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Poitou–Tate sequence for complex of tori

over p-adic function fields

Yisheng Tian

We complete the picture of local and global arithmetic duality the-
orems for short complexes of őnite Galois modules and tori over
p-adic function őelds. In view of the duality theorems, we deduce a
12-term PoitouśTate exact sequence which relates global Galois co-
homology groups to restricted topological products of local Galois
cohomology groups.

Introduction

Recently, there have been several developments concerning the arithmetic
of linear groups over őelds of arithmetic type having cohomological dimen-
sional strictly larger than 2 (for example, the function őeld K of a smooth
projective geometrically integral curve deőned over some őnite extension of
Qp). In [CTPS12], Colliot-Thélène, Parimala and Suresh investigated the
Hasse principle for certain varieties over such K. Later, Hu [Hu14] obtained
results on the Hasse principle for simply connected groups while Harari and
Szamuely [HS16] found cohomological obstructions to the Hasse principle for
quasi-split reductive groups over p-adic function őelds. On the other hand,
Harari, Scheiderer and Szamuely [HSS15, HS16] studied systematically ob-
structions to the Hasse principle and weak approximation for tori over p-adic
function őelds. All these developments motivate investigations concerning the
arithmetic of reductive linear algebraic groups over such őelds K.

This paper is some sort of complement to [Tia21] where the author estab-
lished some arithmetic duality results and obtained obstructions to weak ap-
proximation for connected reductive algebraic groups over K. In the present
paper, we give a full picture of arithmetic duality results for a short complex
of tori and deduce a 12-term PoitouśTate style exact sequence (in particular,
we obtain such an exact sequence for groups of multiplicative type over K).

Let us state the main results of this article. Let X be a smooth projective
geometrically integral curve over a p-adic őeld k and let K = k(X) be the
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function őeld of X. Suppose that ρ : T1 → T2 is a morphism of K-tori and
let C = [T1 → T2] be the associated complex concentrated in degree −1 and
0. For a K-torus P , its dual P ′ is the torus whose module of characters is the
module of cocharacters of P . Let T ′

1 and T ′
2 be the respective dual tori of T1

and T2, and put C ′ = [T ′
2 → T ′

1] for the dual complex concentrated in degree
−1 and 0. We put Xi(C) := Ker

(
Hi(K,C)→

∏
v∈X(1) H

i(Kv, C)
)

to be the
TateśShafarevich group of C, where X(1) denotes the set of closed points on
X. The őrst main result is

Theorem. The following is a functorial perfect pairing of finite groups for

0 ≤ i ≤ 2 :

X
i(C)×X

2−i(C ′)→ Q/Z.

So far, the theorem was known when i = 1 by [Tia21, Theorem 1.18].
Thus the above result provides a generalization and complement to loc. cit.

into all possible degrees (see Remark 3.4 for details). In the context of higher
dimensional local őelds, similar results of Izquierdo [Izq16, pp. 80, Théorème
4.17] are highly relevant where he obtained perfect pairings between quo-
tients of TateśShafarevich groups by their maximal divisible subgroups. In
the case of number őelds, Demarche [Dem11a] established perfect pairings
X

i(C)×X
2−i(Ĉ)→ Q/Z of őnite groups when either Ker ρ is őnite or

ρ is surjective. Here Ĉ = [T̂2 → T̂1] with T̂i the respective the module of
characters associated to Ti. Actually, we would like to consider the complex
C ′ = [T ′

2 → T ′
1] instead of Ĉ = [T̂2 → T̂1] for the following reasons:

• If we consider a connected reductive group G and the universal covering
Gsc → Gss of its derived subgroup, we may obtain an associated short
complex C = [T sc → T ] where T is a maximal torus of G and T sc

is the inverse image of T in Gsc. Then [Tia21, Theorem 2.4(2)] tells
us that the kernel of the map X

1
ω(C

′)D →X
1(C) (which is induced

by the global duality X
1(C) ≃X

1(C ′)D) provides a defect of weak
approximation for G. Here X

1
ω(C

′) denotes the subgroup of elements
in H1(K,C ′) that are zero in all but őnitely many H1(Kv, C

′).

• Let M be a group of multiplicative type over K and embed it into
a short exact sequence 0→M → T1 → T2 → 0 with Ti being K-tori.
Thus M [1] is quasi-isomorphic to C = [T1 → T2]. Actually it is too
greedy to expect that there is an algebraic group (which is of őnite
type) playing the role of the dual of M . Instead, the natural "dual" of
M should be C ′ = [T ′

2 → T ′
1] because it does not lose the information

on the torsion part of M̂ . The same phenomenon already arose when



✐

✐

ł12-Tianž Ð 2022/8/8 Ð 23:17 Ð page 1553 Ð #3
✐

✐

✐

✐

✐

✐

PoitouśTate sequence for complex of tori 1553

one tries to handle the dual of a semi-abelian variety. As pointed out
in [HS05], the dual of a semi-abelian variety is a so-called 1-motive.

In order to deőne the maps in the PoitouśTate sequence (1) below, we
shall need an auxiliary global duality result. For a closed point v ∈ X(1), we
let Ov be the ring of integers in Kv. We őx a non-empty open subset X0 of X
such that T1 and T2 extend to X0-tori T1 and T2 respectively, and we put C =
[T1 → T2]. Let Pi(K,C) be the restricted topological product of Hi(Kv, C)
with respect to the subgroups Hi(Ov, C) (we will show that Hi(Ov, C) is
a subgroup of Hi(Kv, C) in the sequel). For an abelian group A, we denote
A∧ = lim

←−n
A/n. Let X0

∧(C) := Ker
(
H0(K,C)∧ → P0(K,C)∧

)
. We shall see

that X
0
∧(C) ≃X

0(C) if Ker ρ is őnite in view of the following result.

Theorem. Suppose that Ker ρ is finite. The following is a perfect pairing of

finite groups:

X
0
∧(C)×X

2(C ′)→ Q/Z.

The proof of the theorem is analogous to that of [Dem11a, Proposition
5.10] in the number őeld context. This result is more complicated because
we have to handle the inverse limits H0(K,C)∧ and P0(K,C)∧, and so it
is not an immediate consequence of ArtinśVerdier duality and local duality.
The idea is to describe X

0
∧(C) and X

2(C ′) by various limits. Thus a crucial
problem is to deőne respective transition maps and now the őniteness of
Ker ρ plays a role. Finally, note that if coker ρ is trivial, then the kernel of
ρ′ : T ′

2 → T ′
1 is őnite. Thus we obtain a perfect pairing X

2(C)×X
0
∧(C

′)→
Q/Z of őnite groups as well.

The classical PoitouśTate sequence is a 9-term exact sequence which
relates global Galois cohomology with restricted ramiőcation of a őnite Ga-
lois module over a global őeld (for example, see [Har17, Théorème 17.13]
and also [Čes15] for a generalization). In [HSS15], Harari, Scheiderer and
Szamuely constructed a 12-term PoitouśTate style exact sequence for őnite
Galois modules and a 9-term one for tori in the p-adic function őeld context.
Now we arrive at the main result of the present article:
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Theorem. Suppose either Ker ρ is finite or Coker ρ is trivial. Then the

following is a functorial exact sequence of topological abelian groups

(1)
0 // H−1(K,C)∧ // P−1(K,C)∧ // H2(K,C ′)D

// H0(K,C)∧ // P0(K,C)∧ // H1(K,C ′)D

// H1(K,C) // P1(K,C)tors //
(
H0(K,C ′)∧

)D

// H2(K,C) // P2(K,C)tors //
(
H−1(K,C ′)∧

)D
// 0

where Pi(K,C)tors denotes the torsion subgroup of the group Pi(K,C) for

i = 1, 2.

Actually, the exactness of the őrst and the last row in diagram (1) hold
without any assumption on C. The őniteness of the kernel Ker ρ or the
surjectivity of ρ plays an essential role in the proof of the exactness of the
middle two rows. Moreover, as we have seen the őniteness of Ker ρ provides
perfect pairings between TateśShafarevich groups which enable us to connect
the desired exact sequence. Finally, let us have a glimpse at consequences
(see Example 4.13 for details) of the PoitouśTate sequence given above.

• If we take C = [0→ P ] to be a single torus, then we obtain [HSS15,
Theorem 2.9]. Note that here we have used the fact that H3(K,P ) = 0
(see Remark 1.3 below).

• For a connected reductive group G and a maximal torus T in G, let
T sc ⊂ Gsc be as above. Then Ker(T sc → T ) is őnite and we deduce a
PoitouśTate sequence (see Example 4.13(2)) for the reductive group
G.

• If ρ is surjective, then the complex C[−1] is quasi-isomorphic to Ker ρ
(which is a group of multiplicative type). Thus we obtain PoitouśTate
style exact sequences for groups of multiplicative type.

Let us close the introduction by potential applications of various Poitouś
Tate style exact sequences. Harari and Izquierdo set forth how to use a
PoitouśTate sequence [HI18, Théorème 4.6] to deőne a defect to strong ap-
proximation using a divisible quotient group in [HI18, Théorème 4.8] when
the base őeld is the function őeld of a smooth projective curve deőned
over an algebraically closed őeld of characteristic zero. Besides, Demarche
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[Dem11b, Théorème 2.9] studied a defect to strong approximation with the
help of another PoitouśTate sequence. Hopefully our PoitouśTate sequence
gives an interpretation of a defect to strong approximation for connected
linear groups as well over p-adic function őelds.

Acknowledgements. I thank my advisor David Harari for many useful
discussions and helpful comments. I thank the referees for many valuable
comments. I thank the EDMH doctoral program for support and Université
Paris-Sud for excellent conditions for research.

Notations and conventions

Function fields. Throughout this article, K will be the function őeld of a
smooth proper and geometrically integral curve X over a p-adic őeld. Note
that each closed point v ∈ X(1) deőnes a discrete valuation of K. We write
OX,v for the local ring at v and κ(v) for its residue őeld. Moreover, Kv (resp.
Kh

v ) will be the completion (resp. Henselization) of K with respect to v and
Ov (resp. Oh

v ) will be the ring of integers in Kv (resp. Kh
v ).

Abelian groups. Let A be an abelian group. We shall denote by nA (resp.
A{ℓ}) for the n-torsion subgroup (resp. ℓ-primary subgroup with ℓ a prime)
of A. Moreover, let Ators be the torsion subgroup of A. So Ators = lim

−→n nA
is the direct limit of n-torsion subgroups of A. We write A∧ for the proőnite
completion of A (that is, the inverse limit of its őnite quotients), A∧ :=
lim
←−n

A/nA and A(ℓ) := lim
←−n

A/ℓn for the ℓ-adic completion with ℓ a prime
number. A torsion abelian group A is of coőnite type if nA is őnite for each
n ≥ 1. If A is ℓ-primary torsion of coőnite type, then A/DivA ≃ A(ℓ) where
the former group is the quotient of A by its maximal divisible subgroup.
For a topological abelian group A, we write AD := Homcont(A,Q/Z) for the
group of continuous homomorphisms .

Motivic complexes. Let L be a őeld. For a smooth L-variety Y , we de-
note the étale motivic complex over Y by the complex of sheaves Z(i) :=
zi(−, •)[−2i] on the small étale site of Y , where zi(Y, •) is Bloch’s cycle
complex [Blo86]. For example, we have quasi-isomorphisms Z(0) ≃ Z and
Z(1) ≃ Gm[−1] by [Blo86, Corollary 6.4]. We write A(i) := A⊗L Z(i) for any
abelian group A. Finally, if n is an integer invertible in L, then [GL01, Theo-
rem 1.5] gives a quasi-isomorphism Z/nZ(i) ≃ µ⊗ i

n where µn is concentrated
in degree 0. We shall write Q/Z(i) := lim

−→n
µ⊗ i
n for the direct limit of the

sheaves µ⊗ i
n for all n ≥ 1.
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Tori and short complex of tori. Let L be a őeld of characteristic zero
and let L be a őxed algebraic closure of L. We write T̂ or X∗(T ) (resp.

̂
T or

X∗(T )) for the character module (resp. cocharacter module) of an L-torus T .
These are őnitely generated free abelian groups endowed with a Gal(L|L)-
action, and moreover

̂
T is the Z-linear dual of T̂ . The dual torus T ′ of T is

the torus with character group

̂
T , that is, T̂ ′ =

̂
T .

