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Let K be a number field and E/K be an elliptic curve with no
2-torsion points. In the present article we give lower and upper
bounds for the 2-Selmer rank of E in terms of the 2-torsion of a
narrow class group of a certain cubic extension of K attached to E.
As an application, we prove (under mild hypotheses) that a positive
proportion of prime conductor quadratic twists of E have the same
2-Selmer group.

Introduction

Given an elliptic curve E over a number field K, the Mordell-Weil theorem
implies that its set of K-rational points is a finitely generated abelian group.
In particular, it has a torsion part and a free one. From a computational
point of view finding the torsion part is the “easy” task (and is implemented
in most number theory computational systems, such as PARI/GP [PAR19],
SageMath [Sag19] or Magma [BCP97]). The computation of the free part is
more subtle, and involves the descent method (see for example section VIII.3
of [Sil09]), and is still an open question whether the proposed algorithms to
compute ranks of elliptic curves end or not (depending on the finiteness of
the Tate-Shafarevich group).

The most effective way to compute the rank is to apply 2-descent, which
involves computing the 2-Selmer group (see Definition 2.2). Since computing
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the 2-Selmer group involves hard computations, a natural question is whether
one can give a bound for it. Let E be an elliptic curve of the form

E : y2 = F (x)

with F (x) ∈ OK [x] a monic irreducible cubic polynomial and let AK =
K[x]/F (x) be the cubic extension of K given by F (x). In [BK77] the authors
give, for K = Q, an upper bound for semistable elliptic curves in terms of the
class group of AQ (which can be efficiently computed), and is the first article
to show a relation between the 2-Selmer group and a class group. Recently, in
[Li19] the author used similar ideas to provide a lower bound for the 2-Selmer
group of a rational elliptic curve under some restrictive hypotheses; namely
has odd and square-free discriminant.

The purpose of the present article is to extend the ideas of Brumer-
Kramer and Li to give both lower and upper bounds for the 2-Selmer groups
of elliptic curves over number fields with more relaxed hypotheses. Denote by
Cl∗(AK , E) the narrow class group given in Definition 2.8. One of our main
results is the following:

Theorem 2.16. Let K be a number field and let E/K be an elliptic curve
satisfying hypotheses 2.1. Then

dimF2
Cl∗(AK , E)[2] ≤ dimF2

Sel2(E) ≤ dimF2
Cl∗(AK , E)[2] + [K : Q].

In particular, if K = Q, the order of the Selmer group is determined by the
2-torsion of Cl∗(AK , E) and the root number of E.

The advantage of our results is twofold: on the one hand, we can get a
lower and upper bound which we expect to be sharp for general number fields
(we show this is the case in some examples).

On the other hand, our relaxed hypotheses allow us to consider families of
quadratic twists of elliptic curves: let for example E/Q be a rational elliptic
curve satisfying hypotheses 2.1, and let p be a prime congruent to 1 modulo
4 which is inert or totally ramified in AK . Then the quadratic twist Ep of E
by a character of conductor p also satisfies hypotheses 2.1, hence our rank
bound also applies to its 2-Selmer group. Studying the root number change
from E to Ep allows us to deduce that for a positive proportion of them,
the rank of their 2-Selmer group is constant. In particular, all such twists
have precisely the same 2-Selmer group (see Theorems 3.3 and 3.7). Such
interesting phenomena has implication in distributions of ranks of elliptic
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curves under quadratic twists and the order of the Tate-Shafarevich group
X(Ep)[2]. For example, let d2(E) denote the 2-Selmer rank of E and define

Nr(E,X) = |{quadratic L/Q : d2(E
L) = r and |δ(L/Q)| < X}|,

where EL denotes the quadratic twist of E corresponding to L and δ(L/Q)
is the discriminant of the extension L/Q. A direct application of our result
proves the following Corollary.

Corollary 3.4. Let E/Q be an elliptic curve satisfying hypotheses 2.1, and
suppose furthermore that either ∆(E) < 0 or Cl+(AQ) = Cl(AQ). Let r ≥ 0,
and suppose that E has a quadratic twist by a prime inert in AQ whose
2-Selmer group has rank r. Then Nr(E,X) ≫ X/ log(X)1−α, where

α =

{

1/3 if AQ/Q is Galois,

1/6 otherwise.

When ∆(E) > 0 a similar result holds replacing α by α/2. Such results
are important to understand the so called Goldfeld’s conjecture. In [MR10]
the authors study the problem of the variation of the 2-Selmer group in
quadratic twists families, and they obtain a little stronger result for any base
field K (see Theorem 1.4), although their techniques are slightly different
from ours. In [KL19] the authors obtain similar results as ours over Q (see the
proofs of [KL19, Lemma 5.9 and Lemma 5.10] and [KL19, Theorem 1.12]).

An immediate application of the result is the following: suppose that E/Q
is an elliptic curve with trivial 2-Selmer group, and let K/Q be the (infinite)
polyquadratic extension obtained by composing all quadratic extensions in
the hypothesis of Theorems 3.3 and 3.7. Then E(K) is finitely generated (see
Corollary 3.6).

The article is organized as follows: Section 1 contains the local compu-
tations of the Kummer map and its image, which are needed to bound the
2-Selmer group. Section 2 contains the main result (Theorem 2.16). Our main
contributions are: we can work with polynomials F (x) which do not generate
the whole ring of integers of AK (a key fact for allowing quadratic twists), and
also we explain in detail how to handle the case of “positive discriminants”, i.e.
the real places of K where the discriminant of F (x) is positive. In order to
treat this case we work with a “narrow class group” instead of a classical one.
Section 3 contains the application of the main results to families of quadratic
twists. We stated two results (Theorems 3.3 and 3.7) for elliptic curves over
Q (which historically received a lot of attention) but they have a similar
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version over general number fields. At last, Section 4 includes many examples
of elliptic curves over number fields; the purpose of the examples is to show
that the bounds obtained in this article are sharp for different number fields.
At the same time we show that the lower bound and the upper bound do not
hold when twisting by primes not satisfying hypotheses 2.1.

1. Kummer map

Let us recall some general statements on the 2-Selmer group on elliptic curves
(we refer to Section 2 of [BK77]). Let K be a field of characteristic different
from 2, let K̄ be a Galois closure of K and let GK = Gal(K̄/K). Let E/K
be an elliptic curve of the form

E : y2 = F (x)

for some monic cubic square-free polynomial F (x) ∈ K[x]. The following
exact sequence of GK-modules

0 −→ E(K̄)[2] −→ E(K̄)
×2−−→ E(K̄) −→ 0

gives rise to a long exact sequence in cohomology. In particular, it induces an
injective morphism called the Kummer map

δK : E(K)/2E(K) −֒→ H1(GK , E(K̄)[2]).

Let AK be the K-algebra K[T ]/(F (T )). Then H1(GK , E(K̄)[2]) is isomorphic
to the subgroup of elements in A×

K/(A
×
K)2 whose norm is a square in K (see

[Cas66, p. 240]); let us denote by (A×
K/(A

×
K)

2)□ such set. In particular, we
get an injective map

δK : E(K)/2E(K) −֒→ (A×
K/(A

×
K)2)□.

