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Representing smooth 4-manifolds as loops

in the pants complex

Gabriel Islambouli and Michael Klug

We show that every smooth, orientable, closed, connected 4-
manifold can be represented by a loop in the pants complex. We
use this representation, together with the fact that the pants com-
plex is simply connected, to provide an elementary proof that such
4-manifolds are smoothly cobordant to a connected sum of complex
projective planes, with either orientation. We also use this associa-
tion to give information about the structure of the pants complex.
Namely, given a loop in the pants complex, L, which bounds a disk,
D, we show that the signature of the 4-manifold associated to L
gives a lower bound on the number of triangles in D.
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1. Overview

Simplicial complexes associated to curves on a surface play a central role
in 2- and 3-manifold topology, particularly in the study of mapping class
groups and Heegaard splittings. Recently, Kirby and Thompson [10] pushed

1703
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these techniques into dimension four, assigning a loop in the cut complex to
a trisected 4-manifold. The aim of this paper is to, in some sense, reverse
this. In particular, given a loop in the pants complex, L, we show how to
uniquely build a closed smooth 4-manifold X 4

C(L). Our main theorem is that
all such manifolds arise in this fashion.

Theorem 2. For every closed, smooth, orientable 4-manifold X4, there
exists a closed loop L in P(Σ) so that X is diffeomorphic to X 4

C(L).

In their proof of the finite presentability of the mapping class group [8],
Hatcher and Thurston sketch a proof that the pants complex is simply con-
nected. This result was later fully fleshed out in work of Hatcher [7]. As our
main theorem associates a loop to any 4-manifold, it is natural to ask what
the disk it bounds represents. Viewing 4-manifolds from this perspective
yields a natural proof of the following theorem, originally due to Pontrjagin
and Rohlin [15], which is our main application.

Theorem 4. Every smooth, oriented, closed manifold is cobordant to∐
mCP 2

∐
nCP

2
.

Our proof here follows along the lines of recent work of Gay [6], in
which the author proves the same theorem by associating a loop of smooth
functions on a surface to a 4-manifold. The similarity in these arguments
suggests that the pants complex of a surface Σ is a good discrete model
for the space of smooth functions on Σ. It is worth noting that the simple-
connectivity of the pants complex was originally proved using properties of
generic smooth functions on surfaces. Nevertheless, there now exist multiple
proofs of the simple-connectivity of the pants complex which rely on different
techniques [2] [3] which give rise to alternative paths to the theorem, some
of which (after using [18]) are quite elementary.

We also use our correspondence to gain insight into the structure of the
pants complex. In particular, given a loop L in the pants complex, we define
an invariant σ(L), which is the signature of the 4-manifold associated to
L. This may be calculated using information only of the 1-skeleton of the
pants complex, but contains information about possible disks that this loop
can bound. In particular, we obtain the following proposition, where the 3S-
triangles are a particular type of 2-cell in the pants complex (see Figure 3
and the next section):

Proposition 1. Let L be a loop in the pants complex with σ(L) = n, then
any disk bounded by L must contain at least n 3S-triangles.
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2. The pants complex

We briefly discuss the pants complex of a surface following [7]. Let Σ be a
connected closed orientable surface of genus greater than or equal to 2. A
pants decomposition of Σ is a set of 3g − 3 simple closed curves on Σ
such that cutting Σ along these curves results in a disjoint union of 2g − 2
3-punctured spheres (pairs of pants). Two pants decompositions of Σ are
considered the same if the curves are isotopic. We will be considering the
2-complex P(Σ), called the pants complex of Σ, whose vertices correspond
to isotopy classes of pants decompositions of Σ.

There are two types of edges in P(Σ): S-edges (“S” for stabilization) and
A-edges (“A” for associative). Note that if one removes neighbourhoods of
all but one of the curves in a pants decomposition, one is left with 2g − 3
pants and either a 4-punctured sphere or a once punctured torus. Two pants
decompositions P1 and P2 are connected by an S-move if all but one of the
curves in P1 are the same as in P2 and the curves that differ intersect each
other in exactly one point on a once punctured torus component. Two pants
decompositions P1 and P2 are connected by an A-edge if all but one of the
curves in P1 are the same as in P2 and the curves that differ intersect each
other in exactly two points on a 4-punctured sphere. See Figure 1.

If Σ is instead a torus, then we will see that the correct analog of a pants
decomposition is just an isotopy class of an essential curve. The complex
P(Σ) for a torus, whose 1-skeleton is known as the Farey graph, has isotopy
classes of a essential curves as vertices and S-edges with the same definition
as above, but no analog of A-edges.

There are five different types of 2-cells in P(Σ) which are glued to topo-
logical configurations. These configurations are shown in Figures 2-6. With
this choice of 2-cells, the following theorem holds.

Theorem 1. (Hatcher [7]) P(Σ) is connected and simply-connected.

If P is a pants decomposition for Σ, we may obtain a 3-dimensional han-
dlebody with boundary Σ, by taking Σ× I, attaching 2-handles to the curves
in P , and then capping off the remaining 2g − 2 sphere components with 3-
handles. We denote this handlebody by H(P ), We say two handlebodies, H1

and H2, with ∂H1 = ∂H2 = Σ are equal if the identity map on the boundary
extends to a homeomorphism from H1 to H2. Note that there are inequiv-
alent pants decompositions that produce equal handlebodies, namely, any
two pants decompositions related by A-moves define the same handlebody.
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Figure 1: Top: An S-move in the pants complex. Bottom: and A-move in
the pants complex.

3A

Figure 2: A 3A cycle which is filled in by a triangle.
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3S

Figure 3: A 3S cycle which is filled in by a triangle.

Given a handlebody H with ∂H = Σ, the handlebody set of H in
P(Σ) is the set of pants decompositions P of Σ such that H(P ) = H. By
our previous discussion, two pants decompositions related by an A-move lie
in the same handlebody set. The following result originally proved by Luo
shows that handlebody sets are in fact connected by A-moves.

Lemma 1. (Corollary 1 of [12]) Given a handlebody H with ∂H = Σ, and
two pants decompositions P1 and P2 in the handlebody set of H, there exists
a path in P(Σ) consisting of exclusively A-edges between P1 and P2.

A cut system on a genus g closed orientable surface Σ is a set α =
{α1, ..., αg} of pairwise disjoint, non-separating, essential curves on Σ. At
times it will be more natural to consider cut systems instead of pants de-
compositions. The following two lemmas will allow us to pass between these
decompositions freely.
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5A

Figure 4: A 5A cycle which is filled in by a pentagon.

Lemma 2. (Lemma 5 of [9]) Any pants decomposition for Σ contains
at least g non-separating curves. Any choice of g mutually non-separating
curves in a pants decomposition give a cut system of Σ.

Given a pants decomposition, choosing a cut system via the previous
lemma gives sufficient data to determine a handlebody. This is often enough
information for the topological constructions in this paper. To return to the
simplicial constructions of the pants complex we will need to complete cut
systems or, more generally, any set of curves to a pants decompositions. The
following lemma, which may proved by induction on the genus and an Euler
characteristic argument, will allow us to do so.

