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Some criteria for uniform K-stability
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We prove some criteria for uniform K-stability of log Fano pairs.
In particular, we show that uniform K-stability is equivalent to
β-invariant having a positive lower bound. Then we study the re-
lation between optimal destabilization conjecture and the conjec-
tural equivalence between uniform K-stability and K-stability in
twisted setting.

1. Introduction

K-stability is an important concept introduced in [25] (and later algebraically
reformulated in [15]) to test whether there is a Kähler-Einstein metric on a
projective Fano manifold (see in particular [11–13, 26]). However, it’s diffi-
cult to check K-stability of a Fano manifold and various equivalent but sim-
pler criteria have been introduced in terms of special test configurations [24],
valuations and filtrations [18, 23] and stability thresholds (or δ-invariants)
[5, 19].

In this note, we give some more criteria for uniform K-stability from
these perspectives. We note here that the concept of uniform K-stability
is introduced by [10, 14]. Since uniform K-stability has certain openness
property, i.e. it is preserved after small perturbation of the boundary divisor
(see [17]), we first have the following criterion (note that the direction (1) ⇒
(2) has been known by [17]).

Theorem 1.1 (=Theorem 3.1). Let (X,∆) be a log Fano pair. The fol-

lowing are equivalent:

1) (X,∆) is uniformly K-stable.

2) There exists a ϵ > 0 such that (X,∆+ ϵD) is K-semistable for any

D ∈ | −KX −∆|R.

Our next criterion gives a way to test uniform K-stability using only
β-invariant (see Section 2 for related definitions):
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Theorem 1.2. Let (X,∆) be a log Fano pair. The following are equivalent:

1) (X,∆) is uniformly K-stable.

2) There exists ϵ > 0 such that βX,∆(E) ≥ ϵ for any divisor E over X.

3) There exists ϵ > 0 such that βX,∆(E) ≥ ϵ for any dreamy divisor E
over X.

4) There exists ϵ > 0 such that βX,∆(E) ≥ ϵ for any weakly special divisor

E over X.

It is well expected that K-stability is equivalent to uniform K-stability.
This is known to be true in the smooth case by [1] and the solution of the
Yau-Tian-Donaldson conjecture. In general, the statement is equivalent to
the existence of divisorial valuation computing δ-invariant when δ(X,∆) = 1
(see Section 5 or [9]). In [8], an algebraic theory of twisted K-stability (first
introduced by [14]) is developed to study Q-Fano varieties that are not
uniformly K-stable. We introduce the concept of twisted uniform K-stability
and similarly expect it to be equivalent to twisted K-stability. We then
explore the relation between this equivalence and the existence of divisorial
valuation computing δ-invariant when δ(X,∆) < 1. In particular, we prove:

Theorem 1.3 (=Theorem 4.4). Let (X,∆) be a log Fano pair with

δ(X,∆) ≤ 1, then for any 0 < µ < δ(X,∆), (X,∆) is µ-twisted uniformly

K-stable. Besides, (X,∆) is δ(X,∆)-twisted K-semistable but not δ(X,∆)-
twisted uniformly K-stable.

This is a refinement of the twisted valuative criterion established in [8].
Using this result, we establishes the equivalence between the existence of
divisorial δ-minimizer and the conjecture “K-stable = Uniformly K-stable”
in the twisted setting.

Theorem 1.4 (=Theorem 5.4). Let (X,∆) be a log Fano pair with

δ(X,∆) ≤ 1. The following are equivalent:

1) δ(X,∆) is computed by a divisorial valuation.

2) For any 0 < µ ≤ 1, µ-twisted K-stable is equivalent to µ-twisted uni-

formly K-stable.

The paper is organized as follows. In Section 2, we recall the notion and
some preliminaries that will be used later. In Section 3, we prove the criteria
for uniform K-stability, i.e. Theorems 1.1 and 1.2. In Section 4, we introduce
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Some criteria for uniform K-stability 1615

the concept of twisted K-stability and twisted uniform K-stability and prove
Theorem 1.3. In Section 5, we prove Theorem 1.4.

2. Preliminaries

We work over C. We refer to [21, 22] for the definition of singularities of pairs.
A projective normal varietyX is calledQ-Fano if−KX is an ampleQ-Cartier
divisor and X admits klt singularities. A pair (X,∆) is called log Fano if
−KX −∆ is an ample Q-Cartier divisor and (X,∆) is klt. The R-linear
system of an R-Cartier R-divisor L is defined to be |L|R = {D ≥ 0 |D ∼R L}.
Similar one can define the Q-linear system |L|Q of a Q-Cartier Q-divisor.

2.1. Test configurations

Let (X,∆) be a log Fano pair. A test configuration (X ,∆tc;L) of (X,∆;
−KX −∆) consists of the following data:

1) A projective morphism π : X → A1 and an effective Q-divisor ∆tc on
X .

2) A relatively ample Q-line bundle L on X .

