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Open Torelli locus and complex ball

quotients

Sai-Kee Yeung

We study the problem of non-existence of totally geodesic com-
plex ball quotients in the open Torelli locus in a moduli space of
principally polarized Abelian varieties using analytic techniques.

1. Introduction

1.1 Let Mg be the moduli space or stack of Riemann surfaces of genus
g ⩾ 2. Let Mg be the Deligne-Mumford compactification of Mg. Let Ag

be the moduli space of principally polarized Abelian varieties of complex
dimension g. We know that Ag = Sg/Sp(2g,Z) is the quotient of the Siegel
Upper Half Space Sg of genus g. Let Ag be the Bailey-Borel compactification
of Ag. Associating a smooth Riemann surface represented by a point in Mg

to its Jacobian, we obtain the Torelli map jg : Mg → Ag. The Torelli map
extends to jg : Mg → Ag. The image T o

g := jg(Mg) is called the open Torelli
locus of Ag. It is well-known that the Torelli map jg is injective on Mg. As
a mapping between stacks, the mapping tg|Mg

is known to be an immersion
apart from the hyperelliptic locus, which is denoted by Hg. Hg is the set of
points in Mg parametrizing hyperelliptic curves of genus g.

It is a natural problem to study Mg, jg and to characterize the Torelli
locus in Ag. There are many interesting directions and approaches to the
problems. Our motivation comes from the following conjecture in the liter-
ature.

Conjecture 1. (Oort [O]) Let T o
g be the open Torelli locus in the Siegel

modular variety Ag. Then for g sufficiently large, the intersection of T o
g with

any Shimura variety M ⊂ Ag of strictly positive dimension is not Zariski
dense in M .
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The problem is related to a conjecture of Coleman [C] that the cardinal-
ity of CM points on Mg cannot be infinite if g is sufficiently large. Shimura
varieties are arithmetic locally Hermitian symmetric spaces. Hence we may
consider a geometrically slightly more general question of whether there ex-
ists a locally Hermitian symmetric space in Ag with a Zariski open set in
T o
g . In such case, the lattice Γ involved in the complex rank one case, namely

complex balls Bn
C
= PU(n, 1)/P (U(n)× U(1)), may not be arithmetic.

Conjecture 1 is open, but there are quite a few interesting partial results.
First of all there is the result of Hain [Ha] that for M locally Hermitian sym-
metric of rank at least 2, it cannot happen that M ⊂ Tg(Mg)− (tg(Hg) ∪
tg(Mg\Mg)), cf. also de Jong-Zhang [dJZ] for precise formulation and some
results. On the other hand, there is the result of de Jong-Noot [dJN] that
there are examples of Shimura curves in Mg for g = 4 and 6. A more sys-
tematic and complete treatment in this direction can be found in Moonen
[Moo]. To the knowledge of the author, not much is known for complex ball
quotients of dimension n ⩾ 2, apart from some restrictions in terms of Higgs
bundles given in Chen-Lu-Tan-Zuo [CLTZ]. A possible reason is that on the
one hand rigidity results in general are not strong enough for super-rigidity
properties in the rank one complex cases, and on the other hand the problem
is not concrete enough to be handled by geometric techniques developed for
specific Riemann surfaces.

1.2 The goal of this paper is to provide a method which is applicable to
locally Hermitian symmetric spaces and in particular to all complex ball
quotients of dimension n ⩾ 2. It is a weaker statement but is in support of
Conjecture 1.

Theorem 1. The set T o
g − jg(Hg) ⊂ Ag for g ⩾ 2 does not contain any

complex hyperbolic complex ball quotient, compact or non-compact with fi-
nite volume, of complex dimension at least 2 as a totally geodesic complex
suborbifold of Ag.

Remarks. The method of proof applies immediately to other locally Her-
mitian symmetric spaces of complex dimension at least 2. We refer the read-
ers to Section 3.5 and 4.4 for more details. However, the end result for
rankRM ⩾ 2 followed already from the results of [Ha], where the proof is
completely different.

Combining Theorem 1, the results of [Ha], the results of [Mö] and the
very recent result of [AN], we have now a rather complete picture for Shimura
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varieties on the complement of the hyperelliptic locus in the open Torelli
locus.

Theorem 2. Let g ⩾ 2. The space T o
g − jg(Hg) ⊂ Ag in the Siegel modular

variety Ag does not contain any Shimura subvariety of Ag, except when
M is the Torelli image of a Riemann surface with genus g = 3, 4. There is
only one curve for each of g = 3, 4, with universal families given by y4 =
x(x− 1)(x− t) and y6 = x(x− 1)(x− t) respectively.