Lemma 3. Let H be a genus g handlebody with boundary Σ. Let k < 3g −
3 and {c1, ..., ck} be a set of non-isotopic simple closed curves on Σ such
that c1, ..., ck all bound disjoint properly embedded disks in H. Then there
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6AS

Figure 5: A 6AS cycle which is filled in by a hexagon. A-moves are labeled
by black curves while S-moves are labeled by red curves.

exist some additional simple closed curves on Σ, {ck+1, ..., c3g−3}, that bound
disjoint properly embedded disks in H, so that P = {c1, ..., ck, ck+1, ..., c3g−3}
is a pants decomposition for Σ with H(P ) = H.

3. The 1-skeleton of the pants complex

Our goal in this section is to construct a unique oriented 4-manifold from
a walk in the pants complex. Given two vertices P1 and P2 in the pants
complex, we obtain a Heegaard splitting of a closed orientable 3-manifold
M3(P1, P2) = H(P1) ∪Σ H(P2). Further, if we consider an ordering, as above
with P1 first then P2, and if Σ is oriented, then we can orient H(P1) to
agree with Σ and H(P2) to disagree with Σ, we then obtain an orientation
of M3(P1, P2), and we will henceforth assume that it carries this orientation.
Note that changing the orientation of Σ, or the order of P1 or P2, will change
the orientation of the resulting 3-manifold.

Given an oriented edge e between two vertices P1 and P2 in the pants
complex, we will define a compact orientable 4-manifold X 4(W ) with
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4S

Figure 6: A 4S cycle of S-moves which is filled in by a square. There are
also corresponding squares for disjointly supported A-moves and disjointly
supported A- and S- moves. We will denote these by 4S-squares, 4A-squares,
and 4AS-squares, respectively.

∂X 4(e) = M3(P1, P2). We first need to determine the manifold M3(P1, P2).
By inspecting Heegaard diagrams of the manifolds involved we may deter-
mine the 3-manifolds associated to vertices connected by an edge. In partic-
ular, we obtain the following lemma.

Lemma 4. Let P1 and P2 be two pants decompositions of a surface Σ
of genus g. If P1 and P2 are connected by an A-edge, then M3(P1, P2) =
♯g(S1 × S2). If P1 and P2 are connected by an S-edge, then M3(P1, P2) =
♯g−1(S1 × S2).

Proof. Note that if Q is a set of disjoint curves on Σ with the property that
when 2-handles are attached to Q, only spherical components remain, and
P is a set of disjoint curves on Σ that contains Q, then the handlebody
bounding Σ given by attaching 2-handles to Q is equal to the handlebody
bounding Σ given by attaching 2-handles to P .

First, consider the case where P1 and P2 are connected by an A-edge.
To see this, let Q be the set of curves where P1 and P2 agree - namely,
all of the curves not involved in the A-move, and consider the 3-manifold
obtained by attaching 2-handles to Q. Then both of the curves involved in
the A-move, after attaching these 2-handles, are now on a spherical boundary
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component and thereforeH(P1) andH(P2) are both equal to the handlebody
obtained by attaching 2-handles to Q. Therefore H(P1) = H(P2) and thus
M3(P1, P2) = ♯g(S1 × S2).

Now consider the case where P1 and P2 are connected by an S-edge. Let
c denote the curve that bounds the torus where the S-move is supported. Let
c1 and c2 denote the curves in the S-move in P1 and P2, respectively. Since
c1 and c2 intersect in a single point, the Heegaard splitting of M3(P1, P2) is
stabilized. Destabilizing this Heegaard splitting, we obtain a 3-manifold that
is described by the Heegaard splitting where the surface Σ has been surgered
along c, the torus component containing c1 and c2 has been deleted, and
the respective handlebodies are described by the corresponding remaining
curves in P1 and P2. Since these remaining curves are equal, the resulting
destabilization is ♯g−1(S1 × S2) and therefore M3(P1, P2) = ♯g−1(S1 × S2).

□

Having determined the 3-manifold associated to an edge, we next define
a unique oriented 4-manifold filling. If X 4(e) is an A-edge, then we fill the
resulting ♯g(S1 × S2) with ♮g(S1 ×D3) . Similarly, if the edge is an S-edge,
we fill the resulting ♯g−1(S1 × S2) with ♮g−1(S1 ×D3), see Figure 7. By a
theorem of Laudenbach and Poenaru [11], these fillings are unique.

Given an oriented walk, W , of arbitrary length, we construct X 4(W ) by
first constructing all of the 4-manifolds associated to each of the edges inW ,
and then gluing together each successive pair of edges along the common 3-
dimensional handlebody via the identity map along their shared handlebody
(see Figure 8). As a convention, if W is just a single vertex P then we
just take the filling of H(P ) ∪Σ H(P ) by ♮g(S1 ×B3). Note that with these
orientations ∂X 4(W ) = M3(∂W ).

We now address orientations for the 4-manifold. Assume from now on
that we have a fixed orientation on Σ and our walkW has a fixed orientation.
We will obtain an orientation on X 4(W ) as follows: for a single oriented
edge from a vertex P1 to a vertex P2, orient H(P1) with the orientation that
induces the orientation on Σ and orient H(P2) with the orientation that
induces the opposite orientation on Σ. Then we can glue H(P1) to −H(P2)
via the identity map on Σ and obtain an orientation on M3(P1, P2). This,
in turn, induces an orientation on X 4(W ). If W consists of multiple edges,
then we can orient X 4(W ) by orienting the wedges as above, and since
each non-end vertex of W has an edge coming in and an edge going out,
the resulting identity maps between the handlebodies will be orientation-
reversing and we therefore obtain an orientation on all of X 4(W ). Note
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v1 v2

Hv1 Hv2

♮S1 ×B3

Figure 7: An edge in P (Σ) corresponds to a connected sum of copies S1 × S2

which may be filled in uniquely with the appropriate boundary sum of copies
of S1 ×D3.

v1 v2 v3

Hv1

Hv2
Hv3

Figure 8: A path in P (Σ) gives rise to the manifold obtained by gluing
together the wedges corresponding to edges along the handlebodies of the
shared vertices

that, either switching the orientation of Σ, or switching the direction of W
will change the orientation on X 4(W ).

We next seek to obtain a handle description for 4-manifolds given by a
walk in the pants complex. We first need the following lemma.

Lemma 5. Let H be a handlebody and let γ ⊂ ∂H be a curve such that, for
some properly embedded disk D ⊂ H, |γ ∩D| = 1. Then the result of pushing
γ into H, and doing surgery on γ is again a handlebody. Moreover, if we do
surgery on γ using the surface framing, then γ bounds a disk in the surgered
handlebody.
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Proof. One way to prove that a 3-manifold is a handlebody is to find a
collection of disjoint properly embedded disks which cuts the manifold into
balls. Let D1, ..., Dg be a collection of such disks for H with D1 = D. By
sliding all of the other disks over D1, we may arrange so that none of these
disks intersect γ. We can then still cut along D2, ..., Dg in the surgered
manifold. We then only need to analyze what is happening in the solid torus
H\{D2, ...Dg} containing the curve γ where the surgery is occurring along
with its dual disk, D1.