3) A C∗-action on (X ,∆tc; rL) for some sufficiently divisible integer r
such that (X ∗,∆∗

tc; rL|X ∗) is C∗-equivariantly isomorphic to (X,∆;
−r(KX +∆))× (A1 \ 0) via the projection π, where X ∗ = X \ X0 and
∆∗

tc = ∆tc|X ∗ .

Unless otherwise specified, all test configurations considered in this note
are assumed to be normal, i.e. X is normal in the above definition. One
can glue (X ,∆tc) and (X,∆)× (P1 \ 0) along their common open subset
(X,∆)× (A1 \ 0) to get a natural compactification (X ,∆tc;L). A test con-
figuration (X ,∆tc;L) is called special (resp. weakly special) if (X ,∆tc + X0)
is plt (resp. lc) and L ∼Q −KX/A1 −∆tc.

A test configuration (X ,∆tc;L) is trivial if X is C∗-equivariantly isomor-
phic to X × A1. It is said to be of product type if it’s induced by a diagonal
C∗-action on (X,∆)× A1 given by a one parameter subgroup of Aut(X,∆).
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2.2. K-stability

Given a test configuration (X ,∆tc;L) of an n-dimensional log Fano pair
(X,∆), its generalized Futaki invariant is defined as follows:

Fut(X ,∆tc;L) :=
nL

n+1

(n+ 1)(−KX −∆)n
+

L
n
· (KX/P1 +∆tc)

(−KX −∆)n
.

We say (X,∆) is K-semistable if Fut(X ,∆tc;L) ≥ 0 for any normal test
configuration (X ,∆tc;L). We say (X,∆) is K-stable if Fut(X ,∆tc;L) > 0
for any non-trivial normal test configuration (X ,∆tc;L). We say (X,∆) is
K-polystable if it is K-semistable and Fut(X ,∆tc;L) > 0 for any non product
type normal test configuration (X ,∆tc;L).

To define uniform K-stability, we introduce the J-functional of a test
configuration (X ,∆tc;L) as follows [10, 18]:

J(X ,∆tc;L) :=
Π∗(−KX×P1/P1 −∆P1)n ·Θ∗L

(−KX −∆)n
−

L
n+1

(n+ 1)(−KX −∆)n
,

where Π : Z → X × P1 and Θ : Z → X denote the normalization of the
graph of X × P1

99K X .
We say (X,∆) is uniformly K-stable if there is a positive number 0 < ϵ <

1 such that Fut(X ,∆tc;L) ≥ ϵJ(X ,∆tc;L) for any normal test configuration.

2.3. Dreamy divisor and special divisor

In this subsection, we introduce two kinds of divisors which will appear
frequently later.

Let (X,∆) be a log Fano pair. We say E is a divisor over X if there is
a normal birational model σ : Y → X such that E is a prime divisor on Y .
Note that E induces a valuation ordE of the function field C(X); we define
divisorial valuations over X as valuations of the form c · ordE where c > 0
and E is a divisor over X.

Definition 2.1 ([18]). We say that E is a dreamy divisor or ordE is a
dreamy valuation over X if

⊕
i,j∈NH0(X,−irσ∗(KX +∆)− jE) is finitely

generated, where r is a positive integer such that −r(KX +∆) is Cartier.

Definition 2.2. We say that E is a (weakly) special divisor or ordE is a
(weakly) special valuation over X if it’s induced by a non-trivial (weakly)
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special test configuration (X ,∆tc;L), i.e. X0 is irreducible (this is auto-
matic if the test configuration is special) and ordE is proportional to the
restriction of ordX0

(since ordX0
is a divisorial valuation on the function

field C(X ) = C(X × A1), we just restrict the valuation to C(X) to get a
divisorial valuation over X; see [10]).

We have the following characterization of dreamy divisors (see [18, The-
orem 5.1] and [16, Lemma 3.8]).

Lemma 2.3. If E is a dreamy divisor over X, then there is a test configura-

tion (X ,∆tc;L) whose central fiber is integral such that ordE is proportional

to the restriction of ordX0
. Conversely, if (X ,∆tc;L) is a test configura-

tion whose central fiber is integral, then the restriction of ordX0
is a dreamy

valuation over X.

Remark 2.4. If (X ,∆tc;L) is a test configuration whose central fiber is
integral, then L ∼Q −KX/A1 −∆tc.

2.4. Various invariants

In this subsection, we recall the β-invariants and δ-invariants of log Fano
pairs.

Definition 2.5 ([18]). Let (X,∆) be a log Fano pair and E a divisor over
X. Pick a log resolution π : Y → X such that E is a divisor on Y . The
β-invariant of E (or ordE) is defined as:

βX,∆(E) := AX,∆(E)− SX,∆(E)

where AX,∆(E) := 1 + ordE(KY − π∗(KX +∆)) is the log discrepancy of E
with respect to (X,∆) and

SX,∆(E) :=
1

(−KX −∆)n

∫ ∞

0
vol(−KX −∆− xE)dx

where vol(−KX −∆− xE) := vol(−π∗(KX +∆)− xE). Note that the
above definition differs from Fujita’s original definition by a multiple. We
also let TX,∆(E) be the pseudo-effective threshold of −E with respect to
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−(KX +∆), i.e.