Explicitly, let P ∈ E(K) and let x(P ) denote its first coordinate. Then,

δK(P ) = x(P )− T,

whenever x(P )− T is invertible in AK (see [BK77, p. 716-717]). Note that
the algebra AK and the map δK do not depend on the choice of model for E.
Moreover, we denote by δK(E) the image of the Kummer map and remark
that it is a hard problem to describe it.
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1.1. The case K a complete archimedean field

Let ∆ denote the discriminant of F (x) and K be a complete archimedean
field. Then clearly

AK ≃











R× C if K = R and ∆ < 0,

R× R× R if K = R and ∆ > 0,

C× C× C if K = C.

In the second case, let θ1 < θ2 < θ3 denote the roots of F (x), and take the
isomorphism sending T to (θ1, θ2, θ3).

Lemma 1.1. For complete archimedean fields, the following holds:

(i) If K = R and ∆ < 0, δR(E) = {(1, 1)},
(ii) If K = R and ∆ > 0, δR(E) = ⟨(1,−1,−1)⟩,
(iii) If K = C, δC(E) = {(1, 1, 1)}.

Proof. In cases (i) and (iii) E(K)/2E(K) is trivial. In case (ii) E(K)/2E(K)
has order 2, and a point P with θ1 < x(P ) < θ2 < θ3 maps to (1,−1,−1) up
to squares (see also [BK77, Proposition 3.7]). □

Remark 1.2. When K = R and ∆ > 0, AK has three real places, and one of
them is distinguished, as it is the unique one satisfying that the composition
of δR with its projection is trivial. Lemma 1.1 states that when the roots of
F (T ) are ordered, such place corresponds to the first one, but for a general
elliptic curve E/R, we can always talk of such distinguished place.

1.2. The case K is a finite extension of Qp

For the rest of this section we assume that K is a finite extension of Qp. Let
O denote its ring of integers, p its maximal ideal, π a generator of p and
k = O/p its residue field.

Lemma 1.3. The order of δK(E) equals [O : 2O] ·
∣

∣E(K)[2]
∣

∣.

Proof. See Lemma 3.1 of [BK77]. □

Let AO be the ring of integers of AK .
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Remark 1.4. Since AK is isomorphic to a product of local fields, AO is
isomorphic to the product of the ring of integers of such fields. Furthermore,
since [AK : K] = 3, the norm map N : A×

O
/(A×

O
)2 → O×/(O×)2 is surjective

(it is the identity on the class of elements of O×).

Denote (A×
O
/(A×

O
)2)□ the subgroup of elements in A×

O
/(A×

O
)2 with square

norm. There is a natural inclusion (A×
O
/(A×

O
)2)□ ⊂ (A×

K/(A
×
K)2)□.

Lemma 1.5. The order of (A×
O
/(A×

O
)2)□ equals [O : 2O]2 ·

∣

∣E(K)[2]
∣

∣.

Proof. The K-algebra AK is isomorphic to a product of fields L1 × · · · × Lt,
where 1 ≤ t ≤ 3. Let Ri be the ring of integers of Li, so that AO ≃ R1 ×
· · · ×Rt. By [O’M00, Proposition 63:9] we have [O× : (O×)2] = 2 [O : 2O] and
[R×

i : (R×
i )

2] = 2 [Ri : 2Ri].
Since AK has dimension 3 over K, we have

∏

[Ri : 2Ri] = [O : 2O]3. It
follows that [A×

O
: (A×

O
)2] = 2t [O : 2O]3. Since N : A×

O
/(A×

O
)2 → O×/(O×)2 is

surjective, its kernel (A×
O
/(A×

O
)2)□ has order [A×

O
: (A×

O
)2] / [O× : (O×)2] =

2t−1 [O : 2O]2.
The result follows by noting that 2t−1 =

∣

∣E(K)[2]
∣

∣. □

Definition 1.6. We say that E : y2 = F (x) satisfies (†) if F (x) ∈ O[x] is a
monic cubic square-free polynomial and any of the following conditions holds:

(†.i) AK is a field extension of K, or

(†.ii) AO = O[T ]/(F (T )), or

(†.iii) char(k) > 2 and [E(K) : E0(K)] is odd, where E0(K) is the subgroup
of the points of E(K) whose reduction is non-singular, or

(†.iv) char(k) = 2, K/Q2 is unramified, and E has good reduction.

Remark 1.7. When char(k) > 2 condition (†.i) or condition (†.ii) imply
(†.iii). To see it let IK ⊂ Gal(K/K) be the inertia subgroup and consider
the following three possibilities E[2](K)IK = {0} or E[2](K)IK ∼= Z/2Z or
E[2](K)IK ∼= (Z/2Z)2. If E[2](K)IK = {0} then [E(K) : E0(K)] is odd by
[GP12, Lemma 4]. Observe that if (†.i) is true then E[2](K)IK ∼= Z/2Z is
not possible. If E[2](K)IK ∼= Z/2Z and (†.ii) holds vp(disc(F (x))) = 1 hence
[E(K) : E0(K)] = 1 by Tate’s algorithm ([Tat75]). Finally if E[2](K)IK ∼=
(Z/2Z)2 then hypothesis (†.i) or (†.ii) implies that E has good reduction
hence (†.iii) is clearly true.

Theorem 1.8. If E satisfies (†) then δK(E) ⊂ (A×
O
/(A×

O
)2)□.



✐

✐

“1-Barrera-Salazar” — 2022/8/16 — 20:25 — page 1639 — #7
✐

✐

✐

✐

✐

✐

2-Selmer groups and quadratic twists 1639

Proof. A similar result (for particular cases) is given in Corollary 3.3, Propo-
sition 3.4, Lemma 3.5, Proposition 3.6, and Lemma 4.2 of [BK77], and in
Lemma 2.12 of [Li19].

Suppose first that E satisfies (†.i), i.e. AK is a cubic field extension
of K (either unramified or totally ramified). Let P denote the maximal
ideal of AO. Let P = (x, y) ∈ E(K). The equality y2 = F (x) implies that
2vP(y) = 3vP(x− T ), hence vP(x− T ) = 2n is even. If π̃ denotes a local
uniformizer in AO then π̃−2n(x− T ) ∈ A×

O
so that δK(P ) ∈ (A×

O
/(A×

O
)2)□.

Suppose now that E satisfies (†.ii). If AK is a field the result is already
proven, hence we can restrict to the cases AK ≃ K ×K ×K or AK ≃ K × L,
for L/K a quadratic extension. In the case AK ≃ K ×K ×K, F (x) = (x−
c1)(x− c2)(x− c3) with ci ∈ O, and hypothesis (†.ii) implies vp(ci − cj) = 0
for i ≠ j. Let P = (x, y) ∈ E(K). If vp(x) < 0 then vp(x− ci) = vp(x), hence
2vp(y) = 3vp(x) and so vp(x− ci) is even for all i. Otherwise vp(x) ≥ 0 and
vp(x− ci) ≥ 0 for all i. Since vp(ci − cj) = 0 for i ≠ j, at least two terms in
the right hand side of the equality

2vp(y) = vp(x− c1) + vp(x− c2) + vp(x− c3),

are 0, hence the third term must also be even. In either case δK(P ) =
(π−vp(x−c1)(x− c1), π

−vp(x−c2)(x− c2), π
−vp(x−c3)(x− c3)) ∈ (A×

O
/(A×

O
)2)□.