Since |γ ∩D1| = 1, and γ is isotopic into the boundary, γ is isotopic to
the core curve S1 × {0} ⊂ S1 ×D2. But any surgery on the core curve in a
solid torus results again in a solid torus - one way to see this is that the part of
the solid torus that is not affected by the surgery is just a collar neighborhood
of the boundary. If we give the surgery curve the surface framing, then
there is a disk D′

1, disjoint from D2, ..., Dg, with ∂D
′
1 = γ, formed by taking

the surgery disk for the push-in of γ and extending it to the boundary by
adding the annulus coming from the push-in process. We therefore conclude
that D′

1, D2, ..., Dg is a collection of properly embedded disks which cut the
surgered manifold into a ball, and hence it is a handlebody. □

The following will used repeatedly to identify the 4-manifolds corre-
sponding to paths and loops in the pants complex. The proof is similar to
the proof of Lemma 13 of [5].

Lemma 6. LetW be an oriented walk in P(Σ) starting at P1. The following
process produces a handle decomposition of X 4(W ). Start with H(P1)× I;
these are the 0- and 1-handles. For every (directed) S-edge in W , we take
the new curve in the latter vertex, push it into H(P1)× {0} ⊂ H(P1)× I,
and give this curve the surface framing from Σ = ∂H(P1)× {0}. The curves
that are seen later in the walk along W are not pushed as far inside of
H(P1)× {0} as earlier curves. These framed curves are the attaching curves
for the 2-handles. There are no 3-handles or 4-handles.

Proof. We start in the case where W is just a single edge. In the case where
W is an A-edge, then X 4(W ) = ♮g(S1 ×D3) and indeed this is the manifold
that we obtain from our handlebody description, since no 2-handles are
added.

In the case where W is an S-edge, X 4(W ) = ♮g−1(S1 ×D3) and so we
must verify that the attaching sphere of the 2-handle that we are adding in-
tersects the belt sphere of one of the 1-handles in exactly one point, ensuring
that the handles cancel to give the desired result. Using Lemma 2, we can
choose g mutually nonseparating curves in P1 on Σ that form a cut system
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for H(P1). The belt spheres of the 1-handles are exactly these g nonseparat-
ing curves in Σ together with the disks on both sides of γ ⊂ ♯g(S1 × S2) =
∂(S1 ×D3). By the definition of an S-move, and the convention for attach-
ing a 2-handle stated in the lemma, we see that the attaching circle for the
2-handle intersects this belt sphere in exactly one point.

Now consider the case of a general walk W = (P1, P2, ...Pn+1). Since A-
moves do not affect the resulting 4-manifold, we proceed by induction on
the number of S-moves that W contains and we assume that (Pn, Pn+1) is
an S-edge. The base case was just discussed. Let W ′ = (P1, ..., Pn). By the
inductive hypothesis, the 4-manifold X 4(W ′) has a handlebody diagram as
described in the statement of the lemma. Let H = H(Pn). Attach one end
of H × I to this H in the boundary to obtain a space that (after rounding
corners) is still just X 4(W ′). Now attach a 2-handle along the new curve
in Pn+1 framed by Σ to the free end of H × I as in the statement of the
lemma.

We now verify that the union of H × I and this new 2-handle is indeed
♮g−1(S1 ×D3). Using Lemma 2, we obtain a cut system for H containing
the curve that is changed by the S-move, such that the curves in the cut
system bound disjoint disks in H. These disks considered in both ends of
H × I together with the curves cross I form a set of belt spheres for the
genus g 4-dimensional handlebody H × I and the attaching circle for the 2-
handle intersects exactly the disk bounding the curve corresponding to the
S-move, and in exactly one point, thus verifying that we have ♮g−1(S1 ×D3)
as desired. Furthermore, by Lemma 5, when we look at the two handlebodies
in the boundary ofH × I together with this 2-handle, we have exactlyH(Pn)
and H(Pn+1). Therefore, what we have attached is a 4-dimensional filling
of the desired handlebodies by ♮g−1(S1 ×D3), which, by [11], can only be
done in one way. □

Since the mapping class group acts transitively on the set of handlebodies
with a given boundary, we may apply a mapping class, and insert or delete A-
moves, to assume that a walk starts in a pants decomposition which contains
the cut system shown in Figure 9. We may then use Lemma 6, to obtain
a Kirby diagram for the manifold X4(W ). Namely, the cut system for the
handlebody shown in Figure 9 becomes dotted circles, representing the 1-
handles and these are inside “at the center” of the shown handlebody. S-
moves give rise to 2-handles as in the previous lemma; the 2-handles that
arise from the S-moves earlier in the walk are pushed further “inside” of the
surface in Figure 9.
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Figure 9: A cut system for the standard handlebody. These curves become
the 1-handles in the dotted circle notation for 1-handles in a Kirby diagram.

The following result uses Waldhausen’s theorem [19] on Heegaard split-
tings of connect sums of S1 × S2, which is the primary 3-dimensional result
that we will make use of.

Lemma 7. Let P1 and P2 be vertices in P(Σg), with M3(P1, P2) ∼= ♯k(S1 ×
S2) for some k ≤ g. Then there exists a walk W in P(Σ) with X 4(W ) ∼=
♮k(S1 ×D3).

Proof. Note that P1 and P2 form a genus g Heegaard diagram for ♯m(S1 ×
S2). As an immediate consequence of Waldhausen’s theorem [19], there exist
vertices P ′

1 and P ′
2 in the same handlebody sets as P1 and P2, respectively,

which are standard, in that there are k parallel sets of non-separating curves,
and g − k dual sets of non-separating curves in these pants decompositons.
The path of length g − k between these pants decompositions which turns
each curve in P1 to its corresponding dual in P2 gives rise to a handle de-
composition consisting of g 1-handles and g − k 2-handles. These 2-handles
are dual to 1-handles, so the resulting manifold has a handle decomposition
consisting of just k 1-handles, and so is diffeomorphic to ♮k(S1 ×D3). □

So far, the construction discussed produces a manifold whose boundary
is the 3-manifold given by the first and last endpoints of the path. If the
path is a loop, L, we can also construct a closed 4-manifold. We proceed just
as in the above construction, but when the loop returns to the vertex that
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we start on, we glue the identical handlebodies together using the identity
map (or equivalently, uniquely glue in ♮g(S1 ×D3)). Further, if the loop
is oriented, the resulting 4-manifold obtains an orientation. We denote the
resulting closed orientable manifold by X 4

C(L).
We next seek to prove that every 4-manifold arises in this fashion. To do

this, we will convert a handle decomposition into a loop in the pants complex
- this is very similar to the handlebody proof that every 4-manifold admits a
trisection [5]. Throughout the proof, the reader may find it helpful to consult
Figures 14 and 15. These figures, read left to right, show how to obtain a
handlebody diagram from a loop in the pants complex. The following proof
illustrates the reverse of this, so that these figures, read right to left, provide
examples of the procedure.