Let C = [T1
ρ
→ T2] be a short complex of L-tori concentrated in degree−1

and 0. We always write M = Ker ρ, T = Coker ρ and C ′ = [T ′
2 → T ′

1] (again it
is concentrated in degree −1 and 0). Thus M is a group of multiplicative type
and T is a torus. Let X0 ⊂ X be a non-empty open subset such that T1 and T2

extend to X0-tori T1 and T2 respectively (in the sense of [SGA3II, Exposé IX,
Déőnition 1.3]). We similarly writeM = Ker(T1 → T2) and T = Coker(T1 →
T2) over X0. So over X0 we obtain complexes C = [T1 → T2] and C′ = [T ′

2 →
T ′
1 ]. Finally, U will always be a suitably sufficiently small non-empty open

subset of X0.
For the short complex C = [T1 → T2] over X0, we put, for n ≥ 1,

TZ/n(C) := H0(C[−1]⊗L Z/n) which is an fppf sheaf of abelian groups. Re-
call [Dem11a, Lemme 2.3] that the sheaf TZ/n(C) is represented by a őnite
group scheme of multiplicative type over X0, and it őts into a distinguished
triangle nM[2]→ C⊗L Z/n→ TZ/n(C)[1]→ nM[3].

Cohomologies. Unless otherwise stated, all cohomologies are understood
with respect to the étale topology. Let j0 : X0 → X be the open immersion.
We denote Hi

c(X0, C) := Hi(X, j0!C) for the compact support cohomology.

Pairings. There is a canonical pairing C ⊗LC ′ → Z(2)[3] (see [Izq16, pp. 69,
Lemme 4.3]) over K which extends to a pairing C ⊗L C′ → Z(2)[3] over X0

(both pairings are in the bounded derived category of étale sheaves). By
[HS16, Lemma 1.1 and Lemma 2.1] respectively, we have identiőcations
H5

c(U,Z(2)) ≃ Q/Z and H4(Kv,Z(2)) ≃ Q/Z. In particular, there are canon-
ical pairings Hi(U, C)×H2−i

c (U, C′)→ Q/Z for any non-empty open subset
U ⊂ X0 and Hi(Kv, C)×H1−i(Kv, C

′)→ Q/Z. We shall also consider pair-
ings in the őnite level. More precisely, we may identify Z/n⊗L Z/n with
the short complex [Z→ Z⊕Z→ Z] concentrated in degree −2, −1 and 0,
where the őrst arrow is given by x 7→ (nx,−nx) and the second one is given
by (x1, x2) 7→ n(x1 + x2). In this point of view, we may deőne a pairing
Z/n⊗L Z/n→ Z[1] by sending (x1, x2) ∈ Z⊕Z to x1 + x2. Subsequently, we
obtain a canonical pairing (C ⊗L Z/n)⊗L(C ′⊗L Z/n)→ Z(2)[4] which in-
duces canonical pairings Hi(U, C ⊗L Z/n)×H1−i

c (U, C′⊗L Z/n)→ Q/Z and
Hi(Kv, C ⊗

L Z/n)×H−i(Kv, C
′⊗L Z/n)→ Q/Z.
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Triangles. We shall use the following distinguished triangles frequently in
the sequel. By deőnition of C, we obtain a distinguished triangle T1 → T2 →
C → T1[1] and similarly nT1 → nT2 → C ⊗L Z/n[−1]→ nT1[1]. By deőni-
tion of M and T , we have a distinguished triangle M [1]→ C → T →M [2].
There is a distinguished triangle C → C → C ⊗L Z/n→ C[1] obtained from
the Kummer sequences for tori. Finally, we have a distinguished triangle
nM [2]→ C ⊗L Z/n→ TZ/n(C)[1]→ nM [3] by [Dem11a, Lemme 2.3], where
TZ/n(C) := H0(C[−1]⊗L Z/n).

1. Preliminaries on injectivity properties

We begin with the following lemma considering the canonical map

Hi(Ov, C ⊗
L Z/n)→ Hi(Kv, C ⊗

L Z/n).

Lemma 1.1. For each i ∈ Z and v ∈ X
(1)
0 , the homomorphism

Hi(Ov, C ⊗
L Z/n)→ Hi(Kv, C ⊗

L Z/n)

induced by the inclusion Ov ⊂ Kv is injective. Therefore we may identify

Hi(Ov, C ⊗
L Z/n) as a subgroup of Hi(Kv, C ⊗

L Z/n).

Proof. For i = −2, we observe that H−2(Ov, C) = 0 from the distinguished
triangle T1 → T2 → C → T1[1]. Since T1 is affine (hence separated), T1(Ov)→
T1(Kv) is injective. Thus the homomorphism H−1(Ov, C)→ H−1(Kv, C) is
injective by dévissage thanks to the distinguished triangle T1 → T2 → C →
T1[1].

Now we suppose i ≥ −1. Let Kv be a separable closure of Kv and let
Knr

v be the maximal unramiőed extension of Kv. According to [Mil06, II,
Proposition 1.1(b)], we obtain H i(Ov, nP) ≃ H i(κ(v), nP) for i ≥ 0 and P =
T1, T2. It follows that for i ≥ −1, the canonical map Hi(Ov, C ⊗

L Z/n) ≃
Hi(κ(v), C ⊗L Z/n) is an isomorphism thanks to the distinguished trian-
gle nT1[1]→ nT2[1]→ C⊗

L Z/n→ nT1[2]. Note that Hi(κ(v), C ⊗L Z/n) is
isomorphic to Hi(Gal(Knr

v |Kv), C ⊗
L Z/n) by ramiőcation theory. Choose

an extension of v to Kv and let Iv be the corresponding inertia group. But
the short exact sequence 1→ Iv → Gal(Kv|Kv)→ Gal(Knr

v |Kv)→ 1 admits
a section [Ser65, II, Appendix, ğ2], consequently H i(Knr

v |Kv, C ⊗
L Z/n)→

H i(Kv, C ⊗
L Z/n) admits a retraction, hence is injective. □

We have similar results for the complex C. Namely, the canonical map
Hi(Ov, C)→ Hi(Kv, C) is injective.
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Lemma 1.2. The homomorphism Hi(Ov, C)→ Hi(Kv, C) induced by the

canonical morphism SpecKv → SpecOv is injective for each i ∈ Z and v ∈

X
(1)
0 .

Proof. First of all, note that Hi(Ov, C) = 0 for i ≤ −2 and i ≥ 3.

(1) i = −1. This is already proved in the őrst paragraph of the previous
proof.

(2) i = 0. We consider the distinguished triangle M [1]→ C → T →M [2].
By dévissage, it will be sufficient to show H1(Ov,M)→ H1(Kv,M)
is injective. We may realizeM as an extension 1→ P →M→ F → 1
of a őnite group scheme F by a torus P over Ov (sinceM is isotrivial
by [SGA3II, Chaptitre X, Proposition 5.16]). Recall that H1(Ov,P)→
H1(Kv, P ) and H1(Ov,F)→ H1(Kv, F ) are injective (see [HSS15,
Proposition 1.2 and 1.3]), and that H0(Ov,F) = H0(Kv, F ) since F
is a őnite group scheme. It follows that H1(Ov,M)→ H1(Kv,M) is
injective by dévissage.

(3) i = 1. Since we have H1(Oh
v , C) ≃ H1(κ(v), C) ≃ H1(Ov, C) and

H1(Kh
v , C) ≃ H1(Kv, C) (thanks to [HS16, Corollary 3.2] and the dis-

tinguished triangle T1 → T2 → C → T1[1]), the validity of this case is
ensured by [Tia21, Corollary 1.16].

(4) i = 2. The following commutative diagram is obtained from the respec-
tive Kummer sequences

lim
−→
n

H1(Ov, C ⊗
L Z/n) //

��

H2(Ov, C)

��

lim
−→
n

H1(Kv, C ⊗
L Z/n) // H2(Kv, C).

Since the groups H1(Kv, C) and H1(κ(v), C) are torsion, we observe
that the horizontal arrows are isomorphisms. Since the left vertical
arrow is injective by Lemma 1.1, so is the right one by diagram chasing.

□

Remark 1.3. To proceed, let us őrst brieŕy explain the degrees under
consideration.
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(1) Let P be a K-torus. The groups H i(K,P ) and H i(Kv, P ) vanish for
i ≥ 3. See Lemma 3.1(3) below for details. Subsequently, Hi(K,C) = 0
for i ≥ 3 thanks to the distinguished triangle T1 → T2 → C → T1[1].

(2) The group H i(Kv, C ⊗
L Z/n) = 0 for i ≤ −3 or i ≥ 3. This is a di-

rect consequence of dévissage thanks to the distinguished triangle C →
C → C ⊗L Z/n→ C[1].

(3) The groups Hi(Ov, C ⊗
L Z/n) vanish for i ≥ 2 or i ≤ −3. Indeed, we

consider overOv the distinguished triangle nT1[1]→ nT2[1]→ C⊗
L Z/n

→ nT1[2]. Therefore it will be sufficient to show H i(Ov, nP) = 0 for
i ≥ 3 and i ≤ −1, and for any Ov-torus P by dévissage. Finally, we
have H i(Ov, nP) = H i(κ(v), nP) by [Mil06, II, Proposition 1.1(b)] and
the latter group vanishes for i ≥ 3 for cohomological dimension reasons
(see [Ser65, Chapitre II, ğ5.3]), and H i(Ov, nP) = 0 for i ≤ −1 by con-
struction.

We denote by Pi(K,C ⊗L Z/n) :=
∏′

Hi(Kv, C ⊗
L Z/n) the restricted

topological product of the őnite discrete groups Hi(Kv, C ⊗
L Z/n) with re-

spect to the subgroups Hi(Ov, C ⊗
L Z/n). Note that the only non-trivial de-

grees are −2 ≤ i ≤ 2 by Remark 1.3. Since Pi(K,C ⊗L Z/n) is a direct limit
of the compact groups

∏
v∈U Hi(Kv, C ⊗

L Z/n)×
∏

v/∈U Hi(Ov, C ⊗
L Z/n)

over all U ⊂ X0, it is locally compact. By Remark 1.3 we obtain

P−2(K,C ⊗L Z/n) =
∏

v∈X(1)

H−2(Kv, C ⊗
L Z/n)

and

P2(K,C ⊗L Z/n) =
⊕

v∈X(1)

H2(Kv, C ⊗
L Z/n).

Therefore P−2(K,C ⊗L Z/n) is proőnite, and P2(K,C ⊗L Z/n) is discrete (it
is a direct sum of őnite groups).

Similarly, we let Pi(K,C) be the restricted topological product of the
groups Hi(Kv, C) with respect to the subgroups Hi(Ov, C) (see Lemma 1.2)
for v ∈ X

(1)
0 and −1 ≤ i ≤ 2.

We close this section by the following injectivity between quotient groups.

Lemma 1.4. For n ≥ 1 and i ≥ −1, the canonical homomorphism

Hi(Ov, C)/n→ Hi(Kv, C)/n induced by the inclusion Hi(Ov, C)→ Hi(Kv, C)

is injective as well for v ∈ X
(1)
0 . In particular, the homomorphism
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Pi(K,C)/n→
∏

v∈X(1) H
i(Kv, C)/n induced by the inclusion Pi(K,C) ⊂∏

v∈X(1) H
i(Kv, C) is injective for i ≥ −1. Moreover, the image is the re-

stricted topological product of Hi(Kv, C)/n with respect to the subgroups

Hi(Ov, C)/n.

Proof. Thanks to the distinguished triangle C → C → C ⊗L Z/n→ C[1], it
suffices to show that Hi(Ov, C ⊗

L Z/n)→ Hi(Kv, C ⊗
L Z/n) is injective for

each v ∈ X
(1)
0 which is ensured by Lemma 1.1. Let (xv) ∈ Pi(K,C)/n and

let (x̃v) ∈ Pi(K,C) be a family of lifts of xv ∈ Hi(Kv, C)/n in Hi(Kv, C).
So x̃v ∈ Hi(Ov, C) for all but őnitely many v. In particular, its image in
Hi(Kv, C)/n lies in the subgroup Hi(Ov, C)/n. □

2. Arithmetic dualities in finite level

We őrst develop some arithmetic duality results and a 15-term PoitouśTate
exact sequence concerning the complexes C ⊗L Z/n and C ′⊗L Z/n for any
n ≥ 1.