2. Preliminaries and rigidity

2.1 The approach we take is complex analytic, trying to compare various
Kobayashi metrics making use of Schwarz Lemma and results in rigidity.
The reader may refer to 3.1 for a brief summary of facts needed about
Kobayashi metric.

As mentioned in the introduction, we may consider eitherM as a smooth
submanifold of Ag, or a suborbifold. In the latter case the Kobayashi metrics
are considered to be in orbifold sense as follows. Recall that all the singu-
larities of Ag are orbifold singularities since Ag is a quotient of the Siegel
Upper Half Space Sg by a discrete group and Sg is smooth. By an orbifold
embedding (resp. mapping) f : M → Ag, we mean that there is a finite cov-
ering π : A′

g → Ag so that A′
g is smooth and there is an embedding (resp.

mapping) f ′ : M ′ → A′ for which M ′ is smooth and f ◦ π = π ◦ f ′. Since
Kobayashi metric is invariant under a biholomorphism and in particular in-
variant under a local holomorphic covering map, the argument throughout
the article would be independent of the local uniformization taken at each
orbifold singularity.

Hence the Kobayashi metric studied throughout the article is in orbifold
sense as explained.

2.2 The proof of Theorem 1 makes use of the following result in [A].

Proposition 1. ([A] Theorem 1.1) Let M̃ = BN
C

be the complex unit ball of

dimension N ⩾ 2. There is no holomorphic embedding of M̃ into Tg which

is isometric with respect to the Kobayashi metrics on M̃ and Tg.

3. Totally geodesic embeddings from complex balls to Siegel

upper spaces

3.1 Our approach relies on basic properties concerning totally geodesic em-
beddings of complex balls in the Siegel Upper Half Space. The purpose of
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this section is to explain results in this direction relevant to our purpose.
For this purpose, it is more convenient to consider the bounded model of
Sg, namely, the classical bound domain IIIg. The main technical result of
this paper is Proposition 3 stated in 3.4.

Basic properties of classical domains can be found in [He], [Mok1] and
[S]. Since we are going to use the results of Satake, we follow closely the
exposition in [S]. First let us explain briefly classical domains of type Ip,q
and IIIk according to 1.2, 1.3 of [S], of which the terminology is to be used
in later parts of this section.

(i). Ip,q: Consider V a vector space over C equipped with a non-degenerate
Hermitian form F of signature (p, q) with p > q > 0. Ip,q = D(V, F ) =: D is
the space of q dimensional complex subspace V− of V so that F |V−

is negative
definite. Let V+ be the orthogonal complement of V− in V , so that F |V+

is
positive definite. A point in D is determined by V−, or the pair (V+, V−). Let

z0 be a fixed point D, determined by (V
(0)
+ , V

(0)
− ) and for convenience can be

chosen to be the origin. Let (e1, · · · , ep) and (ep+1, · · · , ep+q) be orthonormal

basis of V
(0)
+ and V

(0)
− respectively, so that together they form a basis of V .

A point z ∈ D is now determined by (V+, V−) with V− spanned by the basis

(1)

p∑

i=1

eizij + ep+j , 1 ⩽ j ⩽ q,

where the (p, q) matrix Z = (zij) satisfies Iq −t ZZ > 0. Denote by Mp,q the
space of all p× q matrices with entries in C. Identifying D with {Z ∈ Mp,q :

Iq − Z
t
Z > 0}, we realize Ip,q as a bounded domain in Cpq.

The complex ball Bn
C
in Cn is just In,1.

(ii). IIIk: Consider VR a vector space over R of dimension 2k equipped
with a non-degenerate alternating bilinear form A. Let V = VC be the com-
plexification of VR. A extends naturally to V . The Hermitian form defined
by

(2) F (x, y) := iA(x̄, y)

has signature (k, k) on V . IIIk = D(VR, A), or simply, D, is the space of all
complex structures I on VR so that the bilinear form A(x, Iy) is symmet-
ric and positive definite. Let W = {x ∈ V |Ix = ix} so that V = W +W . It
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follows that

(3) A|W = 0, F |W > 0

and W is the orthogonal complement of W in V with respect to F . Hence
I ∈ D is determined by W or the pair (W,W ) satisfying (3). Fix a point
zo ∈ D corresponding to W o. Let (e1, · · · , ep) be an orthonormal basis of
W o with respect to F and let

(4) ek+i = ei, 1 ⩽ i ⩽ k.

As described in Ip,q with p = q = k in the description of W ∈ D, it follows
that W is described by a k × k symmetric complex matrices Z with Ik −
Z

t
Z > 0. Hence D is identified with the bounded domain {Z ∈ Mk,k : Z =

Zt, Ik − Z
t
Z > 0} ⊂ Cn(n+1)/2.

The Siegel Upper Half Space Sg is biholomorphic to IIIg.