Theorem 2. For every closed, smooth, orientable 4-manifold X4, there
exists a closed loop L in P(Σ) so that X is diffeomorphic to X 4

C(L).

Proof. Let X4 be an arbitrary closed 4-manifold. Fix a handlebody decom-
position diagram for X. Let Σ0 be a Heegaard splitting surface of the bound-
ary of the 4-dimensional handlebody that we see after just attaching the 0-
and 1-handles in the construction of X. Let l = l1 ∪ · · · ∪ ln be the framed
link that describes how the 2-handles are attached. Project l onto Σ0 and
then stabilize the Heegaard surface Σ0 to obtain a new Heegaard surface Σ
in the following way. First, stabilize Σ0 in order to make the li embedded
as in Figure 11. If needed, stabilize further so that for each curve, li, there
is a curve, αi, embedded in the surface so that αi intersects l in exactly
one point. Call this resulting surface Σ. By twisting the li around the αi as
in Figure 12, we can ensure that the framing on each li is the same as the
framing coming from the surface embedding, and we will assume that l is
sitting in Σ in this way.

We now construct our loop L in P(Σ) with X 4
C(L)

∼= X. We will con-
struct L so that the handlebody decomposition of X 4

C(L) that we see from
Lemma 6 is identifiable with the given handlebody decomposition of X.

Suppose that g is the genus of Σ and k is the genus of Σ0 (i.e. the number
of 1-handles in the given handlebody decomposition of X). Our construction
of W will take place in a few stages. We start by constructing the 1-handles
of X4. Take a pants decomposition of Σ that contains the cut system in
Figure 9. By performing g − k S-moves, and perhaps some A-moves, we
arrive at a pants decomposition that contains the cut system in Figure 10,
which we call Q. We call this walk W1. At this point, via Lemma 6, we see
that we have constructed a genus k 4-dimensional 1-handlebody, and all of
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Figure 10: The handlebody Q used in Thereom 2

the 1-handles that have been cancelled are exactly the handles that do not
appear in the given handlebody decomposition of X.

Let ni denote the boundary of the punctured torus that is a regular
neighborhood of αi ∪ li. Note that the ni together with all of the αi form
a collection of disjoint simple closed curves that bound disjoint properly
embedded disks in H(Q). Let R be a pants decomposition obtained from
extending the union of the ni and αj to a pants decomposition via Lemma 3,
so that H(R) = H(Q). By Lemma 1, we can get from Q to R, using a walk,
W2, with just A-moves. Note that X 4(W1W2) ∼= X 4(W1) ∼= ♮k(S1 ×D3), as
no new handles have been added.

Now we are in position to attach the desired 2-handles by doing S-moves.
Namely, for each αi curve do the S-move that turns αi into li. Let W3 be
the walk starting at the vertex R that consists of this sequence of S-moves.
By Lemma 6, we see that X 4(W1W2W3) is diffeomorphic to the 0-, 1- and
2-handles in the handlebody decomposition of X. Since X is a closed 4-
manifold, we must have that the boundary of X 4(W1W2W3) is ♮

m(S1 ×D3)
for some m. Moreover, the first and last handlebodies of W1W2W3 form a
Heegaard splitting for the boundary. By Lemma 7, there exists a walk W4

from the end of W3 to the beginning of W1 with X 4(W4) = ♮m(S1 ×D3).
Here again, since 3- and 4-handles glue in uniquely by [11], we see that
X 4
C(W1W2W3W4) ∼= X. □
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Figure 11: Stabilizing the Heegaard surface of the boundary of the 0- and
1-handles allows us to eliminate any intersections which arise between the
2-handles when they are projected onto the Heegaard surface.

Figure 12: By twisting an attaching circle of a 2-handles around the corre-
sponding dual α curve, we can make the handle framing match the surface
framing.

4. The 2-skeleton of the pants complex and cobordisms of

4-manifolds

4.1. Elementary homotopies in the pants complex

Let X be a connected 2-dimensional CW-complex where all of the 2-cells
are attached along a finite number of 1-cells. We say two cellular loops L1

and L2 in the 1-skeleton X1 are elementary homotopic if they differ by a
sequence of the following two moves or their inverses:
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1) If somewhere in the loop, an edge e is traversed and then immediately
traversed again in the opposite direction, we can remove these two
occurrences of e from the loop.

2) If the loop transverses the boundary of a 2-cell, we can remove the
traversal of the boundary of the 2-cell.

We will refer to these two moves (and their respective inverses) as Move
(1) and Move (2). By completing a path which goes over part of a 2-cell to
go completely around the 2-cell and then backwards using Move (1), we see
that the equivalence relation of being elementary homotopic is the same as
the relationship where instead of Move (2) we are allowed to replace part of
the boundary of a 2-cell with the rest of the boundary as in Figure 21.

Lemma 8. If X be a simply-connected 2-dimensional CW-complex where
each 2-cell is attached along a finite number of 1-cells, then any two cellular
loops in X1 are elementary homotopic.

Proof. Let ∗ be a base point for X. We show that any cellular loop is ele-
mentary homotopic to the constant loop at ∗, from which the result follows.
Let T be a maximal spanning tree in X1. We pick an orientation of each of
the edges of X1 that is not contained in T . Then by Seifert-van Kampen,
we obtain a presentation for π1(X) with one generator for each edge, e, in
X1 − T . Here, the generator is given by first traversing the unique path in T
from ∗ to the initial vertex of e (using the fixed orientation), then traversing
e, and then returning to ∗ via the unique path in T from ∗ to the terminal
vertex of e – we denote this element by ge. By orienting the attaching region
of each 2-cell, Dα, and choosing a base vertex on the boundary, we obtain
a relation rα. Namely, if as we traverse the boundary of Dα we see the se-
quence of distinguished edges eϵ11 · · · eϵkk in X1 − T , and ϵi = ±1 indicates
the orientation, then we have the relation gϵ1e1 · · · g

ϵk
ek
. Note that there may

be other edges in the boundary of the 2-cell which do not contribute to the
relation.

Since π1(X) = 1 we have ⟨ge|rα⟩ = 1. Let L be a loop in X1. Whenever
modifying L, we will again refer to the result as L. By using Move (1),
modify L so that it contains ∗. Now we can consider L as an element of
π1(X, ∗). Suppose that as we go around L, we see the distinguished edges in
X1 − T in the order eϵ11 · · · eϵlk .

By repeatedly using Move (1), we make L equal to the loop gϵ1e1 · · · g
ϵl
ek

as follows: We modify L using Move (1) so that before each vertex v on an
edge ei in L, we have L first return to ∗ from v using the unique path in
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T , and then return from ∗ to v again taking the same unique path in T . By
again using Move (1) to remove any redundant edges, the resulting loop L
is now exactly gϵ1e1 · · · g

ϵl
ek
.

