X
eA+FQ2p|∂F |ωωn

≥
∫

X
(α−1

2 − p− 1
2)Q2peA+F |∂F |2ωωn −

∫

X

(

Cα2λ2

2(α−1) + C
)

eA+FQ2pωn

−
∫

X
peA+FQ2p−2|∂Q|2ωωn

where we used Lemma 3 to bound |∂ϕ|2ω in the last inequality along with
the fact that we have a lower bound on Q. Combining everything together
and bounding eA+F , we arrive at

∫

X
pQ2p−2|∂Q|2ωωn +

∫

X
(α2 − p− 1)Q2p|∂F |2ωωn

+

∫

X
(λα2 − C) trω ω̃(trω̃ ω + 1)Q2pωn

≤ C

∫

X
α(λn− R)(trω ω̃ + 1)Q2pωn + C

∫

X
(1 + α2λ2

2(α−1))Q
2pωn.

Choosing λ ≥ 2C + 2 and requiring α ≥ 2(p+ 2) and p ≥ 0, we have that
∫

X
(trω ω̃)

2p+1+
1

n−1ωn ≤ C

∫

X
trω ω̃(trω̃ ω + 1)Q2pωn

≤ C

∫

X
(trω ω̃ + 1)Q2pωn + C

∫

X
Q2pωn

≤ C

∫

X
trω ω̃Q

2pωn ≤ C

∫

X
(trω ω̃)2p+1ωn

where the third inequality holds since we have a lower bound for trω ω̃ and
C depends on p, (X,ω),Ent(ω̃, ω). For the case p = 0, we see that

∫

X
(trω ω̃)

1+
1

n−1ωn ≤ C

∫

X
trω ω̃ ωn ≤ Cvol(X).

Thus, by iterating, we can bound the Lp norm of trω ω̃ by a constant de-
pending on p, (X,ω) and Ent(ω̃, ω). □
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6. L∞ bound on the trace

In this section we will obtain a uniform L∞ bound on trω ω̃. We will accom-
plish this by computing the L∞ norm of the sum of trω ω̃ and |∂F |2ω̃ as this
will help cancel out some bad terms, following the strategy of Chen-Cheng
[9]. The key ingredient is a calculation using covariant derivatives with re-
spect to ω̃ for a specific quantity to which we apply the maximum principle.
The quantity is chosen in such a way as to preserve a positive amount of
certain desirable terms which will serve to control the bad terms that arise
from torsion and derivatives of torsion.

In particular, we prove

Theorem 3. Let (ϕ, F ) be a smooth solution to (1). Then there exists a
constant C depending only on (X,ω) and Ent(ω̃, ω), such that

max
X

(trω ω̃) + max
X

|∂F |2ω̃ ≤ C.

Proof. Let ∇̃, R̃ and T̃ denote, respectively, the covariant derivative, curva-
ture tensor and torsion with respect to g̃. Commuting derivatives as in (5)
and (6), we have the following:

∆̃(|∂F |2ω̃) = g̃ij̄ g̃pq̄
(

(∇̃p∇̃i∇̃j̄F + T̃ rpi∇̃rFj̄)Fq̄ + T̃ rqj∇̃iFr̄Fp

+ ∇̃iT̃ rqjFr̄Fp + (∇̃q̄∇̃i∇̃j̄F + R̃ ℓ̄
iq̄ j̄Fℓ̄)Fp

)

+ |∇̃∇̃F |2ω̃ + |∇̃ ¯̃∇F |2ω̃
= g̃pq̄

(

∆̃F )pFq̄ + 2Re(g̃ij̄ g̃pq̄T̃ rpi∇̃rFj̄Fq̄) + g̃ij̄ g̃pq̄∇̃iT̃ rqjFr̄Fp

+ g̃pq̄(∆̃F )q̄Fp + g̃ij̄ g̃pq̄R̃ ℓ̄
iq̄ j̄Fℓ̄Fp + |∇̃∇̃F |2ω̃ + |∇̃ ¯̃∇F |2ω̃

= g̃pq̄
(

∆̃F )pFq̄ + 2Re(g̃ij̄ g̃pq̄ g̃rk̄T̃pik̄∇̃rFj̄Fq̄)