2.1. Local dualities

The following local arithmetic duality is a special case of [Izq16, pp. 73,
Proposition 4.7]. We quote it here and we brieŕy recall the idea of the proof.

Proposition 2.1. The following pairing is a functorial perfect pairing of

finite groups for i ∈ Z

(2) Hi(Kv, C ⊗
L Z/n)×H−i(Kv, C

′⊗L Z/n)→ Q/Z.

Proof. Recall [HS16, pp. 6, pairing (10)] that the following is a perfect pair-
ing1 of őnite groups for j ∈ Z and i = 1, 2

Hj(Kv, nTi)×H3−j(Kv, nT
′
i )→ Q/Z.

Therefore the distinguished triangles nT1[1]→ nT2[1]→ C ⊗L Z/n→ nT1[2]
and nT

′
2[1]→ nT

′
1[1]→ C ′⊗L Z/n→ nT

′
2[2] yield an isomorphism

Hi(Kv, C ⊗
L Z/n) ≃ H−i(Kv, C

′⊗L Z/n)D

1Let P be a torus over a őeld L of characteristic zero. Then we have canonical
isomorphisms nP (L) ≃ Hom(P̂ , µn(L)) and nP

′(L) ≃ Hom(

̂
P , µn(L)). Moreover,

taking the identity element id ∈ P̂ ⊗

̂
P ≃ End(P̂ ) into account, we obtain a pairing

nP ⊗
L

nP
′ → µ⊗ 2

n
.
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by dévissage (see [Izq16, pp. 73, Proposition 4.7] for details). □

We shall need the following additional result on respective annihilators
of local dualities.

Proposition 2.2. For −2 ≤ i ≤ 2, the annihilator of Hi(Ov, C ⊗
L Z/n) is

H−i(Ov, C
′⊗L Z/n) under the perfect pairing

Hi(Kv, C ⊗
L Z/n)×H−i(Kv, C

′⊗L Z/n)→ Q/Z.

Proof. The distinguished triangle nT1[1]→ nT2[1]→ C⊗
L Z/n→ nT1[2] over

Ov yields a commutative diagram

H i+1(Ov, nT1) //

��

H i+1(Ov, nT2) //

��

Hi(Ov, C ⊗
L Z/n) //

��

H i+2(Ov, nT1) //

��

H i+2(Ov, nT2)� _

∗

��

H i+1(Kv, nT1) //

����

H i+1(Kv, nT2) //

��

Hi(Kv, C ⊗
L Z/n) //

��

H i+2(Kv, nT1) //

��

H i+2(Kv, nT2)

��

H2−i(Ov, nT
′
1 )

D // H2−i(Ov, nT
′
2 )

D // H−i(Ov, C
′⊗L Z/n)D // H1−i(Ov, nT

′
1 )

D // H1−i(Ov, nT
′
2 )

D

of őnite groups with exact rows. For cohomological dimension reasons, the
following pairing

Hi(Ov, nP)×H3−i(Ov, nP
′)→ H3(Ov,Q/Z(2)) ≃ H3(κ(v),Q/Z(2))

is trivial for any X0-torus P , and similarly

Hi(Ov,C⊗
L Z/n)×H−i(Ov, C

′⊗L Z/n)→ Q/Z

is also trivial. Thus the columns in the diagram are complexes. Note that
it will be sufficient to consider −2 ≤ i ≤ 0 by symmetry and that the arrow
∗ is an isomorphism for i = −2 and is injective for i = −1, 0 (see [HSS15,
Proposition 1.2] and its proof). In the sequel, we show the exactness of the
middle column case by case.

(1) i = −2. In this case, we have H i+2(Ov, nTj) ≃ H i+2(Kv, nTj) and
H i+1(Ov, nTj) = H i+1(Kv, nTj) = 0 for j = 1, 2. Thus exactness of the
middle column follows from a diagram chase.

(2) i = −1. The right two columns of the diagram above are exact by
[HSS15, Proposition 1.2]. Moreover, we have an isomorphism
H i+1(Ov, nT2) ≃ H i+1(Kv, nT2). Now a diagram chase yields the ex-
actness of the middle column.
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(3) i = 0. Note that H i+1(Kv, nT1)→ H2−i(Ov, nT
′
1 )

D is surjective be-
cause H2−i(Ov, nT

′
1 )→ H2−i(Kv, nT

′
1) is an inclusion (see [HSS15,

Proposition 1.2]) of őnite groups. The exactness of the middle column
follows from a diagram chase. □

Corollary 2.3. For each i ∈ Z, the following pairing of locally compact

topological groups induced by the local dualities is perfect

Pi(K,C ⊗L Z/n)× P−i(K,C ′⊗L Z/n)→ Q/Z.

Proof. This is an immediate consequence of Proposition 2.1 and Proposi-
tion 2.2. □

2.2. Global dualities

We begin with an ArtinśVerdier style duality result which plays a role in the
proof of the global duality

X
i(C ⊗L Z/n)×X

1−i(C ′⊗L Z/n)→ Q/Z

for −1 ≤ i ≤ 2. We quote the following proposition [Izq16, pp. 70, I.4.4] for
convenience and completeness.

Proposition 2.4 (Artin–Verdier duality). Let U ⊂ X0 be a non-empty

open subset. For i ∈ Z, the following is a perfect pairing between finite groups

Hi(U, C ⊗L Z/n)×H1−i
c (U, C′⊗L Z/n)→ Q/Z.

Another input for the proof of global duality is the key exact sequence (3)
below. We need the following results to assure its exactness.

Lemma 2.5. There are canonical isomorphisms Hi(Kh
v , C ⊗

L Z/n) ≃
Hi(Kv, C ⊗

L Z/n) for all i ≥ −1.

Proof. Let F be a őnite étale commutative group scheme over K. Note that
F is locally constant in the étale topology and that Kh

v and Kv have the
same absolute Galois group, therefore H i(Kh

v , F ) ≃ H i(Kv, F ) for any i ∈ Z.
Now the result follows thanks to the distinguished triangle nT1 → nT2 →
C ⊗L Z/n[−1]→ nT1[1] by dévissage. □

The following proposition is proved in [Tia21, Proposition 1.12]. Since
it frequently plays a role in the demonstrations later, we quote it here for
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convenience of the reader. Although loc. cit. only deals with the case A = C,
the same argument works for A = C ⊗L Z/n as well.

Proposition 2.6. Let U ⊂ X0 be a non-empty open subset. Let A be either

C or C ⊗L Z/n.

(1) Let V ⊂ U be a further non-empty open subset. We have an exact se-

quence

· · · → Hi
c(V,A)→ Hi

c(U,A)→
⊕

v∈U\V

Hi(κ(v), i∗vA)→ Hi+1
c (V,A)→ · · ·

where iv : Specκ(v)→ U is the closed immersion.

(2) We have an exact sequence for i ≥ 1 if A = C, and for i ≥ −1 if A =
C ⊗L Z/n:

· · · → Hi
c(U,A)→ Hi(U,A)→

⊕

v/∈U

Hi(Kh
v , A)→ Hi+1

c (U,A)→ · · ·

where by abuse of notation we write A for the pull-back of A by the

natural morphism SpecKh
v → U .

(3) We have an exact sequence for i ≥ 1 if A = C, and for i ≥ −1 if A =
C ⊗L Z/n:

· · · → Hi
c(U,A)→ Hi(U,A)→

⊕

v/∈U

Hi(Kv, A)→ Hi+1
c (U,A)→ · · ·

(4) (Three Arrows Lemma). Let V ⊂ U be a further non-empty open sub-

set. We have a commutative diagram

Hi
c(V,A) //

��

Hi
c(U,A)

��

Hi(V,A) Hi(U,A).oo

Put Di
K(U, C ⊗L Z/n) := Im

(
Hi

c(U, C ⊗
L Z/n)→ Hi(K,C ⊗L Z/n)

)
. Now

we arrive at the key exact sequence for the proof of global duality between
the respective TateśShafarevich groups of C ⊗L Z/n and C ′⊗L Z/n.
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Proposition 2.7. The following is an exact sequence for −1 ≤ i ≤ 1
(3)⊕

v∈X(1)

Hi(Kv, C ⊗
L Z/n)→ Hi+1

c (U, C ⊗L Z/n)→ Di+1
K (U, C ⊗L Z/n)→ 0.

Proof. We can construct a map
⊕

v∈X(1)

Hi(Kv, C ⊗
L Z/n)→ Hi+1

c (U, C ⊗L Z/n)

in a similar way as [HS16, pp. 11]. Let us recall the construction for the con-
venience of the readers. Suppose that α ∈

⊕
v∈X(1) H

i(Kv, C ⊗
L Z/n) lies

in
⊕

v/∈V Hi(Kv, C ⊗
L Z/n) for some non-empty open subset V of U . By

Proposition 2.6(3), we can send α to Hi+1
c (V, C ⊗L Z/n) and hence to

Hi+1
c (U, C ⊗L Z/n) by covariant functoriality of Hi+1

c (−, C ⊗L Z/n). The fol-
lowing commutative diagram for W ⊂ V

⊕
v/∈W

Hi(Kv, C ⊗
L Z/n) // Hi+1

c (W, C ⊗L Z/n)

��⊕
v/∈V

Hi(Kv, C ⊗
L Z/n) //

OO

Hi+1
c (V, C ⊗L Z/n)

shows that the construction does not depend on the choice of V . Finally, the
sequence (3) is a complex by Proposition 2.6(3) and the square in diagram
(4) below commutes by the same argument as in the proof of [HS16, Propo-
sition 4.2].

Conversely, take α ∈ Ker
(
Hi+1

c (U, C ⊗L Z/n)→ Di+1
K (U, C ⊗L Z/n)

)
. Let

V ⊂ U be a non-empty open subset. We consider the following diagram for
−1 ≤ i ≤ 1:
(4)
Hi+1

c (V, C ⊗L Z/n) // Hi+1
c (U, C ⊗L Z/n) //

��

⊕
v∈U\V

Hi+1(κ(v), C ⊗L Z/n)

��

Hi+1(K,C ⊗L Z/n) //
⊕

v∈U\V

Hi+1(Kv, C ⊗
L Z/n).

The upper row is exact by Proposition 2.6(1). The left vertical arrow is just
the composition

Hi+1
c (U, C ⊗L Z/n)→ Hi+1(U, C ⊗L Z/n)→ Hi+1(K,C ⊗L Z/n).
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The right vertical arrow is given by the composition

Hi+1(κ(v), C ⊗L Z/n) ≃ Hi+1(Ov, C ⊗
L Z/n)→ Hi+1(Kv, C ⊗

L Z/n).

By Lemma 1.1, the right vertical arrow in diagram (4) is injective.
Finally, thanks to the exactness of the upper row in diagram (4), α comes

from an element β ∈ Hi+1
c (V, C ⊗L Z/n) by diagram chasing. Since β goes to

zero in Hi+1(K,C ⊗L Z/n), we may choose V sufficiently small such that β
already maps to zero in Hi+1(V, C ⊗L Z/n). Now the proof is completed by
Proposition 2.6(3). □

Let

X
i(C ⊗L Z/n) := Ker

(
Hi(K,C ⊗L Z/n)→

∏

v∈X(1)

Hi(Kv, C ⊗
L Z/n)

)
.

Now we construct a perfect pairing X
i(C ⊗L Z/n)×X

1−i(C ′⊗L Z/n)→
Q/Z of őnite groups for i = −1, 0.

Theorem 2.8. The following is a perfect pairing of finite groups for each

i ∈ Z :

X
i(C ⊗L Z/n)×X

1−i(C ′⊗L Z/n)→ Q/Z.

Proof. Thanks to the distinguished triangle nT1[1]→ nT2[1]→ C ⊗L Z/n→

nT1[2], we see that X
−2(C ⊗L Z/n) = 0 by the injectivity of nT1(K)→

nT1(Kv). For i ≤ −3 and i ≥ 3, we have H i(K, nTj) = 0 for i ≥ 4 and j =
1, 2 by Remark 1.3(1) and the Kummer sequences. Now it follows that
Hi(K,C ⊗L Z/n) = 0 for i ≤ −3 and i ≥ 3 by the above distinguished tri-
angle and dévissage. In particular, Xi(C ⊗L Z/n) = 0 for i ≤ −3 and i ≥ 3.
Thus it will be sufficient to consider the cases −1 ≤ i ≤ 2.