Now since π1(X) = ⟨ge|rα⟩ = 1 we know that

gϵ1e1 · · · g
ϵl
ek

=

m∏

i=1

hirih
−1
i

where each hi is a word in the ge and where each ri is a relation coming
from one of the 2-cells. Note that any occurrence of geg

−1
e or g−1

e ge in L can
be eliminated by using Move (1).

It therefore only remains to show how we can remove a relation ri from
L. By using Move (1) to remove any redundant edges from ri, we obtain the
loop that starts at ∗, travels along the unique path in T to the base point of
the boundary of the corresponding 2-cell Dα, traverses the boundary of Dα,
and then returns in T to ∗. By using Move (2), this is elementary homotopic
to just taking the path in T from ∗ to the base point ofDα and then returning
in T to ∗. By applying Move (1), this can also be removed. □

We seek to understand how our 4-manifolds change under elementary
homotopy. To this end, we must understand the 4-manifolds that arise along
all connected subsets of the boundaries of the 2-cells.

Note that the mapping class group of Σ acts on the set of handlebodies
with boundary Σ, and that this action is transitive. If H is a handlebody
with ∂H = Σ and ϕ is a mapping class of Σ, we will denote the result of the
action of ϕ on H by ϕ ·H.

Lemma 9. Let W = P1 · · ·Pn, W2 = Q1 · · ·Qn be two walks in P(Σ), and
let ϕ be a mapping class of ϕ such that ϕ · H(Pi) = H(Qi) for all 1 ≤ i ≤
n. Then X 4(W1) ∼= X 4(W2). The analogous statement also holds for closed
loops.

Proof. This is an immediate application of [11] applied to each of the wedge
pieces. □

We now go through an extended example, analyzing the 4-manifolds
obtained from the boundary of one of the two-cells in P(Σ). Many of the
arguments will be repeated for the other 2-cells and this will form the core
of the results that follow. Lemma 6 will be applied throughout this example
and the examples that follow, in order to obtain handlebody decompositions
so that we can recognise the relevant manifolds.
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0

0

1

P

Q

R

Figure 13: A 3S-triangle in P (Σ1) gives rise to the Kirby diagram on the
right. After sliding the green curve over the red curve and cancelling the
red-blue pair, we see that this manifold is CP 2.

4.2. 3S-Triangles

Let Σ be a torus and recall that the pants decomposition P(Σ) is defined
to have vertices as isotopy classes of essential curves, only S-edges, and
3S-triangles as 2-cells. Consider the oriented boundary of the 3S-triangle
in Figure 13. We will be using Lemma 6 to convert loops in the pants
complex to handlebody diagrams. After a handle slide, it is evident that
X 4
C(PQRP ) = CP 2. Note that if we instead traverse the triangle in the other

direction, we obtain CP
2
. By applying an appropriate mapping class, we can

interchange any of the pants decompositions in the triangle. By Lemma 9, all
of the resulting segments are diffeomorphic to the corresponding segments
in PQRP . Thus, we have seen that any edge in the PQRP triangles corre-
sponds to a 4-ball, any pair of adjacent edges corresponds to CP 2 − B̊4 or

CP
2
− B̊4 depending on the orientation of the edges, and the whole triangle

corresponds to CP 2 or CP 2, again depending on the orientation. Note that
for any set of curves on Σ that form a 3S-triangle ∆, there is a mapping class
ϕ of Σ that sends the vertices of ∆ to P,Q,R in some order, and therefore
the above analysis carries over for any such ∆.
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0
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1
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R

Figure 14: A 3S-triangle in P (Σ2) gives rise to the Kirby diagram on the
right. After sliding the green curve over the red curve and cancelling the
red-blue pair, we see that this manifold is CP 2#(S1 × S3).

An analogous analysis for 3S-triangles on higher genus surfaces is very
similar. For example, in a genus 2 surface Σ in Figure 14 we have

X 4
C(PQRP ) = (S1 × S3)♯CP 2.

As in the torus example, we see by Lemma 9 that this analysis holds for
any individual edge in the triangle, and any pair of adjacent edges, and
any 3S-triangle in P(Σ). Similarly, this all goes through in the genus g case
where an edge will give ♮g−1(S1 ×D3), a pair of adjacent edges will give

♮g−1(S1 ×D3)♯CP 2 or ♮g−1(S1 ×D3)♯CP
2
depending on the orientation,

and the whole triangle will give ♯g−1(S1 × S3)♯CP 2 or ♯g−1(S1 × S3)♯CP
2

depending on the orientation.

4.3. 3A-Triangles, 4A-squares and 5A-Pentagons

The 3A-triangle and the 5A-pentagon both give rise to ♯g(S1 × S3) when
Σ has genus g, since, by Lemma 6, the resulting manifold is built with
a 0-handle, g− 1-handles, g 3-handles, and a 4-handles. Further, again by
Lemma 6 all of the edges and sequences of adjacent edges give rise to ♮g(S1 ×
D3). The same also holds true for the 4A-square.

4.4. 4S-Squares

In this example, we look at the 4S-squares. We start with the genus 2 case
shown in Figure 15. From the Kirby diagram, we see that X 4(PQ) = S1 ×
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P

QR

S

0

0

0
0

Figure 15: The 4S-square analyzed in Section 4.4. In P (Σ2), this square
gives rise to the Kirby diagram on the right. After cancelling the 1-2 pairs,
one recognizes this as a Kirby diagram for S4 consisting of cancelling 2- and
3-handles.

D3, X 4(PQR) = B4, X 4(PQRS) = S2 ×D2, 0 and X 4
C(PQRSP ) = S4. By

the symmetry of the above diagrams, and Lemma 9, we find that the above
analysis holds for all of the edges of the square, and all pairs and 3-tuples
of adjacent edges. Again by Lemma 9, this holds for all such 4S-squares in
P(Σ).

In the case of a genus g surface Σ, as in the previous examples, when
g > 2 this simply adds more 1-handles to the above situation. So in this
case the edges will result in ♮g−1(S1 ×D3), a pair of adjacent edges will give
♮g−2(S1 ×D3), three adjacent edges will give ♮g−2(S1 ×D3)♮(S2 ×D2), and
the whole square as a closed manifold will be ♯g−2(S1 × S3).

4.5. 4AS-Squares and 6AS-Hexagons

Next, we analyze the 4AS-square. Here our situation is pictured Figure 16,
where vertices of the same color correspond to the same handlebody. Suppose
that Σ has genus g. Then we have the following:
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P

Q

R

S

0

0

Figure 16: The 4CAS-Square analyzed in Section 4.5.