3.2 Here we recall briefly the classification of holomorphic totally geodesic
embeddings of a Hermitian symmetric domain into another. In general,
the classification of holomorphic totally geodesic embedding of a Hermi-
tian symmetric space N1 = G1/K1 into another Hermitian symmetric space
N2 = G2/K2 with respect to the Bergman metrics has been given by Satake
[S] and Ihara [I], where Gi is a semi-simple Lie group and Ki a maximal com-
pact subgroup for i = 1, 2. Since the manifolds involved are symmetric, the
classification of totally geodesic embeddings is reduced to the classification
of injective Lie algebra homomorphisms ρ : g1 → g2 for the corresponding
Lie groups. The invariant complex structure on Ni is given by an element
Hoi ∈ Ki. The totally geodesic embedding is holomorphic if the condition
(H1), namely, ρ ◦ ad(Ho1) = ad(Ho2) ◦ ρ is satisfied. The condition (H1) is a
consequence of the condition (H2), namely, ρ(Ho1) = Ho2. This is explained
on page 427 of [S]. Some explanation in terms of root system and Dynkin
diagrams by Ihara in [I]. We refer the reader to [S] for any unexplained
notation and terminology.

3.3 We consider now the specific situation of classification of holomorphic
totally geodesic embeddings of IN,1 into IIIg. Let 0 be the origin in BN

C
,

which may be assumed to be mapped to the origin 0 of Sg realized as the
bounded domain IIIg as above, since the spaces involved are homogeneous.
The classification is described in Theorem 1, 3.2 and the Table on page 460
of [S]. From the description there, any holomorphic embedding of IN,1 to
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IIIg is a direct sum of a number of compositions of the following types of
totally geodesic mappings.

Type 1, standard embeddings: This includes embedding i1a : IN,1 → Ip,q, for
N ⩽ p and i1b : IIIk → IIIl, for k < l, given by the standard representation
or standard embedding.

Type 2, connecting embeddings: The embedding i2 = ιp,q : Ip,q → IIIp+q is
given in page 432-433 of [S],

Ip,q ∋ Z 7−→
(

0 tZ
Z 0

)
∈ IIIg ∼= Sp+q.

Type 3, absolutely irreducible embeddings: The embedding i3 : Ip,1 → Ir,s,
r =

(
p
m

)
, s =

(
p

m−1

)
, and i3 : Ip,1 → Ir in the case of r = s, which happens

when p ≡ 1 (mod 4) and m = p+1
2 . This corresponds to the skew-symmetric

tensor representations of degree m as explained in 3.2 and the Table on
page 460 of [S].

The construction is described in page 448 of [S]. The representation is
given by ρ = Λm of G ∼= SU(p, 1), corresponding to skew-symmetric tensors
of degree m. In terms of a fundamental system of roots of the Lie algebra
involved, the highest weight λρ of ρ is given by

λρ = (

m︷ ︸︸ ︷
1, 1, · · · , 1, 0, · · · 0)

with 1 ⩽ m ⩽ p. Recall the setting given in (3.1)(i) in the case of Ip,1. Let
(ei)i=1,··· ,p+1 be an orthonormal basis of V , a basis of the exterior algebra
Λm is given by ei1···im = ei1 ∧ · · · ∧ eim , i1 < i2 < · · · < im. As in (3.1)(i),
there is a Hermitian form F on V , which induces F (m) on Λm given by

F (m)(x1 ∧ · · · ∧ xm, y1 ∧ · · · ∧ ym) = det(F (xi, yj))

for xi, yj ∈ V and is invariant under ρ(gsup,1
). Since

F (m)(ei1···im , ei1···im) =

{
1 im < p+ 1,
−1 im = p+ 1,

the Hermitian form F (m) has signature (r, s) with r =
(
p
m

)
, s =

(
p

m−1

)
.

The totally geodesic isometry of the symmetric domains f : Ip,1 → Ir,s
described here is given in page 448 of [S] by
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(5)
D(V, F ) ∋ (V+, V−) 7−→ (Λm(V+)⊗ 1,Λm−1(V+)⊗ V−) ∈ D(Λm(V ), F (m)).

∥ ∥ ∥ ∥
Ip,1 ∋ z 7−→ z′ ∈ Ir,s

In the case of representation in IIIr ⊂ Ir,r, this corresponds to the above
discussion with r = s and hence m = p+1

2 and p ≡ 1 (mod 2). In such case,
we can define a Bilinear form B on Λm(V )× Λm(V ) by

x ∧ y = B(x, y)e1···p+1

which satisfies

B(y, x) = (−1)m
2

B(x, y).