TX,∆(E) = sup{x ∈ R+ | vol(−KX −∆− xE) > 0} = sup
D∈|−KX−∆|Q

ordE(D).

Finally we let jX,∆(E) = TX,∆(E)− SX,∆(E).

Remark 2.6. We have the following relation between SX,∆(E) and TX,∆(E)
(see e.g. [5, Lemma 2.6]):

1

n+ 1
TX,∆(E) ≤ SX,∆(E) ≤

n

n+ 1
TX,∆(E).

It then follows that

1

n
SX,∆(E) ≤ jX,∆(E) ≤ nSX,∆(E).

The β-invariant has a close relation to K-stability, as discovered in [18]
and [23] (see also [9] for part of the statement):

Theorem 2.7. Let (X,∆) be a log Fano pair. The following are equivalent:

1) (X,∆) is K-semistable (resp. K-stable, uniformly K-stable).

2) βX,∆(E) ≥ 0 (resp. > 0, ≥ ϵjX,∆(E) for some fixed ϵ > 0) for any di-

visorial valuation ordE over X.

3) βX,∆(E) ≥ 0 (resp. > 0, ≥ ϵjX,∆(E) for some fixed ϵ > 0) for any

dreamy divisorial valuation ordE over X.

4) βX,∆(E) ≥ 0 (resp. > 0, ≥ ϵjX,∆(E) for some fixed ϵ > 0) for any spe-

cial divisorial valuation ordE over X.

The following δ-invariant is introduced by [19] to characterize K-stability.

Definition 2.8. Let (X,∆) be a log Fano pair. Let m > 0 be an integer
such that −m(KX +∆) is Cartier and Nm := h0(X,−m(KX +∆)) ̸= 0. An
m-basis type divisor of (X,∆) is defined to be a Q-divisor Dm of the form

Dm =
{s1 = 0}+ · · ·+ {sNm

= 0}

mNm

where s1, · · · , sNm
a basis of H0(X,−m(KX +∆)). We set

δm(X,∆) := sup
{
a ∈ R+|(X,∆+ aDm)

is lc for any m-basis type divisor Dm

}
,
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and

δ(X,∆) := lim sup
m

δm(X,∆).

By [5], the above limsup is in fact a limit and we have

δ(X,∆) = inf
E

AX,∆(E)

SX,∆(E)
,

where the infimum runs over all divisors E over X.

We have the following K-stability criterion in terms of δ-invariants ([5,
19]):

Theorem 2.9. Let (X,∆) be a log Fano pair. Then

1) (X,∆) is K-semistable if and only if δ(X,∆) ≥ 1.

2) (X,∆) is uniformly K-stable if and only if δ(X,∆) > 1.

3. Criteria for K-stability

In this section, we will establish several criteria for uniform K-stability.

Theorem 3.1. Suppose (X,∆) is a log Fano pair, then the following two

are equivalent:

1) (X,∆) is uniformly K-stable.

2) There exists some ϵ > 0 such that (X,∆+ ϵD) is K-semistable for any

D ∈ | −KX −∆|R.

Proof. For any divisorial valuation ordE over X,

βX,∆+ϵD(E) = AX,∆(E)− ϵ · ordE(D)− (1− ϵ)SX,∆(E).

The above equality holds since we have following,



✐

✐

“14-Zhuang” — 2022/8/9 — 0:12 — page 1620 — #8
✐

✐

✐

✐

✐

✐

1620 C. Zhou and Z. Zhuang

SX,∆+ϵD(E) =
1

vol(−(1− ϵ)(KX +∆))

∫ ∞

0
vol(−(1− ϵ)(KX +∆)− tE)dt

=
1

vol(−(KX +∆))

∫ ∞

0
vol(−(KX +∆)−

t

1− ϵ
E)dt

=
1− ϵ

vol(−(KX +∆))

∫ ∞

0
vol(−(KX +∆)−

t

1− ϵ
E)d(

t

1− ϵ
)

=(1− ϵ)SX,∆(E).

Assume (2) holds, then βX,∆+ϵD(E) ≥ 0 for all D ∈ | −KX −∆|R and all
divisors E over X. Taking the supremum over D we have

AX,∆(E)− ϵTX,∆(E)− (1− ϵ)SX,∆(E) ≥ 0,

i.e.