In the case AK ≃ K × L for a quadratic extension L/K (either unramified
or ramified), F (x) = (x− c)(x− γ)(x− γ′), with c ∈ O and γ ∈ OL. Let vp
denote the valuation of L which extends that of K. Hypothesis (†.ii) implies
vp(c− γ) = 0 and vp(x− γ) ∈

{

0, 12
}

if x ∈ O. Let P = (x, y) ∈ E(K), then

2vp(y) = vp(x− c) + 2vp(x− γ).

When vp(x) < 0 this implies vp(x− c) = vp(x− γ) = vp(x) is even. When
vp(x) ≥ 0 then vp(x− c) ≥ 0 and vp(x− γ) ≥ 0, and at least one must be
0 since vp(c− γ) = 0. It follows that vp(x− γ) ∈ Z ∩

{

0, 12
}

. Hence vp(x−
γ) = 0 and vp(x− c) is also even. In either case we have vp(x− c) and
vp(x− γ) are both even, hence δK(P ) = (π−vp(x−c)(x− c), π−vp(x−γ)(x−
γ)) ∈ (A×

O
/(A×

O
)2)□.

When E satisfies (†.iii) the result is given in [BK77, Corollary 3.3]. Finally,
suppose E satisfies (†.iv). When E has supersingular reduction, then the
assumption K/Q2 unramified implies that AK is a cubic ramified extension
of K [BK77, Proposition 3.4], in which case E satisfies (†.i) so the result is
already proved. When E has ordinary reduction, the result is proved under
the assumption K/Q2 unramified in [BK77, Proposition 3.6]. □
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It is not true that Theorem 1.8 holds in full generality. Here are some
examples where the hypotheses (†) are not satisfied and the statement of
Theorem 1.8 does not hold.

Example 1. Let

E : y2 = x(x+ 3p)(x+ 1− p)

be the elliptic curve over Qp, with Kodaira type I2 if p ̸= 2, 3, type I4 if p = 3
and type III if p = 2, and let P = (p, 2p) ∈ E(Qp). Here AQp

≃ Qp ×Qp ×Qp,
but two roots are congruent (hence (†.ii) is not satisfied); δQp

(P ) = (p, 4p, 1) /∈
(A×

Zp
/(A×

Zp
)2)□.

Example 2. Let r ∈ Z with
(

r
p

)

= −1 if p ≠ 2, r ≡ 1 (mod 8) if p = 2 and

let

E : y2 = x(x2 − rp2 − r2p4)

be the elliptic curve over Qp, with Kodaira type I∗0 if p ̸= 2 and type I∗2
if p = 2. Let P = (−rp2, rp2) ∈ E(Qp). Here AQp

≃ Qp ×Qp(γ) with γ =

p
√

r + r2p2, the latter a quadratic unramified extension (whose ring of inte-
gers is not generated by γ, so (†.ii) is not satisfied); δQp

(P ) = (−rp2,−rp2 −
γ) /∈ (A×

Zp
/(A×

Zp
)2)□.

Example 3. Let

E : y2 = x(x2 − p− p2),

with Kodaira type III and let P = (−p, p) ∈ E(Qp). Here AQp
≃ Qp ×Qp(γ)

via T → (0, γ) with γ =
√

p+ p2 generating a quadratic ramified extension.
Since the image satisfies that both coordinates are congruent modulo p, (†.ii)
is not satisfied; δQp

(P ) = (−p,−p− γ) /∈ (A×
Zp
/(A×

Zp
)2)□

Corollary 1.9. Suppose that E satisfies (†) and char(k) > 2. Then δK(E) =
(A×

O
/(A×

O
)2)□.

Proof. By Theorem 1.8 we know that δK(E) ⊂ (A×
O
/(A×

O
)2)□, and by Lem-

mas 1.3 and 1.5 both sets have the same cardinality. □

1.2.1. The case K is a finite extension of Q2. Consider the set

U4 = {u ∈ A×
O

: u ≡ □ (mod 4AO) and N(u) = □} ⊂ A×
O
.

Note that (A×
O
)2 ⊂ U4.
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Lemma 1.10. Suppose p = 2. Then:

1) For α ∈ O we have

1 + 4α = □ ⇐⇒ Trk/F2
α = 0

2) Let L/K be a finite extension with odd ramification index. For all
α ∈ OL we have

1 + 4α = □ ⇐⇒ NL/K(1 + 4α) = □

3) Let L/K be a finite extension with even ramification index. For all
α ∈ OL we have NL/K(1 + 4α) = □.

4) The group {u ∈ O× : u ≡ □ (mod 4)} contains (O×)2 with index 2.

5) The index of (A×
O
)2 in U4 is given by

#(U4/(A
×
O
)2) =











1 if AK is a field,

2 if AK ≃ K × L, with L a field,

4 if AK ≃ K ×K ×K.

Proof. Note first that if 1 + 4α is a square, say 1 + 4α = β2, then β ≡ 1
(mod 2). Indeed, vp(β − 1) < vp(2) would imply vp(β + 1) = vp(β − 1) <
vp(2), but then vp(4α) = vp(β − 1) + vp(β + 1) < vp(4) contradicting α ∈ O.

Furthermore, recall that units in a local field which are congruent to 1
modulo 4p are squares (see for example [O’M00, Theorem 63:1]), hence 1 + 4α
is a square in OL if and only if there exists v ∈ OL such that α ≡ v + v2

(mod p) (so (1 + 4α) = (1 + 2v)2 up to squares).
Consider the map ϕ : O/p → O/p given by ϕ(v) = v2 + v; it is a group

homomorphism with kernel {0, 1}, hence its image has index 2. Furthermore,
the composite map Trk/F2

◦ϕ : O/p → F2 is the trivial map. Since the trace
map is surjective, we conclude that the image of ϕ equals the kernel of the
trace map, which proves the first statement.

To prove statements (2) and (3), let L/K be a finite extension of local
fields with ramification index eL, ring of integers OL, maximal ideal pL and
residue field kL. Clearly NL/K(1 + 4α) ≡ 1 + 4TrL/K(α) (mod 4p), hence
the results follow from a comparison between the trace map on L/K and the
one on their residue fields. Recall that if x ∈ OL, TrL/K(x) ≡ eLTrkL/k(x̄)
(mod p) (see [CF69] Lemma 1, page 20), so the result follows.
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To prove (4) note that u ≡ □ (mod 4) if and only if K(
√
u)/K is a

quadratic unramified extension, and there are exactly two such extensions
(the split extension and the unramified field extension).

The last statement follows easily from the previous ones. For example when
AK is a field apply (4) to AK to obtain {u ∈ A×

O
: u ≡ □ (mod 4)}/(A×

O
)2

has exactly two elements and statement (2) implies that only the trivial one
has square norm. The other two cases follow from a similar computation
using (3) and (4). □

Theorem 1.11. Let K/Q2 be a finite extension and let E/K be an el-
liptic curve satisfying (†). Then δK(E) ⊂ (A×

O
/(A×

O
)2)□ with index 2[K:Q2].

Furthermore, U4 ⊂ δK(E).

Proof. The first claim follows from Theorem 1.8 and Lemmas 1.3 and 1.5.
For the second statement, suppose first that E satisfies (†.i), so that AK is a
field. Then the result follows since U4/(A

×
O
)2 is trivial by Lemma 1.10.