Clearly by symmetry it will be sufficient to consider i = −1, 0. We deőne
Di

sh(U, C ⊗
L Z/n) to be the kernel of the last arrow of the upper row in the

following diagram

0 // Di
sh(U, C ⊗

L Z/n) //

��

Hi(U, C ⊗L Z/n) //

��

∏
v∈X(1)

Hi(Kv, C ⊗
L Z/n)

��

0 // D1−i
K (U, C′⊗L Z/n)D // H1−i

c (U, C′⊗L Z/n)D //
( ⊕
v∈X(1)

H−i(Kv, C
′⊗L Z/n)

)D
.

The middle vertical arrow is an isomorphism by Proposition 2.4 and that
for the right one by Proposition 2.1. It follows that the left vertical arrow is
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an isomorphism as well. Since the group H1−i
c (U, C′⊗L Z/n) is őnite and the

functor H1−i
c (−, C′⊗L Z/n) is covariant, {D1−i

K (U, C′⊗L Z/n)}U⊂X0
forms a

decreasing family of őnite abelian groups. Hence there exists a non-empty
open subset U0 ⊂ X0 such that D1−i

K (U, C′⊗L Z/n) = D1−i
K (U0, C

′⊗L Z/n)
for all non-empty open subset U ⊂ U0 (here we used Proposition 2.6(3) im-
plicitly). We deduce that D1−i

K (U, C′⊗L Z/n) ≃X
1−i(C ′⊗L Z/n) for all U ⊂

U0 by Proposition 2.6. Now passing to the direct limit over all U of the iso-
morphism Di

sh(U, C ⊗
L Z/n) ≃X

1−i(C ′⊗L Z/n)D yields X
i(C ⊗L Z/n) ≃

lim
−→n

Di
sh(U, C ⊗

L Z/n) ≃X
1−i(C ′⊗L Z/n)D. □

2.3. The Poitou–Tate sequence

Lemma 2.9. Let A be either C or C ⊗L Z/n over U ⊂ X0 and let A be

its generic fibre. For V ⊂ U , if α ∈ Hi(V,A) is such that αv ∈ Hi(Kv, A)
belongs to Hi(Ov,A) for all v ∈ U \ V , then α ∈ Im

(
Hi(U,A)→ Hi(V,A)

)

for i ∈ Z.

Proof. The localization sequences [Fu11, Proposition 5.6.11] for the respec-
tive pairs of open immersions V ⊂ U and SpecKv ⊂ SpecOv (actually here
we do the same argument as loc. cit. by replacing injective resolutions by
injective CartanśEilenberg resolutions) together with [Mil80, pp. 93, 1.28]
induce the following commutative diagram with exact rows2

Hi(U,A) //

��

Hi(V,A) //

��

⊕
v∈U\V

Hi+1
v (Oh

v ,A)

��⊕
v∈U\V

Hi(Ov,A) //
⊕

v∈U\V

Hi(Kv, A) //
⊕

v∈U\V

Hi+1
v (Ov,A).

By [DH18, Lemma 2.6] the right vertical map is an isomorphism, so a diagram
chasing yields the desired result. □

2Here we have used the fact that Cone(RΓU\V → RΓU ) agrees with RΓV . In-
deed, it suffices to show that Cone preserves triangles and satisőes the desired
universal property. It preserves triangles since it forms a functor on the derived
category and it satisőes the desired universal property because it agrees with RΓV

for sheaves by [Mil80, pp. 93, 1.28]. Therefore we can pass from a single sheaf to a
short complex.
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Lemma 2.10. There are exact sequences for n ≥ 1 and −2 ≤ i ≤ 2:

Hi(K,C ⊗L Z/n)→ Pi(K,C ⊗L Z/n)→ H−i(K,C ′⊗L Z/n)D.

Proof. For V ⊂ U ⊂ X0 and −1 ≤ i ≤ 2, we obtain an exact sequence

Hi(V, C ⊗L Z/n)→
∏
v/∈V

Hi(Kv, C ⊗
L Z/n)→ Hi+1

c (V, C ⊗L Z/n)

by Proposition 2.6(3). Subsequently the following is an exact sequence by
Lemma 2.9

Hi(U, C ⊗L Z/n)→
∏
v/∈U

Hi(Kv, C ⊗
L Z/n)×

∏
v∈U\V

Hi(Ov, C ⊗
L Z/n)

→ Hi+1
c (V, C ⊗L Z/n).

By ArtinśVerdier duality 2.4, we obtain an isomorphism Hi+1
c (V, C ⊗L Z/n) ≃

H−i(V, C′⊗L Z/n)D. Taking inverse limit over V then yields an exact se-
quence

Hi(U, C ⊗L Z/n)→
∏
v/∈U

Hi(Kv, C ⊗
L Z/n)×

∏
v∈U

Hi(Ov, C ⊗
L Z/n)

→ H−i(K,C ′⊗L Z/n)D.

Now we conclude the desired exact sequence by taking direct limit over U .
In particular, we obtain an exact sequence H2(K,C ′⊗L Z/n)→

P2(K,C ′⊗L Z/n)→ H−2(K,C ⊗L Z/n)D by applying the case i = 2 to C ′.
It follows that there are exact sequences

H−2(K,C ⊗L Z/n)→ P−2(K,C ⊗L Z/n)→ H2(K,C ′⊗L Z/n)D

by dualizing the above sequence of discrete abelian groups (recall that double
dual of a őnite abelian group is itself). □

To close this section, we summarize all the above arithmetic dualities
into a 15-term exact sequence as follows.
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Theorem 2.11. The following is a 15-term exact sequence for n ≥ 1
(5)

0 // H−2(K,C ⊗L Z/n) // P−2(K,C ⊗L Z/n) // H2(K,C ′⊗L Z/n)D

// H−1(K,C ⊗L Z/n) // P−1(K,C ⊗L Z/n) // H1(K,C ′⊗L Z/n)D

// H0(K,C ⊗L Z/n) // P0(K,C ⊗L Z/n) // H0(K,C ′⊗L Z/n)D

// H1(K,C ⊗L Z/n) // P1(K,C ⊗L Z/n) // H−1(K,C ′⊗L Z/n)D

// H2(K,C ⊗L Z/n) // P2(K,C ⊗L Z/n) // H−2(K,C ′⊗L Z/n)D // 0

Proof. We have seen that X−2(C ⊗L Z/n) = 0 in Theorem 2.8, and it follows
that the őrst arrow is injective. The surjectivity of the last arrow follows by
dualizing the injective map H−2(K,C ′⊗L Z/n)→ P−2(K,C ′⊗L Z/n). The
exactness at each Pi(K,C ⊗L Z/n) for −2 ≤ i ≤ 2 is proved in Lemma 2.10.

Next, we show that the map Hi(K,C ′⊗L Z/n)→ Pi(K,C ′⊗L Z/n) has
discrete image for −1 ≤ i ≤ 2. Since P2(K,C ′⊗L Z/n) itself is discrete, there
is nothing to do. For i = 0,±1, suppose that α ∈ Im

(
Hi(K,C ′⊗L Z/n)→

Pi(K,C ′⊗L Z/n)
)

lies in
∏

v/∈U Hi(Kv, C
′⊗L Z/n)×

∏
v∈U Hi(Ov, C

′⊗L Z/n)
for some U ⊂ X0. Then α comes from the őnite group Hi(U, C′⊗L Z/n)
by Lemma 2.9. Now dualizing the exact sequences 0→X

i(C ′⊗L Z/n)→
Hi(K,C ′⊗L Z/n)→ Pi(K,C ′⊗L Z/n) (together with Corollary 2.3 and The-
orem 2.8) yields the exactness at all the remaining terms. □

3. Results for the complex C

3.1. Global duality: preliminaries

In this subsection, we establish an ArtinśVerdier style duality and some local
duality results. We begin with a list of properties of abelian groups under
consideration. Recall that C = [T1

ρ
→ T2].

Lemma 3.1. Let P be a K-torus that extends to a U0-tori P for some

sufficiently small non-empty open subset U0 of X. Let U be a non-empty

open subset of U0. Let L be either K or Kv.

(1) The torsion groups H1(U, C)tors and H1
c(U, C)tors are of cofinite type.

(2) For i ≥ 2, the groups Hi(U, C) and Hi
c(U, C) are torsion of cofinite type.
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(3) The group H1(K,P ) has finite exponent and the group H1(Kv, P ) is

finite. Moreover, H i(L,P ) = 0 for i ≥ 3. Finally, the groups X
i(P )

are finite for each i ≥ 0.

(4) Let Φ be a group of multiplicative type over K. Then the groups H1(L,Φ)
and H3(L,Φ) have finite exponents.

(5) Suppose that M := Ker ρ is finite. Then the groups H−1(Kv, C) have a

common finite exponent for all v ∈ X(1). Moreover, the groups H−1(K,C)
and H1(K,C) are torsion of finite exponent.

(6) Suppose that T := coker ρ is trivial. The groups H0(K,C) and H2(K,C)
are torsion of finite exponent.

Proof. For (1)and (2), see [Tia21, Lemma 1.1].

(3) First of all, we observe for L = K or Kv that H1(L,P ) has őnite ex-
ponent by Hilbert’s Theorem 90 and a restriction-corestriction argu-
ment. The group H3(K,P ) is the direct limit of the groups H3(V,P) for
V ⊂ U0, but by [SvH03, Corollary 4.10] H3(V,P) = 0 for V sufficiently
small and so H3(K,P ) = 0. For the group H3(Kv, P ), we deduce that
H3(Kv, P ) ≃ lim

−→n
H3(Kv, nP ) from the Kummer sequence. Thus it

suffices to show that lim
←−n

H0(Kv, nP
′) = 0 by [HS16, (10)]. Note that

(K×
v )tors = (κ(v)×)tors is őnite, so H0(Kv, P

′)tors is őnite as well by
a restriction-corestriction argument. As a consequence, H0(Kv, nP

′)
has a common őnite exponent for each n and it follows that the limit
lim
←−n

H0(Kv, nP
′) = 0 vanishes. For cohomological dimension reasons,

we have H i(L, nP ) = 0 for i ≥ 4. Subsequently, we see that H i(L,P ) ≃
lim
−→n

H i(L, nP ) = 0 for i ≥ 4 where the őrst isomorphism follows from
the Kummer sequence 0→H i−1(L,P )/n→H i(L, nP )→nH

i(L,P )→
0. The remaining claims are proved in [Tia21, Lemma 1.1].

(4) Embed Φ into a short exact sequence 0→ P → Φ→ F → 0 where P is
an L-torus and F is a őnite étale commutative group scheme. Thus we
obtain an exact sequence H i(L,P )→ H i(L,Φ)→ H i(L,F ) for i ≥ 1.
By dévissage, it follows that H i(L,Φ) has őnite exponent by (3) for
i = 1, 3.

(5) Note that we have an isomorphism H−1(Kv, C) ≃ H0(Kv,M) thanks
to the distinguished triangle M [1]→ C → T →M [2]. Since M is őnite
by assumption, H−1(Kv, C) has a common őnite exponent for each v ∈
X(1). The group H−1(K,C) has őnite exponent for the same reason.
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Thanks to the exact sequence H2(K,M)→ H1(K,C)→ H1(K,T ), we
deduce that H1(K,C) has őnite exponent by dévissage using (3).

(6) In this case, the short complex C is quasi-isomorphic to M [1]. Thus
the desired results follow from (4). □

Remark 3.2. Note that the őniteness of Ker ρ is equivalent to the őniteness
of Coker(T̂2 → T̂1), and hence it is equivalent to the injectivity of

̂
T 1 →̂

T 2. Therefore the őniteness of Ker ρ amounts to saying that ρ′ : T ′
2 → T ′

1 is
surjective, and vice versa. By Lemma 3.1(5,6), we see that

• If Ker ρ is őnite, then H−1(K,C), H0(K,C ′), H1(K,C) and H2(K,C ′)
are torsion of őnite exponent.

• If Coker ρ is trivial, then H−1(K,C ′), H0(K,C), H1(K,C ′) and
H2(K,C) are torsion of őnite exponent.

3.2. Global duality

The goal of this section is to establish global duality results. We begin with
the őniteness of X0(C) and X

2(C) (and that of X0(C ′) and X
2(C ′) by

symmetry).

Lemma 3.3. The groups X
0(C) and X

2(C) are finite.