AX,∆(E)− SX,∆(E) ≥ ϵ · (TX,∆(E)− SX,∆(E)) = ϵ · jX,∆(E),

which implies (1).
Conversely, suppose (X,∆) is uniformly K-stable, then by Theorem 2.7,

there exists some µ with 0 < µ < 1, such that AX,∆(E)
SX,∆(E) ≥ 1 + µ for any di-

visorial valuation ordE over X. By Remark 2.6, we can choose a 0 < ϵ < 1
such that

(1 + µ)SX,∆(E) ≥ ϵ · TX,∆(E) + (1− ϵ)SX,∆(E),

say ϵ = µ
n+1 . Thus

βX,∆+ϵ·D(E) = AX,∆(E)− ϵ · ordE(D)− (1− ϵ)SX,∆(E)

≥ AX,∆(E)− ϵ · TX,∆(E)− (1− ϵ)SX,∆(E) ≥ 0

for any D ∈ | −KX −∆|R. So, (X,∆+ ϵD) is K-semistable by Theorem
2.7(1). □

Inspired by the above Theorem 3.1, we can define a new invariant for
a log Fano pair (X,∆), the uniformity of (X,∆), which characterizes how
uniformly K-stable (X,∆) is.

Definition 3.2. Suppose (X,∆) is a given K-semistable log Fano pair with
α(X,∆) ≤ 1. The uniformity of (X,∆) is defined as follows:

u(X,∆) := sup {a ∈ R⩾0|(X,∆+ aD) is K-semistable, ∀D ∈ | −KX −∆|R} .
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We can give a precise characterization for u(X,∆).

Proposition 3.3. Let (X,∆) be a K-semistable log Fano pair with α(X,∆)
≤ 1, then

u(X,∆) = inf
E

βX,∆(E)

jX,∆(E)
,

where E runs through all divisors over X.

Proof. Suppose a is a nonnegative real number such that (X,∆+ aD) is
K-semistable for any D ∈ | −KX −∆|R, then we have

βX,∆+aD(E) = AX,∆(E)− ordE(aD)− (1− a)SX,∆(E) ≥ 0,

∀D ∈ | −KX −∆|R and ∀E over X. This is equivalent to

AX,∆(E)− SX,∆(E) ≥ a(TX,∆(E)− SX,∆(E))

for any E over X, i.e.

a ≤ inf
E

βX,∆(E)

jX,∆(E)
.

□

By Theorem 3.1, we have the following corollary:

Corollary 3.4. Suppose (X,∆) is a K-semistable log Fano pair with

α(X,∆) ≤ 1. Then

1) (X,∆) is uniformly K-stable if and only if u(X,∆) > 0.

2) δ(X,∆) = 1 if and only if u(X,∆) = 0.

Remark 3.5. By Remark 2.6 we have the following relation between
u(X,∆) and δ(X,∆)− 1:

1

n
(δ(X,∆)− 1) ≤ u(X,∆) ≤ n(δ(X,∆)− 1).

Theorem 2.7, Theorem 2.9 and Theorem 3.1 give three characterizations
of uniform K-stability. We now give another criterion using only β-invariant.

Theorem 3.6. Let (X,∆) be a log Fano pair. The following three are equiv-

alent:
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1) (X,∆) is uniformly K-stable.

2) There exists ϵ > 0 such that βX,∆(E) ≥ ϵ for any divisor E over X.

3) There exists ϵ > 0 such that βX,∆(E) ≥ ϵ for any dreamy divisor E
over X.

Proof. (1) ⇒ (2): If (X,∆) is uniformly K-stable, then there exists some
δ > 1 such that AX,∆(E) ≥ δ · SX,∆(E) for all divisors E over X. Since
(X,∆) is log Fano, we have AX,∆(E) ≥ 1

r where r is an integer such that
r(KX +∆) is Cartier. Thus

βX,∆(E) = AX,∆(E)− SX,∆(E) ≥ (1− δ−1)AX,∆(E) ≥
1− δ−1

r

for any divisor E over X and we may simply take ϵ = 1−δ−1

r > 0.
(2) ⇒ (1): Suppose that βX,∆(E) ≥ ϵ > 0 for all divisors over X. By [5,

Corollary 3.6], there exists a sequence cm (m = 1, 2, · · · ) of numbers depend-
ing only on (X,∆) such that limm→∞ cm = 1 and cm · ordE(Dm) ≤ SX,∆(E)
for any m ∈ N, any divisor E over X and all m-basis type divisor Dm ∼Q

−(KX +∆). It follows that

AX,∆+cmDm
(E) = AX,∆(E)− cm · ordE(Dm)

≥ AX,∆(E)− SX,∆(E) = βX,∆(E) ≥ ϵ

for all m, E and Dm as above. In other words, the pair (X,∆+ cmDm) is
ϵ-lc. By [2, Theorem 1.6] (applied to the pair (X,B = ∆+ cmDm), M = Dm

and the very ample divisor A = −r(KX +∆) for some sufficiently large and
divisible r), there exists some t > 0 depending only on (X,∆) such that
lct(X,B;Dm) ≥ t for all m and Dm. Hence (X,∆+ (cm + t)Dm) is lc for all
m ∈ N and all m-basis type divisor Dm, which implies δm(X,∆) ≥ cm + t.
Letting m → ∞ we see that δ(X,∆) ≥ 1 + t > 1 and therefore (X,∆) is
uniformly K-stable.