Suppose now that E satisfies (†.ii). The case when AK is a field is already
proved. Recall that if E/K is given by

E : y2 = x3 + a2 x
2 + a4 x+ a6

with a2, a4, a6 ∈ O, using the formal group structure on E, for every z ∈ p

there is a point P = P (z) with x-coordinate given by

x(P ) = z−2 − a2 +O(z2) .

Then

z2 δK(P ) = z2 (x(P )− T ) = 1− (a2 + T ) z2 +O(z4) .

In the case AK ≃ K ×K ×K, by Lemma 1.10, U4/(A
×
O
)2 has 4 elements

of the form {(□,□,□), (□/ ,□,□/ ), (□/ ,□/ ,□), (□,□/ ,□/ )}. It is enough to prove
that there exists z1, z2, z3 ∈ O such that δK(P (2zi)) has i-th coordinate not a
square. Let u = 1 + 4α ∈ O be a unit congruent to 1 modulo 4 which is not a
square. Let {c1, c2, c3} be the roots of F (x). The hypothesis (†.ii) implies that
p ∤ (c2 + c3) = −(a2 + c1), so there exists z1 ∈ O such that −(a2 + c1)z

2
1 ≡ α

(mod p) (since the map x→ x2 is a bijection in O/p). Then δK(P (2z1)) =
(u, ∗, ∗) has its first coordinate a non-square. A similar argument applies to
the other two coordinates.

In the case AK ≃ K × L for a quadratic extension L/K, let {c, γ, γ′} be
the roots of F (x), with c ∈ O and γ ∈ OL. If L/K is unramified, consider
z = 2u so the first coordinate z2 δK(P (z))1 ≡ 1 + 4(γ + γ′)u2 (mod 4p), and
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the hypothesis (†.ii) implies that γ + γ′ ̸∈ p, hence there exists u ∈ O such
that 1 + 4(γ + γ′)u2 is not a square. If L/K is ramified, let P be the maximal
ideal of OL and consider z = 2u so the second coordinate z2δK(P (z))2 ≡
1 + 4(c+ γ′)u2 (mod 4p). The hypothesis (†.ii) implies that c+ γ′ ̸∈ P so
there exists u ∈ O (we can take u ∈ O because it has the same residue field
as OL) such that 1 + 4(c+ γ′)u2 is not a square.

In either case, z2δK(P (z)) ∈ U4 is not a square in AK , but by Lemma 1.10,
we know that U4/(A

×
O
)2 has two elements so the statement follows.

The case (†.iii) does not occur since char(k) = 2. Finally, suppose E
satisfies (†.iv). If E has supersingular reduction, then AK is a cubic ramified
extension of K [BK77, Proposition 3.4], in which case the result is already
proved. If E has ordinary reduction, the result follows from [BK77, Proposition
3.6]. □

2. 2-Selmer groups and Class groups

Suppose now that K is a number field and E is an elliptic curve over K. For
v a place of K, let Kv denotes its completion. From now on we assume the
following hypotheses:

Hypotheses 2.1. The elliptic curve E and the field K satisfy:

1) The narrow class number of K is odd.

2) E(K)[2] = {0}.
3) For all finite places v of K, E/Kv satisfies (†) (see Definition 1.6).

Note that the second hypothesis implies that AK is a cubic field extension
of K and we denote by AO its ring of integers. For each place v of K, let Gv =
GKv

and fix an immersion Gv →֒ GK . To ease the notation let δv = δKv
and

let resv denote the restriction map H1(GK , E(K̄)[2]) → H1(Gv, E(K̄v)[2]).

Definition 2.2. The 2-Selmer group of E consists of the cohomology classes
in H1(GK , E(K̄)[2]) whose restriction to Gv lies in the image of δv for all
places v of K, i.e.

Sel2(E) = {c ∈ H1(GK , E(K̄)[2]) : resv(c) ∈ δv(E) for each place v of K}.

If v is an archimedean place of K then either:

(i) Kv ≃ R and AKv
≃ R× C,
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(ii) Kv ≃ R and AKv
≃ R× R× R,

(iii) Kv ≃ C and AKv
≃ C× C× C.

We say that an archimedean place of K has type (i), (ii) or (iii) depending
on the above cases. Let us introduce the following notations: if α ∈ AK ,
the notation N(α) ≫ 0 means that for each real archimedean place v of K,
v(N(α)) > 0. If v is a real place of K of type (i), let ṽ denote the unique real
place in AK extending v. If v is a real place of K of type (ii), let ṽ, ṽ2, ṽ3
denote the places of AK extending v, so that ṽ is the distinguished one (see
Remark 1.2).

Define the following subgroups of A×
K/(A

×
K)2:

C∗(E) =
{

[α] ∈ A×
K/(A

×
K)2 : AK(

√
α)/AK is unramified at all finite

places of AK , it is unramified at ṽ for all real places v of K,

and for each v of type (ii) it ramifies at ṽ2 ⇔ it ramifies at ṽ3
}

,

and

C̃(E) =
{

[α] ∈ A×
K/(A

×
K)2 : N(α) = □, w(α) is even for all finite

places w of AK , ṽ(α) > 0 for all real places v of K
}

.

Remark 2.3. In the definition of C∗(E) and C̃(E), the dependence of E
comes only from the distinguished place in AK at real archimedean places of
type (ii). In particular, if no such place exists, these subgroups depend only
on AK (and not on the particular curve whose cubic field extension of K is
AK).

Example 4. Here is a concrete example where C∗(E) depends on E and
not only on AK : consider the curve

E : y2 = F (x) = x3 − 7x+ 3

over K = Q, so that AQ = Q[T ]/(T 3 − 7T + 3). The real place v of Q is
of type (ii) since F has three real roots θ1 < θ2 < θ3. The field AQ has
class number 1, but narrow class number 2. Indeed the narrow Hilbert class
field (maximal abelian extension unramified at all finite places) of AQ is
AQ(

√
T 2 − 8); it is unramified at ṽ and it is ramified at ṽ2 and ṽ3 (since

θ21 − 8 > 0, θ22 − 8 < 0 and θ23 − 8 < 0). Thus [T 2 − 8] ∈ C∗(E) and C∗(E)
has order 2.
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On the other hand, consider the quadratic twist of E by Q(
√
−1),

E−1 : y
2 = −F (−x) = x3 − 7x− 3 .

This curve has the same cubic field AQ, but twisting changes the distinguished
place from ṽ to ṽ3, so that [T 2 − 8] ̸∈ C∗(E−1) and it follows that C∗(E−1)
is trivial. In Example 7 we use this to compute the 2-Selmer rank for all the
quadratic twists of this curve.

Lemma 2.4. The set C∗(E) equals the set of elements [α] ∈ A×
K/(A

×
K)

2

satisfying the following local conditions:

• For all finite places w of AK , w(α) is even.

• For all real places v of K, ṽ(α) > 0.

• N(α) ≫ 0.

• α ≡ □ (mod 4AO).

Proof. The only non-trivial part is the condition at places dividing 2, which
is a well known result and a detailed proof is given in [CP19, Lemma 3.4]. □

Lemma 2.5. We have C∗(E) ⊂ (A×
K/(A

×
K)2)□.