Proof. Let L be K or Kv for v ∈ X(1). We consider the distinguished triangle

(6) M [1]→ C → T →M [2]

over L. By Lemma 3.1(4), the groups H1(L,M) and H3(L,M) have őnite
exponents.

• The distinguished triangle (6) yields exact sequences H3(L,M)→
H2(L,C)→ H2(L, T )→ H4(L,M). Note that X

2(T ) is őnite by
Lemma 3.1(3). In particular, X2(C) has őnite exponent by dévissage
and it remains to show that X2(C) is of coőnite type. Since H2(K,C) is
the direct limit of H2(U, C), each α ∈X

2(C) comes from some H2(U, C)
with U a non-empty open subset of X0. In particular, α lies in the im-
age of H2

c(U, C) by Proposition 2.6(3). We conclude that α comes from
H2

c(X0, C) by the Three Arrows Lemma and hence X
2(C) is a subquo-

tient of H2
c(X0, C) (which is torsion of coőnite type by Lemma 3.1(2)).

As a consequence, X2(C) is of coőnite type. Therefore X2(C) is őnite.
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• The exact sequence 0→ H1(K,M)→ H0(K,C)→ H0(K,T ) obtained
from (6) yields an isomorphism X

1(M) ≃X
0(C) as X0(T ) = 0. Since

we may embed M into a short exact sequence 0→M → P1 → P2 → 0
with P1 and P2 being K-tori, there is a quasi-isomorphism M [1] ≃
[P1 → P2]. Subsequently, an analogous argument as above implies that
X

1(M) ⊂ Im(H1
c (X0,M)→ H1(K,M)). But this map factors through

H1
c (X0,M)/N → H1(K,M) because H1(K,M) has őnite exponent

for some positive integer N by Lemma 3.1(4). Finally, H1
c (X0,M)/N

injects into the őnite group H1
c (X0,M⊗

L Z/N) (we have seen its
őniteness in Proposition 2.4) thanks to the distinguished triangle M →
M →M ⊗L Z/n→M [1], so it is őnite as well. Hence X1(M)≃X

0(C)
is contained in this őnite image which completes the proof. □

Remark 3.4. In fact, all non-trivial TateśShafarevich groups of the com-
plex C are őnite:

• X
1(C) is a őnite group. This fact is more complicated because the

group H1
c(U, C) needs not be torsion. See [Tia21, Proposition 1.14] for

a proof.

• X
i(C) = 0 for i ≤ −1 and i ≥ 3 by Remark 1.3(1) thanks to the dis-

tinguished triangle T1 → T2 → C → T1[1].

Now we prove a őrst global duality result between the őnite groups
X

0(C) and X
2(C ′). Let Di

K(U, C) := Im
(
Hi

c(U, C)→ Hi(K,C)
)
. The őrst

input is the following exact sequence constructed as [Tia21, Proposition 1.17]

(7)
⊕

v∈X(1)

H1(Kv, C)→ H2
c(U, C)→ D2

K(U, C)→ 0.

In our situation, the exactness is guaranteed by Lemma 1.2 below instead of
[Tia21, Corollary 1.16] there.

Now we arrive at:

Theorem 3.5. The following is a perfect pairing of finite groups:

X
0(C ′)×X

2(C)→ Q/Z.

Proof. We őrst identify X
2(C) with the image of H2

c(U, C) in H2(K,C) for U
sufficiently small. Since H2

c(U, C) is torsion of coőnite type by Lemma 3.1, so
is D2

K(U, C). Hence the decreasing family {D2
K(U, C){ℓ}}U⊂X0

of ℓ-
primary torsion groups must be stable by [HS16, Lemma 3.7]. Let us say
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D2
K(U, C){ℓ} = D2

K(U0, C){ℓ} for some open subset U0 ⊂ X0 and for each
non-empty open subset U ⊂ U0. Letting U run through all non-empty open
subsets of U0, we conclude D2

K(U0, C){ℓ} = X
2(C){ℓ} by Proposition 2.6(3).

Let D0
sh(U, C

′) be the kernel of H0(U, C′)→
∏

v∈X(1) H
0(Kv, C

′). Accord-
ing to [Tia21, Proposition 1.2], there is a pairing

Hi(U, C){ℓ} ×H2−i
c (U, C′)(ℓ) → Q/Z

with divisible left kernel. We consider now the following commutative dia-
gram with exact rows (the lower row is exact by the exactness of (7) and
[Tia21, Lemma 1.7])

0 // D0
sh(U, C

′){ℓ} //

ΦU

��

H0(U, C′){ℓ} //

��

( ∏
v∈X(1)

H0(Kv, C
′)
)
{ℓ}

��

0 //
(
D2
K(U, C)(ℓ)

)D
//
(
H2

c(U, C)
(ℓ)
)D

//
(( ⊕

v∈X(1)

H1(Kv, C)
)(ℓ))D

with the left vertical arrow ΦU obtained from the commutativity of the
right square. Moreover, the right vertical arrow is an isomorphism by lo-
cal duality [Tia21, Remark 1.7] and the middle one is surjective with di-
visible kernel by [Tia21, Proposition 1.2] (the surjectivity is ensured by
the proof of loc. cit.). It follows that the left vertical arrow is surjective
and KerΦU is divisible. In particular, lim

−→U
KerΦU is also divisible. But

lim
−→U

D0
sh(U, C

′){ℓ} ≃X
0(C ′){ℓ} is őnite, therefore it does not contain a non-

trivial divisible subgroup, i.e. lim
−→U

KerΦU = 0 is trivial. Consequently, we
obtain the following identiőcations:

X
0(C ′){ℓ} ≃ lim

−→
U

D0
sh(U, C

′){ℓ} ≃ lim
−→
U

(
D2
K(U, C)(ℓ)

)D
.

Recall that X2(C) is őnite and D2
K(U, C){ℓ} = X

2(C){ℓ} for U sufficiently
small. So D2

K(U, C)(ℓ) ≃X
2(C){ℓ}(ℓ) ≃X

2(C){ℓ}, and it follows that
X

0(C ′){ℓ} →X
2(C){ℓ}D is an isomorphism. Since X0(C ′) and X

2(C) are
őnite, they are őnite direct sums of ℓ-primary parts and therefore X

0(C ′)×
X

2(C)→ Q/Z is a perfect pairing. □

Remark 3.6. Taking [Tia21, Theorem 1.18] into account, we see that the
pairing X

i(C)×X
2−i(C ′)→ Q/Z is perfect for each integer i.
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To connect the őrst two rows in the PoitouśTate sequence (1), we shall
need an additional global duality concerning inverse limits.

Theorem 3.7. Put X
0
∧(C) := Ker

(
H0(K,C)∧ → P0(K,C)∧

)
. If Ker ρ is

finite, then the following is a perfect pairing of finite groups

X
0
∧(C)×X

2(C ′)→ Q/Z.

The rest of this section is devoted to the proof of Theorem 3.7 which is
analogous to that of [Dem09, pp. 86-88]. We proceed by reducing the question
into various limits in őnite level.

Lemma 3.8. Let C = [T1
ρ
→ T2] (here Ker ρ is not necessarily finite). The

natural map is an isomorphism:

X
0
∧(C)→ lim

←−
n

X
0(C ⊗L Z/n).

Proof. Consider the Kummer exact sequences

0→ H0(Kv, C)/n→ H0(Kv, C ⊗
L Z/n)→ nH

1(Kv, C)→ 0

for all v ∈ X(1), and

0→ H0(Ov, C)/n→ H0(Ov, C ⊗
L Z/n)→ nH

1(Ov, C)→ 0

for all v ∈ X
(1)
0 . Moreover, the complex 0→ P0(K,C)/n→ P0(K,C ⊗L Z/n)

→ nP
1(K,C)→ 0 is an exact sequence by Lemma 1.4. Therefore there is a

commutative diagram with exact rows by taking inverse limit over all n in
the respective Kummer sequences

(8)

0 // H0(K,C)∧ //

��

lim
←−n

H0(K,C ⊗L Z/n) //

��

ΦK
//

��

0

0 // P0(K,C)∧ // lim
←−n

P0(K,C ⊗L Z/n) // ΦΠ
// 0.

where ΦK ⊂ lim
←−n nH

1(K,C) and ΦΠ ⊂ lim
←−n nP

1(K,C) (here the inverse limit
may not be right exact because the involved groups are inőnite). Recall that
X

1(C) is őnite (Remark 3.4). As a consequence, the kernel of the right
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vertical arrow is contained in lim
←−n nX

1(C) = 0. Therefore there are isomor-
phisms

X
0
∧(C) ≃ Ker

(
lim
←−
n

H0(K,C ⊗L Z/n)→ lim
←−
n

P0(K,C ⊗L Z/n)
)

≃ lim
←−
n

X
0(C ⊗L Z/n)

by the snake lemma, as required. □

The following lemmas tell us that lim
←−n

X
0(C ⊗L Z/n) is an inverse limit

of subgroups of H0(U, C ⊗L Z/n).

Lemma 3.9. Let F be a finite étale commutative group scheme over X0.

Then lim
←−n

H i(X0, nF) = 0 for i ≥ 0.

Proof. Since F is őnite, F = NF for some positive integer N . Take (xn) ∈
lim
←−n

H i(X0, nF). Then xn = NxNn for each positive integer n and it follows
that xn = 0, i.e. lim

←−n
H i(X0, nF) = 0. □

Lemma 3.10. Suppose that Ker ρ is finite. Then lim
←−n

H0(X0, C ⊗
L Z/n)→

lim
←−n

H0(K,C ⊗L Z/n) is injective.

Proof. By Lemma 3.9, we have lim
←−n

H i(X0, nM) = 0. Consider the distin-
guished triangle nM [2]→ C ⊗L Z/n[1]→ TZ/n(C)[1]→ nM [3]. Thus

lim
←−
n

H0(X0, C ⊗
L Z/n)→ lim

←−
n

H0(K,C ⊗L Z/n)

is injective by dévissage (indeed, by the same argument of [Dem11a, Proposi-
tion 5.3(2)] we see that H1(X0, TZ/n(C))→ H1(K,TZ/n(C)) is injective). □

We put Di(U, C ⊗L Z/n) := Im
(
Hi

c(U, C ⊗
L Z/n)→ Hi(U, C ⊗L Z/n)

)
. So

there are inclusions

lim
←−
n

Di(U, C ⊗L Z/n) ⊂ lim
←−
n

Hi(U, C ⊗L Z/n) ⊂ lim
←−
n

Hi(K,C ⊗L Z/n).

If V ⊂U is an open subset, then lim
←−n

Di(V, C ⊗L Z/n)⊂ lim
←−n

Di(U, C ⊗L Z/n).
In this way, we can take the inverse limit lim

←−U
lim
←−n

D0(U, C ⊗L Z/n) over
all U .
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Lemma 3.11. Suppose that Ker ρ is finite. The following map is an iso-

morphism

lim
←−
U

lim
←−
n

D0(U, C ⊗L Z/n)→ lim
←−
n

X
0(C ⊗L Z/n)

with transition maps given by covariant functoriality of the functor

H0
c(−, C ⊗

L Z/n).

Proof. Since

lim
←−
n

H0(X0, C ⊗
L Z/n)→ lim

←−
n

H0(K,C ⊗L Z/n)

is injective, we can take
⋂

U⊂X0
lim
←−n

D0(U, C ⊗L Z/n) in the inverse limit
lim
←−n

H0(K,C ⊗L Z/n). It follows from the deőnition of lim
←−U

that the inter-
section over U ⊂ X0 coincides with inverse limit. By Proposition 2.6(1) and
(3), we conclude that

⋂
U⊂X0

lim
←−n

D0(U, C ⊗L Z/n) = lim
←−n

X
0(C ⊗L Z/n).

□

Next we describe X2(C ′). Again we write L for K or Kv and consider the
Kummer sequence 0→ H1(L,C ′)/n→ H1(L,C ′⊗L Z/n)→ nH

2(L,C ′)→ 0.
Since Hi(L,C ′) is torsion for i ≥ 1, taking the direct limit over all n yields
an isomorphism H1(L, lim

−→n
C ′⊗L Z/n) ≃ H2(L,C ′). In particular, we obtain

X
1(lim
−→n

C ′⊗L Z/n) ≃X
2(C ′). Put

D1
sh(U, lim−→

n

C′⊗L Z/n) := Ker
(
H1(U, lim

−→
n

C′⊗L Z/n)

→
∏

v∈X(1)

lim
−→
n

H1(Kv, C
′⊗L Z/n)

)
.