+ g̃ij̄ g̃pq̄ g̃tr̄∇̃i(T̃qjt̄)Fr̄Fp + g̃pq̄(∆̃F )q̄Fp

+ g̃ij̄ g̃pq̄ g̃kℓ̄R̃iq̄kj̄Fℓ̄Fp + |∇̃∇̃F |2ω̃ + |∇̃ ¯̃∇F |2ω̃
= 2Re(g̃pq̄

(

∆̃F )pFq̄) + 2Re(g̃ij̄ g̃pq̄ g̃rk̄T̃pik̄∇̃rFj̄Fq̄)

+ g̃ij̄ g̃pq̄ g̃tr̄∇̃i(T̃qjt̄)Fr̄Fp + g̃pq̄ g̃kℓ̄R̃kq̄Fℓ̄Fp

− g̃pq̄ g̃kℓ̄g̃rs̄∇̃q̄(T̃rks̄)Fℓ̄Fp + |∇̃∇̃F |2ω̃ + |∇̃ ¯̃∇F |2ω̃.

(15)
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For a general real-valued function A(F ),

e−A(F )∆̃(eA(F )|∂F |2ω̃) = ∆̃(|∂F |2ω̃) + 2A′Re(g̃ij̄ g̃kℓ̄(FiFkFℓ̄j̄ + FiFℓ̄Fkj̄))

+ (A′2 +A′′)|∂F |4ω̃ +A′∆̃F |∂F |2ω̃,

where we use the simplified notation Fℓ̄j̄ to denote ∇̃j̄∇̃ℓ̄F . Substituting (15)
for the first term in the above equation and noting the following completed
square:

A′2|∂F |4ω̃ + 2A′Re(g̃ij̄ g̃kℓ̄FiFkFℓ̄j̄) + |∇̃∇̃F |2ω̃ ≥ 0,

we have that

e−A(F )∆̃(eA(F )|∂F |2ω̃) ≥ 2Re(g̃pq̄(∆̃F )pFq̄) + 2Re(g̃ij̄ g̃pq̄ g̃rk̄T̃pik̄∇̃rFj̄Fq̄)

+ g̃ij̄ g̃pq̄ g̃tr̄∇̃i(T̃qjt̄)Fr̄Fp + g̃pq̄ g̃kℓ̄R̃kq̄Fℓ̄Fp

− g̃pq̄ g̃kℓ̄g̃rs̄∇̃q̄(T̃rks̄)Fℓ̄Fp + |∇̃ ¯̃∇F |2ω̃
+ 2A′g̃ij̄ g̃kℓ̄FiFℓ̄Fkj̄
+A′′|∂F |4ω̃ +A′∆̃F |∂F |2ω̃.

Switching the Ricci curvature of ω̃ to that of ω using the relation

R̃kq̄ = Rkq̄ − Fkq̄,

we arrive at

e−A(F )∆̃(eA(F )|∂F |2ω̃)

≥ 2Re(g̃pq̄(∆̃F )pFq̄) + 2Re(g̃ij̄ g̃pq̄ g̃rk̄T̃pik̄∇̃rFj̄Fq̄)

+ g̃ij̄ g̃pq̄ g̃tr̄∇̃i(T̃qjt̄)Fr̄Fp + g̃pq̄ g̃kℓ̄Rkq̄Fℓ̄Fp

− g̃pq̄ g̃kℓ̄g̃rs̄∇̃q̄(T̃rks̄)Fℓ̄Fp + |∇̃ ¯̃∇F |2ω̃
+ (2A′ − 1)g̃ij̄ g̃kℓ̄FiFℓ̄Fkj̄ +A′′|∂F |4ω̃ +A′∆̃F |∂F |2ω̃

≥ 2Re(g̃pq̄(∆̃F )pFq̄) + 2Re(g̃ij̄ g̃pq̄ g̃rk̄T̃pik̄∇̃rFj̄Fq̄)

+ g̃ij̄ g̃pq̄ g̃tr̄∇̃i(T̃qjt̄)Fr̄Fp + g̃pq̄ g̃kℓ̄Rkq̄Fℓ̄Fp

− g̃pq̄ g̃kℓ̄g̃rs̄∇̃q̄(T̃rks̄)Fℓ̄Fp + (1 − (A′ − 1
2))|∇̃ ¯̃∇F |2ω̃

+ (A′′ − (A′ − 1
2))|∂F |4ω̃ +A′∆̃F |∂F |2ω̃

(16)

where we used the following Cauchy-Schwarz inequality:

(2A′ − 1)g̃ij̄ g̃kℓ̄FiFℓ̄Fkj̄ ≥ −(A′ − 1
2)|∂F |4ω̃ − (A′ − 1

2)|∇̃ ¯̃∇F |2ω̃
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for A′ > 1
2 .