Proof. If [α] ∈ C∗(E), by Lemma 2.4 its norm N(α) has even valuation at
all finite places of K, it is totally positive, and a square modulo 4O. Hence
K(

√

N(α))/K is unramified at all places of K, and since the class number
of K is odd, this implies that N(α) is a square. □

Proposition 2.6. The following inclusions hold

C∗(E) ⊂ Sel2(E) ⊂ C̃(E).

Proof. Since C∗(E) ⊂ (A×
K/(A

×
K)

2)□, to prove that C∗(E) ⊂ Sel2(E) it is
enough to check that if [α] ∈ C∗(E) then for each place v of K, [α] ∈ Im(δv).
The condition at the infinity places is clear by Lemma 1.1. If v is a finite
place of K not dividing 2, as the quadratic extension is unramified then α
is a unit in AKv

(up to squares), hence by Corollary 1.9 it lies in the image
of δv. For a place v dividing 2, by Lemma 2.4, α ≡ □ (mod 4AO), and by
Theorem 1.11 such set is contained in the image of δv.

The claim Sel2(E) ⊂ C̃(E) follows from Lemma 1.1 and Theorem 1.8. □
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Let Frac(AK) denote the group of fractional ideals of AK , let P be the
subgroup of principal ideals, and consider the subgroup

P∗(E) = {(α) ∈ P : and ṽ2(α) ṽ3(α) > 0 for all v of type (ii) }

Let P+ = {(α) ∈ P : α≫ 0}. Clearly P+ ⊂ P∗(E) ⊂ P and P/P+ is an
elementary 2-group.

Lemma 2.7. We have:

P∗(E) = {(α) ∈ P : ṽ(α) > 0 for all real places v of K, and N(α) ≫ 0 }

Proof. The inclusion ⊃ is trivial. For the other inclusion, let (α) ∈ P∗(E).
Since the narrow class number of K is odd there are units in K with arbitrary
signs for the real places, in particular there is a unit µ ∈ O× such that
ṽ(µα) > 0 for all real places of K. Moreover, this implies that N(µα) ≫ 0.
Thus (α) = (µα) is in the set of the right hand side. □

Definition 2.8. Denote by Cl(AK) = Frac(AK)/P the class group of AK
and by Cl+(AK) = Frac(AK)/P+ the narrow class group of AK . Let

Cl∗(AK , E) = Frac(AK)/P∗(E)

denote the class group attached to P∗(E).

Remark 2.9. If Cl+(AK) = Cl(AK), then P+ = P = P∗(E), therefore
Cl∗(AK , E) = Cl(AK). In particular, Cl∗(AK , E) is independent of the elliptic
curve E.

Proposition 2.10. The group C∗(E) is isomorphic to the torsion 2-subgroup
of Cl∗(AK , E), i.e. C∗(E) ≃ Cl∗(AK , E)[2].

Proof. Let L be the maximal abelian extension of AK satisfying:

• it is unramified at all finite places of AK ,

• it is unramified at ṽ for all real places v of K,

• for each v of type (ii), Gṽ2 = Gṽ3 as subgroups of Gal(L/AK).

Then L is a finite extension of AK , and C∗(E) ≃ Hom(Gal(L/AK), µ2). The
Artin reciprocity map rec : Frac(AK) → Gal(L/AK) has kernel P∗(E), hence
Cl∗(AK , E) ≃ Gal(L/AK). It follows that C∗(E) ≃ Cl∗(AK , E)[2] as claimed.

□
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Theorem 2.11. The index [C̃(E) : C∗(E)] ≤ 2[K:Q].

Before giving the proof, we need some auxiliary results. Let A, B and C
be the set of archimedean places of K of type (i), (ii) and (iii) respectively,
and let a, b, c denote their cardinalities, so [K : Q] = a+ b+ 2c. Consider the
sign map

sign : A×
K →

∏

v∈A

{±1} ×
∏

v∈B

({±1} × {±1} × {±1}) .

This induces a well defined map on A×
K/(A

×
K)2. Let

W̃ =
∏

v∈A

{1} ×
∏

v∈B

W

where W = {(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)}, and let

Ṽ =
∏

v∈A

{1} ×
∏

v∈B

V ⊂ W̃

where V = {(1, 1, 1), (1,−1,−1)}. Note that sign((A×
K/(A

×
K)

2)□) ⊂ W̃ , and
that sign(C̃(E)) ⊂ Ṽ .

Lemma 2.12. There is an isomorphism

sign((A×
O
/(A×

O
)2)□) · Ṽ ≃ sign(A×

O
) · Ṽ

sign(O×)
.

Proof. Note the inclusion sign((A×
O
/(A×

O
)2)□) ⊂ sign(A×

O
) induces a homo-

morphism sign((A×
O
/(A×

O
)2)□) · Ṽ → (sign(A×

O
) · Ṽ )/ sign(O×). To prove it is

surjective, let α ∈ A×
O
. Clearly N(α) ∈ O×, so

sign(α) = sign(αN(α)) sign(N(α))

is the image of sign(αN(α)) ∈ sign((A×
O
/(A×

O
)2)□).

To prove it is injective note that sign((A×
O
/(A×

O
)2)□) · Ṽ ⊂ W̃ and

sign(O×) satisfies that for places v in B its three coordinates are the same,
hence sign(O×) ∩ W̃ is trivial. □

Let [α] ∈ C̃(E). Since w(α) is even for all finite places w of AK , there is
a (unique) ideal I ∈ Frac(AK) such that I2 = (α).



✐

✐

“1-Barrera-Salazar” — 2022/8/16 — 20:25 — page 1648 — #16
✐

✐

✐

✐

✐

✐

1648 D. Barrera Salazar, A. Pacetti, and G. Tornaría

Lemma 2.13. The association [α] 7→ [I] induces a well defined map ϕ :
C̃(E) → Cl(AK).

Proof. Let α ∈ A×
K and I ∈ P such that I2 = (α). If β2 ∈ (A×

K)2 then (αβ2) =
I2(β2) = (Iβ)2. As I(β) lies in the same class as I then the map ϕ is well
defined. □

Proof of Theorem 2.11. Consider the short exact sequences

0 −→ kerϕ −→ C̃(E)
φ−−→ Cl(AK)

and

0 −→ P/P∗(E) −→ Cl∗(AK , E)[2]
ψ−−→ Cl(AK)

where ψ is the restriction of the natural projection Cl∗(AK , E) → Cl(AK).
From the definition of C̃(E) and Lemma 2.7 it is clear that the image of ϕ is
contained in that of ψ, and using Proposition 2.10 it follows that

(2.1) [C̃(E) : C∗(E)] =
#C̃(E)

#Cl∗(AK , E)[2]
≤ #kerϕ

#(P/P∗(E))
.

If [α] ∈ kerϕ, then (α) = (β)2, so α = β2µ, with µ ∈ A×
O
. Thus

kerϕ = (A×
O
/(A×

O
)2)□ ∩ C̃(E).

The sign map induces an isomorphism

(A×
O
/(A×

O
)2)□

(A×
O
/(A×

O
)2)□ ∩ C̃(E)

≃ sign((A×
O
/(A×

O
)2)□)

sign((A×
O
/(A×

O
)2)□) ∩ Ṽ

.