Hence if m ≡ 1 (mod 2) or p ≡ 1 (mod 4), the bilinear form B(x, y) is an
alternating bilinear form. Furthermore, there is a semi-linear transformation
σ on Λm(V ) so that

F (m)(x, y) = iB(xσ, y),

where σ satisfying σ2 = 1 is explicitly written in [S], page 449, as follows.
Let M = (i1, · · · , im) be an oriented subset of (1, 2, · · · , p+ 1) and M c the
complement. Then

(6) eσM = a(M)eMc , a(M) = −iϵ(M c,M)η(M),

where ϵ(M c,M) = ±1 is the signature of the permutation of (M c,M) with
respect to (1, 2, · · · , p+ 1) and η(M) = −1 (resp. 1) if p+ 1 ∈ M (resp. p+
1 ̸∈ M). Hence a(M) = ±i. σ serves and complex conjugate as in 3.1(ii).
In this case, the bilinear form B serves as the bilinear form A as needed
in equation (2) in 3.1(ii) for the definition of IIIr. The totally geodesic
isometry of the symmetric domains f : Ip,1 → IIIr is given by (5) with r = s.

We summarize the result of [S], which is relevant to us, from Theorem
1 and the Table on page 460 in [S]. As explained in 3.2, totally geodesic
holomorphic embedding corresponds to condition (H1), which by (a) below
reduces the problem to representations satisfying condition (H2). The Table
on page 460 in [S] summarizes the representations satisfying condition (H2)
determined in Section 3 of [S].

Proposition 2. (Satake)
(a). Let ρ be a representation of g = su(m, 1) into IIIg satisfying condition
(H1). Then there exists absolutely irreducible representations ρi (1 ⩽ i ⩽ r1)



✐

✐

“13-Yeung” — 2022/8/4 — 0:22 — page 1602 — #8
✐

✐

✐

✐

✐

✐

1602 Sai-Kee Yeung

of g into (III)pi
(pi > 0) satisfying (H2) and absolutely irreducible repre-

sentations ρi (r1 ⩽ i ⩽ r1 + r2) of g into (I)pi,qi (pi, qi ⩾ 0, pi + qi > 0) sat-
isfying (H2) such that ρ is k equivalent to the direct sum of representations∑r1

i=1 ρi +
∑r1+r2

i=r1+1 ιpi,qi ◦ ρi up to a trivial representation, where
∑r1

i=1 pi +∑r2
i=r1+1(pi + qi) ⩽ g.

(b). An absolutely irreducible representation ρ of g into Ir,s or IIIr satisfying
(H2) corresponds to embeddings of type i3 described earlier.

We refer the reader to the original source [S] for any unexplained ter-
minology. In particular, the notion of k-equivariant and direct sum are de-
scribed in §1 and §2 of [S]. The result of Satake applies to any semi-simple
Lie algebra g of Hermitian type.

Let us now describe the mapping given in (5) more carefully, which is
to be used later.

Lemma 1. In terms of standard coordinates, the totally geodesic mapping
f : Bn → Ir,s ⊂ CN or IIIr ⊂ CN for r = s with f(0) = 0 and z′ = f(z) as
described above is linear in z, with image given by the intersection f(Bn)
with a subspace of CN of appropriate dimension.

Proof. We remark that the standard coordinates as used in [S] in the de-
scription above are also the Harish-Chandra coordinates.

Consider first f : Ip,1 → Ir,s as given by (5). In terms of (1) for Ip,1, the
point z in (5) corresponds to V+ being spanned by

∑p
i=1 eizi + ep+1. Since

it is a holomorphic totally geodesic embedding, the mapping is equivariant
with respect to the action of G and in particular invariant under the action
of the isotropy group K = S(U(p)× U(1)). In particular, it suffices for us
to investigate the image f(z) for z = (z1, 0, · · · , 0) with |z1|2 < 1. Again, we

use (e1, · · · , ep) and (ep+1) to denote some orthonormal basis of V
(0)
+ and

V
(0)
− respectively. With z as described, an orthonormal basis of V− and V+

at z are e′p+1 and (e′1, e2, · · · , ep) respectively, where

(7) e′p+1 =
1√

1 + |z|2
(z1e1 + ep+1), e′1 =

1√
1 + |z|2

(e1 − z1ep+1).

To describe z′ in the image of f in (5), we need to investigate Λm−1(V+)⊗
V− where F (m) is negative definite, and express them in terms of base vectors

of Λ
(0)
m = Λm(V

(0)
+ )⊕ Λm−1(V

(0)
+ )⊗ V

(0)
− . From definition, Λm−1(V

(0)
+ )⊗ V

(0)
−
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is generated by a basis consists of the following two types of elements,
(i) ei1···im−1

∧ e′p+1, where 1 < i1 < · · · < im−1 ⩽ p,
(ii) e′1 ∧ ei1···im−2

∧ e′p+1, where 1 < i1 < · · · < im−2 ⩽ p.