X 4(PQ) = X 4(RS) = ♮g−1(S1 ×D3)(1)

X 4(QR) = X 4(SP ) = ♮g(S1 ×D3)(2)

X 4(PQR) = X 4(QRS) = X 4(RSP ) = X 4(SPQ) = ♮g−1(S1 ×D3)(3)

X 4(PQRS) = X 4(RSPQ) = ♮g−1(S1 ×D3)(4)

X 4
C(PQRSP ) = ♯g−1(S1 × S3)(5)

X 4(QRSP ) = X 4(SPQR) = ♮g−1(S1 ×D3)♮(S2 ×D2)(6)

The 4-manifold that we obtain associated to a single edge is either
♮g(S1 × S3) or ♮g−1(S1 × S3) depending on whether the edge is an A-edge
or an S-edge - thus 1 and 2 follow. The 4-manifold associated to any walk
is the same as the 4-manifold associated to the walk obtained by ignoring
any A-edges at the beginning or end of the walk, which yields 4. Then 5
follows from 4 by [11]. All of these could have instead have been obtained
by applying Lemma 6. To see 6 we use Lemma 6 as in Figure 16.

The case of the 6AS-hexagon is completely analogous to the 4AS-square
where we have the labeling in Figure 17. Namely, the two A-edges in between
the S-edges do not contribute to changes in the topology and can be ignored
as in the previous paragraph and thus everything is handled in an analogous
fashion.

4.6. The 4-dimensional cobordism group

We now are in position to derive the following classical result from Hatcher’s
theorem that P(X) is simply-connected and our above analysis of the 2-cells:
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P

Q
S

R

T

U

Figure 17: The 6AS-hexagon analyzed in Section 4.5.

Theorem 3. Every closed 4-manifold is cobordant to the connect sum of

some number of CP 2 and CP
2
.

By a theorem of Thom [17], signature is a cobordism invariant. We
remark that Thom’s theorem has an elementary proof in terms of Lefschetz
duality given on page 222 of [16]. It follows from Theorem 4 that the oriented
cobordism group Ω4 is isomorphic to Z. Note, as an aside, that the fact that
P(Σ) is connected together with our construction ofM3(P1, P2) immediately
yields that Ω3 = 0.

We will need to understand how X 4
C(L) changes when we alter L by

going over some 2-cell in P(Σ). We begin with the following preliminary
observation whose proof follows immediately from the definition of our con-
struction:

Lemma 10. Let W1,W2 be walks in P(Σ) with endpoints P1 and P2, and
let U and V be two walks in P(Σ) so that the end point of U is P1 and the
start point of V is P2. Then

X 4(UW2V ) = (X 4(UW1V )− int(X 4(W1))) ∪M3(P1,P2) X
4(W2)

This also holds in the case of X 4
C where the beginning of U is the end of V .

Note that there are no choices involved in the gluing as, by construction,
∂X 4(W1) = M3(P1, P2) = ∂X 4(W2) as sets. We will be applying Lemma 10,
in the case where W1 ∪W2 is the boundary of a 2-cell in P(Σ). This set up
is pictured in Figure 21.

Recall that a 1-surgery on a 4-manifold X4 is the result of taking an
embedding ϕ : S1 ×D3 →֒ X and forming the new 4-manifold

X ′ = (X − ϕ( ˚S1 ×D3)) ∪∂ϕ (D2 × S2)
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X X

DX

DY

Y Y

1 2

1 2

Figure 18: A schematic of the manifold Z used in Lemma 11. The portions
labeled X1 and Y1 are diffeomorphic via a canonical diffeomorphism.

where we note that ∂(D2 × S2) = S1 × S2 = ∂(S1 ×D3) and ∂ϕ denotes ϕ
restricted to the boundary. In this case we say that X ′ is obtained from
X by a 1-surgery. A 2-surgery on a 4-manifold is defined by switching the
roles of S1 ×D3 and D2 × S2 above. Note that if X ′ is obtained from X
by a 1-surgery, then X ′ and X are cobordant via the trace of the surgery.
Namely, given ϕ : S1 ×D3 →֒ X, we can form

(X × I) ∪S1×D3⊂X×{1} D
2 ×D3

which is a cobordism from X to X ′. This can similarly be done if X ′ is
obtained from X by a 2-surgery.

In our set up, we will not be seeing precisely the manifolds used in the
definition of surgery, but nonetheless, the effect of cutting and pasting these
pieces has the same effect as surgery. The following lemma will make this
statement precise, but we will preface the lemma with an intuitive discus-
sion following Figure 18. Here, we have a manifold broken into two pieces
X and Y glued along their boundaries. These pieces are further broken into
two pieces which are boundary summed. The portions labeled X1 and Y1 are
diffeomorphic via a map extending their identifications on the boundary. If
M is some other manifold and X ⊂M is an embedding, then the identifica-
tion of the boundaries of X and Y allows us to replace X by Y to obtain a
new manifold. The following lemma states that this operation actually only
amounts to replacing X2 by Y2.

Lemma 11. Let Z and M be oriented 4-manifolds with Z = X ∪ Y where
X = X1♮DX

X2 and Y = Y1♮DY
Y2 and where ∂DX = ∂DY . Further, suppose

that X1 and Y1 are diffeomorphic via some orientation-reversing diffeomor-
phism that extends the identification of ∂X1 with ∂Y1 (where we choose
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0
g-1

Figure 19: The handle decomposition of ♯g−1(S1 × S3) used for the surgery
operation in Lemma 12.

some identification of DX with DY ). Assume also that we are given some
orientation-preserving embedding ϕ : X →֒M and letM ′ = (M − ϕ(X)) ∪∂ϕ

Y . Then M ′ = (M − ϕ(X2)) ∪∂ϕ|X2

Y2.

Proof. As is implicit in the statement, throughout we will use a fixed iden-
tification of DX and DY extending the given identification ∂DX = ∂DY . In
particular, the map ∂ϕX2

, this identification is used implicitly so that ∂ϕX2

is an identification of all of ∂X1 with all of ∂X2.
Instead of removing all of X and gluing back in Y to get M ′, we can

first remove X1 and glue back in Y1, which gives usM back, by our assump-
tion that X1 and Y1 are diffeomorphic via a diffeomorphism extending their
boundary identification. Now we obtainM ′ by removing X2 and gluing back
in Y2, which is exactly the statement of the lemma. □

The following two lemmas are the particular cases of of Lemma 11 which
we will need. In particular, Lemma 12 will be applied to the case of homo-
toping a loop over a 4AS-square or a 6AS-hexagon, and Lemma 13 will be
applied to the case of homotoping a loop over a 3S-Triangle.

Lemma 12. Let X andM be oriented 4-manifolds with X ∼= ♯g−1(S1 × S3)
given by the Kirby diagram in Figure 19. Let Z = X ∪ Y where X is the
union of the 0- and 1-handles and Y is the union of the 2-, 3-, and 4-
handles. Let ϕ1 : X →֒M and ϕ2 : Y →֒M be orientation-preserving inclu-
sions. Then

(M − ϕ1(X̊)) ∪∂ϕ1
Y

and

(M − ϕ2(Y̊ )) ∪∂ϕ2
X

are obtained from M by a single 1-surgery, and a single 2-surgery, respec-
tively.
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1

g-1

Figure 20: The handle decomposition of ♯g−1(S1 × S3)♯CP 2 used for the
surgery operation in Lemma 13.