If V ⊂ U is a smaller open subset, then there is a homomorphism
D1
sh(U, lim−→n

C′⊗L Z/n)→ D1
sh(V, lim−→n

C′⊗L Z/n) induced by the restriction
maps H1(U, lim

−→n
C′⊗L Z/n)→ H1(V, lim

−→n
C′⊗L Z/n). In particular, the di-

rect limit lim
−→U

D1
sh(U, lim−→n

C′⊗L Z/n) makes sense and is isomorphic to
X

1(lim
−→n

C ′⊗L Z/n) by construction. Consequently, we reduce Theorem 3.7
to showing that lim

←−n
D0(U, C ⊗L Z/n)× D1

sh(U, lim−→n
C′⊗L Z/n)→ Q/Z is a

perfect pairing.

We shall need the following compatibility between local duality and
ArtinśVerdier duality.
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Lemma 3.12. Let U be a sufficiently small non-empty open subset of X0.

The following is a commutative diagram

(9) ⊕
v∈X(1)

H−1(Kv, C ⊗
L Z/n)

��

×
∏

v∈X(1)

H1(Kv, C
′⊗L Z/n) // Q/Z

H0
c(U, C ⊗

L Z/n) × H1(U, C′⊗L Z/n)

OO

// Q/Z

where the left vertical arrow is constructed analogous to the first arrow of

(7), and the middle one is the composition

H1(U, C′⊗L Z/n)→ H1(K,C ′⊗L Z/n)→
∏

H1(Kv, C
′⊗L Z/n).

Proof. The proof is essentially the same as that of [CTH15, Proposition
4.3(f)]. We őrst observe by the same argument as loc. cit. that it will be
sufficient to show the commutativity of diagram (9) when v /∈ U . Since the
duality pairings

H1(U, C′⊗L Z/n)×H0
c(U, C ⊗

L Z/n)→ Q/Z

and

H1(Kv, C
′⊗L Z/n)×H−1(Kv, C ⊗

L Z/n)→ Q/Z

are induced by the pairings Ext1U (C ⊗
L Z/n, µ⊗ 2

n )×H0
c(U, C ⊗

L Z/n)→ Q/Z
and Ext1Kv

(C ⊗L Z/n, µ⊗ 2
n )×H−1(Kv, C ⊗

L Z/n)→ Q/Z respectively by
[Mil80, V, Proposition 1.20], it suffices to show the following diagram

HomKv
(C ⊗L Z/n, µ⊗ 2

n [1]) × H−1(Kv, C ⊗
L Z/n) //

��

Q/Z

HomU (C ⊗
L Z/n, µ⊗ 2

n [1]) ×

OO

H0
c(U, C ⊗

L Z/n) // Q/Z,

where the Hom are in the sense of respective derived categories. Take αU ∈
HomU (C ⊗

L Z/n, µ⊗ 2
n [1]) and let αv be its image in HomKv

(C⊗LZ/n, µ⊗ 2
n [1]).

Let jU : U → X and jv : SpecKv → SpecOv be the respective open immer-
sions. Recall that there is an isomorphism

H−1(Kv, C ⊗
L Z/n) ≃ H0

v(Ov, jv!(C ⊗
L Z/n))
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(see the proof of [CTH15, Proposition 4.3(c)]). In view of the commutative
diagram

H0
v

(
Ov, jv!(C ⊗

L Z/n)
)

(αv)∗
��

H0
v

(
X, jU !(C ⊗

L Z/n)
)≃

oo //

(αU )∗
��

H0
(
X, jU !(C ⊗

L Z/n)
)

(αU )∗
��

H1
v

(
Ov, jv!(µ

⊗ 2
n )

)
H1

v

(
X, jU !(µ

⊗ 2
n )

)
≃

oo // H1
(
X, jU !(µ

⊗ 2
n )

)
,

we conclude the desired commutativity of diagram (9). □

Lemma 3.13. Suppose that M := Ker ρ is finite. Then the canonical map

H1(U, lim
−→
n

C′⊗L Z/n)→
∏

lim
−→n

H1(Kv, C
′⊗L Z/n)

factors through
⊕

lim
−→n

H1(Kv, C
′⊗L Z/n) ⊂

∏
lim
−→n

H1(Kv, C
′⊗L Z/n).

Proof. Indeed, the őniteness of Ker ρ is equivalent to the surjectivity of
ρ′ : T ′

2 → T ′
1. Therefore we obtain a quasi-isomorphism (Ker ρ′)[1] ≃ C ′. But

Ker ρ′ is a group of multiplicative type, we may extend it to X0 and em-
bed it into a short exact sequence 0→ P → Ker ρ′ → F → 0 over Ov for
v ∈ X

(1)
0 where P is a torus and F is a őnite étale commutative group

scheme. Note that the groups H3(Ov,P) ≃ H3(κ(v),P) and H3(Ov,F) ≃
H3(κ(v),F) vanish, so we conclude that H3(Ov,Ker ρ′) = 0. According to
the distinguished triangle C′ → C′ → C′⊗L Z/n→ C′[1], we have an identiő-
cation

H2(Ov, C
′) ≃ lim
−→
n

H1(Ov, C
′⊗L Z/n).

But H2(Ov, C
′) ≃ H3(Ov,Ker ρ′) = 0, it follows that lim

−→
H1(Ov, C

′⊗L Z/n) =

0. Hence the image of lim
−→n

H1(U, C′⊗L Z/n) in
∏

v lim−→n
H1(Kv, C ⊗

L Z/n)

lies in the subgroup
⊕

v lim−→n
H1(Kv, C ⊗

L Z/n). □

Since direct limits commute with direct sums, we obtain an exact se-
quence

0→ D1
sh(U, lim−→

n

C′⊗L Z/n)→ H1(U, lim
−→
n

C′⊗L Z/n)

→ lim
−→
n

∏
v
H1(Kv, C

′⊗L Z/n)
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via

⊕
v
lim
−→
n

H1(Kv, C
′⊗L Z/n) ≃ lim

−→
n

⊕
v
H1(Kv, C

′⊗L Z/n)

⊂ lim
−→
n

∏
v
H1(Kv, C

′⊗L Z/n).

Lemma 3.14. There is a perfect pairing of abelian groups

lim
←−
n

D0(U, C ⊗L Z/n)× D1
sh(U, lim−→

n

C′⊗L Z/n)→ Q/Z.

Proof. We consider the following diagram with exact rows
(10)
0 // D1

sh(U, lim−→n
C′⊗L Z/n) // H1(U, lim

−→n
C′⊗L Z/n) // lim

−→n

∏
v H

1(Kv, C
′⊗L Z/n)

0 // lim
−→n

(
D0(U, C ⊗L Z/n)

)D
//

OO

lim
−→n

(
H0

c(U, C ⊗
L Z/n)

)D
//

≃

OO

lim
−→n

(⊕
H−1(Kv, C ⊗

L Z/n)
)D

∗

OO

where the lower row is exact by Proposition 2.7. Note that the arrow ∗ is
constructed as the composition

lim
−→
n

(⊕
v
H−1(Kv, C ⊗

L Z/n)
)D
≃ lim
−→
n

∏
v

(
H−1(Kv, C ⊗

L Z/n)D
)

≃ lim
−→
n

∏
v
H1(Kv, C

′⊗L Z/n)

where the last isomorphism follows from local dualities. The square in dia-
gram (10) commutes by Lemma 3.12. Now a diagram chase shows that the
left vertical arrow is an isomorphism. □

4. Poitou–Tate sequences

We begin with the topologies on Hi(K,C) and Pi(K,C).

• For each i, the groups Hi(K,C) are endowed with the discrete topol-
ogy. The groups Hi(K,C)∧ are endowed with the subspace topology
of the product

∏
nH

i(K,C)/n. Its topology is not proőnite since each
component Hi(K,C)/n is not necessarily a őnite group in general.

• For i = −1, 0, we give Pi(K,C) the restricted product topology. More-
over, the group Pi(K,C)∧ is equipped with the subspace topology of
the product

∏
n P

i(K,C)/n.
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• For i = 1, 2, The group Pi(K,C)tors is endowed with the direct limit
topology. More precisely, nP

i(K,C) is equipped with the restricted
product topology with respect to the discrete topology on each
nH

i(Kv, C), and their direct limit Pi(K,C)tors is equipped with the
corresponding direct limit topology.

Now we arrive the main result of this paper.

Theorem 4.1. Suppose either Ker ρ is finite or Coker ρ is trivial. Then the

following is a 12-term functorial exact sequence of topological abelian groups

0 // H−1(K,C)∧ // P−1(K,C)∧ // H2(K,C ′)D

// H0(K,C)∧ // P0(K,C)∧ // H1(K,C ′)D

// H1(K,C) // P1(K,C)tors //
(
H0(K,C ′)∧

)D

// H2(K,C) // P2(K,C)tors //
(
H−1(K,C ′)∧

)D
// 0

where the map H1(K,C ′)D → H1(K,C) is induced by the global duality pair-

ing X
1(C)×X

1(C ′)→ Q/Z (see [Tia21, Theorem 1.18]).

The proof of the theorem consists of several steps. We őrst establish
perfect pairings between the restricted topological products for any short
complex C. Subsequently, we deduce the exactness of the őrst and the last
rows again for any C. Finally, we deal with the more complicated exact se-
quence in the middle of the diagram with either Ker ρ being őnite or Coker ρ
being trivial.

Step 1: dualities between restricted topological products.

We proceed as in the őnite level to obtain pairings between Pi(K,C)∧
and P1−i(K,C ′)tors for i = −1, 0. Recall Lemma 1.4 that Hi(Ov, C)/n→

Hi(Kv, C)/n is injective for each v ∈ X
(1)
0 . Therefore we are allowed to iden-

tify Hi(Ov, C)∧ with a subgroup of Hi(Kv, C)∧ for v ∈ X
(1)
0 by the left ex-

actness of inverse limits. In this step, all the conclusions are valid without
any assumption on Ker ρ and Coker ρ.
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Proposition 4.2. For i = −1, 0, the annihilator of H1−i(Ov, C
′) is

Hi(Ov, C)∧ under the perfect pairing (see [Tia21, Remark 1.5])

Hi(Kv, C)∧ ×H1−i(Kv, C
′)→ Q/Z.

Proof. We consider the following commutative diagram with exact rows for
i = −1, 0

0 // Hi(Ov, C)/n //

��

Hi(Ov, C ⊗
L Z/n) //

��

Hi+1(Ov, C)

��

0 // Hi(Kv, C)/n // Hi(Kv, C ⊗
L Z/n) // Hi+1(Kv, C).

Take t ∈ Hi(Kv, C)/n such that t is orthogonal to nH
1−i(Ov, C

′). Then the
image s of t in Hi(Kv, C ⊗

L Z/n) is orthogonal to H−i(Ov, C
′⊗L Z/n) and

it follows that s ∈ Hi(Ov, C ⊗
L Z/n) by Proposition 2.2. The right vertical

arrow is injective by Lemma 1.2, thus a diagram chase shows that t lies in
Hi(Ov, C)/n. □

Corollary 4.3. For i = −1, 0, there are isomorphisms Pi(K,C)∧ ≃(
P1−i(K,C ′)tors

)D
of locally compact groups.

Proof. This is an immediate consequence of Lemma 1.4 and Proposition 4.2.
□

Step 2: exactness of the first and the last rows of diagram (1).

In this step, all the conclusions are valid without any assumption on
Ker ρ and Coker ρ.

Proposition 4.4. The following is an exact sequence of locally compact

groups

(11) 0→X
2(C)→ H2(K,C)→ P2(K,C)tors →

(
H−1(K,C ′)∧

)D
→ 0.
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Proof. We consider the following commutative diagram with exact rows and
exact middle column by Theorem 2.11:
(12)
0 // H1(K,C)/n //

��

H1(K,C ⊗L Z/n) //

��

nH
2(K,C) //

��

0

0 // P1(K,C)/n //

��

P1(K,C ⊗L Z/n) //

��

nP
2(K,C) //

��

0

0 //
(
nH

0(K,C ′)
)D

// H−1(K,C ′⊗L Z/n)D //
(
H−1(K,C ′)/n

)D
// 0.