In order to control the bad torsion terms (the second, third and fifth
terms in the last line of (16)), we will need to specifically choose our func-
tion A(F ) to ensure that 1 − (A′ − 1

2) > 0 and A′′ − (A′ − 1
2) > 0. We can

accomplish this by choosing

A(F ) = κeF + F (12 − ε),

so that A′(F ) = κeF + 1
2 − ε and A′′(F ) = κeF . We then can choose ε, κ > 0

such that

0 ≤ A′′ − ε = A′ − 1
2 ≤ 1

2

⇔
{

κeminX F − ε ≥ 0

κemaxX F − ε ≤ 1
2 .

We can first choose κ small enough such that κemaxX F ≤ 1
2 . Then choose

ε small enough such that κeminF ≥ ε. This ensures that A′ ∈ (12 , 1).
It follows that

e−A(F )∆̃(eA(F )|∂F |2ω̃)

≥ 2Re
(

g̃pq̄
(

∆̃F )pFq̄
)

+ 2Re(g̃ij̄ g̃pq̄ g̃rk̄T̃pik̄∇̃rFj̄Fq̄) + g̃ij̄ g̃pq̄ g̃tr̄∇̃i(T̃qjt̄)Fr̄Fp

+ g̃pq̄ g̃kℓ̄Rkq̄FpFℓ̄ − g̃pq̄ g̃kℓ̄g̃rs̄∇̃q̄(T̃rks̄)Fℓ̄Fp + 1
2 |∇̃

¯̃∇F |2ω̃
+ ε|∂F |4ω̃ +A′∆̃F |∂F |2ω̃

≥ 2Re
(

g̃pq̄
(

∆̃F )pFq̄
)

+ 2Re(g̃ij̄ g̃pq̄ g̃rk̄Tpik̄∇̃rFj̄Fq̄) + g̃ij̄ g̃pq̄ g̃tr̄∂iTqjt̄Fr̄Fp

− g̃ij̄ g̃pq̄ g̃tr̄g̃sk̄∂ig̃tk̄Tqjs̄Fr̄Fp + g̃pq̄ g̃kℓ̄Rkq̄FpFℓ̄ − g̃pq̄ g̃kℓ̄g̃rs̄∂q̄(Trks̄)Fℓ̄Fp

+ g̃pq̄ g̃kℓ̄g̃rs̄g̃ij̄∂q̄ g̃is̄Trkj̄Fℓ̄Fp + 1
2 |∇̃

¯̃∇F |2ω̃ + ε|∂F |4ω̃ − |∆̃F ||∂F |2ω̃

where we converted the covariant derivatives to partial derivatives as in (2)
and passed the torsion terms of g̃ to those of g as in (4).

We can rewrite the first term appearing on the right hand side of the
above inequality by using the following:

(∆̃F )p = ∂p(g̃
ij̄Rij̄) = −g̃aj̄∂pg̃ab̄g̃ib̄Rij̄ + g̃ij̄∂pRij̄ .

Putting this all together, applying Young’s inequality and choosing B
to be at least 3(n− 1), where the factor of n− 1 comes from the fact that
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trω ω̃ ≤ C(trω̃ ω)n−1, we have

e−A(F )∆̃(eA(F )|∂F |2ω̃)

≥ −2Re(g̃pq̄ g̃aj̄∂pg̃ab̄g̃
ib̄Rij̄Fq̄) + 2Re(g̃pq̄ g̃ij̄∂pRij̄Fq̄)

+ 2Re(g̃ij̄ g̃pq̄ g̃rk̄Tpik̄∇̃rFj̄Fq̄) + g̃ij̄ g̃pq̄ g̃tr̄∂iTqjt̄Fr̄Fp

− g̃ij̄ g̃pq̄ g̃tr̄g̃sk̄∂ig̃tk̄Tqjs̄Fr̄Fp + g̃pq̄ g̃kℓ̄Rkq̄FpFℓ̄ − g̃pq̄ g̃kℓ̄g̃rs̄∂q̄(Trks̄)Fℓ̄Fp

+ g̃pq̄ g̃kℓ̄g̃rs̄g̃ij̄∂q̄ g̃is̄Trkj̄Fℓ̄Fp + 1
2 |∇̃

¯̃∇F |2ω̃ + ε|∂F |4ω̃ − |∆̃F ||∂F |2ω̃
≥ −C(trω ω̃)Bgij̄ g̃kℓ̄g̃pq̄∂ig̃kq̄∂j̄ g̃pℓ̄ + 1

4 |∇̃
¯̃∇F |2ω̃

− C(trω ω̃)B|∂F |2ω̃ − C(trω ω̃)B.