From the formula of e′p+1 in (7), we compute in case (i) that

(8) ei1···im−1
∧ e′p+1 =

1√
1 + |z|2

((−1)m−1z1e1i1···im−1
+ ei1···im−1(p+1))

which is proportional to

(9) (−1)m−1z1e1i1···im−1
+ ei1···im−1(p+1).

Notice that we need the coefficient of ei1···im−1(p+1) to be 1 in the format of
(1).

In case (ii), (7) gives

e′1 ∧ e′p+1 = e1 ∧ ep+1

and hence

(10) e′1 ∧ ei1···im−2
∧ e′p+1 = e1i1···im−2(p+1).

Let u =
(
p−1
m−1

)
. It follows from the above explicit computation that for

f : Ip,1 → Ir,s as given in (5), the coordinates of z′ = f(z) are given by

z = (z1, 0, · · · , 0) 7→ f(z) = z′(11)

with z′ij =

{
(−1)m−1z1, 1 ⩽ i ⩽ t, 1 ⩽ j ⩽ u

0 otherwise

Similar constructions apply to f : Ip,1 → IIIr ⊂ Ir,r corresponding (5)
with r = s. We recall that the coordinates z′ in IIIr in the image of f is
determined according to (1) in (3.1) with respect to a corresponding basis of
vectors in (Λm(V+)⊗ 1,Λm−1(V+)⊗ V−). Moreover, the choice of the base
vectors is given by (4), choosing er+i to be the complex conjugate of ei.

In our case of Λ
(0)
m , the complex conjugate is given by σ in the setting of

(5) and eσIm = a(Im)eIc
m

in terms of earlier notations, here Im = i1 · · · im is
an index set. Hence z′ = (z′ij)1⩽i,j⩽r are determined by having a basis of
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Λm−1(V+)⊗ V− of the form

r∑

i=1

eσIi(p+1)z
′
ij + eIj(p+1)(12)

=

r∑

i=1

a(Ii(p+ 1))e(Ii(p+1))cz
′
ij + eIj(p+1), 1 ⩽ j ⩽ r

where a(Ii(p+ 1)) = ±1. From the expressions in (9) and (10), we see that
(11) still applies in the sense that z′ij are either 0 or (−1)mz1. This com-
putation shows that in terms of the standard coordinates of the bounded
domains in CN as described in 1.3, 1.4 of [S] or Chapter 4 §2 of [Mok 1]
for the classical domains that the image is the intersection of a line in Cn

with Ir,s or Ir. As mentioned earlier, this works for any complex direction
obtained under the action of the isotropy group at 0 on the domain. Since
the mapping f is a totally geodesic mapping and is hence equivariant under
the action of the isotropy group, the lemma follows. □

3.4 We now state the main result of this section.

Proposition 3. Let i : BN
C

→ IIIg be a totally geodesic embedding. Then
there exists a holomorphic map p : IIIg → BN

C
so that p ◦ i is the identity

mapping on BN
C
.

Proof. Again, we let 0 be the origin in BN
C
, which may be assumed to be

mapped to the origin 0 of IIIg, a bounded domain realization of Sg, as
discussed earlier. To streamline the presentation, let us consider each simple
type of presentations i1, i2, i3 in details before the general case described in
Proposition 2.

Type 1: This includes embedding is given by i1a : IN,1 → Ip,q, for N ⩽ p
or i1b : IIIk → IIIl, for k < l, given by the standard embedding into the
corresponding upper left hand corner of the image.

The classical domain Ip,q is given as a symmetric space G/K with
G = SU(p, q) and K = S(U(p)× U(q)), where K is the isotopy group at 0.
For a holomorphic totally geodesic embedding i1a : BN

C
∼= IN,1 → Ip,q, con-

jugating by K if necessary, we may assume that ∂
∂z11

∈ (i1a)∗(TBN
C
). Now we

observe that ∂
∂zij

with i > 1 and j > 1 cannot lie in (i1a)∗(TBN
C
), for other-

wise the image i1a(B
N
C
) as a symmetric space would have real rank at least

2 considering the tangent vectors ∂
∂z11

and ∂
∂zij

, contradicting the fact that
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I1,N has real rank 1. It follows that i1a(B
N
C
) has to lie in one of the following

two subspaces of Ip,q

I1,q = {z = [zij ] ∈ Ip,q|zij = 0 for i ⩾ 2}
or Ip,1 = {z = [zij ] ∈ Ip,q|zij = 0 for j ⩾ 2}.

In either case, N ⩽ max(p, q) = q.
Suppose i1a(B

N
C
) ⊂ I1,q. Conjugating by some elements inK if necessary,

we may assume that mapping i1a is given by

i1a(z1, · · · , zN ) =




z1 · · · zN 0 · · · 0
0 · · · 0 0 · · · 0
...