Taking direct limit over all n of the last two columns in diagram (12) yields
the commutative diagram
(13)
lim
−→n

H1(K,C ⊗L Z/n) //

��

lim
−→n

P1(K,C ⊗L Z/n) //

��

(
lim
←−n

H−1(K,C ′⊗L Z/n)
)D

//

��

0

H2(K,C) // P2(K,C)tors //
(
H−1(K,C ′)∧

)D
.

Since H2(K,C) is torsion and H3(K,C) = 0 (thanks to Remark 1.3 and
the distinguished triangle T1 → T2 → C → T1[1]), taking direct limit of the
Kummer sequence

0→ H2(K,C)/n→ H2(K,C ⊗L Z/n)→ nH
3(K,C)→ 0.

yields lim
−→n

H2(K,C ⊗L Z/n) = 0. Taking direct limit in Theorem 2.11 yields
the exactness of the upper row. The left vertical arrow in (13) is an iso-
morphism since H1(K,C)⊗Q/Z = 0 and the middle one is surjective by
the exactness of lim

−→n
. If the right vertical arrow is an isomorphism, then a

diagram chase yields the exact sequence (11).
So it remains to show lim

←−n
H−1(K,C ′⊗L Z/n) ≃ H−1(K,C ′)∧. We see

that the vanishing lim
←−n nH

0(K,C ′) = 0 is enough because of the Kummer
sequence

0→ H−1(K,C ′)/n→ H−1(K,C ′⊗L Z/n)→ nH
0(K,C ′)→ 0,

and therefore we reduce to show H0(K,C ′)tors has őnite exponent. Indeed,
since H0(K,Gm)tors = (K×)tors = (k×)tors is őnite, we see that H0(K,P )tors
has őnite exponent for a K-torus P by a restriction-corestriction argument.
The distinguished triangle Ker ρ′[1]→ C ′ → Coker ρ′ → Ker ρ′[2] yields an
exact sequence 0→ H1(K,Ker ρ′)tors → H0(K,C ′)tors → H0(K,Coker ρ′)tors.
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By Lemma 3.1(4), H1(K,Ker ρ′) has őnite exponent, therefore so does
H0(K,C ′)tors by dévissage. □

We thank the referee for pointing out to us the following lemma.

Lemma 4.5. Let A1 → A2 → A3 → A4 be an exact sequence of Hausdorff,

second countable and locally compact topological abelian groups with contin-

uous maps. Then the map A2 → A3 is strict. In particular, we have an exact

sequence AD
3 → AD

2 → AD
1 .

Proof. We show that A2/ ImA1 → A3 induces a homeomorphism onto a
closed subgroup. Its image is closed since it equals the closed subgroup
Ker(A3 → A4) of A3. It induces a homeomorphism onto its image by [Bou74,
Chapitre IX, ğ5, Proposition 6]. Now if an element of AD

2 goes to zero in AD
1 ,

then it becomes an element of (A2/ ImA1)
D. But A2/ ImA1 → A3 is a home-

omorphism onto a closed subgroup of A3, we conclude that AD
3 → AD

2 → AD
1

is exact. □

Corollary 4.6. The following is an exact sequence of locally compact groups

0→ H−1(K,C)∧ → P−1(K,C)∧ → H2(K,C ′)D →X
2(C ′)D → 0.

Proof. Applying Proposition 4.4 to C ′ yields an exact sequence

(14) H2(K,C ′)→ P2(K,C ′)tors →
(
H−1(K,C)∧

)D
→ 0.

It follows that the desired sequence is exact at the őrst three terms by dual-
izing the sequence (14) and applying Corollary 4.3 and Lemma 4.5. Applying
Lemma 4.5 to the exact sequence 0→X

2(C ′)→ H2(K,C ′)→ P2(K,C ′)tors
yields the desired exactness at the last three terms. □

Step 3.1: Exactness of the second and the third rows of diagram
(1): finite kernel case

We will systematically assume that M := Ker ρ is őnite from Proposi-
tion 4.7 to Proposition 4.11.

Proposition 4.7. The following is an exact sequence of locally compact

groups

lim
←−
n

H0(K,C ⊗L Z/n)→ lim
←−
n

P0(K,C ⊗L Z/n)→ H0(K, lim
−→
n

C ′⊗L Z/n)D.
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Proof. We consider the following commutative diagram3

(15)
H0(K,TZ/n(C))

ΦK

n
//

��

H2(K, nM) //

��

H0(K,C ⊗L Z/n) //

��

H1(K,TZ/n(C))
ΨK

n
//

��

H3(K, nM)

��

P0(K,TZ/n(C))
ΦΠ

n
//

��

P2(K, nM) //

��

P0(K,C ⊗L Z/n) //

��

P1(K,TZ/n(C))
ΨΠ

n
//

��

P3(K, nM)

��

H3(K,TZ/n(C)′)D // H1(K, (nM)′)D // H0(K,C ′⊗L Z/n)D // H2(K,TZ/n(C)′)D // H0(K, (nM)′)D

where the upper two rows are exact since they are induced by the distin-
guished triangle nM [2]→ C ⊗L Z/n→ TZ/n(C)[1]→ nM [3], and the
columns except the middle one are exact by [HSS15, Theorem 2.3]. For a
őnite étale commutative group scheme F , recall that F ′ := Hom(F,Q/Z(2)).
Since Hom(−,Q/Z(2)) is an exact functor, RHom(−,Q/Z(2)) may be com-
puted on a complex by applying Hom(−,Q/Z(2)). Therefore we may du-
alize the map TZ/n(C)→ nM [2] in the derived category to obtain a map
nM

′[−2]→ TZ/n(C)′. The product

P0(K,TZ/n(C)) =
∏

v∈X(1)

H0(Kv, TZ/n(C))

is compact since H0(Kv, TZ/n(C)) is őnite. Now taking inverse limit of the
middle three columns of diagram (15) over all n yield the following commu-
tative diagram in which the upper two rows are exact
(16)

lim
←−n

H2(K, nM) //

��

lim
←−n

H0(K,C ⊗L Z/n) //

��

lim
←−n

KerΨK
n

//

��

lim
←−

1
n
CokerΦK

n

��

lim
←−n

P2(K, nM) //

��

lim
←−n

P0(K,C ⊗L Z/n) //

��

lim
←−n

KerΨΠ
n

//

��

lim
←−

1
n
CokerΦΠ

n

lim
←−n

H1(K, (nM)′)D // lim
←−n

H0(K,C ′⊗L Z/n)D // lim
←−n

H2(K,TZ/n(C)′)D.

3Recall that H3(Ov, nM) = H3(κ(v), nM) = 0 for cohomological dimension rea-
sons. Thus we have P3(K, nM) =

⊕
H3(Kv, nM).
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Moreover, the third column of the above diagram (16) also őts into the
commutative diagram with exact rows and columns
(17)

0 // lim
←−n

KerΨK
n

//

��

lim
←−n

H1(K,TZ/n(C)) //

��

lim
←−n

ImΨK
n

��

0 // lim
←−n

KerΨΠ
n

// lim
←−n

P1(K,TZ/n(C)) //

��

lim
←−n

ImΨΠ
n

lim
←−n

H2(K,TZ/n(C)′)D

with lim
←−n

ImΨK
n ⊂ lim

←−n
H3(K, nM) = 0 being zero (here we have used the

fact that M is őnite). Therefore lim
←−n

KerΨK
n → lim

←−n
H1(K,TZ/n(C)) is sur-

jective. Note that the middle column is exact because lim
←−

1
n

of the őnite groups
Ker

(
H1(K,TZ/n(C))→ P1(K,TZ/n(C))

)
vanishes according to [Jen72,

Théorème 7.3] (the őniteness of the kernel follows from [HS16, Theorem 4.4]).
Take α ∈ lim

←−n
P0(K,C ⊗L Z/n) such that it goes to zero in

lim
←−
n

H0(K,C ′⊗L Z/n)D.

By functoriality, β := Imα ∈ lim
←−n

P1(K,TZ/n(C)) goes to zero in

lim
←−
n

H2(K,TZ/n(C)′)D.

Thus β comes from γ ∈ lim
←−n

H1(K,TZ/n(C)) by the exactness of the mid-
dle column in diagram (17). Since lim

←−n
KerΨK

n → lim
←−n

H1(K,TZ/n(C)) is
surjective, γ comes from some γ′ ∈ lim

←−n
KerΨK

n . But

1
lim
←−
n

CokerΦK
n →

1
lim
←−
n

CokerΦΠ
n

is injective by Lemma 4.8 below, so γ′ comes from τ ∈ lim
←−n

H0(K,TZ/n(C)).
Since α and Im τ have the same image in lim

←−n
KerΨΠ

n by construction, the
exactness of the second row of diagram (16) implies that α and Im τ dif-
fers from an element in lim

←−n
P2(K, nM). Recall that Ker ρ is őnite, thus

lim
←−n

P2(K, nM) = 0 and α comes from lim
←−n

H0(K,TZ/n(C)). □
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Lemma 4.8. The homomorphism lim
←−

1
n
CokerΦK

n → lim
←−

1
n
CokerΦΠ

n in dia-

gram (16) is an isomorphism.

Proof. Since H0(L, TZ/n(C)) is őnite for L = K, Kv, P0(K,TZ/n(C)) =∏
v∈X(1) H0(Kv, TZ/n(C)) is compact. Thus we obtain lim

←−
1
n
H0(K,TZ/n(C))=

0 and lim
←−

1
n
P0(K,TZ/n(C)) = 0 by [Jen72, Théorème 7.3]. Moreover, the im-

age ImΦK
n of H0(K,TZ/n(C)) in H2(K, nM) is őnite, so lim

←−
1
n
H2(K, nM) ≃

lim
←−

1
n
CokerΦK

n by the short exact sequence 0→ ImΦK
n → H2(K, nM)→

CokerΦK
n → 0. Similarly, we obtain lim

←−
1
n
P2(K, nM) ≃ lim

←−
1
n
CokerΦΠ

n .
Let In denote the image of H2(K, nM)→ P2(K, nM). So

0→X
2(nM)→ H2(K, nM)→ In → 0

is an exact sequence. The őniteness of X2(nM) (by [HS16, Theorem 4.4])
yields an isomorphism lim

←−
1
n
H2(K, nM) ≃ lim

←−
1
n
In. Moreover, the cokernel

of In → P2(K, nM) is a subgroup of the group H1(K, (nM)′)D by diagram
(15). The őniteness of M yields the vanishing of lim

←−n

(
H1(K, (nM)′)D

)
≃

H1(K, lim
−→n

(nM)′)D and thus lim
←−n

Coker
(
In → P2(K, nM)

)
= 0 by the left

exactness of inverse limits. Moreover, the őniteness of M implies that there is
an integer (say e) such that neM → nM the multiplication by e is trivial for
each integer n. In particular, the system {Coker

(
In → P2(K, nM)

)
} satis-

őes the MittagśLeffler condition, hence lim
←−

1
n
Coker

(
In → P2(K, nM)

)
= 0 by

[Wei94, Proposition 3.5.7]. We now conclude that lim
←−

1
n
In → lim

←−
1
n
P2(K, nM)

is an isomorphism. Therefore we have lim
←−

1
n
CokerΦK

n ≃ lim
←−

1
n
In ≃

lim
←−

1
n
CokerΦΠ

n . □

Corollary 4.9. The following is an exact sequence of locally compact groups

0→X
0
∧(C)→ H0(K,C)∧ → P0(K,C)∧ → H1(K,C ′)D →X

1(C ′)D → 0.

Proof. We consider again the diagram (8) with rows and the middle column
being exact (by Proposition 4.7):

0 // H0(K,C)∧ //

��

lim
←−n

H0(K,C ⊗L Z/n) //

��

ΦK
//

��

0

0 // P0(K,C)∧ //

��

lim
←−n

P0(K,C ⊗L Z/n) //

��

ΦΠ
// 0.

H1(K,C ′)D // H0(K, lim
−→n

C ′⊗L Z/n)D
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Since H0(K,C ′⊗L Z/n)→ nH
1(K,C ′) is a surjective map between discrete

groups, there is an injective map
(
nH

1(K,C ′)
)D
→

(
H0(K,C ′⊗L Z/n)

)D
and hence an injection H1(K,C ′)→ H0(K, lim

−→n
C ′⊗L Z/n). So the left ver-

tical column is a complex. But the map ΦK → ΦΠ is injective (see the proof
of Lemma 3.8), another diagram chase then tells us the left column is exact.