(3) ⇔ (2): One direction is obvious. For the other direction, note that
by Theorem 2.7, (3) implies that (X,∆) is K-semistable, hence it suffices to
show that if (X,∆) is a K-semistable log Fano pair, then any divisor E over
X for which βX,∆(E) < 1 is dreamy. This is proved in Lemma 3.7. □

Lemma 3.7. Let (X,∆) be a K-semistable log Fano pair and E a divisor

over X. Suppose that βX,∆(E) < 1. Then E is dreamy.

Proof. By [5, Lemma 3.5 and Corollary 3.6], there exists m-basis type divi-
sors Dm ∼Q −(KX +∆) (m ∈ N) such that ordE(Dm) → SX,∆(E) (m →
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∞). Let λm = min{δm(X,∆), 1}. Since (X,∆) is K-semistable, we have
limm→∞ λm = 1 and (X,∆+ λmDm) is lc for all m ∈ N. Then as

AX,∆+λmDm
(E) = AX,∆(E)− λmordE(Dm) → βX,∆(E) < 1 (m → ∞),

we see that AX,∆+λmDm
(E) < 1 for m ≫ 0. Let D = (λm − ϵ)Dm + (1 +

ϵ− λm)H where m ≫ 0, 0 < ϵ ≪ 1 and H ∈ | −KX −∆|Q is general. Then
(X,∆+D) is klt, KX +∆+D ∼Q 0 and we still have AX,∆+D(E) < 1. By
[4, Corollary 1.4.3], there is an extraction σ : Y → X from a projective nor-
mal variety Y which only extracts the divisor E. For 0 < ϵ ≪ 1, we then
have

KY + ∆̃ + (1− ϵ)D̃ + µE = σ∗(KX +∆+ (1− ϵ)D),

where ∆̃ and D̃ are birational transformations of ∆ and D respectively and

µ = 1−AX,∆+D(E)− ϵ · ordE(D) > 0.

Since (X,∆+ (1− ϵ)D) is log Fano, its crepant pullback (Y, ∆̃ + (1− ϵ)D̃ +
µE) is of Fano type, i.e. the pair admits klt singularities and −(KY + ∆̃ +
(1− ϵ)D̃ + µE) is big and nef. Therefore, E is dreamy by [4, Corollary 1.3.1].

□

In general, there are many dreamy divisors over a log Fano pair. We now
show that those with small β-invariants are weakly special. In particular,
combining with Theorem 3.6, this completes the proof of Theorem 1.2.

Theorem 3.8. Let (X,∆) be a K-semistable log Fano pair. Then there ex-

ists some 0 < ϵ0 ≪ 1 such that any dreamy divisor E over X with βX,∆(E) <
ϵ0 induces a weakly special test configuration of (X,∆) with integral central

fiber.

Proof. Let R ⊂ [0, 1] be a finite set of rational numbers containing 1 and
all the coefficients of ∆. Choose ϵ0 ∈ Q ∩ (0, 1) such that a pair (Y,B +
G) (where G is a reduced Q-Cartier divisor and dimY ≤ dimX + 1) is lc
as long as (Y,B + (1− ϵ0)G) is lc and the coefficients of B belongs to R.
Such ϵ0 exists by the ACC of log canonical threshold [20, Theorem 1.1].
Suppose E is a divisor over X with βX,∆(E) < ϵ0, then similar to the proof
of Lemma 3.7 we can find a D ∈ | −KX −∆|Q such that (X,∆+D) is
klt and AX,∆+D(E) < ϵ0. By [4, Corollary 1.4.3], one can extract E on a
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birational model of X, say µ : Y → X and

KY + D̃ + ∆̃ + cE = µ∗(KX +∆+D),

where D̃ and ∆̃ are strict transformations of D and ∆ respectively and 1−
ϵ0 < c < 1. Consider the pair (XA1 ,∆A1 +DA1 +X0) (whereXA1 = X × A1,
etc. and X0 = X × {0}) which is a plt pair. Then there is an induced mor-
phism µA1 : YA1 → XA1 . Let v be a quasi-monomial valuation over XA1 with
weight (1, 1) along the divisors X0 and EA1 . It’s clear that v is a divisorial
valuation over XA1 whose center is contained in X0. Denote by E the corre-
sponding divisor over XA1 , then AXA1 ,∆A1+DA1+X0

(E) = AX,∆+D(E) < ϵ0 <
1, hence by [4, Corollary 1.4.3] we can extract E on a projective birational
model π : Y → XA1 of XA1 . We have
(1)
KY + π−1