Proof. With notation as in Lemma 11, we take X = X1 ∪X2, where X1

is a portion of the 0-handle together with the first (g − 1) 1-handles, and
X2 is the rest of the 0-handle together with the remaining 1-handle that is
cancelled by the 2-handle in Z. Additionally, let Y = Y1 ∪ Y2, where Y1 is
the 3-handles together with a portion of the 4-handle, and Y2 is the rest of
the 4-handle together with the 2-handle which cancels the 1-handle. Then
the result follows from Lemma 11. □

If X ′♯CP 2 or X ′♯CP
2
= X, then we call X ′ a (+)- or (-)-blowdown

of X, respectively. Likewise, we call X a (+)- or (-)-blowup of X ′. In the
following construction, the pieces involved are not exactly those used in the
definition of a blowup or a blowdown. However, as in the previous lemma
the overall effect is to perform a blowup or a blowdown. The proof is the
same word-for-word as the proof of Lemma 12 but applied to Figure 20.

Lemma 13. Let Z andM be oriented 4-manifolds with Z ∼= ♯g(S1 × S3)♯CP 2

given by the Kirby diagram in Figure 20. Let Z = X ∪ Y where X is the
union of the 0- and 1-handles and the 2-handle which cancels the 1-handle.
Y is the union of the rest of the 2-handles, as well as the 3-, and 4-handles.
Let ϕ : X →֒M be orientation-preserving inclusions. Then

(X ′ − ϕ1(X̊1)) ∪∂ϕ1
X2

and

(X ′ − ϕ2(X̊2)) ∪∂ϕ2
X1

are a (-)-blowup, and a (-)-blowdown of X ′, respectively.

Following the previous analysis we now understand how manifolds change
as we homotope loops over 2-cells in the pants complex. This leads us to our
main application.
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Figure 21: A homotopy of a path in a 2-complex consists of a sequence of
operations of replacing a connected subset of the boundary of a 2-cell with
the rest of the boundary.

Theorem 4. Every smooth, oriented, closed manifold is cobordant to∐
mCP 2

∐
nCP

2
.

Proof. Let Σ be a genus g surface, and let L be a loop in P(Σ). By The-
orem 1, P(Σ) is simply-connected, so we know that there exists a cellular
disk D in P(Σ) with boundary L. First, we alter L using D to a new loop
called L′, so that L′ traverses a tree in P(Σ). We can do this by changing
the sides of the polygons that L goes around, using D, as in Lemma 10.
We will consider the different 2-cells following the order of the analysis in
Section 4.

By Lemma 13, changing L using a 3S-triangle results in the manifold
changing by a (+)- or a (-)-blowup or blowdown, depending on the ori-
entation of the triangle and the partition of the edges. We may achieve a
cobordism from X4

C(L) to the resulting manifold by introducing a disjoint

copy of CP 2 or CP
2
and forming the standard cobordism from a disjoint

union to the connected sum, as illustrated in Figure 22.
Note that in Lemma 10, if W1 and W2 both consist only of A-moves,

then X 4(W1) ∼= X 4(W2) ∼= ♮gS1 ×D3 and thus by [11], the result of doing
the replacement as in Lemma 10 does not change the manifold. Therefore,
changing L using a 3A-triangle, a 5A-pentagon, or a 4A-square does not
change the resulting 4-manifold at all. This modification of the loop therefore
corresponds to the product cobordism on the manifolds.

Suppose we are changing L using a 4S-square. If we are in the situation
where the edges are partitioned into two sets of two adjacent edges, then the
effect of the move is to remove some set 4-dimensional 1-handlebody, and
then to reinsert the same 4-dimensional 1-handlebody, so by [11], this does
not change the resulting 4-manifold. If we are in the case where the edges are
partitioned into two sets where one set has three adjacent edges, then this
affects L by removing ♮g−1(S1 ×D3) and inserting ♮g−2(S1 ×D3)♮(S2 ×D2)
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or vice versa, depending on which edges belong to L. By Lemma 12 this
affects the resulting 4-manifold by performing either a 1- or a 2-surgery
on X 4

C(L). We may achieve a cobordism between these manifolds using the
trace of this surgery.

The 4AS-square is handled similarly. If we are in the situation where
the edges are partitioned into two sets of two adjacent edges, then the effect
of the move is to remove some set 4-dimensional 1-handlebody, and then
to reinsert the same 4-dimensional 1-handlebody, so by [11], this does not
change the resulting 4-manifold. Suppose we are in the case where the edges
are partitioned into two sets where one set has three adjacent edges. If the
set with a single edge is either PQ or RS, then this affects L by removing
♮g(S1 ×D3) and inserting ♮g−1(S1 ×D3)♮(S2 ×D2) or vice versa, depending
on which edges belong to L. By Lemma 12 this affects the resulting 4-
manifold by performing either a 1- or a 2-surgery on X 4

C(L). If the set with a
single edge is either QR or SP , then the effect of the move is to remove some
set 4-dimensional 1-handlebody, and then to reinsert the same 4-dimensional
1-handlebody, so by [11], this does not change the resulting 4-manifold. In
either case, we may achieve a cobordism between these manifolds using
the trace of this surgery. The case of a 6AS-square is handled completely
analogously.

After collapsing all of the 2-cells, we will have a loop L′ that is traversing

a tree in P(Σ) with X 4
C(L

′), X 4
C(L), and some number of CP 2’s and CP

2
’s

cobounding a 5-manifold. We next collapse L′ to just a point. To do this
we proceed inductively on the size of the tree. Choose a leaf of the tree, so
that L′ must traverse this leaf in one direction, and then immediately turn
back and go in the other direction. Let L′′ be the loop obtained from L′

by removing this redundant edge followed by its reverse. If the edge of the
leaf is an A-edge, then X 4

C(L
′′) is equal to X 4

C(L
′), since removal of A-edges

does not change the resulting 4-manifold. So we need only consider the case
where this leaf edge is an S-edge.

Let W be a walk in P(Σ) that is an S-edge traversed twice in a row in
opposite directions. The effect of removing the S-leaf from L′ is the same
as removing a copy of X 4(W ) from X 4

C(L
′) and replacing the result with

♮g(S1 ×D3), which is the manifold with boundary associated to the constant
path. But, in the same way that we analysed the boundaries of the 2-cells
above, we find that X 4(W ) is always ♮g−1(S1 ×D3)♮(D2 × S2). But then,
by Lemma 12, X 4

C(L
′′) is obtained from X 4

C(L
′) by performing a 1-surgery.

We again obtain a cobordism between these manifolds using the trace of
the surgery. Then by induction on the number of leaves, we may repeat this
process until we arrive at the constant path. In the end, we find that there is
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M

M'

M#

♮S x B
1 4 

#S x S
1 3

{
{

{
{

The cobordism associated to
replacing one edge in a 3S

triangle by the other two edges

The cobordism associated to
replacing two edges in a

3S triangle by the other edge

The cobordism associated to
replacing portions of non-3S
2-cells by the other edge

We cap off the manifold
associated to the constant

path with ♮S1
×B4

Figure 22: An illustration of the cobordism build in the proof of Theorem 4.

a 5-manifold whose boundary is a disjoint union of X 4
C(L), some number of

CP 2 and CP 2, and ♯gS1 × S3. By capping off the ♯gS1 × S3 with ♮gS1 ×B4,
the result follows. □

5. An explicit cobordism

In the previous section, we have seen that a cellular homotopy of a loop L ⊂
P (Σ) over a 2-cell which is not a 3S-triangle changes the manifold X4

C(L)
by a (possibly trivial) surgery. Given a cellular homotopy between a loop L
and a loop L′ which does not pass over any 3S-triangles, we get a cobordism
between X 4

C(L) and X 4
C(L

′) by composing the trace cobordisms obtained
when the loop moves over each 2-cell.