Now, we use the following computation in the proof of Equation (9.5) of [39]
for ∆̃ trω ω̃:

∆̃ trω ω̃ = g̃pj̄ g̃iq̄gkℓ̄∇kg̃ij̄∇ℓ̄g̃pq̄ + 2Re(g̃ij̄gkℓ̄T pki∇ℓ̄g̃pj̄) + g̃ij̄gkℓ̄T pikT
q
jℓg̃pq̄

+ gij̄Fij̄ −R+ g̃ij̄∇iT ℓjℓ + g̃ij̄gkℓ̄∇ℓ̄T
p
ik

− g̃ij̄gkℓ̄g̃kq̄(∇iT
q
jℓ −Riℓ̄pj̄g

pq̄) − g̃ij̄gkℓ̄T pikT
q
jℓgpq̄.

Converting the first term into covariant derivatives and applying Young’s
inequality, we have

g̃pj̄ g̃iq̄gkℓ̄∇kg̃ij̄∇ℓ̄g̃pq̄ ≥ g̃pj̄ g̃iq̄gkℓ̄∂kg̃ij̄∂ℓ̄g̃pq̄

− ε
2 g̃
pj̄ g̃iq̄gkℓ̄∂kg̃ij̄∂ℓ̄g̃pq̄ − C(trω ω̃)n.

Likewise, the second term can be bounded below by

2Re(g̃ij̄gkℓ̄T pki∇ℓ̄g̃pj̄) ≥ − ε
2 g̃
pj̄ g̃iq̄gkℓ̄∂kg̃ij̄∂ℓ̄g̃pq̄ − C(trω ω̃)n,

and the fourth term by

gij̄Fij̄ ≥ − |∇̃ ¯̃∇F |2ω̃
δ − Cδ(trω ω̃)2.

It is straightforward to see that the remaining terms can be bounded be-
low by −C(trω ω̃)n. Choosing B ≥ n and δ = 4e−A(F )N(B + 1)(trω ω̃)B, we
arrive at the following:

∆̃ trω ω̃ ≥ (1 − ε)g̃pj̄ g̃iq̄gkℓ̄∂kg̃ij̄∂ℓ̄g̃pq̄

− eA(F )

4N(B+1)(trω ω̃)B
|∇̃ ¯̃∇F |2ω̃ − C(trω ω̃)B+2.
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Observe that

∆̃(trω ω̃)B+1 = (B + 1)B(trω ω̃)B−1|∂ trω ω̃|2ω̃ + (B + 1)(trω ω̃)B∆̃ trω ω̃

≥ (B + 1)(trω ω̃)B∆̃ trω ω̃.

Choosing N sufficiently large and letting Q := eA(F )|∂F |2ω̃ +N(trω ω̃)B+1,
we have

∆̃Q = ∆̃(eA(F )|∂F |2ω̃ +N(trω ω̃)B+1)

≥ −C(trω ω̃)B|∂F |2ω̃ − C(trω ω̃)2B+2

≥ −C(trω ω̃)B+1(|∂F |2ω̃ +N(trω ω̃)B+1)

≥ −C(trω ω̃)B+1Q.

The rest of the proof leading to the L∞ bound on Q follows using Moser
iteration and several instances of the Hölder inquality and the Sobolev in-
equality with respect to the reference metric ω, see Section 4 of [9]. The
constants and powers of the trace differ slightly from the Kähler case, but
do not affect the iteration method. In addition, showing an L1 bound on the
quantity Q is straightforward since the bound for |∂F |2ω̃ holds the same way
as in (4.35) of [9] and the L1 bound on (trω ω̃)B+1 follows using the LB+1

norm we obtained in Section 5. □

Combining this upper bound on trω ω̃ with the fact that we already have
a lower bound establishes the quasi-isometry of ω and ω̃. The higher order
estimates of ϕ can then be obtained using a bootstrapping argument as in
the proof of Proposition 1.2 in [9] where the C2,α estimate is obtained using
the result in [37].
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