∗ ∆A1 + π−1
∗ DA1 + X̃0 + cE = π∗(KXA1

+∆A1 +DA1 +X0) ∼Q 0,

where X̃0 is the strict transformation of X0 and c > 1− ϵ0 > 0.
Let 0 < ϵ ≪ 1. Then it is easy to check that (XA1 ,Γϵ := ∆A1 + (1−

ϵ)(DA1 +X0)) is klt, −(KXA1
+ Γϵ) is big and nef over A1 and AXA1 ,Γϵ

(E) >
0. It follows that Y is of Fano type over A1 as in the proof of Lemma
3.7. Run the X̃0-MMP/A1 on Y, we get a minimal model Y 99K Y ′ where
the birational transform of X̃0 is nef over A1. By [24]*Lemma 1, this im-
plies that the MMP contracts at least one component of Y0. Since all X̃0-
negative curves are contained in the birational transform of X̃0, X̃0 is the
contracted component. Let ∆′

A1 , D′
A1 and E ′ be the pushforward of π−1

∗ ∆A1 ,
π−1
∗ DA1 and E on Y ′ respectively, then we know Y ′ → A1 has an integral

central fiber Y ′
0 and the restriction of ordY ′

0
is exactly ordE . We next run

the −(KY ′ +∆′
A1)-MMP/A1 to get an ample model of (Y ′,∆′

A1) → A1 with
respect to −(KY ′ +∆′

A1), denoted by (X ,∆tc) → A1, where ∆tc is the push-
forward of ∆′

A1 . It’s clear that (X ,∆tc) → A1 is a test configuration of (X,∆)
such that the central fiber X0 is integral and the restriction of ordX0

is
ordE . By (1), (Y, π−1

∗ ∆A1 + π−1
∗ DA1 + X̃0 + cE) is an lc log Calabi-Yau pair

and the same is true for its birational contractions (being log Calabi-Yau
is preserved under birational contractions and since birational contractions
between log CY pairs are crepant, they also preserve log canonicity). In par-
ticular, (Y ′,∆′

A1D′
A1 + cE ′) is lc and the same holds for its strict transform

on X . It follows that (X ,∆tc + cX0) is an lc pair. As c > 1− ϵ0, we see that
(X ,∆tc + X0) is lc by our choice of ϵ0. □

Remark 3.9. The above theorem says the following two statements are
equivalent:
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1) (X,∆) is uniformly K-stable.

2) There is a ϵ > 0 such that βX,∆(E) ≥ ϵ for any weakly special divisor
E over X.

Compared with Theorems 2.7 and 2.9, one would expect that for uniform
K-stability it’s sufficient to check β(E) ≥ ϵ for all special divisors E over X,
although this doesn’t seem to follow from our current proof.

It’s expected that uniformly K-stable and K-stable are the same for any
given log Fano pair. One direction is clear. Assume (X,∆) is K-stable, to
confirm uniform K-stability, it suffices to show that there exists some ϵ > 0
such that βX,∆(E) > ϵ for any weakly special divisor E over X. Our next re-
sult (inspired by the recent work [27]) shows that it suffices to consider those
E that are bounded in some sense (note that a more general version that
applies to all weakly special divisor is independently proved in [7, Theorem
A.2] using a somewhat different method):

Theorem 3.10. Let (X,∆) be a K-semistable log Fano pair. Then there

exist ϵ0 > 0 and some positive integer N depending only on (X,∆) such

that if E is a divisor over X with βX,∆(E) < ϵ0, then we can find some

G ∈ 1
N | −N(KX +∆)| such that (X,∆+G) is lc and E is an lc place of

(X,∆+G).

Proof. Let ϵ0 be as in the proof of Theorem 3.8. As in the proof of Theo-
rem 3.8, we can find a D ∈ | −KX −∆|Q such that (X,∆+D) is klt and
AX,∆+D(E) < ϵ0. In addition, we can extract E to be a divisor on a projec-
tive birational model of X, say µ : Y → X and

KY + ∆̃ + D̃ + cE = µ∗(KX +∆+D),

where ∆̃ and D̃ are the strict transformations and 1− ϵ0 < c < 1. Note
that Y is of Fano type as before, hence we can run MMP for −(KY + ∆̃ +
E). Suppose the MMP ends with a Mori fiber space Y 99K Y ′ → T and
write ∆̃′ and E′ for the pushforward of ∆̃ and E on Y ′, then we know
(KY ′ + ∆̃′ + E′)|F is ample where F is the general fiber of Y ′ → T . As
(Y, ∆̃ + D̃ + cE) is a klt log Calabi-Yau pair, so is (Y ′, ∆̃′ + D̃′ + cE′). Since
ρ(Y ′/T ) = 1, it follows that (KY ′ + ∆̃′ + cE′)|F is anti-nef and (Y ′, ∆̃′ +
cE′) is klt, thus the cone over (F, (∆̃′ + cE′)|F ) is lc and hence so is the
cone over (F, (∆̃′ + E′)|F ) by the choice of ϵ0. But by [21]*Lemma 3.1, this
contradicts the fact that (KY ′ + ∆̃′ + E′)|F = KF + (∆̃′ + E′)|F is ample
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(see also [20, Theorem 1.5]). So the MMP above produces a minimal model
Y 99K Y ′ and −(KY ′ + ∆̃′ + E′) is nef.