By the second isomorphism theorem,

sign((A×
O
/(A×

O
)2)□)

sign((A×
O
/(A×

O
)2)□) ∩ Ṽ

≃ sign((A×
O
/(A×

O
)2)□) · Ṽ

Ṽ
,

hence

#(A×
O
/(A×

O
)2)□

#kerϕ
=

#(sign((A×
O
/(A×

O
)2)□) · Ṽ )

#Ṽ
=

#(sign(A×
O
) · Ṽ )

#Ṽ #sign(O×)
,

where the last equality follows from Lemma 2.12.
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On the other hand,

P

P∗(E)
≃ A×

K

A×
O

· sign−1(Ṽ )
≃ sign(A×

K)

sign(A×
O
) · Ṽ

via the sign map. We conclude

[C̃(E) : C∗(E)] ≤ #kerϕ

#(P/P∗(E))
=

#Ṽ #sign(O×)#(A×
O
/(A×

O
)2)□

#sign(A×
K)

and the theorem follows from #Ṽ = 2b, #sign(O×) = 2a+b, #sign(A×
K) =

2a+3b, a+ b+ 2c = [K : Q] and the following lemma. □

Lemma 2.14. With the previous notation, #(A×
O
/(A×

O
)2)□ = 2a+2b+2c.

Proof. Consider the norm map N : A×
O
/(A×

O
)2 → O×/(O×)2. This map is

surjective since [AK : K] = 3 (given ϵ ∈ O×, N(ϵ) = ϵ up to squares) and
(A×

O
/(A×

O
)2)□ is by definition its kernel. By Dirichlet’s unit theorem we have

#O×/(O×)2 = 2a+b+c. Likewise we have #A×
O
/(A×

O
)2 = 22a+3b+3c, and the

result follows. □

Remark 2.15. The inequality in Theorem 2.11 becomes an equality if the
image of ψ equals that of ϕ; in that case, the inequality in (2.1) becomes an
equality and the proof continues mutatis mutandis. This is the case if for
example K is a totally real number field. The reason is that a totally positive
number field K with odd class number satisfies that all totally positive
units are squares. Then if I ∈ Cl∗(AK , E)[2], by definition I2 = (α), with
α ∈ P∗(E). Clearly α has even valuation at all finite places, and satisfies the
hypothesis on elements of C̃(E) at the archimedean places by definition of
P∗(E). Note that N(α) is a square up to a unit (it matches the norm of I2),
and it is totally positive, hence the unit must be also a square.

Combining Proposition 2.6, Proposition 2.10 and Theorem 2.11, we obtain

Theorem 2.16. Let K be a number field and let E/K be an elliptic curve
satisfying hypotheses 2.1. Then

dimF2
Cl∗(AK , E)[2] ≤ dimF2

Sel2(E) ≤ dimF2
Cl∗(AK , E)[2] + [K : Q].

In particular, if K = Q, the order of the Selmer group is determined by the
2-torsion of Cl∗(AK , E) and the root number of E.
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This is a generalization of [Li19, Theorem 2.18], noting that if ∆(E) < 0
then Cl∗(AQ, E) = Cl(AQ) (in particular it does not depend on the elliptic
curve E). It is a natural question whether the bound in Theorem 2.16 is
sharp. We will show some examples of elliptic curves over number fields which
do attain the lower and upper bound in Section 4.

3. Application to quadratic twists

For this section, E/Q will denote an elliptic curve satisfying hypotheses 2.1.
If d ∈ Z, we denote by Ed the twist of E by Q(

√
d), namely if E is given by

an equation E : y2 = F (x) then Ed : dy
2 = F (x), which also equals

Ed : y
2 = d3F (x/d).

Note that both E and Ed have the same attached cubic field.

Lemma 3.1. If d is a fundamental discriminant satisfying that all primes
p | d are inert or totally ramified in AQ then the twisted curve Ed also satisfies
hypotheses 2.1.

Proof. By definition, we need to check the condition locally at each prime
p. Clearly the condition (†.i) is invariant under twisting (since the attached
cubic field is invariant). Note that all primes p dividing d belong to the case
(†.i) by the hypothesis. Consider now a prime p ∤ d. If E/Qp satisfies (†.ii)
then the discriminants of F (x) and d3F (x/d) differ by a unit, hence Ed also
satisfies (†.ii). If E/Qp satisfies (†.iii) then Ed also satisfies (†.iii), since for
each p > 2 the parity of [E(Qp) : E0(Qp)] and [Ed(Qp) : (Ed)0(Qp)] are equal
(see the proof of [KL19, Lemma 5.6]). At last, if E/Qp satisfies (†.iv) then
Ed also satisfies (†.iv), because for d ≡ 1 (mod 4), E has good reduction at
2 if and only if Ed does. □

In particular, if d is a fundamental discriminant such that all primes p | d
are inert in AQ, we can apply Theorem 2.16 to both E and Ed. The caveat
is that if ∆(E) > 0 the order of the roots of F (T ) (hence the distinguished
place) is reversed when d < 0 and preserved when d > 0, hence for d < 0
the class groups Cl∗(AQ, E) and Cl∗(AQ, Ed) might be different (but only if
∆(E) > 0 and Cl+(AQ) ̸= Cl(AQ)). This issue can be overcome if we consider
pairs d1, d2 of discriminants satisfying the above hypothesis with d1/d2 > 0.

Remark 3.2. Let E/Q be an elliptic curve satisfying hypotheses 2.1, and let
d1, d2 be fundamental discriminants satisfying that all primes p | di, i = 1, 2
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are inert in AQ. Suppose also that either (a) ∆(E) < 0, (b) Cl+(AQ) = Cl(AQ),
or (c) d1/d2 > 0. Then we have the following diagram

C∗(Ed1) ⊂ Sel2(Ed1) ⊂ C̃(Ed1)

C∗(Ed2) ⊂ Sel2(Ed2) ⊂ C̃(Ed2)

As the index [C̃(Ed1) : C∗(Ed1)] = 2, then Sel2(Ed1) = Sel2(Ed2) if and only
if both curves have the same root number. In particular we have infinitely
many twists of E with the same 2-Selmer group.

We can explicitly determine for which discriminants both Selmer groups
coincide, and say something on their densities if we restrict to prime discrim-

inants. Let p be an odd prime number, and let p∗ =
(

−1
p

)

p; recall that the

quadratic extension of Q unramified outside p corresponds to Q(
√
p∗). Let

ϵ(E) denote the root number of E. Recall that if p ∤ 2∆(E), then

ϵ(E)ϵ(Ep∗) = χp(−NE),

where NE is the conductor of E and χp is the quadratic character unramified
outside p.

Theorem 3.3. Let E/Q be an elliptic curve satisfying hypotheses 2.1, and
suppose furthermore that either ∆(E) < 0 or Cl+(AQ) = Cl(AQ). Then the
set of prime numbers p inert in AQ has density at least 1/3 and for any such
prime p which does not divide ∆(E) it holds:

• if −∆(E)
NE

≡ □ (mod p) then E and Ep∗ have the same root number. In
particular, both curves have the same 2-Selmer group,

• otherwise, E and Ep∗ have opposite root number, and all curves Ep∗ in
this second case have the same 2-Selmer group.

In particular, the set of all quadratic twists of E by prime discriminants has
a subset of density at least 1/6 where all curves in this set have the same
2-Selmer group.