To show the exactness of the last three terms, we consider the exact
sequence 0→X

1(C ′)→ H1(K,C ′)→ P1(K,C ′)tors. Now we obtain the de-
sired exactness by Lemma 4.5. □

Remark 4.10. By Lemma 3.1, the groups H−1(K,C) and P−1(K,C) are
torsion of őnite exponent, therefore they are isomorphic to respective com-
pletions H−1(K,C)∧ and P−1(K,C)∧. Note that H1(K,C) and P1(K,C) ⊂∏

H1(Kv, C) have őnite exponents according to Lemma 3.1. Consequently,
we obtain H1(K,C) ≃ H1(K,C)∧ and P1(K,C)tors = P1(K,C) ≃ P1(K,C)∧.
Moreover, the őniteness of M implies that ρ′ : T ′

2 → T ′
1 is surjective and

hence H0(K,C ′) has őnite exponent by Lemma 3.1. Summing up, the sub-
scripts "tors" and "∧" in the őrst and the third rows of (1) are superŕuous.

Proposition 4.11. The following sequence of locally compact groups is ex-

act

0→X
1(C)→ H1(K,C)→ P1(K,C)tors →

(
H0(K,C ′)∧

)D
→ H2(K,C).

Proof. Taking inverse limit in diagram (12) yields a commutative diagram

0 // H1(K,C) //

��

lim
←−n

H1(K,C ⊗L Z/n) //

��

ΨK
//

��

0

0 // P1(K,C) //

��

lim
←−n

P1(K,C ⊗L Z/n) //

��

ΨΠ
// 0.

0 // H0(K,C ′)D // lim
←−n

H−1(K,C ′⊗L Z/n)D

We observe that ΨK → ΨΠ is injective because its kernel is contained in
lim
←−n nX

2(C) = 0 (recall that X
2(C) is őnite). The exactness of the mid-

dle column follows from the vanishing lim
←−

1
n
X

1(C ⊗L Z/n) = 0 (by [Jen72,
Théorème 7.3]). Thus a diagram chase yields the exactness of the left column.
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Now we verify the exactness of P1(K,C)→ H0(K,C ′)D → H2(K,C).
Consider the commutative diagram with vertical arrows obtained from re-
spective Kummer sequences:
(18)

P0(K,C ⊗L Z/n) //

����

H0(K,C ′⊗L Z/n)D //

����

H1(K,C ⊗L Z/n)

����

nP
1(K,C) //

(
H0(K,C ′)/n

)D ∗
//
nH

2(K,C),

where the upper row is exact by Theorem 2.11 and the arrow ∗ is the compos-
ite

(
H0(K,C ′)/n

)D
→

(
X

0(C ′)/n
)D
≃ nX

2(C)→ nH
2(K,C). Note that

the squares in (18) commute by construction. Finally, the middle vertical
arrow is surjective because H0(K,C ′⊗L Z/n) and H0(K,C ′)/n are discrete.
Passing to the direct limit over all n, the right vertical arrow in diagram
(18) becomes an isomorphism as H1(K,C)⊗Q/Z = 0. Now a diagram chas-
ing implies the exactness of P1(K,C)→ H0(K,C ′)D → H2(K,C). □

Step 3.2: Exactness of the second and the third rows of diagram
(1): the surjective case

Suppose that ρ : T1 → T2 is surjective. Thus T̂2 → T̂1 is injective and̂
T 1 →

̂
T 2 has őnite cokernel, i.e. ρ′ : T ′

2 → T ′
1 has őnite kernel. Therefore

H−1(K,C ′), H0(K,C), H1(K,C ′) and H2(K,C) are torsion groups hav-
ing őnite exponent by Lemma 3.1. It follows that H0(K,C)∧ = H0(K,C),
H−1(K,C ′)∧ = H−1(K,C ′). Moreover, we have P0(K,C)∧ = P0(K,C) and
P2(K,C)tors = P2(K,C) thanks to the distinguished triangle M [1]→ C →
T →M [2]. We conclude that the subscripts of the second and the last rows
in diagram (1) are superŕuous. After Corollary 4.6 and Proposition 4.4, it
remains to show the following proposition.

Proposition 4.12. Suppose that ρ : T1 → T2 is surjective. Then the se-

quence

0→X
0(C)→ H0(K,C)→ P0(K,C)→ H1(K,C ′)D

→ H1(K,C)→ P1(K,C)tors →
(
H0(K,C ′)∧

)D
→ H2(K,C)

is exact.

Proof.
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• We show the exactness of H1(K,C)→ P1(K,C)tors →
(
H0(K,C ′)∧

)D.
Since H1(K,C ′) has őnite exponent, lim

←−n nH
1(K,C ′) = 0 and hence

H0(K,C ′)∧ ≃ lim
←−n

H0(K,C ′⊗L Z/n) by the Kummer sequence 0→

H0(K,C ′)/n→ H0(K,C ′⊗L Z/n)→ nH
1(K,C ′)→ 0. Consider the

commutative diagram

lim
−→n

H0(K,C ⊗L Z/n) //

����

lim
−→n

P0(K,C ⊗L Z/n) //

����

(
lim
←−n

H0(K,C ′⊗L Z/n)
)D

≃
��

H1(K,C) // P1(K,C)tors //
(
H0(K,C ′)∧

)D
.

Now the exactness of the lower row follows from that of the upper row
(thanks to Theorem 2.11) by diagram chasing.

• We consider the following commutative diagram (see diagram (18)) for
i = −1, 0 in which the top row is exact by Theorem 2.11:

(19)
Pi(K,C ⊗L Z/n) //

����

H−i(K,C ′⊗L Z/n)D //

����

Hi+1(K,C ⊗L Z/n)

����

nP
i+1(K,C) //

(
H−i(K,C ′)/n

)D ∗
//
nH

i+2(K,C)

where the arrow ∗ is constructed in the same way as (18). Note that
H0(K,C) ≃ H1(K,M) and H1(K,C) are torsion. Thus

Hi(K,C)⊗Q/Z = 0 for i = 0, 1.

It follows that the right vertical arrow becomes an isomorphism after
taking direct limit in diagram (19). Therefore we get the exactness of

P0(K,C)→ H1(K,C ′)D → H1(K,C)

and
P1(K,C)tors →

(
H0(K,C ′)∧

)D
→ H2(K,C)

by diagram chasing.

• According to the previous points, we have an exact sequence H1(K,C ′)

→ P1(K,C ′)tors →
(
H0(K,C)∧

)D
→ H2(K,C ′). Dualizing it yields an

exact sequence H0(K,C)∧ → P0(K,C)∧ → H1(K,C ′)D by Lemma 4.5.
But the groups H0(K,C) and P0(K,C) have őnite exponents, thus we
obtain an exact sequence H0(K,C)→ P0(K,C)→ H1(K,C ′)D. □
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Example 4.13.

(1) Let P be a K-torus that extends to an X0-torus P . We consider the spe-
cial case that C = [0→ P ] and C ′ = P ′[1]. By deőnition, H−1(L,P ) =
0 for L = K or Kv and hence the őrst two terms in diagram (1) van-
ish automatically. The third term vanishes by Lemma 3.1. Moreover,
P1(K,P ) has őnite exponent by Hilbert’s Theorem 90, so it is tor-
sion. Finally, H1(K,P ′) has őnite exponent, thus the canonical map
H1(K,P ′)→ H1(K,P ′)∧ is an isomorphism. The remaining 9 terms
in diagram (1) read as

0 // H0(K,P )∧ // P0(K,P )∧ // H2(K,P ′)D

// H1(K,P ) // P1(K,P ) // H1(K,P ′)D

// H2(K,P ) // P2(K,P )tors //
(
H0(K,P ′)∧

)D
// 0

which is the PoitouśTate exact sequence for tori [HSS15, Theorem 2.9].

(2) Let M be a group of multiplicative type over K. We may embed it
into a short exact sequence 0→M → T1 → T2 → 0 with T1 and T2

being K-tori. In particular, there is a quasi-isomorphism M [1] ≃ CM

with CM = [T1
ρ
→ T2]. In this case, Coker ρ is trivial and we obtain a

PoitouśTate sequence for short complexes CM and thus for groups of
multiplicative type.

(3) Let G be a connected reductive group over K. Let Gsc be the universal
covering of the derived subgroup Gss of G. Let ρ : Gsc → Gss → G be
the composite. Let T be a maximal torus of G and let T sc := ρ−1(T )
be the inverse image of T in Gsc. Thus T sc is a maximal torus of Gsc.
Following [Bor98], we write H i

ab(K,G) = Hi(K,C) and Pi
ab(K,G) =

Pi(K,C) with C = [T sc → T ] for the abelianized Galois cohomolo-
gies. So the PoitouśTate sequence (1) yields an exact sequence for
the abelianization of Galois cohomology of G as follows

0 // H−1
ab (K,G) // P−1

ab (K,G) // H2(K,C ′)D

// H0
ab(K,G)∧ // P0

ab(K,G)∧ // H1(K,C ′)D

// H1
ab(K,G) // P1

ab(K,G) // H0(K,C ′)D

// H2
ab(K,G) // P2

ab(K,G)tors //
(
H−1(K,C ′)∧

)D
// 0.
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Hopefully it will give a defect to strong approximation, which is anal-
ogous to the number őeld case [Dem11b].

Finally, we relate Hi(K,C ′) in Example 4.13(3) with a simpler coho-
mology group. Recall that the algebraic fundamental group πalg

1 (G) (see
[Bor98, ğ1] and [CT08, ğ6] for more information) of a connected reductive
group G is πalg

1 (G) := X∗(T )/ρ∗X∗(T
sc) where ρ∗ : X∗(T

sc)→ X∗(T ) is in-
duced by ρ : T sc → T .

Corollary 4.14. Let G be a connected reductive group. Let C = [T sc ρ
→ T ]

be as above. Let G∗ be the group of multiplicative type such that X∗(G∗) =
πalg
1 (G). Then the following is an exact sequence

0→X
1(C)→ H1(K,C)→ P1(K,C)→ H1(K,G∗)D.

Proof. Let T ss := T ∩Gss and let Gtor := T/T ss. Thus there is a short exact
sequence of short complexes

(20) 0→ [(Gtor)′ → 0]→ [T ′ → (T sc)′]→ [(T ss)′ → (T sc)′]→ 0.

By [CT08, Proposition 6.4], there is a short exact sequence of abelian groups

0→ (Ker ρ)(−1)→ πalg
1 (G)→ X∗(G

tor)→ 0.

Here (Ker ρ)(−1) := HomZ(X
∗(Ker ρ),Q/Z) is the module of characters of

(Ker ρ)′ := Hom(Ker ρ,Q/Z(2)). Thus there is an exact sequence of groups
of multiplicative type

(21) 0→ (Gtor)′ → G∗ → (Ker ρ)′ → 0.

Since T sc → T ss is an isogeny with kernel Ker ρ, its dual isogeny (T ss)′ →
(T sc)′ has kernel (Ker ρ)′, i.e. there is a quasi-isomorphic [(T ss)′ → (T sc)′] ≃

(Ker ρ)′[1]. By deőnition there is an exact sequence X∗(T
sc)

ρ∗

→ X∗(T )→
πalg
1 (G)→ 0, so there is a corresponding exact sequence 0→ G∗ → T ′ →

(T sc)′ of groups of multiplicative type. In particular, we obtain a morphism of
short complexes G∗[1]→ C ′. Summing up, there is a commutative diagram of
short complexes with exact rows obtained from (21) and (20):

0 // (Gtor)′[1] // G∗[1] //

��

(Ker ρ)′[1] //

��

0

0 // (Gtor)′[1] // C ′ // [(T ss)′ → (T sc)′] // 0.
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Since the right vertical arrow is a quasi-isomorphism, so is the middle one as
is seen by taking cohomology and applying the 5-lemma. Thus H i+1(K,G∗)≃
Hi(K,C ′) and the desired sequence follows from Example 4.13(3). □

Remark 4.15. Corollary 4.14 gives an abelianized version of the Kottwitzś
Borovoi sequence [Bor98, Theorem 5.16] over the p-adic function őeld K.
Hopefully over such K there is an exact sequence 1→X

1(G)→ H1(K,G)→
P1(K,G)→ H1(K,G∗)D of pointed sets for connected linear groups which
can be used to give an obstruction to weak approximation for homogenous
spaces under some linear group with stabilizer G.
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