Now by the boundedness of complement [3, Theorem 1.7], there exists
some integer N > 0 depending only on the dimension and the set R of
coefficients of ∆ such that if (Y ′, ∆̃′ + E′) is an lc pair of dimension n with
coefficients in R, Y ′ is of Fano type and −(KY ′ + ∆̃′ + E′) is nef, then
there exists some effective divisor G′ ∈ 1

N | −N(KY ′ + ∆̃′ + E′)| such that

(Y ′, ∆̃′ + E′ +G′) is lc. It follows that E is a lc place of the lc pair (X,∆+
G) where G ∈ 1

N | −N(KX +∆)| is the pushforward of G′ to X. □

It is therefore very natural to ask the following question:

Question 3.11. Given a set S of lc log Calabi-Yau pairs (X,∆+D) such
that (X,∆) is log Fano. Let S′ be the set of lc log Calabi-Yau pairs that can

be realized as weakly special degenerations of pairs in S (i.e. integral central
fibers of weakly special test configurations of pairs (X,∆+D) in S). Assume

that S is bounded. Is S′ bounded?

In particular, a positive answer to this question will lead to a proof that
K-stability is equivalent to uniform K-stability (since the Futaki invariants
have a bounded denominator in a bounded family). We don’t know any
proof or counterexample to the above question.

Remark 3.12. Theorem 3.10 also gives an approximation for δ(X,∆) = 1
using lc places of bounded lc complements, i.e. if δ(X,∆) = 1, then δ(X,∆) =

infE
AX,∆(E)
SX,∆(E) , where E is a lc place of (X,∆+G) for some lc N -complement

G of (X,∆). See [7, Corollary 3.6] for a more general statement when
δ(X,∆) ≤ 1.

4. Twisted setting

In this section, we will define K-stability in the twisted setting. To make
it simple, we leave out the boundary as it doesn’t play essential roles. X
always denotes a Q-Fano variety with δ(X) ≤ 1. We first recall the definition
of twisted K-stability [8, 14].

Definition 4.1. Let (X ,L) be a given normal test configuration of X,
0 < µ ≤ 1, then µ-twisted generalized Futaki invariant is defined to be

Fut1−µ(X ,L) := sup
D∈|−KX |Q

Fut(X , (1− µ)D;µL)
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where D is closure of D × (A1 \ 0) in X .

Definition 4.2. 1) We say X is µ-twisted K-semistable if Fut1−µ(X ,L)
≥ 0 for every normal test configuration (X ,L).

2) We say X is µ-twisted K-stable if Fut1−µ(X ,L) > 0 for every non-
trivial normal test configuration (X ,L).

3) We say X is µ-twisted uniformly K-stable if there exists a positive real
number ϵ > 0 such that Fut1−µ(X ,L) ≥ ϵJ(X ,L) for every normal test
configuration (X ,L).

In the above definition, one should check all normal test configurations
to test twisted K-stability. However, by a special test configuration theory
in twisted setting that has been established in [8, Theorem 1.6] which is
parallel to [24], we have following theorem:

Theorem 4.3. To test µ-twisted K-semistability (resp. K-stability and uni-

form K-stability), it suffices to check all special test configurations.

Proof. In [8, Theorem 1.6], we only establish the parallel twisted special
test configuration theory for K-semistability and K-stability. However, for
uniform K-stability, we take j-invariant into account just as [18, Section 3]
and the proof is all the same. □

While X may not be K-semistable, it can still be K-stable in the twisted
sense [8]. The following result is a refinement of the twisted valuative crite-
rion established in [8, Theorem 1.5].

Theorem 4.4. Let X be a Q-Fano variety with δ(X) ≤ 1, then X is µ-
twisted uniformly K-stable for 0 < µ < δ(X), and X is µ-twisted K-semistable

but not µ-twisted uniformly K-stable for µ = δ(X).

Proof. For µ < δ(X), by [6, Theorem C], there is a D ∈ | −KX |Q such that
(X, (1− µ)D) is uniformly K-stable. Thus there is a positive real number
0 < ϵ < 1 such that

Fut(X , (1− µ)D;L) ≥ ϵJ(X ,L)

for any normal test configuration, so one has

Fut1−µ(X ,L) ≥ ϵJ(X ,L)
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For µ = δ(X), we can choose a sequence of special test configurations

(Xi,Li) such that limi
A(vXi,0

)

S(vXi,0
) = δ(X) [8, Theorem 4.3]. We aim to prove

that X is not δ-twisted uniformly K-stable where δ = δ(X). If not, there is
a positive real number 0 < ϵ < 1 such that

Fut1−δ(Xi,Li) ≥ ϵJ(Xi,Li).