...
0 · · · 0 0 · · · 0


 .

Consider the holomorphic projection map p1a : Ip,q → BN
C

given by

p1a(




z11 · · · z1N zN+1 · · · z1q
...

...
zp1 · · · zpN zN+1 · · · zpq


) =




z11 · · · z1N 0 · · · 0
0 · · · 0 0 · · · 0
...

...
0 · · · 0 0 · · · 0


 .

Denote by Y the matrix in the domain and Z the matrix in the image.
As the p× q matrix Y satisfies I −t Y Y > 0 from definition, it follows that∑N

i=1 |zi|2 ⩽
∑p

i=1 |zi|2 < 1 and hence the image of p1a lies in BN
C
. Further-

more, it follows from definition that p1a ◦ i1a = 1BN
C
. Hence p1a gives us the

retraction that we need.
For i1b : IIIk → IIIl, for k < l, given by the standard embedding into the

corresponding upper left hand corner of the image. Denote by p1b : IIIl →
IIIk the projection onto the upper left hand corner

p1b([zij ]i,j=1,··· ,l) = [zij ]i,j=1,··· ,k.

Let Y = [zij ]i,j=1,··· ,l and U = [zij ]i,j=1,··· ,k. The fact that Y is symmetric
implies that U is symmetric. Now Ig − Y Y > 0 implies that Ig′ − UU > 0
as each column vector of U is part of a column vector of Y . Hence the image
lies in IIIk.

It is clear that p1b ◦ i1b|IIIg′ is the identity map and hence p1b is a pro-
jection.
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Type 2: i2 = ιp,q : Ip,q → IIIp+q with ιp,q(Z) =

(
0 tZ
Z 0

)
. Define i2 :

IIIp+q → Ip,q the projection

IIIp+q ∋ Y =

(
W1

tZ
Z W2

)
7−→

(
0 tZ
Z 0

)
7−→ Z ∈ Ip,q.

Here Y is symmetric. From the fact that Ip+q − Y Y > 0, it follows that
Iq −t WW −t ZZ > 0 and hence Iq −t ZZ > 0. Hence the image of i2 is
really in Ip,q. It follows from definition that p2 ◦ i2 = 1Ip,q is the identity
map.

Type 3: i3 : Ip,1 → Ir,s or IIIr corresponding to the skew-symmetric tensor
representations of degree m. Since the second case can be considered as a
special case of the first case, it suffices for us to consider the case of Ir,s
being the image. From Lemma 1 in 3.3, the image of i3 is a linear sub-
space R := Im(i3) passing through the origin in IIIr. We claim that the
argument of Lemma 1 shows that there is a projection p3 : Ir,s → f(Ip,1) so
that p3 ◦ i3|Ip,1 is identity on Ip,1. We actually take p3 to be the orthogo-
nal projection of Ir,s to the complex linear subspace P of CN containing
f(Ip,1) as a subdomain. To prove the claim, since the domain involved is
a convex domain in CN , it suffices for us to show that p3(Ir,s) = f(Ip,1).
Clearly p3(Ir,s) contains f(Ip,1). This in turn follows if we can prove the
corresponding statement for the projection of Ir,s to f(B1

C
) for a geodesic

B1
C
⊂ Bp

C
∼= Ip,1 through the origin, since f is equivariant with respect to the

action of the isotropy groups at 0. Hence it suffices for us to show that the
projection p4 of Ir,s to the line in CN containing f(B1

C
) is actually f(B1

C
),

where B1
C
= {(z1, 0, . . . , 0) : |z1| < 1} as studied in the proof of Lemma 1.

Recall that r =
(
p
m

)
, s =

(
p

m−1

)
and u =

(
p−1
m−1

)
. From (11) in the proof

of Lemma 1, the image of f is

(13) f(B1
C) =

{(
z1Iu 0u,a
0b,u 0b,a

)
, (z1, 0, . . . , 0) ∈ B1

C

}

where b =
(
p−1
m

)
, a =

(
p−1
m−2

)
, It is the identity matrix of size t and 0c,d is the

zero matrix of size c× d. Clearly

f(B1
C) ⊂ Ir,r ∼=

(
Ir,r 0u,a
0b,u 0b,a

)
,

where Ir.r is a bounded symmetric domain of type I.
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Similar to the construction of I1a in the standard embedding earlier, it is
clear that there is a projection q1 : Ir,s → Iu,u as explained above by taking
zeros in non-relevant entries. Hence it suffices for us to show that there is a
retraction q2 : Iu,u → {(z1Iu) : |z1| < 1}. Let w = (wij) ∈ Iu,u. By definition,
it satisfies Iq − w̄tw > 0 and hence |wij | < 1 for each i, j. It suffices for us
to define

q2(w) = (
1

u2

u∑

i,j=1

wij)Iu.