Proof. The density of prime discriminants that are inert in AQ/Q equals

density =

{

2
3 if AQ/Q is Galois,
1
3 otherwise.
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Recall that for an elliptic curve of the form E : y2 = F (x), ∆(E) = 24∆(F (x)),
hence ∆(AQ) differ from ∆(E) by a square. In particular, since p is inert in
AQ, χp(∆(AQ)) = 1, and

ϵ(E)ϵ(Ep∗) = χp(−NE) = χp

(

−∆(E)

NE

)

.

This proves the claim on the root numbers. The result on the 2-Selmer group
follows from Remark 3.2, noting that when ∆(E) < 0 there are no real places
of type (ii) so in the bounds of Theorem 2.16 are independent of E; and this
is always the case when Cl+(AQ) = Cl(AQ). □

Recall the definitions given in the introduction: let d2(E) denote the
2-Selmer rank of E and define

Nr(E,X) = |{quadratic L/Q : d2(E
L) = r and |δ(L/Q)| < X}|,

where EL denotes the quadratic twist of E corresponding to L and δ(L/Q)
is the discriminant of the extension L/Q.

Corollary 3.4. Let E/Q be an elliptic curve satisfying hypotheses 2.1, and
suppose furthermore that either ∆(E) < 0 or Cl+(AQ) = Cl(AQ). Let r ≥ 0,
and suppose that E has a quadratic twist by a prime inert in AQ whose
2-Selmer group has rank r. Then Nr(E,X) ≫ X/ log(X)1−α, where

α =

{

1/3 if AQ/Q is Galois,

1/6 otherwise.

Proof. The proof is a standard application of Ikehara’s tauberian theorem,
as explained in [KL19], proof of Theorem 1.12. □

Remark 3.5. If −∆(E)
NE

is a square then all inert primes lie in the first case
of Theorem 3.3 (and the proportion of twists with the same 2-Selmer group
raises to 1/3, and in the previous Corollary the constant α is doubled). This is
the case for example if the elliptic curve E is semistable of odd conductor and
∆(E) < 0. In such case Ogg’s formula ([Sai88]) implies that for each prime of
(multiplicative) bad reduction the difference between the conductor and the
discriminant valuations at an odd prime p equals the number of irreducible
components of the Néron model minus one; we claim that hypotheses 2.1
together with E being semistable implies that such number is always odd,
hence the result. Note that the 2-division polynomial of a semistable curve
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always has a root on the base field, hence (†.i) cannot hold. The case (†.ii)
implies that the discriminant of the polynomial has valuation 0 or 1 (recall
that p is odd), hence there is a unique component. Finally, the condition
(†.iii) implies that the number of components is odd.

A similar result holds for other elliptic curves where all primes of bad
reduction satisfy that [E(K) : E0(K)] is odd (i.e. condition (†.iii) even for
p = 2), since for odd primes the hypothesis implies that the number of
irreducible components in the Néron model of E is odd and for p = 2 the
result follows from the proof of [KL19, Lemma 5.9], end of part (3).

Let C1 be the set of prime numbers which ramify completely or are
totally inert in AQ, and let K = Q (

√
p∗ : p ∈ C1), an infinite polyquadratic

extension.

Corollary 3.6. In the hypotheses of Theorem 3.3, suppose that E has trivial
2-Selmer group. Then E(K) is finite.

Proof. If P ∈ E(K) is a point of infinite order, then P belongs to a finite
polyquadratic subextension L/Q. Let A = ResLQE be the restriction of scalars,
so E(L) = A(Q). There is an isogeny

ϕ : A→
∑

χ

Eχ,

where χ runs over quadratic characters of Gal(L/Q). By Theorems 2.16
and 3.3 all curves Eχ have trivial 2-Selmer group, hence P cannot have
infinite order. We deduce the corollary by noting that E(K)tors is finite by
[Rib81]. □

Example 5. The elliptic curve E11a1 with LMFDB label 11.a1 has no
rational 2-torsion points and is semistable. Its cubic field corresponds to the
polynomial x3 − x2 + x+ 1 of discriminant −44. The prime 11 is not totally
ramified in AQ, hence it does not belong to C1. The prime 2 is totally ramified

so 2 ∈ C1. The set C1 ⊂ {p :
(

−44
p

)

= 1} ∪ {2}, and over the polyquadratic

extension K = Q(
√
p : p ∈ C1), the group E(K) is finite.

For positive discriminants we get a similar result (with a similar corollary);
see also Example 7. Let E/Q be an elliptic curve with ∆(E) > 0, and divide
the set of primes inert in AQ into the following four different sets:

• C+,□ = {p ≡ 1 (mod 4) such that ∆(E)
NE

≡ □ (mod p)},

http://www.lmfdb.org/EllipticCurve/Q/11/a/1
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• C
+,□/ = {p ≡ 1 (mod 4) such that ∆(E)

NE
≡ □/ (mod p)},

• C−,□ = {p ≡ 3 (mod 4) such that ∆(E)
NE

≡ □ (mod p)},

• C
−,□/ = {p ≡ 3 (mod 4) such that ∆(E)

NE
≡ □/ (mod p)}.

The set C+,□ is non-empty and has density at least 1/12.

Theorem 3.7. Let E/Q be an elliptic curve satisfying hypotheses 2.1, and
suppose furthermore that ∆(E) > 0. Then if p is a prime inert in AQ which
does not divide ∆(E), the root number of Ep∗ equals that of E if p ∈ C+,□ ∪
C−,□, while it is the opposite one if p ∈ C

+,□/ ∪ C
−,□/ . Furthermore, if p1, p2

are inert primes in the same set, Cl∗(AQ, Ep∗
1
) = Cl∗(AQ, Ep∗

2
). In particular,

if p1 and p2 belong to the same set, the curve Ep∗
1

and the curve Ep∗
2

have the
same 2-Selmer group.

Proof. Note that primes in C+,□ ∪ C
+,□/ (i.e. p ≡ 1 (mod 4)) correspond to

twists by real quadratic fields and primes in C−,□ ∪ C
−,□/ correspond to twists

by imaginary quadratic fields.
The proof mimics the negative discriminant case. To get the root number

statement, note that χp(−NE) = χp(−1)χp(∆(E)). Then if p ≡ 1 (mod 4),
the same proof applies, while if p ≡ 3 (mod 4), χp(−NE) = −χp(∆(E)),
which explains the change of root number.

Regarding the 2-Selmer statement, if p1 and p2 belong to the same set,
the curves Ep∗

1
and Ep∗

2
are a positive quadratic twist of each other, hence

Cl∗(AQ, Ep∗
1
) = Cl∗(AQ, Ep∗

2
) so the bound of Theorem 2.16 and Remark 3.2

prove the statement. □

An immediate application of the previous result is that when ∆(E) > 0
among the set of all quadratic twists of E there is a subset with density at
least 1/12 satisfying that all curves on it have the same 2-Selmer group as
E (corresponding to the primes in C+,□). A result similar to Corollary 3.6
applies in this situation.

3.1. General fields

The results of the previous section have a natural analogue over a general
number field K. Still there are many subtleties, for example: it is not always
true that given a prime ideal p of K there is a quadratic extension of K which
is unramified outside p (and there might be more than one such extension).
The way to solve it is to consider quadratic extensions K(

√
α)/K of prime
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discriminant (instead of prime ideals), and twist curves by them. Although
most of the results for Q extend mutatis mutandis for K, we give a weaker
not technical version.