One can choose a general D ∈ | −KX |Q such that

Fut1−δ(Xi,Li) = Fut(Xi, (1− δ)D;Li)

for any i, where D doesn’t contain any center of vXi,0
[8, Theorem 3.7]. Thus

one obtain

Fut1−δ(Xi,Li) = A(vXi,0
)− δS(vXi,0

) ≥ ϵJ(Xi,Li) = ϵ(T (vXi,0
)− S(vXi,0

)),

which contradicts limi
A(vXi,0

)

S(vXi,0
) = δ(X). □

Remark 4.5. By [10]*Proposition 7.8 and Remark 7.12, the J-functional
(as a norm on test configurations) is equivalent to the minimum norm as
in [14]. Thus we can replace the J-functional by the minimum norm in the
definition of twisted uniform K-stability. Under this equivalent definition,
the above statement follows almost immediately from [8, Proposition 3.4
and Theorem 3.7]. Note that X is µ-twisted K-semistable (resp. uniformly
K-stable) if and only if

inf
(X ,L)

Fut1−µ(X ,L)

||X ||m
≥ 0, (resp. > 0).

Using that

Fut1−µ(X ,L) = Fut(X ,L) + (1− µ)||X ||m,

we get X is µ-twisted K-semistable (resp. uniformly K-stable) if and only if

inf
(X ,L)

Fut(X ,L)

||X ||m
≥ µ− 1, (resp. > µ− 1).

Since

inf
(X ,L)

Fut(X ,L)

||X ||m
= δ(X)− 1,

the result follows.
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5. Optimal Destabilization Conjecture

It has long been expected that uniform K-stability is equivalent to K-
stability. In [9], they reduced the problem to the existence of divisorial
δ-minimizer for δ(X) = 1, that is, the divisorial valuation computing δ-
invariant. The algebraic twisted K-stability theory has been established to
study K-unstable Fano varieties [8], then the case δ < 1 can be studied in
parallel to the case δ = 1. In this section, we will explain the relation between
the following two conjectures.

Conjecture 5.1. (Optimal Destabilization Conjecture) Let X be a Q-Fano

variety with δ(X) ≤ 1, then there exists a divisor E over X computing δ(X),

i.e.
A(E)
S(E) = δ(X).

Conjecture 5.2. Let X be a Q-Fano variety with δ(X) ≤ 1, and 0 < µ ≤ 1,
then X is µ-twisted K-stable is equivalent to that X is µ-twisted uniformly

K-stable.

By Theorem 4.4, we first have the following lemma as a direct corollary:

Lemma 5.3. Conjecture 5.2 is equivalent to that X is not δ(X)-twisted
K-stable.

The above two conjectures are equivalent by following result:

Theorem 5.4. Conjecture 5.1 is equivalent to Conjecture 5.2.

Proof. We first assume Conjecture 5.1, i.e. there is a divisor E computing δ =
δ(X), then by [8, Theorem 1.1], E is a dreamy divisor overX which naturally
induces a non-trivial test configuration (X ,L) such that Fut1−δ(X ,L) = 0,
thus X is not δ-twisted K-stable. Conversely, assume X is not δ-twisted
K-stable, then there exists a non-trivial test configuration (X ,L) such that
Fut1−δ(X ,L) = 0. By [8, Theorem 3.9], it must be a special test configuration
whose central fiber induces a divisorial valuation computing δ(X). □

We can also translate optimal destabilization conjecture into vanishing
of δ-twisted generalized Futaki invariant [8].

Theorem 5.5. Suppose X is a klt Fano variety with δ(X) ≤ 1. If there is

a divisor E over X computing δ(X), i.e A(E)
S(E) = δ(X), then there is a test

configuration (X ,L) such that Fut1−δ(X ,L) = 0. Conversely, if there is a
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test configuration (X ,L) such that Fut1−δ(X ,L) = 0, then there is a divisor

E over X computing δ(X).

Proof. Suppose there is a divisor E computing δ(X), then E is a dreamy
divisor which naturally induces a test configuration whose δ-twisted gen-
eralized Futaki is zero, by [8, Theorem 1.1]. Conversely, if there is a test
configuration whose δ-twisted generalized Futaki is zero, then it must be a
special test configuration whose central fiber induces a divisorial valuation
computing δ(X), by [8, Theorem 4.6]. □

Remark 5.6. The first two conjectures in this section for δ(X) = 1 corre-
spond to the following two conjectures (also see [9]):

1) (Optimal Destabilization Conjecture for δ = 1) Suppose X is a Q-
Fano variety with δ(X) = 1, then there is a divisorial valuation ordE
computing δ(X), i.e. δ(X) = A(E)

S(E) = 1.

2) For Fano varieties, uniform K-stability is equivalent to K-stability.

By Theorem 5.4, we know they are also equivalent.
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