The remainder of this section is dedicated to producing an explicit exam-
ple of such a trace cobordism. In particular, we seek to produce a cobordism
between S4 and S2 × S2 corresponding to the trace of a 1-surgery on S4. This
corresponds to a cobordism consisting of a single 5-dimensional 2-handle, so
that the construction is determined by the isotopy type and the Z/2Z val-
ued framing of the 2-handle. Since S4 is simply connected, and S2 × S2 is
spin, there is actually a unique cobordism from S4 to S2 × S2 consisting of
a single 2-handle. Thus, once we have constructed this cobordism, we know
it must correspond to the 5-manifold (S2 ×D3)− B̊5.

We start the construction by describing loops in the pants complex cor-
responding to S4 and S2 × S2 coming from trisections of these manifolds. At
the tops of Figures 23 and 24 we see trisection diagrams for S4 and S2 × S2,
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respectively. These give rise to the loops in the pants complex shown below
each of these diagrams. These loops meet in a 6AS-hexagon as shown in
Figure 25 with the rectangle on the left being the loop corresponding to S4,
and the long way around both rectangles representing S2 × S2. Taking the
homotopy of the loop representing S4 over the 6AS-hexagon corresponds
to doing a 1-surgery on S4 to produce S2 × S2. By the discussion in the
previous paragraph this produces the cobordism (S2 ×D3)− B̊5.

6. Signature

Thus far, we have primarily used information about the pants complex to
derive information about 4-manifolds, but this process can also be reversed.
For example, given a loop L in P(Σ) which bounds a disk D, we may derive
information about the 2-cells that make up D from L.

By orienting L, the diskD inherits an orientation, and, in particular all of
the 3S-triangles in D inherit an orientation as well. Each triangle in this disk
is either positive or negative, namely those that give rise to CP 2 are positive,

and those that give rise to CP
2
are negative. Following Theorem 4, we see

that summing the number of positive 3S-triangles in D and subtracting the
negative 3S-triangles in D gives us the signature of X4

C(L). Definining σ(L)
to be σ(X4

C(L)), we immediately obtain the following proposition.

Proposition 1. Let L be a loop in the pants complex with σ(L) = n, then
any disk bounded by L must contain at least n 3S-triangles.

In the remainder of this section we show how σ(L) can be calculated
directly from L in the 1-skeleton of the pants complex. On the other hand,
this invariant constrains the type of 2-cells which L can bound. One can
view this as a particular instance of a theorem of Margalit [13], who showed
that the 2-cells of the pants complex are determined by the combinatorics
of its 1-skeleton.

Novikov additivity [1] states that, if X and X ′ are two 4-manifolds with
diffeomorphic boundary, and Y is a manifold obtained by gluing X and
X ′ along their boundaries by a orientation-reversing diffeomorphism, then
σ(Y ) = σ(X) + σ(X ′). When the manifolds X1 and X2 are not glued along
their whole boundary, but rather some submanifolds of their boundary, then
we no longer have this additivity. However, there is a correction term that
was identified by Wall [20]. This correction term was further identified with
the Maslov index of a certain triple of Lagrangians in [4] (see also [14]).
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Figure 23: Top: An unbalanced trisection diagram for S4. Bottom: A loop
in the pants complex corresponding to this trisection.
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Figure 24: Top: A trisection diagram for S2 × S2. Bottom: A loop in the
pants complex corresponding to this trisection.
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6AS

Figure 25: The loops for S2 × S2 and S4 meet in a 6AS-hexagon. Taking
the short way around the loop corresponds S4 whereas the long way gives
S2 × S2.

Let (V, ψ) be a finite-dimensional vector space over Q together with a
nonsingular symplectic form, and let L1, L2, L3 ⊂ V be three Lagrangians.
The Maslov index M(L1, L2, L3) ∈ Z is the signature of the singular sym-
metric form given by

θ : L1 ⊕ L2 ⊕ L3 × L1 ⊕ L2 ⊕ L3 → Q

((x1, x2, x3), (y1, y2, y3)) 7→
∑

i ̸=j

(−1)i+jψ(xi, yj)
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Suppose that the boundaries of X and X ′ have both been Heegaard split
with the same genus surfaces so that ∂X = H1 ∪Σ H2 and ∂X ′ = H ′

1 ∪Σ′

H ′
2. Let Y be the oriented 4-manifold that results from gluing H ′

2 to H2

by an orientation-reversing diffeomorphism ϕ. Let L1, L2, and L3 be the
Lagrangians in H1(Σ;Q) that are the kernels of the inclusions of Σ as the
boundary of H1, H2, and (using ϕ) H ′

1, respectively. Then we have σ(Y ) =
σ(X) + σ(X ′)−M(L1, L2, L3) which is the form of Wall additivity that we
will use.

Proposition 2. Let L be a loop in P(Σ) with vertices P1, P2, · · ·Pn such
that Li is the Lagrangian subspace of H1(Σ;Q) given by the kernel of the
map induced by inclusion H1(Σ;Q) → H1(H

3(Pi);Q) for 1 ≤ i ≤ n. Then

σ(X 4
C(L)) = −

n−1∑

i=2

M(L1, Li, Li+1)

Proof. Since σ(♮gS1 ×D3) = 0, by Novikov additivity we have σ(X 4
C(L)) =

σ(X 4(P1P2 · · ·Pn)). The formula now follows from repeated use of Wall ad-
ditivity. For n = 3 we have,

σ(X 4
C(L)) = σ(X 4(P1P2P3)) + σ(♮gS1 ×D3)

= σ(X 4(P1P2P3))

= σ(P1P2) + σ(P2P3)−M(L1, L2, L3)

For n > 3, we have by induction

σ(X 4(P1P2 · Pn)) = σ(X 4(P1P2 · · ·Pn)) + σ(♮gS1 ×D3)

= σ(X 4(P1P2 · · ·Pn))

= σ(X 4(P1P2 · · ·Pn−1))

+ σ(X 4(Pn−1Pn))−M(L1, Ln−1, Ln)

= −

n−1∑

i=2

M(L1, Li, Li+1)

□
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ment. Math. Helv. 28 (1954) 17–86.

[18] B. Wajnryb, An elementary approach to the mapping class group of a
surface, Geom. Topol. 3 (1999) 405–466.

[19] F. Waldhausen, Heegaard-Zerlegungen der 3-Sphäre, Topology 7 (1968)
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