Clearly | 1
u2

∑u
i,j=1wij | < 1 as |wij | < 1. Furthermore q2(ζIu) = ζIu for ζ ∈

C, |ζ| < 1, and hence q2|Im(f) is the identity map. Now it suffices for us to
let p4 = q2 ◦ q1.

This concludes the discussions on embeddings of the simple types. We
now combine the results from the above discussions with those from Propo-
sition 2. According to Proposition 2a, the representation ρ involved is of
form

r1∑

i=1

ρi +

r1+r2∑

i=r1+1

ιpi,qi ◦ ρi.

Suppose (r1, r2) = (1, 0) or (0, 1), that is the representation is irreducible.
Then the projection occurs from composition of projections corresponding
to Type 1, 2, 3 embeddings respectively, making use of Proposition 2a.

Consider now the general case. Note that each of the factors above corre-
sponds to image lying in some Type III classical domain IIIsi for 1 ⩽ i ⩽ r1
or IIIpj+qj for r1 + 1 ⩽ j ⩽ r1 + r2. As explained in §2 of [S], this cor-
responds to diagonal blocks of square matrices in IIIg, where

∑r1
i=1 si +∑r1+r2

j=r1+1(pi + qi) ⩽ g. For simplicity of notation, let us just define sj =
pj + qj for r1 + 1 ⩽ j ⩽ r1 + r2. Hence we have

i : Ip,1
ia−→




IIIs1 0 · · ·
0 IIIs2 · · ·
...

... . . .




ib−֒→ Ig.

The projection

pb : Ig −→




IIIs1 0 · · ·
0 IIIs2 · · ·
...

... . . .




so that pb ◦ ib is identity is constructed exactly as in those Type i1 embed-
dings discussed earlier. For each IIIsi , 1 ⩽ i ⩽ r1 + r2, there is a projection
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psi : IIIsi → Ip,1 so that psi ◦ i1 is the identity map according to earlier dis-
cussions. The projection

pa :




IIIs1 0 · · ·
0 IIIs2 · · ·
...

... . . .


 −→ Ip,1

is then defined by identifying Ip,1 with ia(Ip,1) and letting

pa =
1

r1 + r2
ps1 + · · ·+ 1

r1 + r2
psr1+r2

,

where addition is given in terms of the coordinate functions of the standard
realization, which is the Harish-Chandra coordinates for Ig. Clearly from
construction, pa ◦ ia is the identity. We may then define p = pa ◦ pb. It follows
from construction that p ◦ i is the identity. □

3.5 Though not really needed for this article, we mention that the argument
of Proposition 3 can be applied to other pairs of Hermitian symmetric spaces
of non-compact type, following case-by-case checking as done above for clas-
sical domains using the results of [S], see also [I]. In a more inspiring way,
Ngaiming Mok [Mok3] has shown us a conceptual proof of such a result for
all Hermitian symmetric spaces of non-compact type, including those con-
taining factors of exceptional types without using classification results. This
was done in terms of the Lie triple system and Harish-Chandra embedding
for all pairs of Hermitian symmetric spaces of non-compact type.

4. Proofs of the main results

4.1 Denote by gV,K the Kobayashi (pseudo-)metric of a variety V , which is
the positive semi-definite Finsler metric defined as

√
gV,K(x, v) = inf{1

r
|∃f : ∆r → V holomorphic, f(0) = x, f ′(0) = v},

where ∆r is the disk of radius r in C centered at the origin. It follows from
definition that the metric on a manifold is the same as on its universal
covering from the lifting properties of a map from the unit disk. Note for
orbifolds, we are considering orbifold maps and orbifold uniformization as
explained in 2.1.

From Ahlfors Schwarz Lemma, it follows easily that the Kobayashi met-
ric on a complex ball is precisely the same as the Poincaré metric which is the
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same as the Bergman metric. The reader may consult Proposition 3 of [Y1]
and the references quoted there for various forms of Schwarz Lemma. Since
we are considering quotients of bounded domains, it follows from Schwarz
Lemma that the Kobayashi metric is positive definite in this paper. Note
that the Teichmüller space Tg can be realized as a bounded domain in C3g−3

from Bers Embedding.
Furthermore, it follows immediately from the definition that gV,K has

decreasing properties in the following sense. Let F : M → N be a holo-
morphic mapping. Then gN,K(F∗v) ⩽ gM,K(v) for all v ∈ TxM . Again, the
Kobayashi metric may be degenerate in general, but in our case it is al-
ways non-degenerate. This follows from the fact that the manifolds involved
by uniformized by bounded domains in Cn for some n > 0 and the earlier
discussions.