Theorem 3.8. Let K be a number field and let E/K be an elliptic curve
satisfying hypotheses 2.1. Then among the quadratic twists of E by quadratic
extensions of prime discriminant, a positive proportion have 2-Selmer group
whose rank lies in the interval [Cl∗(AK , E)[2],Cl∗(AK , E)[2] + [K : Q]].

Proof. Considering only quadratic extensions K(
√
α) of prime discriminant

which are unramified at the archimedean places of K of type (ii), we can
assure that the groups Cl∗(AK , E) and Cl∗(AK , Eα) are equal, hence the
result follows from Theorem 2.16 and Remark 3.2. □

Remark 3.9. A similar application of the previous Theorem gives a result
in the spirit of Corollary 3.4 for general number fields. However, even if we fix
the root number, we cannot state precisely which rank in the above interval is
obtained infinitely many times (except for example when [K : Q] = 2), hence
our result is not as strong as that of [MR10] (Theorem 1.4).

4. Examples

The following examples were computed using SageMath [Sag19] and PARI/GP
[PAR19]. The 2-Selmer rank, when necessary, was computed using Magma
[BCP97].

4.1. Examples with K = Q

Example 6. Let F (x) = x3 − x2 − 54x+ 169 (corresponding to the elliptic
curve 106276.a1). Its rank equals 3. The discriminant of F (x) equals 1632,
which also equals the discriminant of AQ, hence (†.ii) is satisfied for all
primes. Furthermore, since the discriminant is a square, AQ is a Galois ex-
tension of Q. The class group Cl(AQ) = Cl+(AQ) ≃ Z/2× Z/2. In particular,
Cl∗(AQ, Ed) = Cl(AQ) has 2-rank 2, hence Theorems 2.16, 3.3 and 3.7 imply
that the curve and all quadratic twists by primes which are inert in AQ have
2-Selmer rank in {2, 3}.

In fact the sign of the functional equations gives the parity of the 2-Selmer
rank (see [Mon96, Theorem 1.5]), hence the 2-Selmer rank of Ep is 3 for inert
primes p ≡ 1 (mod 4) and 2 for inert primes p ≡ 3 (mod 4). For instance, E
itself has 2-Selmer rank 3, while its quadratic twist by d = −3 has 2-Selmer
rank 2. In particular, both bounds are attained.

http://www.lmfdb.org/EllipticCurve/Q/106276/a/1
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If we consider twists by split primes (not satisfying hypotheses 2.1) we
check that the twists by d = −23, 5, −347, 241, −331, 2341 have 2-Selmer
rank 0, 1, 2, 3, 4, 5 (respectively), so neither the lower or upper bounds hold.

Example 7. Let F (x) = x3 − 7x+ 3 (corresponding to the elliptic curve
9032.a1, see Example 4). Its rank equals 2. The discriminant of F (x) equals
1129, which also equals the discriminant of AQ, hence (†.ii) is satisfied for
all primes. The class group Cl(AQ) is trivial but the narrow class group
Cl+(AQ) has order 2. The ray class group Cl∗(AQ, E) also has order 2. In
particular, when taking quadratic twists by discriminants d > 0 it turns out
that Cl∗(AQ, Ed) = Cl∗(AQ, E) has 2-rank 1, hence Theorem 2.16 implies
that the curve and all quadratic twists by positive prime discriminants which
are inert in AQ have 2-Selmer rank in {1, 2}, determined by the sign of the
functional equation. For instance, the quadratic twists by d = 5 and d = 113
have 2-Selmer rank 1 and 2, respectively.

If we take quadratic twists by discriminants d < 0, the distinguished
real place changes, and Cl∗(AQ, Ed) is trivial, hence all quadratic twists by
negative prime discriminants which are inert in AQ have 2-Selmer group rank
in {0, 1}, determined by the sign of the functional equation. For instance,
the quadratic twists by d = −43 and d = −7 have 2-Selmer rank 0 and 1,
respectively.

4.2. Examples with K = Q(
√

17)

The quadratic field K has trivial narrow class group (hence it equals the class
group).

Example 8. Let F (x) = x3 + x+ 3 (corresponding, over Q, to the elliptic
curve 1976.a1). Its rank equals 2. The discriminant of F (x) equals −13 · 19,
which also equals the discriminant of AK , hence (†.ii) is satisfied for all
primes. The narrow class group of AK is trivial, hence Cl∗(AK , Ed) is trivial.
Theorem 2.16 thus implies that the curve and all quadratic twists by primes
which are inert in AK have 2-Selmer rank in {0, 1, 2}.

The curve itself, and also the quadratic twist by d = 97 + 24
√
17 of

norm 383, have 2-Selmer rank 2, the quadratic twist by d = −13 + 2
√
17 of

norm 101 has 2-Selmer rank 1, and the quadratic twist by d = 45 + 8
√
17

of norm 937 has 2-Selmer rank 0. On the other hand the quadratic twist by
d = 29 + 4

√
17, which is not inert in AK , has 2-Selmer rank 3.

http://www.lmfdb.org/EllipticCurve/Q/9032/a/1
http://www.lmfdb.org/EllipticCurve/Q/1976/a/1
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4.3. Examples with K = 3.1.23.1

The field K corresponds to the cubic field of discriminant −23 given by
K = Q(α) with α3 − α2 + 1 and trivial narrow class group. Since [K : Q] = 3,
our lower and upper bound in Theorem 2.16 differ by 3 so the functional
equation sign is not enough to determine the rank of the 2-Selmer group in
any case.

Example 9. Let F (x) = x3 + x+ 3 (corresponding, over Q, to the elliptic
curve 1976.a1). The discriminant of F (x) equals −13 · 19, which also equals
the discriminant of AK , hence (†.ii) is satisfied for all primes. Its rank equals
1.

The narrow class group of AK is trivial, hence Cl∗(AK , E) is trivial. Our
bound implies that the curve and all quadratic twists by primes which are
inert in AK have 2-Selmer rank in {0, 1, 2, 3}.

The curve itself and the quadratic twist by −2α2 + α− 2 have 2-Selmer
rank 1, and the quadratic twist by −4α2 + 3α+ 1 has 2-Selmer rank 0. In
particular the lower bound is attained.

On the other hand, we note that all the quadratic twists by inert prime
discriminants of norm up to 100 000 (there are 808 such discriminants) have
2-Selmer rank 0 or 1. This is not explained by our results.

Example 10. Let F (x) = x3 + x+ 11 (corresponding, over Q, to the elliptic
curve 26168.a1). The discriminant of F (x) equals −3271, which also equals
the discriminant of AK , hence (†.ii) is satisfied for all primes. Its rank equals
4.

The class group Cl(AK) = Cl+(AK) ≃ Z/2. In particular Cl∗(AK , E) =
Cl(AK) has 2-rank 1. Thus our bound implies that the curve and all quadratic
twists by primes which are inert in AK have 2-Selmer rank in {1, 2, 3, 4}.

The curve itself and the quadratic twist by −2α2 + α− 2 have 2-Selmer
rank 4, and the quadratic twist by −α2 − α+ 4 has 2-Selmer rank 3. In
particular the upper bound is attained.

On the other hand, we note that all the quadratic twists by inert prime
discriminants of norm up to 100 000 (there are 844 such discriminants) have
2-Selmer rank 3 or 4. This is not explained by our results.
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