We have the following consequence of the decreasing property of the
Kobayashi metric.

Lemma 2. Suppose M = BN
C
/Γ is a totally geodesic subvariety of Ag. Then

gM,K = (j−1
g )∗gT o

g ,K |M = gAg,K |M .

Proof. The inclusion map i : M → Ag is a holomorphic embedding. Now we
have the holomorphic mappings

(14) M → Mo
g → Ag.

The first holomorphic map in (14) comes from our assumption that M ⊂
T o
g and the fact that j−1

g |T o
g −jg(Hg) is a holomorphic map. Here we used

the fact that jg is an injective holomorphic map and is an immersion on
Mg −Hg. The second holomorphic mapping in (14) follows from Torelli
mapping. The Torelli mapping is holomorphic by definition. Since M is a
complex submanifold of T o

g ⊂ Ag, it follows from definition of the Kobayashi
metric in terms of extremal functions that

(15) gM,K ⩾ (j−1
g )∗gT o

g ,K |M ⩾ gAg,K |M .

On the other hand, the Kobayashi metric on a manifold gV,K is the

same as its lift gṼ ,K to the universal covering Ṽ of V . Hence in terms of a

totally geodesic BN in Siegel Sg, we need to compare gBN ,K and gSg,K |BN .
It follows from Proposition 3 that there is a holomorphic map p : Sg →
M̃ so that p ◦ i is identity. Hence for x ∈ M̃ ⊂ Sg and w ∈ TxM̃ ⊂ TxSg, a
holomorphic curve f : ∆r → Sg holomorphic with f(0) = x, f ′(0) = w gives
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rise to a holomorphic map p ◦ f : ∆r → M̃ holomorphic with p ◦ f(0) = x
and (p ◦ f)′(0) = w. It follows from the decreasing property of the Kobayashi
metric that gSg,K |BN ⩾ gBN ,K , which is equivalent to gAg,K |M ⩾ gM,K after
descending to M from the universal covering as discussed earlier.

Combining the above two paragraphs, we conclude that gSg,K |BN =
gBN ,K and that the two inequalities in (15) can be replaced by equalities.

□

4.2 Theorem 1 now follows by putting the earlier arguments together.

Proof of Theorem 1. Assume for the sake of proof by contradiction that
there exists M = BN

C
/Γ so that M is a totally geodesic subvariety of Ag

with N > 1, and M ⊂ T o
g − jg(Hg) = jg(Mo

g), where Mo
g = Mg −Hg.

From Lemma 2, gM,K = (j−1
g )∗gT o

g ,K |M = gAg,K |M . In particular,

(j−1
g )∗gMo

g,K |M = gM,K . This however contradicts Proposition 1. □

4.3 We remark that the argument in the proof of Theorem 1 can be applied
to study the non-existence of locally Hermitian symmetric space in T o

g −
jg(Hg) as a totally geodesic complex suborbifold for g ⩾ 2, a result proved
earlier in [Ha]. For this purpose, we observe that an analogue of Proposition 1

is true for M̃ being any Hermitian symmetric space as given in [A]. Together
with the remarks given in 3.5 and the results of [Mok3], the other parts of
the proof can be applied. See also [Y2] for some other arguments.

4.4 Proof of Theorem 2. From the results of [Ha], we know that any sym-
metric variety M in T o

g − jg(Hg) ⊂ Ag has to be of real rank 1 as a locally
symmetric space. Alternatively, to make the article more self-contained, this
follows from 3.5, 4.3 and the proof of Theorem 1. Since M is Hermitian
symmetric, we know that M has to be a complex ball quotient. Theorem
1 implies that the complex dimension of M is 1 and hence M is a hyper-
bolic Riemann surface. From the discussions above, such a Riemann surface
M has to be a Shimura-Teichmüller in the terminology of [Mö], since the
Kobayashi metric, which is well-known to be the same as the Teichmüller
metric on Teichmüller spaces, is the same as the natural hyperbolic met-
ric on M as it is a totally geodesic curve in T o

g − jg(Hg). In such a case,
Möller proved in [Mö] that such a Riemann surface does not exist for genus
g ̸= 3, 4, 5, and the only examples for g = 3, 4 are given in the statement of
Theorem 2. Very recently, it was proved by Aulicino and Norton in [AN]
that there is no example in g = 5. Theorem 2 follows. □



✐

✐

“13-Yeung” — 2022/8/4 — 0:22 — page 1611 — #17
✐

✐

✐

✐

✐

✐

Open Torelli locus and complex ball quotients 1611

Theorem 2 gives a necessary and sufficient condition for the existence of
a locally Hermitian symmetric space in T o

g − jg(Hg).
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